EP0043881A1 - Dispositif hydraulique rotatif convertisseur et répartiteur à multi-cylindrées synchronisées - Google Patents

Dispositif hydraulique rotatif convertisseur et répartiteur à multi-cylindrées synchronisées Download PDF

Info

Publication number
EP0043881A1
EP0043881A1 EP19800401063 EP80401063A EP0043881A1 EP 0043881 A1 EP0043881 A1 EP 0043881A1 EP 19800401063 EP19800401063 EP 19800401063 EP 80401063 A EP80401063 A EP 80401063A EP 0043881 A1 EP0043881 A1 EP 0043881A1
Authority
EP
European Patent Office
Prior art keywords
displacements
stator
pressure
radius
active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP19800401063
Other languages
German (de)
English (en)
Other versions
EP0043881B1 (fr
Inventor
Gaston Sauvaget
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to EP19800401063 priority Critical patent/EP0043881B1/fr
Priority to DE8080401063T priority patent/DE3071830D1/de
Publication of EP0043881A1 publication Critical patent/EP0043881A1/fr
Application granted granted Critical
Publication of EP0043881B1 publication Critical patent/EP0043881B1/fr
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C14/00Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations
    • F04C14/08Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations characterised by varying the rotational speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/08Rotary pistons
    • F01C21/0809Construction of vanes or vane holders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C14/00Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations
    • F04C14/06Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations specially adapted for stopping, starting, idling or no-load operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/30Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C2/34Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in groups F04C2/08 or F04C2/22 and relative reciprocation between the co-operating members
    • F04C2/356Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in groups F04C2/08 or F04C2/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • F04C2/3566Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in groups F04C2/08 or F04C2/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along more than one line or surface

Definitions

  • the invention relates to a hydraulic distributor-distributor device with synchronized multi-displacement intended to transform hydraulic energy into kinetic energy of rotation and vice versa.
  • the known solutions / motors or hydraulic pumps do not make it possible to obtain both a high number of gear ratios and good efficiency. Their pressure / mass power / torque ratio is unfavorable. Their lifespan is generally short due to the significant internal forces which they generate. Their performance is particularly low in small reports because they circulate a large volume of inactive hydraulic fluid.
  • the uses of hydraulic motors of known type are currently technologically limited in power, the maximum displacement developed to date is of the order of 20 liters.
  • This type of engine does not support the elastic deformations of organs, ovalizations, dimensional variations due to temperature differences, because they generate abnormal forces which cause very rapid wear as well as significant leaks reducing power and efficiency. Their proper functioning requires very fine surface finishes as well as very large metallic masses to limit leaks due to elastic deformations.
  • the device according to the invention aims to overcome these drawbacks.
  • the invention as characterized in the claims solves the problem of creating a hydraulic device making it possible to obtain very large direct torques at low speed, capable of reaching the limits of current technology, that is to say say of the order of 1,000,000 da.Nm and this with a mass that is relatively smaller as the torque increases, therefore with increasing mass power It offers the possibility of self-compensating for dimensional variations which whatever its origin, producing very few leaks without causing wear or cyclic pulsations. Its overall displacement can range from the fraction of a liter to hundreds of liters with very many speed ratios in both directions of rotation with remarkable efficiency.
  • the advantages obtained thanks to this invention consist essentially in that the very large torques are obtained by simple variation of the mean radius of the displacements R 1 - r: 2; the section of application of the working fluid being able to remain constant by ranges of couples.
  • the device is in the form of a substantially rectangular cross-section consisting of a set of concentric rings, namely: a distributor cam or stator in which are formed recesses acting as displacements delimited by the internal radius R1 of the rotor and . by the sealing flanges mounted on bearings.
  • the engine torque is obtained via the average radius of the displacements Rm which can reach several meters, in cooperation with the number of active displacements and the number of active valves in these displacements.
  • the flow rate of the working fluid is preferably constant, but it can however allow a variation of the order of 15% for the change of gears.
  • the admission of the working fluid is controlled separately for each displacement or pair of displacements in radial opposition, the inactive displacements are not subjected to a flow of fluid and remain completely pained without absorbing any power.
  • the valves are designed with a differential section to be controlled with double effect by the controlled admission of the high pressure fluid (of the order of 250 bar) into the active displacements. This arrangement allows self-compensation for dimensional variations, ovalizations, etc., particularly for large diameters because the valves are continuously kept in contact under pressure on the active parts of the displacements, radius r.
  • the speeds are obtained by combining the active displacements. When all the displacements are active, we have the highest torque and the lowest speed, when only the smallest displacement is active and receives all of the working fluid remained constant, we have the lowest and highest engine torque rotor rotation speed. Freewheeling takes place by instantly making all displacement inactive.
  • the device according to the invention comprises 4 equidistant displacements A, B, C, D, formed in the stator 1 of external radius R.
  • the bottom of each of the cylinders is of radius r a , r b ' r c , r d .
  • the rotor concentric with the stator 1 has a large clearance J between the radius R and the radius R internel rotor.
  • the rotor has 24 equidistant and radially oriented grooves 3, in which 24 differential valves 4 slide.
  • the closing flanges are assembled by 24 bolts 5.
  • Each of the ramps has a groove Ru, for the displacement A these grooves are designated by Ru 1 , Ru 2 , etc. In these grooves terminate the intake and exhaust ducts of working fluid 10. These ducts act, according to the direction of rotation, as a function of intake or exhaust of the fluid. Here, the direction of rotation is represented by the arrow F.
  • the lines 10 have been designated by HP for high pressure and BP for low pressure. In the inactive displacement B, all the conduits are in BP.
  • a valve 12 is shown descending the ramp R a2, while another valve 13 goes up the ramp R al .
  • a displacement is limited by the pre-active valves located on either side thereof. In fig.l, the displacement is defined by the valves 14 and 15, the valve 16 is no longer tight on R.
  • the two grooves Ru of each displacement are of length equal to that of the ramps or preferably a little longer as in fig. 2.
  • the edge of the valve 4 is at the end of the cylindrical part r however the edge of the groove Rua is located opposite the pressure exchanger duct of the valve which is therefore defused, that is to say - say made inactive. This allows the valve to go up the boom in equipression. It is the same for the valve 12 which descends the ramp. The construction details of the valves will be described later.
  • FIG. 3 there is shown the section along AA of fig.l.
  • the reference numbers in fig. 1 and 2 have been used.
  • This view shows the section of the torus constituting the annular device, the shape of the stator 1, of the rotor 2, of the closing flanges 17,18, and of the roller bearings 19,20, as well as their retaining flange 21,22, fixed by screws 23 on the flanges 17,18.
  • Static seals 24 and rotational seals 25, 26 ensure the tightness of the assembly.
  • the circulation of the fluid at the pressure Pi of the casing is represented by a shading with small points. We also see the differential return chambers 7 of the valves.
  • Figure 4 shows the section along BB of fig.l.
  • the circulation of the fluid at the pressure of the casing is also represented by a shading with small points.
  • This view also shows the fixing of the flanges 17,18 on the rotor 2 by means of the bolts 27.
  • the holes 28 (fig.3) and 29 (fig.4) have a centering and a tapping, they are used for fixing on the built on the one hand and on the receiving member on the other.
  • Fig.5 shows the valve in elevation. It is in the form of a rectangular parallelepiped whose differential section is obtained by making a shoulder 30, 31, on the short sides, which has the effect of reducing the surface 32 of the underside or valve head relative to the upper surface 33 on which the working fluid acts to make the valve slide in its housing by crossing said valve through the holes 34,35,36,37 (fig.8) drilled from the face 33 and opening into a longitudinal groove of slight depth 38 located on the axis of symmetry YY of the face 32.
  • the valve has on its axis of symmetry XX a tapped hole 39 which receives a threaded sleeve 40 (valve 12 in fig.2) limiting the stroke of the pusher 41 recalled by the spring 42 in the output position.
  • the function of this plunger is to make the valve pre-active on the radius R of the stator in the absence of a defusing pressure in the differential chambers, so as to automatically delimit the active displacements when the valves pass.
  • the differential return pressure of the valves in the bottom of their housing must be greater than the thrust of the return springs 42 so that the output end of the pusher 41 is almost completely inserted into the socket 40, which has the effect of preventing the valve from coming into watertight contact on the spoke R.
  • the valves are furthermore each provided with a plating clearance 43 of shallow depth, situated on each of their large parallel faces in the part of the valve always remaining inside the housing in the rotor; this clearance opens at 44 on the face 32.
  • This face 32 is of concave shape along a radius 45 (fig.12) R + r which corresponds to the mean radius Rm of the displacements .
  • This radius Rm is connected to the large external faces by a flat or better by a convex part 46, 47, being in contact with the ramps Ru at the time of the descent or of the rise of the valves in the displacements.
  • the valves are also provided with pressure exchanger pipes 48,49, fig.10,11, each putting one of the surface portions 32 into communication with the clearance 44 located on the opposite face.
  • the depth of the displacements R - r is preferably different, in particular when they are three in number or multiples of three or 2. They are of equal depth in pairs in diametric opposition, each pair may or may not be different from the others in volume..
  • the cylindrical parts R of the stator, of developed length L and r of developed length 1 must be of substantially equal length and of a value such that they allow each to receive at least two valves simultaneously.
  • the different reduction ratios or speeds can be obtained according to a Renard series, by successively combining displacements of different or equal volume, the volume of which is calculated as a function of this progression.
  • At least one of the displacements can be used as a pump, compressor or distributor to control or control auxiliary functions or one or more displacements of a second device operating in parallel or in series with the first.
  • the invention applies to all cases of coupling, decoupling, distribution and conversion of power, speeds, torques, for small, medium, large and very large powers.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Hydraulic Motors (AREA)

Abstract

Dispositif comportant un stator (1), un rotor (2) et des flasques de fermeture (17, 18) formant ensemble un tore de section sensiblement rectangulaire pouvant atteindre plusieurs mètres de diamètre. Le rotor (1) comporte des rainures radiales (3) recevant chacune une valve (4) dont la face inférieure, de surface plus faible que celle de la face supérieure, se déplace sur la périphérie du stator laquelle comporte des évidements ou cylindrées (A,B,C,D) limités par une partie cylindrique de rayon r raccordée à la périphérie de rayon R par des rampes identiques. Les valves différentielles (4) reçoivent, au travers de canalisations (HP) débouchant dans les cylindrées, la poussée du fluide moteur lorsqu'elles sont actives sur le fond r des cylindrées, ledit fluide s'écoulant ensuite par les canalisations (BP) en basse pression, les valves étant alors inactives. Les valves (4) sont rendues actives par une poussée différentielle résultant de la différence des surfaces inférieure et supérieure de valve, s'appliquant sur la face supérieure pour la maintenir en appui sur le rayon r.

Description

  • L'invention concerne un dispositif hydraulique convertisseur répartiteur à multi-cylindrées synchronisées destiné à transformer une énergie hydraulique en une énergie cinétique de rotation et réciproquement. de Les solutions connues/môteurs ou de pompes hydrauliques ne permettent pas d'obtenir à la fois un nombre élevé de rapports de vitesses et un bon rendement. Leur rapport pression/puissance massique/couple est défavorable. Leur durée de vie est généralement faible du fait des efforts internes importants qu'ils engendrent. Leur rendement est particulièrement faible dans les petits rapports car ils mettent en circulation un important volume de fluide hydraulique inactif. Les utilisations des moteurs hydrauliques de type connu sont actuellement limitées technologiquement en puissance, la cylindrée maximum développée à ce jour est de l'ordre de 20 litres. Ce type de moteur ne supporte pas les déformations élastiques d'organes, ovalisations, variations dimensionnelles dues aux différences de températures, car elles engendrent des efforts anormaux qui provoquent une usure très rapide ainsi que d'importantes fuites réduisant la puissance et le rendement. Leur bon fonctionnement exige des finitions de surfaces très fines ainsi que des masses métalliques très importantes pour limiter les fuites dûes aux déformations élastiques.
  • Le dispositif selon l'invention a pour but de pallier ces inconvénients. L'invention telle qu'elle est caractérisée dans les revendications résoud le problème consistant à créer un dispositif hydraulique permettant l'obtention de très grands couples en direct à basse vitesse, pouvant atteindre les limites de la technologie actuelle, c'est-à-dire de l'ordre de 1.000.000 de m.daN et cela avec une masse relativement d'autant plus faible que le couple s'accroit, donc avec une puissance massique croissante Il offre la possibilité d'auto-compenser les variations dimensionnelles quelles qu'en soit l'origine en n'engendrant que très peu de fuites sans provoquer d'usure ni de pulsations cycliques. Sa cylindrée globale peut aller de la fraction de litre à des centaines de litres avec de très nombreux rapports de vitesse dans les deux sens de rotation avec un rendement remarquable. En outre il assure une sécurité totale en cas de surcharges très importantes pouvant entraîner la rupture d'organes de commande ou de réception, en se mettant instantanément en roue libre. Il permet égal ement le démarrage et le freinage de masses de très forte inertie. Aucune puissance inutile n'est absorbée, ce qui contribue à obtenir un rendement global très élevé comparativement aux solutions connues de puissance pcomparable.
  • solutions connues de puissance comparable.
  • Les avantages obtenus grâce à cette invention consistent essentiellement en ceci que les très grands couples sont obtenus par simple variation du rayon moyen des cylindrées R1- r :2 ; la section d'application du fluide moteur pouvant rester constante par plages de couples. Le dispositif se présente sous forme d'un torede section sensiblement rectangulaire constitué par un .ensemble d'anneaux concentriques, a savoir : une came distributrice ou stator dans laquelle sont ménagés des évidements faisant fonction de cylindrées délimitées par le rayon interne R1 du rotor et. par les flasques de fermeture étanche montés sur roulements. Le couple moteur est obtenu par l'intermédiaire du rayon moyen des cylindrées Rm qui peut atteindre plusieurs mètres, en coopération avec le nombre de cylindrées actives et le nombre de valves actives dans ces cylindrées. Le débit du fluide moteur est préférablement constant, mais il peut cependant admettre une variation de l'ordre de 15% pour le passage des vitesses. L'admission du fluide moteur est piloté séparément pour chaque cylindrée ou paire de cylindrées en opposition radiale, les cylindrées inactives ne sont pas soumises à un débit de fluide et restent totalement peines sans absorber la moindre puissance. Les valves sont conçues à section différentielle pour être pilotées à double effet par l'admission contrôlée du fluide en haute pression (de l'ordre de 250 bar) dans les cylindrées actives. Cette disposition permet les auto-compensations de variations dimensionnelles, ovalisations etc... particulièrement pour les grands diamètres du fait que les valves sont continuellement maintenues en contact sous pression sur les parties actives des cylindrées, rayon r. Plus le diamètre du tore est important, plus le nombre, le volume des cylindrées, le nombre des vitesses sont importants. Les vitesses sont obtenues en combinant les cylindrées actives. Lorsque toutes les cylindrées sont actives, on a le couple le plus important et la vitesse la plus faible, lorsque seule la plus petite cylindrée est active et reçoit la totalité du fluide moteur resté constant, on a le plus faible couple moteur et la plus grande vitesse de rotation du rotor. La mise en roue libre s'effectue en rendant instantanément l'ensemble des cylindrées inactives.
  • D'autres caractéristiques et avantages de la présente invention seront mieux compris à la lecture de la description qui suit faite en référence aux dessins annexés.
    • - la figure 1 représente une coupe partielle en élévation du dispositif selon l'invention, flasque retiré;
    • - la figure 2 représente une coupe partielle en élévation du dispositif selon l'invention, agrandie suivant le plan P de la fig.l;
    • - la figure 3 est une coupe du dispositif selon l'invention suivant la flèche AA de la fig.l;
    • - la figure 4 est une coupe du dispositif selon l'invention suivant la flèche BB de la fig.l;
    • - les figures 5 à 13 sont des vues montrant la valve différentielle.
  • Tel qu'il est représenté en élévation en coupe partielle sur la fig.l, le dispositif selon l'invention comporte 4 cylindrées équidistantes A,B,C,D, ménagées dans le stator 1 de rayon extérieur R. Le fond de chacune des cylindrees est de rayon ra, rb' rc, rd. Le rotor concentrique au stator 1 présente un jeu important J entre le rayon R et le rayon R interneau rotor. Le rotor comporte 24 rainures 3 équidistantes et radialement orientées, dans lesquelles coulissent 24 valves différentielles 4. Les flasques de fermeture sont assemblés par 24 boulons 5. Dans la zône où le flasque a été retiré, on aperçoit les valves non coupées ainsi qu'une rainure circulaire 6 alimentant les chambres différentielles 7 à la pression Pi régnant à l'intérieur du carter. La pression Pi peut être contrôlée et pilotée par un distributeur extérieur relié à l'orifice 8 qui, par la canalisation 9, répartit ladite pression. On peut isoler les circuits d'admission de Pi par cylindre. La cylindrée B est représentée inactive, les valves sont remontées au fond de leur logement 3, les autres cylindrées A,C,D, sont actives. Elles sont limitées chacune par une rampe Ra1, Ra2, Rb1, Rb2, Rc1, Rc2, Rd1,Rd2. Chacune des rampes comporte une rainure Ru, pour la cylindrées A ces rainures sont désignées par Ru1, Ru2, etc. Dans ces rainures aboutissent les conduits d'admission et d'échappement de fluide moteur 10. Ces conduits font, suivant le sens de rotation, fonction d'admission ou d'échappement du fluide. Ici, le sens de rotation est figuré par la flèche F. Les canalisations 10 ont été désignées par HP pour la haute pression et BP pour la basse pression. Dans la cylindrée inactive B, tous les conduits sont en BP.
  • On voit mieux le détail de la cylindrée A sur l'agrandissement en coupe suivant le plan P de la fig.2. Le sens d'application de la HP sur la partie de la valve 11 se trouvant en position active dans la cylindrée en contact glissant sur le rayon r (ra) est désigné par les flèches S. La poussée sur la valve est égale à P bar/cm2 multiplié par la surface active(R - r )L, L est la largeur de la valve.
  • Une valve 12 est représentée descendant la rampe Ra2 cependant qu'une autre valve 13 remonte la rampe Ral. Une cylindrée est limitée par les valves pré-actives se trouvant de part et d'autre de celle-ci. Sur la fig.l, la cylindrée est délimitée par les valves 14 et 15, la valve 16 n'est plus étanche sur R. Les deux rainures Ru de chacune des cylindrées sont de longueur égale à celle des rampes ou préférablement un peu plus longue comme sur la fig.2. Le bord de la valve 4 se trouve à l'extrémité de la partie cylindrique r cependant que le bord de la rainure Rua se trouve en face du conduit échangeur de pression de la valve qui de ce fait se trouve désamorcée, c'est-à-dire rendue inactive. Ceci permet à la valve de remonter la rampe en èquipression. Il en est de même pour la valve 12 qui descend la rampe. Le détail de réalisation des valves sera décrit plus loin.
  • Sur la figure 3 on a représenté la coupe suivant AA de la fig.l. Les n° de repère des fig.1 et 2 ont été utilisés. Cette vue montre la section du tore constituant le dispositif annulaire, la forme du stator 1, du rotor 2, des flasques de fermeture 17,18, et des roulements à galets 19,20, ainsi que leur flasque de retenue 21,22, fixés par des vis 23 sur les flasques 17,18. Des joints d'étanchéité statiques 24 et d'étanchéité en rotation 25,26, assurent l'étanchéité de l'ensemble. La circulation du fluide à la pression Pi du carter est représentée par un ombrage à petits points. On voit également les chambres différentielles 7 de rappel des valves.
  • La figure 4 représente la coupe suivant BB de la fig.l. La circulation du fluide à la pression du carter est également représentée par un ombrage à petits points. Les conduits 9,qui alimentent les rainures circulaires (fig.l) débouchent dans les chambres différentielles 7 assurant le rappel des valves au fond de leur logement sous l'action de la pression Pi du carter en l'absence de pression HP au droit des cylindrées. Cette vue montre également la fixation des flasques 17,18 sur le rotor 2 au moyen des boulons 27. Les trous 28 (fig.3) et 29 (fig.4) comportent un centrage et un taraudage, ils servent à la fixation sur le bâti d'une part et sur l'organe récepteur d'autre part.
  • Sur la planche V on a reprusenté la valve sur les figures 5 à 13. La fig.5 montre la valve en élévation. Elle se présente sous forme d'un parallélépipède rectangle dont la section différentielle est obtenue en réalisant un épaulement 30,31, sur les petits côtés, ce qui a pour effet de réduire la surface 32 de la face inférieure ou tête de valve par rapport à la surface supérieure 33 sur laquelle agit le fluide moteur pour faire coulisser la valve dans son logement en traversant ladite valve par les trous 34,35,36,37 (fig.8) percés depuis la face 33 et débouchant dans une rainure longitudinale de faible profondeur 38 située sur l'axe de symétrie YY de la face 32. La valve comporte sur son axe de symétrie XX un trou taraudé 39 qui reçoit une douille filetée 40 (valve 12 de la fig.2) limitant la course du poussoir 41 rappelé par le ressort 42 en position de sortie. La fonction de ce poussoir est de rendre la valve pré-active sur le rayon R du stator en l'absence d'une pression de désamorçage dans les chambres différentielles, de façon à délimiter automatiquement les cylindrées actives au passage des valves. La pression différentielle de rappel des valves dans le fond de leur logement doit être supérieure a la poussee des, ressorts de rappel 42 de façon à ce que l'extrémité sortie du poussoir 41 soit presque complètement enfoncée dans la douille 40, ce qui a pour effet d'empêcher la valve d'entrer en contact étanche sur le rayon R. Les valves sont en outre munies chacune d'un dégagement de placage 43 de faible profondeur, situé sur chacune de leurs grandes faces parallèles dans la partie de la valve restantoujours à l'intérieur du logement dans le rotor; ce dégagement débouche en 44 sur la face 32.Cette face 32 est de forme concave suivant un rayon 45 (fig.12) R + r qui correspond au rayon moyen Rm des cylindrées
    Figure imgb0001
    . Ce rayon Rm se raccorde sur les grandes faces extérieures par un plat ou mieux par une partie convexe 46, 47, se trouvant en contact avec les rampes Ru au moment de la descente ou de la montée des valves dans les cylindrées. Les valves sont en outre munies de canalisations échangeuses de pression 48,49, fig.10,11, mettant chacune en communication une des portions de surface 32 avec le dégagement 44 situé sur la face opposée. Cette disposition permet le placage des valves et leur immobilisation lorsqu'elles sont en contact étanche avec le rayon r du fond de cylindrée. Il n"y a jamais de frottement dans les logements lorsque les valves sont actives. Sur la fig.13 on a montré le schéma de fonctionnement à double effet des valves différentielles. Elles sont renvoyées dans le fond de leur logement 3 lorsque la pression Pi interne au carter est modifiée par une commande extérieure, par exemple par un distributeur hydraulique non représenté, pour être rendue supérieure à la basse pression BP et à la force de rappel du ressort de poussoir. La pression Pi agit sur les épaulements 30,31, des valves. Lorsque la pression Pi du carter est normale, la HP agit sur la face 33 de la valve selon une pression moyenne
    Figure imgb0002
    qui oblige la valve à sortir de son logement et à venir en contact avec les rayons r et R. La commande de variation de pression Pi peut être propre ou non à chaque cylindrée. Elle peut être tarée pour définir avec précision la pression de contact glissant avec le stator sur les rayons R et r.
  • La profondeur des cylindrées R - r est préférablement différente,notamment lorsqu'elles sont au nombre de trois ou de multiples de trois ou de 2. Elles sont d'égale profondeur par paires en opposition diamétrale, chaque paire pouvant être ou non différente des autres en volume..
  • Les parties cylindriques R du stator, de longueur développée L et r de longueur développée 1 doivent être d'une longueur sensiblement égale et d'une valeur telle qu'elles permettent de recevoir simultanément chacune au moins deux valves.
  • Les différents rapports de réduction ou vitesses peuvent être obtenus suivant une série Renard, en combinant successivement des cylindrées de volume différent ou égal, dont le volume est calculé en fonction de cette progression.
  • Le démarrage au couple maximum peut être obtenu en laminant le fluide dans le distributeur d'alimentation.
  • Au moins une des cylindrées peut être utilisée en pompe, compresseur ou répartiteur pour commander ou asservir des fonctions annexes ou une ou plusieurs cylindrées d'un second dispositif fonctionnant en parallèle ou en série avec le premier.
  • L'invention s'applique à tous les cas de couplage, découplage, répartition et conversion de puissance, vitesses, couples, pour des puissancespetites, moyennes, grandes et très grandes.

Claims (9)

1 - Dispositif hydraulique convertisseur répartiteur destiné à transformer une énergie hydraulique en énergie cinétique de rotation et réciproquement. Il comporte un stator, un rotor dans lequel sont ménagées des rainures radiales équidistantes, prévues pour recevoir chacune une palette dont la face inférieure se déplace sur la périphérie du stator laquelle comporte des évidements formant les cylindrées, la poussée du fluide moteur assurant l'entraînement en rotation du rotor en se déplaçant successivement dans les cylindrées du stator, deux flasques latéraux, montés sur roulement et solidaires du rotor, referment l'ensemble de façon étanche, le dispositif est caractérisé en ce que le stator comportant les cylindrées est annulaire et ne possède pas de moyeu, en coopération avec le rotor (2), les flasques de fermeture (17,18) et les flasques d'étanchéité (21, 22), il forme un moteur entièrement annulaire,
en ce que le nombre des cylindrées est fonction de la longueur de la circonférence du stator au niveau du rayon R,
en ce que le débit du fluide moteur est sensiblement constant à toutes les vitesses de rotation tout en pouvant admettre, pour le passage des vitesses, une variation du débit de l'ordre de plus ou moins 15 %,
en ce que l'admission du fluide moteur est pilotée séparément, de façon synchrone, pour chacune des cylindrées en nombre impair et de volume pouvant être différent, ou séparément dans chaque paire de cylindrées synchronisées en opposition diamétrale,
en ce que les cylindrées inactives ne sont pas soumises à un débit de fluide,
en ce que les valves sont prévues à double effet, elles sont rendues actives, au contact du rayon R du fond des cylindrées, directement par
la pression HP dans les cylindrées actives, ou bien rappelées au fond de leur logement au moyen d'une pression différentielle Pi ou pression du carter agissant directement sur la valve,
en ce que la mise en roue libre instantanée est obtenue en accroissant la pression Pi du carter.
2 - Dispositif selon 1 dans lequel la face avant (32) de la valve est mise en communication avec la face opposée (33) au moyen de trous (34,35, 36,37), caractérisé en ce que les valves sont en forme de Té, les deux petits côtés latéraux présentent chacun un épaulement (30,31) accroissant la surface de la face supérieure (33) par rapport à la face inférieure (32), en ce que la surface active (32) est divisée longitudinalement en deux parties égales par une rainure (38) de faible profondeur dans laquelle débouchent, de façon dite "borgne" les trous (34, 35, 36, 37) de mise en communication des deux surfaces (32,33),
en ce que les deux parties de surface (32) présentent ensemble un profil concave dont le rayon (45) est compris entre la dimension des rayons R et du stator,
en ce que ces deux parties de surface concaves sont raccordées aux grandes faces extérieures parallèles par un plat ou un rayon convexe (46,47).
3 - Dispositif selon 1 et 3, dans lequel les cylindrées sont définies par le diamètre intérieur Rl du rotor, par les deux flasques de fermeture et par les évidements usinés dans le stator, ces évidements présentent une portion cylindrique de rayon r limitée de chaque côté par une rampe de pente et de longueur identique se raccordant à la périphérie cylindrique de rayon R, chaque rampe reçoit une canalisation de fluide,
caractérisé en ce que le volume des cylindrées est préférablement différent lorsqu'elles sont en nombre impair, lorsqu'elles sont en nombre pair les volumes sont égaux par paire de cylindrées opposées, mais les paires de cylindrées peuvent être de volume différent,
en ce que les canalisations de passage du fluide moteur sont disposées radialement et sont de très grosse section, elles débouchent dans l'alésage interne du stator où elles sont réunies aux distributeurs correspondants.
4 - Dispositif selon les revendications 1 et 2, caractérisé en ce que les valves comportent chacune un poussoir intégré (41), indépendant du logement de valve, dont la course est très limitée, le rappel du poussoir est assuré par un ressort (42), en ce que
ce poussoir émerge normalement de la face '(33) d'une hauteur telle que lorsque la valve se trouve en appui sur le rayon R du stator, le poussoir soit comprimé d'une façon suffisante pour assurer l'étanchéité du contact de la face (32) sur le rayon R du stator, ledit poussoir agissant uniquement sur les parties R du stator.
5 - Dispositif selon l'une quelconque des revendications précédentes, caractérisé en ce que les valves comportent au moins une paire de canalisations échangeuses de pressions (48,49), mettant en communication, l'une la première partie de la surface active (32) de la valve avec la grande face opposée au travers du dégagement (43), et l'autre la seconde partie de la surface concave (32) avec le dégagement (43) de l'autre grande face.
6 - Dispositif selon l'une quelconque des revendications précédentes, caractérisé en ce que les valves sont rendues actives par leur mise en contact étanche sur la portion cylindrique r au moyen d'une pression
Figure imgb0003
agissant sur la face (33) de la valve du fait de la différence des surfaces des faces (32,33) en obligeant la valve à descendre sur les rampes Ra2 dans le fond des cylindrées actives jusqu'à ce que l'étanchéité soit assurée sur le rayon r et ce sur toute la partie cylindrique de rayon r du fond des cylindrées.
7 - Dispositif selon l'une quelconque des revendications précédentes dans lequel une, plusieurs ou la totalité des cylindrées peuvent être rendues inactives au moyen de l'accroissement de la pression, caractérisé en ce que cet accroissement de pression agit, à l'intérieur du carter, sur la pression Pi laquelle s'applique sur les épaulements (30,31) des valves par l'intermédiaire de la chambre différentielle circulaire (7) définie entre le rotor et le stator,
en ce que la chambre différentielle est à la pression Pi,
en ce que la pression de contact glissant de la partie active (32) des valves est définie d'une part par la pression agissant sur la surface des épaulements (30,31) et, d'autre part, par la résultante des pressions agissant sur la surface (33).opposée à la surface active (32) soumise à la pression HP,
en ce que la variation de la pression Pi peut être propre à chaque cylindrée.
8 - Dispositif selon l'une quelconque des revendications précédentes, caractérisé en ce que les différents rapports de vitesses de rotation du rotor et le couple correspondant sont obtenus au moyen d'un ensemble de distribution du fluide moteur débitant à débit constant pour toutes les vitesses de rotation et notamment pour la vitesse la plus lente et le couple le plus élevé dans la totalité des cylindrées qui sont alors toutes actives et, progressivement, en alimentant avec le même débit constant, de moins en moins de cylindrées pour accroître la vitesse en réduisant le couple, jusqu'à debiter la totalité du fluide moteur dans la cylindrée du plus faible volume pour obtenir la plus grande vitesse de rotation et le plus faible couple moteur.
9 - Dispositif selon l'une quelconque des revendications précédentes, caractérisé en ce qu'au moins l'une des cylindrées est utilisée en pompe, répartiteur ou compresseur pour commander ou asservir des fonctions annexes ou alimenter au moins une cylindrée d'un second dispositif fonctionnant en série ou en parallèle avec le premier.
EP19800401063 1980-07-15 1980-07-15 Dispositif hydraulique rotatif convertisseur et répartiteur à multi-cylindrées synchronisées Expired EP0043881B1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP19800401063 EP0043881B1 (fr) 1980-07-15 1980-07-15 Dispositif hydraulique rotatif convertisseur et répartiteur à multi-cylindrées synchronisées
DE8080401063T DE3071830D1 (en) 1980-07-15 1980-07-15 Rotary hydraulic converting and distributing device with multiple synchronized cylinders

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP19800401063 EP0043881B1 (fr) 1980-07-15 1980-07-15 Dispositif hydraulique rotatif convertisseur et répartiteur à multi-cylindrées synchronisées

Publications (2)

Publication Number Publication Date
EP0043881A1 true EP0043881A1 (fr) 1982-01-20
EP0043881B1 EP0043881B1 (fr) 1986-11-12

Family

ID=8187382

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19800401063 Expired EP0043881B1 (fr) 1980-07-15 1980-07-15 Dispositif hydraulique rotatif convertisseur et répartiteur à multi-cylindrées synchronisées

Country Status (2)

Country Link
EP (1) EP0043881B1 (fr)
DE (1) DE3071830D1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0609820A1 (fr) * 1993-02-04 1994-08-10 Robert Bosch Gmbh Pompe à palettes

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113244741B (zh) * 2021-04-27 2022-11-08 湖北灏瑞达环保能源科技有限公司 一种废气处理喷淋塔用液体收集用再分布器

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB191202340A (en) * 1911-02-25 1912-08-29 Edgar Flygh Girod Improvements in and relating to Steam-engines of the Rotary Type.
US2396316A (en) * 1942-04-02 1946-03-12 Houdaille Hershey Corp Hydraulic pump or motor
US2873683A (en) * 1956-06-05 1959-02-17 Farmingdale Corp Floating non-sticking blades
US3139036A (en) * 1961-09-14 1964-06-30 Daniel F Mcgill Rotary piston action pumps
GB986172A (en) * 1961-12-23 1965-03-17 Beteiligungs & Patentverw Gmbh Hydraulic torque converter
US3241456A (en) * 1962-12-26 1966-03-22 Baron C Wolfe Rotary fluid motor
US3416457A (en) * 1966-07-19 1968-12-17 Applied Power Ind Inc Vane type fluid converter
US3450004A (en) * 1967-06-06 1969-06-17 Biasi Charles P De Auto-kinetic wheel or fluid motor
FR2057272A5 (fr) * 1969-08-08 1971-05-21 Sauvaget Gaston
AU443618B2 (en) * 1969-05-14 1973-12-10 Leonard Haffner Thomas Rotary motors or pumps

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB191202340A (en) * 1911-02-25 1912-08-29 Edgar Flygh Girod Improvements in and relating to Steam-engines of the Rotary Type.
US2396316A (en) * 1942-04-02 1946-03-12 Houdaille Hershey Corp Hydraulic pump or motor
US2873683A (en) * 1956-06-05 1959-02-17 Farmingdale Corp Floating non-sticking blades
US3139036A (en) * 1961-09-14 1964-06-30 Daniel F Mcgill Rotary piston action pumps
GB986172A (en) * 1961-12-23 1965-03-17 Beteiligungs & Patentverw Gmbh Hydraulic torque converter
US3241456A (en) * 1962-12-26 1966-03-22 Baron C Wolfe Rotary fluid motor
US3416457A (en) * 1966-07-19 1968-12-17 Applied Power Ind Inc Vane type fluid converter
US3450004A (en) * 1967-06-06 1969-06-17 Biasi Charles P De Auto-kinetic wheel or fluid motor
AU443618B2 (en) * 1969-05-14 1973-12-10 Leonard Haffner Thomas Rotary motors or pumps
FR2057272A5 (fr) * 1969-08-08 1971-05-21 Sauvaget Gaston

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0609820A1 (fr) * 1993-02-04 1994-08-10 Robert Bosch Gmbh Pompe à palettes

Also Published As

Publication number Publication date
EP0043881B1 (fr) 1986-11-12
DE3071830D1 (en) 1987-01-02

Similar Documents

Publication Publication Date Title
US5839889A (en) Infinitely variable vane-type hydraulic machine
FR2549180A1 (fr) Disque d'amortisseur mince, notamment pour convertisseur de couple
EP0036216B1 (fr) Convertisseur de couple hydrodynamique muni de moyens de pontage
FR2784143A1 (fr) Pompe volumetrique a carburant a diminution du bruit par cavitation
US5657629A (en) Method of changing speed and torque with a continuously variable vane-type machine
EP3132123A1 (fr) Pompe a engrenages a carburant, prevue notamment comme pompe a haute pression
EP0043881B1 (fr) Dispositif hydraulique rotatif convertisseur et répartiteur à multi-cylindrées synchronisées
FR2746447A1 (fr) Installation pour transferer du carburant d'un reservoir vers le moteur d'un vehicule automobile, par une pompe a engrenages ou a transfert et une pompe a cellules semi-rotative
FR2832197A1 (fr) Dispositif d'embrayage notamment pour vehicules automobiles
EP3956555A1 (fr) Reducteur de vitesse d'une turbomachine
US5630318A (en) Method of pumping with a vane-type pump having a flexible cam ring
US5655370A (en) Vane-type continuously variable transmission
CA1189388A (fr) Dispositif hydraulique rotatif convertisseur et repartiteur a multi-cylindrees synchronisees
FR2604489A1 (fr) Dispositif a fluide du type a disque a mouvement de nutation
EP0484209B1 (fr) Machine tournante à butée axiale auto-éclipsable à membrane flexible soumise à la pression d'un fluide
FR2767370A1 (fr) Convertisseur de couple comportant un embrayage a verrouillage
FR2588322A1 (fr) Machine hydraulique de structure modulaire
EP3794243B1 (fr) Dispositif de transmission de couple a frottements reduits
FR3087512A1 (fr) Dispositif amortisseur
FR2874061A1 (fr) Dispositif a diffuseur interne au rotor permettant de transf ormer l'energie hydraulique en un mouvement rotatif
FR2528494A1 (fr) Element de distribution de charge pour une turbine d'un moteur a turbine a gaz et ensemble comportant deux tels elements
FR3061510A1 (fr) Turbine volumetrique
FR2591286A1 (fr) Machine volumetrique a palette(s).
EP4293203A1 (fr) Module de lubrification d'un poste de lubrification d'une turbomachine
WO2021005315A1 (fr) Recirculation de lubrifiant dans un palier a elements roulants de turbomachine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): BE CH DE GB IT NL SE

17P Request for examination filed

Effective date: 19820720

ITF It: translation for a ep patent filed

Owner name: BARZANO' E ZANARDO MILANO S.P.A.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE CH DE GB IT LI NL SE

REF Corresponds to:

Ref document number: 3071830

Country of ref document: DE

Date of ref document: 19870102

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19920630

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19920731

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19920831

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19930128

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19930129

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19930215

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19930715

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19930716

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19930731

Ref country code: CH

Effective date: 19930731

Ref country code: BE

Effective date: 19930731

BERE Be: lapsed

Owner name: SAUVAGET GASTON

Effective date: 19930731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19940201

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19930715

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19940401

EUG Se: european patent has lapsed

Ref document number: 80401063.5

Effective date: 19940210