EP0043758B1 - Method of adding iodoperfluoroalkanes to ethylenic or acetylenic compounds - Google Patents

Method of adding iodoperfluoroalkanes to ethylenic or acetylenic compounds Download PDF

Info

Publication number
EP0043758B1
EP0043758B1 EP81401033A EP81401033A EP0043758B1 EP 0043758 B1 EP0043758 B1 EP 0043758B1 EP 81401033 A EP81401033 A EP 81401033A EP 81401033 A EP81401033 A EP 81401033A EP 0043758 B1 EP0043758 B1 EP 0043758B1
Authority
EP
European Patent Office
Prior art keywords
process according
cathode
ethylenic
iodoperfluoroalkanes
electrocatalysis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP81401033A
Other languages
German (de)
French (fr)
Other versions
EP0043758A1 (en
Inventor
Auguste André Aime Commeyras
Patrick André Marie Calas
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Arkema France SA
Original Assignee
Atochem SA
Elf Atochem SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Atochem SA, Elf Atochem SA filed Critical Atochem SA
Publication of EP0043758A1 publication Critical patent/EP0043758A1/en
Application granted granted Critical
Publication of EP0043758B1 publication Critical patent/EP0043758B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B3/00Electrolytic production of organic compounds

Definitions

  • This addition can be carried out for example by radical route initiating the reaction by a rise in temperature (RN Haszeldine, J. Chem. Soc. 1953 p. 1199, USP 3 016406 and 3 016 407), by irradiation with UV rays ( article by RN Haszeldine already cited, JD Park, J. Org. Chem. 261961 p. 2086 and D. Cantacuzene J. Chem. Soc. Perkin 11977 p. 1365), via azo derivatives (NO Brac, J. Org. Chem. 271962 p. 3027 and USP 3 083 224, 3 145 222 and 3 257 407).
  • the Applicant has developed a process for adding iodoperfluoroalkanes to unsaturated alcohols by electrocatalysis, which leads to practically quantitative yields.
  • allyl alcohol for example, the corresponding polyfluorinated iodoalcohol is first obtained, then by continuing the electrolysis, the epoxide is obtained by dehydroiodidation.
  • the iodide ions produced migrate to the anode where they are oxidized with the formation of iodine which settles in the anolyte in the form of elementary iodine.
  • phase of formation of the halohydrin and that of the epoxide are successive or simultaneous depending on the density of the imposed current.
  • the process of the invention is applicable to acetylenic alcohols. This is how propargyl alcohol gives a mixture of iodo ethylenic alcohol and acetylenic alcohol:
  • Ethylenic alcohol is found in both cis and trans forms.
  • the ethylenic ethers can also fix R F I under the operating conditions described.
  • the reaction can be carried out in a solvent medium or in an aqueous emulsion depending on the cathode material used.
  • a mercury cathode the reaction will take place in DMF medium
  • a carbon fiber cathode it is possible to use an aqueous emulsion containing iodoperfluoroalkane, unsaturated alcohol and an electrolyte like the KCI.
  • type of carbon fibers which can be used as cathode mention may be made of RIGILOR AGTF 10000 bundles, long VSC fibers and RVG graphite felts which are all products of Carbone-Lorraine.
  • the Faraday yield varies with the type of cell used. It is excellent for mercury cathode cells, significantly less good for carbon fiber cathode cells. Nevertheless, the phase of formation of the R F I addition compound on the olefin or the acetylene compound is still electrocatalytic with an electrical current consumption clearly less than 1 Faraday per mole, while the epoxidation phase is not electrocatalytic and requires at least 1 Faraday per mole of product formed.
  • the ohmic drop in the cell depends closely on the geometry of the assembly and on the aqueous phase / organic phase ratio of the catholyte. However, it remains low when compared to the values encountered in organic electrochemistry. It varies from around 4 to 10 volts depending on the intensities used.
  • the anode is carbon (electrode for arc 6 mm in diameter).
  • the anolyte is a saturated KCI solution, the catholyte contains:
  • FIG. 1 shows the plan of the apparatus used.
  • R F C 4 F g.
  • Example 2 is repeated by varying the intensity of the electrolysis current. The results are given in the table below:
  • the catholyte is charged with 2 ml H 2 0 saturated with KCI, 4 ml of propargyl alcohol CH ⁇ C ⁇ CH 2 OH, 6 ml of C 4 F 9 I. A current of 0.2 A is imposed.
  • The% of A, B, C are given in molar% relative to the starting R F I: C: C 4 F 9 ⁇ C ⁇ C ⁇ CH 2 OH
  • the catholyte contains
  • the C 6 F 13 compound is obtained in an analogous manner. These compounds are soluble in acetone from which they recrystallize by slow evaporation of the solvent. Carbon 13 NMR analysis makes it possible to determine the cis-trans percentage of A (cf. NO Brace J. Org. Chem. 44 1979 p. 212).
  • the organic phase tends to consist only of this C 8 F 17 I with very little allyl alcohol, the latter preferably passing into the aqueous phase.
  • the electrolysis then does not lead to any reaction on C 8 F 17 I.
  • compositions are indicated in mol%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

L'addition d'iodures de perfluoroalcane CF3(CF2),l que nous désignerons sous le terme générique de RFI à des composés éthyléniques ou acétyléniques peut conduire à des produits qui sont utilisés comme intermédiaires de synthèse.The addition of perfluoroalkane iodides CF 3 (CF 2 ), 1 which we will designate under the generic term of R F I, to ethylenic or acetylenic compounds can lead to products which are used as synthesis intermediates.

Plusieurs procédés sont connus, mais ceux-ci ne donnent que des rendements médiocres dans le cas des alcools éthyléniques ou acétyléniques et notamment dans le cas de l'alcool allylique.Several methods are known, but these only give mediocre yields in the case of ethylenic or acetylenic alcohols and in particular in the case of allyl alcohol.

Cette addition peut s'effectuer par exemple par voie radicalaire initiant la réaction par une élévation de température (R. N. Haszeldine, J. Chem. Soc. 1953 p. 1199, USP 3 016406 et 3 016 407), par irradiation par les rayons UV (article de R. N. Haszeldine déjà cité, J. D. Park, J. Org. Chem. 261961 p. 2086 et D. Cantacuzene J. Chem. Soc. Perkin 11977 p. 1365), par l'intermédiaire des dérivés azoïques (N. O. Brac, J. Org. Chem. 271962 p. 3027 et USP 3 083 224, 3 145 222 et 3 257 407).This addition can be carried out for example by radical route initiating the reaction by a rise in temperature (RN Haszeldine, J. Chem. Soc. 1953 p. 1199, USP 3 016406 and 3 016 407), by irradiation with UV rays ( article by RN Haszeldine already cited, JD Park, J. Org. Chem. 261961 p. 2086 and D. Cantacuzene J. Chem. Soc. Perkin 11977 p. 1365), via azo derivatives (NO Brac, J. Org. Chem. 271962 p. 3027 and USP 3 083 224, 3 145 222 and 3 257 407).

Il est également possible de catalyser l'addition par le système d'Assher (J. Chem. Soc. 1961 p. 2261), le catalyseur étant un mélange de sels cuivreux et cuivriques et d'amines. Ce procédé a été étendu à des molécules fluorées par D. J. Burton (Tetrahedron Letters 1966 p. 5163) N. O. Brace (J. Org. Chem. 44 1979 p. 212) et décrit dans le BF 2 103 459.It is also possible to catalyze the addition by the Assher system (J. Chem. Soc. 1961 p. 2261), the catalyst being a mixture of cuprous and cupric salts and amines. This process has been extended to fluorinated molecules by D. J. Burton (Tetrahedron Letters 1966 p. 5163) N. O. Brace (J. Org. Chem. 44 1979 p. 212) and described in BF 2 103 459.

Si tous ces systèmes permettent d'additionner RFI à un composé éthylénique, ils présentent l'inconvénient de n'aboutir qu'à des rendements médiocres et très variables suivant la nature de l'initiateur et celle de l'oléfine utilisée. Il n'existe pas de catalyseur universel et en particulier il n'existe pas de système capable de provoquer l'addition quantitative de RFI sur les alcools éthyléniques. C'est ainsi que l'addition photochimique suivant J. D. Park, ou le procédé décrit dans le BF 2103 459 donnent un taux de transformation de seulement 50-55 % avec l'alcool allylique.If all these systems make it possible to add R F I to an ethylenic compound, they have the disadvantage of only resulting in mediocre yields and very variable depending on the nature of the initiator and that of the olefin used. There is no universal catalyst and in particular there is no system capable of causing the quantitative addition of R F I to ethylenic alcohols. Thus the photochemical addition according to JD Park, or the process described in BF 2103 459 give a conversion rate of only 50-55% with allyl alcohol.

La demanderesse a mis au point un procédé d'addition des iodoperfluoroalcanes aux alcools non saturés par électrocatalyse, qui conduit à des rendements pratiquement quantitatifs. Avec l'alcool allylique par exemple, on obtient dans un premier temps l'iodoalcool polyfluoré correspondant, puis en poursuivant l'électrolyse on obtient l'époxyde par déshydroioduration.

Figure imgb0001
The Applicant has developed a process for adding iodoperfluoroalkanes to unsaturated alcohols by electrocatalysis, which leads to practically quantitative yields. With allyl alcohol, for example, the corresponding polyfluorinated iodoalcohol is first obtained, then by continuing the electrolysis, the epoxide is obtained by dehydroiodidation.
Figure imgb0001

Les ions iodures produits migrent vers l'anode où ils sont oxydés avec formation d'iode qui décante dans l'anolyte sous forme d'iode élémentaire.The iodide ions produced migrate to the anode where they are oxidized with the formation of iodine which settles in the anolyte in the form of elementary iodine.

La phase de formation de l'halohydrine et celle de l'époxyde sont successives ou simultanées selon la densité du courant imposée.The phase of formation of the halohydrin and that of the epoxide are successive or simultaneous depending on the density of the imposed current.

Le procédé de l'invention est applicable aux alcools acétyléniques. C'est ainsi que l'alcool propargylique donne un mélange de iodo alcool éthylénique et d'alcool acétylénique :

Figure imgb0002
The process of the invention is applicable to acetylenic alcohols. This is how propargyl alcohol gives a mixture of iodo ethylenic alcohol and acetylenic alcohol:
Figure imgb0002

L'alcool éthylénique se trouve sous les deux formes cis et trans.Ethylenic alcohol is found in both cis and trans forms.

Les éthers éthyléniques peuvent également fixer RFI dans les conditions opératoires décrites. Le diallyl éther CH2 = CH--CH2-0-CH2-CH = CH2 par exemple donne par électrocatalyse le composé :

Figure imgb0003
The ethylenic ethers can also fix R F I under the operating conditions described. The diallyl ether CH 2 = CH - CH 2 -0-CH 2 -CH = CH 2, for example, gives the compound by electrocatalysis:
Figure imgb0003

Tous ces produits sont des intermédiaires et peuvent être utilisés pour la fabrication de tensio-actifs fluorés et pour l'obtention de dérivés hydro et oléophobes utiles en particulier pour le traitement des textiles, cuir, papier, etc.All these products are intermediates and can be used for the manufacture of fluorinated surfactants and for obtaining hydro and oleophobic derivatives useful in particular for the treatment of textiles, leather, paper, etc.

La réaction peut être mise en oeuvre en milieu solvant ou en émulsion aqueuse en fonction du matériau cathodique employé. C'est ainsi qu'avec une cathode en mercure la réaction aura lieu en milieu DMF, et qu'avec une cathode en fibre de carbone il est possible d'utiliser une émulsion aqueuse contenant l'iodoperfluoroalcane, l'alcool insaturé et un électrolyte tel le KCI. Comme type de fibres de carbone utilisables comme cathode, on peut citer les fibrés RIGILOR AGTF 10000, les fibres longues VSC et les feutres de graphite RVG qui sont tous des produits de Carbone-Lorraine.The reaction can be carried out in a solvent medium or in an aqueous emulsion depending on the cathode material used. Thus with a mercury cathode the reaction will take place in DMF medium, and with a carbon fiber cathode it is possible to use an aqueous emulsion containing iodoperfluoroalkane, unsaturated alcohol and an electrolyte like the KCI. As type of carbon fibers which can be used as cathode, mention may be made of RIGILOR AGTF 10000 bundles, long VSC fibers and RVG graphite felts which are all products of Carbone-Lorraine.

Bien que l'invention soit réalisable avec l'ensemble des matériaux cathodiques et l'emploi de solutions ou d'émulsions, le procédé, lorsqu'il est mis en oeuvre dans ces dernières conditions, avec une cathode en fibre de carbone et une émulsion aqueuse contenant les réactifs présente le maximum d'avantages :

  • - absence de sous-produit, de catalyseur ou de solvant qui constituent autant de risques de pollution,
  • - séparation facile du composé obtenu,
  • - possibilité de travailler sur des solutions très concentrées ce qui économise l'énergie nécessaire à la séparation des produits et augmente la productivité des installations,
  • - conductivité électrique très élevée du milieu permettant l'utilisation de bas voltage et de fort ampérage,
  • - récupération directe de l'iode sous forme élémentaire dans le cas de la préparation d'époxyde,
  • - facilité pour résoudre le problème du diaphragme séparant les deux compartiments avec un matériau non mouillable par la phase organique.
Although the invention is feasible with all cathode materials and the use of solutions or emulsions, the process, when implemented under these latter conditions, with a carbon fiber cathode and an aqueous emulsion containing the reagents has the maximum advantages:
  • - absence of by-product, catalyst or solvent which constitute as many pollution risks,
  • - easy separation of the compound obtained,
  • - possibility of working on highly concentrated solutions which saves the energy required for product separation and increases the productivity of the installations,
  • - very high electrical conductivity of the medium allowing the use of low voltage and high amperage,
  • - direct recovery of iodine in elementary form in the case of the preparation of epoxide,
  • - facility to solve the problem of the diaphragm separating the two compartments with a material not wettable by the organic phase.

Le rendement Faraday varie avec le type de cellule utilisé. Il est excellent pour les cellules à cathode de mercure, nettement moins bon pour les cellules à cathode en fibre de carbone. Néanmoins la phase de formation du composé d'addition du RFI sur l'oléfine ou le composé acétylénique est toujours électrocatalytique avec une consommation de courant électrique nettement inférieure à 1 Faraday par mole, alors que la phase d'époxydation n'est pas électrocatalytique et nécessite au moins 1 Faraday par mole de produit formé.The Faraday yield varies with the type of cell used. It is excellent for mercury cathode cells, significantly less good for carbon fiber cathode cells. Nevertheless, the phase of formation of the R F I addition compound on the olefin or the acetylene compound is still electrocatalytic with an electrical current consumption clearly less than 1 Faraday per mole, while the epoxidation phase is not electrocatalytic and requires at least 1 Faraday per mole of product formed.

La chute ohmique dans la cellule dépend étroitement de la géométrie du montage et du rapport phase aqueuse/phase organique du catholyte. Cependant, elle reste faible si on la compare aux valeurs rencontrées en électrochimie organique. Elle varie d'environ 4 à 10 volts selon les intensités utilisées.The ohmic drop in the cell depends closely on the geometry of the assembly and on the aqueous phase / organic phase ratio of the catholyte. However, it remains low when compared to the values encountered in organic electrochemistry. It varies from around 4 to 10 volts depending on the intensities used.

Les exemples suivants illustrent l'invention sans toutefois la limiter.The following examples illustrate the invention without, however, limiting it.

Exemple 1Example 1

On utilise une cellule du type Moinet décrite dans le Bull Soc. Chim. Fr. 1969 p. 690. Les électrodes sont une cathode de mercure de 6 cm de diamètre et une anode en toile de platine. Le potentiel d'électrolyse est contrôlé par une électrode de référence au colomel, saturée en KCI (ECS).

  • Potentiel d'électrolyse : - 0,750 v/ECS
  • Anolyte : 25 ml DMF 0,1 M en LiCI04
  • Catholyte : 35 ml DMF 0,1 M en LiCI04
  • 3 ml C6F131
  • 2,5 ml CH2 = CH-CH20H
We use a Moinet type cell described in the Bull Soc. Chim. Fr. 1969 p. 690. The electrodes are a 6 cm diameter mercury cathode and a platinum cloth anode. The electrolysis potential is controlled by a colomel reference electrode, saturated with KCI (ECS).
  • Electrolysis potential: - 0.750 v / DHW
  • Anolyte: 25 ml 0.1 M DMF in LiCI0 4
  • Catholyte: 35 ml DMF 0.1 M in LiCI0 4
  • 3 ml C 6 F 13 1
  • 2.5 ml CH 2 = CH-CH 2 0H

La réduction monoélectronique de l'iodoalcane perfluoré nécessiterait 1 258 coulombs. Après le passage de seulement 60 coulombs on observe la conversion complète du C6F13I en l'halogydrine CeF13―CH2―cm―CH2OH. Rendement électrique: 21,6 moles de RFI converties par Faraday consommé.Monoelectronic reduction of perfluorinated iodoalkane would require 1,258 coulombs. After the passage of only 60 coulombs we observe the complete conversion of C 6 F 13 I into the halogydrine CeF 13 ―CH 2 ―cm ― CH 2 OH. Electrical efficiency: 21.6 moles of R F I converted by consumed Faraday.

Exemple 2Example 2

On utilise une cathode en fibre de carbone, RIGILOR AGTF 10000 de Carbone-Lorraine, obtenue par pyrolyse de fibre de crylor. L'anode est un carbone (électrode pour arc de 6 mm de diamètre). L'anolyte est une solution saturée en KCI, le catholyte contient :

Figure imgb0004
We use a carbon fiber cathode, RIGILOR AGTF 10000 from Carbone-Lorraine, obtained by pyrolysis of crylor fiber. The anode is carbon (electrode for arc 6 mm in diameter). The anolyte is a saturated KCI solution, the catholyte contains:
Figure imgb0004

Le catholyte est agité au moyen d'un agitateur magnétique. La figure 1 montre le plan de l'appareillage utilisé.The catholyte is agitated by means of a magnetic stirrer. Figure 1 shows the plan of the apparatus used.

Avec un courant de 0,2 A on obtient en 1 h un taux de transformation de 90 % en C4F9cH2CHICH20H.With a current of 0.2 A, a conversion rate of 90% is obtained in 1 h to C 4 F 9 cH 2 CHICH 2 0H.

Si l'électrolyse est poursuivie on observe la conversion progressive de l'halohydrine en époxyde

Figure imgb0005
If the electrolysis is continued, the progressive conversion of the halohydrin to the epoxide is observed.
Figure imgb0005

Exemples 3 à 6Examples 3 to 6

Dans ces exemples RF = C4Fg. In these examples R F = C 4 F g.

On répète l'exemple 2 en faisant varier l'intensité du courant d'électrolyse. Les résultats sont donnés dans le tableau ci-dessous :

Figure imgb0006
Example 2 is repeated by varying the intensity of the electrolysis current. The results are given in the table below:
Figure imgb0006

les % de (1) et (2) sont donnés par rapport au RFI de départ

Figure imgb0007
the% of (1) and (2) are given relative to the starting R F I
Figure imgb0007

Notons que pour l'exemple 4, le rendement électrique pour la conversion du RFI en halohydrine, est au temps 60 mm de 0,25 Faraday par mole de RFI de départ.Note that for example 4, the electrical efficiency for the conversion of R F I into halohydrin, at time 60 mm is 0.25 Faraday per mole of starting R F I.

Exemple 7Example 7

On utilise la cellule définie dans l'exemple 2.We use the cell defined in example 2.

Le catholyte est chargé de 2 ml H20 saturée en KCI, 4 ml d'alcool propargylique CH ≡ C―CH2OH, 6 ml de C4F9I. On impose un courant de 0,2 A.

Figure imgb0008
The catholyte is charged with 2 ml H 2 0 saturated with KCI, 4 ml of propargyl alcohol CH ≡ C ― CH 2 OH, 6 ml of C 4 F 9 I. A current of 0.2 A is imposed.
Figure imgb0008

Les % de A, B, C sont donnés en % molaire par rapport au RFI de départ :

Figure imgb0009
C : C4F9―C≡ C―CH2OHThe% of A, B, C are given in molar% relative to the starting R F I:
Figure imgb0009
C: C 4 F 9 ―C≡ C ― CH 2 OH

Après formation des composés d'addition A et B on observe la déshydroioduration de A conduisant à C. Cette élimination de HI est provoquée par l'élévation du pH du catholyte (réduction de la phase aqueuse) et ne se produit que sur le composé A dans lequel 1 et H sont en position trans.After formation of the addition compounds A and B, the dehydroiodidation of A leading to C. is observed. This elimination of HI is caused by the elevation of the pH of the catholyte (reduction of the aqueous phase) and occurs only on compound A in which 1 and H are in the trans position.

Exemple 8Example 8

On utilise la cellule définie dans l'exemple 2.We use the cell defined in example 2.

Le catholyte contientThe catholyte contains

2 ml H2O saturée en KCl2 ml H 2 O saturated with KCl

4 ml diallyléther CH2 = CH―CH2―O―CH2―CH = CH2 4 ml diallylether CH 2 = CH ― CH 2 ―O ― CH 2 ―CH = CH 2

6 ml C4F9I6 ml C 4 F 9 I

Figure imgb0010
Figure imgb0010
Figure imgb0011
Figure imgb0011

Le composé en C6F13 est obtenu de façon analogue. Ces composés sont solubles dans l'acétone d'où ils recristallisent par évaporation lente du solvant. L'analyse en RMN du carbone 13 permet de déterminer le pourcentage cis-trans de A (cf. N. O. Brace J. Org. Chem. 44 1979 p. 212).The C 6 F 13 compound is obtained in an analogous manner. These compounds are soluble in acetone from which they recrystallize by slow evaporation of the solvent. Carbon 13 NMR analysis makes it possible to determine the cis-trans percentage of A (cf. NO Brace J. Org. Chem. 44 1979 p. 212).

Exemple 9Example 9

L'exemple 2 est répété en utilisant les chaînes C6F13I et C8F17I au lieu de C4F9I. Deux situations sont à considérer :

  • - cas du C6F13I
  • L'électrolyse donne des résultats quasi identiques à ceux obtenus pour le C4F91.
  • - cas du C8F17I
Example 2 is repeated using the chains C 6 F 13 I and C 8 F 17 I instead of C 4 F 9 I. Two situations are to be considered:
  • - case of C 6 F 13 I
  • The electrolysis gives results which are almost identical to those obtained for C 4 F 9 1.
  • - case of C 8 F 17 I

Pour ce composé la phase organique a tendance à n'être constituée que ce C8F17I avec très peu d'alcool allylique, ce dernier passant dans la phase aqueuse préférentiellement. L'électrolyse ne conduit alors à aucune réaction sur le C8F17I.For this compound, the organic phase tends to consist only of this C 8 F 17 I with very little allyl alcohol, the latter preferably passing into the aqueous phase. The electrolysis then does not lead to any reaction on C 8 F 17 I.

Cette difficulté est résolue si on électrolyse une phase mixte C4F9I + C8F17I, dans une proportion de 20 % de C4 en volume. On observe alors la formation des produits attendus. Avec un courant de 0,2 A on a obtenu les résultats suivants :

Figure imgb0012
This difficulty is resolved if a mixed phase C 4 F 9 I + C 8 F 17 I is electrolyzed, in a proportion of 20% of C 4 by volume. We then observe the formation of the expected products. With a current of 0.2 A the following results were obtained:
Figure imgb0012

Les compositions sont indiquées en % molaire.The compositions are indicated in mol%.

Les deux époxydes formés sont séparables par distillation ; ce sont des liquides incolores, denses (d = 1.75).The two epoxides formed can be separated by distillation; they are colorless, dense liquids (d = 1.75).

Claims (7)

1. Process for the addition reaction of iodoperfluoroalkanes of the formula CF3(CF2)nI, where n varies from 1 to 19, with unsaturated alcohols or ethylenic ethers, characterised by electrocatalysis of the mixture of the reactants.
2. Process according to Claim 1, wherein the mixture of the reactants is in an organic solvent medium.
3. Process according to Claim 1, wherein the mixture of the reactants forms an aqueous emulsion.
4. Process according to Claim 1, wherein the cathode of the electrolysis cell is a carbon fibre cathode.
5. Process according to Claim 1, wherein the cathode of the cell is a mercury cathode.
6. Process according to one of Claims 1 to 5, in which the unsaturated alcohol is allyl alcohol and the product formed by electrocatalysis is the polyfluorinated halohydrin CF3(CF2)n―CH2-CHI―CH2OH.
7. Process according to Claim 6, in which the electrocatalysis is followed by an electrolysis leading to the epoxide
Figure imgb0014
EP81401033A 1980-07-08 1981-06-26 Method of adding iodoperfluoroalkanes to ethylenic or acetylenic compounds Expired EP0043758B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8015121 1980-07-08
FR8015121A FR2486521A1 (en) 1980-07-08 1980-07-08 PROCESS FOR THE ADDITION OF IODOPERFLUOROALKANES TO ETHYLENIC OR ACETYLENIC COMPOUNDS

Publications (2)

Publication Number Publication Date
EP0043758A1 EP0043758A1 (en) 1982-01-13
EP0043758B1 true EP0043758B1 (en) 1985-04-03

Family

ID=9243958

Family Applications (1)

Application Number Title Priority Date Filing Date
EP81401033A Expired EP0043758B1 (en) 1980-07-08 1981-06-26 Method of adding iodoperfluoroalkanes to ethylenic or acetylenic compounds

Country Status (7)

Country Link
US (1) US4394225A (en)
EP (1) EP0043758B1 (en)
JP (1) JPS5747882A (en)
BR (1) BR8104338A (en)
CA (1) CA1148499A (en)
DE (1) DE3169663D1 (en)
FR (1) FR2486521A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4650913A (en) * 1984-11-29 1987-03-17 E. I. Du Pont De Nemours And Company Sulfinate-initiated addition of perfluorinated iodides to olefins
FR2597511B1 (en) * 1986-04-17 1990-09-07 Atochem FUNCTIONALIZATION OF IODO-POLYFLUOROALCANES BY ELECTROCHEMICAL REDUCTION AND NOVEL FLUORINATED COMPOUNDS THUS OBTAINED
IT1190116B (en) * 1986-05-30 1988-02-10 Ausimont Spa PROCESS FOR THE SYNTHESIS OF MONO OR HYDROXYFLUOROALKANE
US5997716A (en) * 1998-07-09 1999-12-07 Ppg Industries Ohio, Inc. Method of electrochemically producing epoxides

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3180895A (en) * 1960-11-25 1965-04-27 Du Pont Fluorocarbon ethers
BE637692A (en) * 1962-09-20
FR1443994A (en) * 1965-04-27 1966-07-01 Pechiney Saint Gobain Improvements in obtaining olefin oxides
US3632489A (en) * 1969-04-24 1972-01-04 Norman Louis Weinberg Electrochemical introduction of nitrogen and oxygen functions into olefinic compounds
CH555793A (en) * 1970-08-24 1974-11-15 Ciba Geigy Ag PROCESS FOR THE PRODUCTION OF SUBSTITUTED PERFLUOROALKYL IODIDE-OLEFIN OR CYCLOOLEFIN 1: 1 ADDUCTS.
US4097344A (en) * 1976-06-29 1978-06-27 E. I. Du Pont De Nemours And Company Electrochemical coupling of perfluoroalkyl iodides

Also Published As

Publication number Publication date
EP0043758A1 (en) 1982-01-13
JPS5747882A (en) 1982-03-18
FR2486521A1 (en) 1982-01-15
DE3169663D1 (en) 1985-05-09
CA1148499A (en) 1983-06-21
BR8104338A (en) 1982-03-23
JPS6132398B2 (en) 1986-07-26
US4394225A (en) 1983-07-19
FR2486521B1 (en) 1982-10-01

Similar Documents

Publication Publication Date Title
EP0323300B1 (en) Process for the electrochemical synthesis of alpha-saturated ketones
DE1468149B1 (en) PROCESS FOR THE PRODUCTION OF OLEFIN OXIDES
EP0043758B1 (en) Method of adding iodoperfluoroalkanes to ethylenic or acetylenic compounds
Tokuda et al. Regioselectivity in electrochemical allylation of carbonyl compounds. A synthesis of egomaketone by regioselective allylation
FR2486968A1 (en) ELECTROCHEMICAL PROCESS FOR THE SYNTHESIS OF ORGANIC COMPOUNDS
EP0630428B1 (en) Process for the preparation of taxane derivatives
EP0245133B1 (en) Functionalization of iodo-polyfluoroalcanes by electrochemical reduction, and fluorinated compounds so obtained
US4098657A (en) Electrolyte dehydrohalogenation of α-haloalcohols
EP0203851B1 (en) Electrochemical process for the preparation of organic trifluoro (or chlorodifluoro or dichlorofluoro) methylated derivatives
US4405816A (en) 4,4'-Diphenyl ether-dialdehyde-bis-dimethylacetal
EP0179289B1 (en) Method for producing aromatic carboxylic esters
EP0083274B1 (en) Process for the preparation of true acetylenic hydrocarbons with a perfluoroalkyl chain
EP0201365B1 (en) Process for the electrosynthesis of alcohols and epoxide compounds
Koshechko et al. Electrochemically activated insertion of fluoroalkyl groups into organic and inorganic substrates
CH664979A5 (en) PROCESS FOR THE ELECTROSYNTHESIS OF CARBOXYLIC ACIDS.
FR2579626A1 (en) METHOD FOR ELECTROSYNTHESIS OF KETONES AND ALDEHYDES
US3783112A (en) Manufacture of sebacic acid diesters
Köster et al. Electro-Organic Syntheses
US3415725A (en) Electrolytic preparation of trialkoxyalkanes and tetraalkoxyalkanes
SUZUKI et al. Surface Modification of Carbon Fiber by using Electro-oxidation and-reduction Sequential Procedure
BE623657A (en)
Takano et al. Epoxidation of 1, 4-Naphthoquinones by Electrochemically Generated Hypohalogen Acids
Hlavatý et al. Use of Nafion membranes in laboratory organic electrosynthesis
FR2512025A1 (en) PROCESS FOR THE PREPARATION OF OXAZOLINE AZETIDINONE DERIVATIVES
Medaghri-Alaoui et al. ELECTROCHEMICAL REDUCTION OF CF2Br2 IN THE PRESENCE OF RICH OR DEFICIENT OLEFINS

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19810701

AK Designated contracting states

Designated state(s): BE CH DE FR GB IT LI NL SE

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SOCIETE ATOCHEM

ITF It: translation for a ep patent filed

Owner name: JACOBACCI & PERANI S.P.A.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): BE CH DE FR GB IT LI NL SE

REF Corresponds to:

Ref document number: 3169663

Country of ref document: DE

Date of ref document: 19850509

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19890426

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19890522

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19890608

Year of fee payment: 9

ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19890630

Year of fee payment: 9

Ref country code: GB

Payment date: 19890630

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19890809

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19890830

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19900626

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19900627

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19900630

Ref country code: CH

Effective date: 19900630

Ref country code: BE

Effective date: 19900630

BERE Be: lapsed

Owner name: ATOCHEM

Effective date: 19900630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19910101

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19910228

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19910301

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

EUG Se: european patent has lapsed

Ref document number: 81401033.6

Effective date: 19910206