EP0042437A1 - Moule de coulee en continu - Google Patents

Moule de coulee en continu Download PDF

Info

Publication number
EP0042437A1
EP0042437A1 EP81900077A EP81900077A EP0042437A1 EP 0042437 A1 EP0042437 A1 EP 0042437A1 EP 81900077 A EP81900077 A EP 81900077A EP 81900077 A EP81900077 A EP 81900077A EP 0042437 A1 EP0042437 A1 EP 0042437A1
Authority
EP
European Patent Office
Prior art keywords
mold
cooling water
side walls
axial direction
ultrasonic vibrators
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP81900077A
Other languages
German (de)
English (en)
Other versions
EP0042437A4 (fr
Inventor
Nobuhisa Hasebe
Hiroshi Kawada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kokan Ltd filed Critical Nippon Kokan Ltd
Publication of EP0042437A1 publication Critical patent/EP0042437A1/fr
Publication of EP0042437A4 publication Critical patent/EP0042437A4/fr
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/04Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds
    • B22D11/053Means for oscillating the moulds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/04Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds
    • B22D11/055Cooling the moulds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/04Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds
    • B22D11/057Manufacturing or calibrating the moulds

Definitions

  • the present invention relates to a continuous casting mold which is used for a continuous casting machine.
  • Continuous casting of steel is generally conducted with the use of a continuous casting machine comprising a tundish, a mold, a group of guide rolls, and a group of pinch rolls.
  • Continuous casting machines are broadly classified into the vertical type continuous casting machine and the horizontal type continuous casting machine.
  • molten steel charged into the tundish is poured through an immersion nozzle provided in the bottom wall of the tundish into the mold.
  • the molten steel cooled in the mold forms a solidified shell.
  • the molten steel having thus formed the solidified shell is withdrawn, while being guided by the group of guide rolls sequentially arranged below the mold, through the group of pinch rolls.
  • the solidified shell cooled by cooling water sprayed from a plurality of nozzles arranged between said rolls, gradually increases the thickness thereof, and forms a continuously cast strand having a prescribed cross-sectional shape.
  • the horizontal type continuous casting machine forming a cast strand by horizontally withdrawing molten steel having formed a solidified shell from a horizontal mold provided at the lower part of a side wall of the tundish has been industrially applied because of the low installation costs and other advantages.
  • the horizontal mold is directly connected to the lower part of a side wall of the tundish. It was therefore impossible to vibrate the horizontal mold alone by a mechanical means.
  • the above-mentioned prior art is applicable to a vertical type continuous casting machine as well as to a horizontal type continuous casting machine.
  • the vibrating apparatus of the above-mentioned prior art it is possible to vibrate the mold in the axial direction thereof, i.e., in the withdrawing direction of cast strand, at a high frequency, thus permitting prevention of seizure of a cast strand to the inner surface of the mold.
  • this does not require huge quantities of energy nor large-scale facilities, without causing wavy vibration marks on the surface of cast strand under the effect of vibration of the mold.
  • the fine vibration at a high frequency imparted to the mold keeps a high degree of seal at the junction between the tundish and the mold, without leakage of molten steel from this junction caused by vibration of the mold.
  • each of the side walls of the mold is fixed to the mold frame by such means as bolts. If the fixing position corresponds to a loop of the vibration wave produced in the axial direction of the mold, the above-mentioned vibration wave is inhibited by the mold frame, thus resulting in such problems as a largely decreased vibration efficiency of the mold and loosening or even breakage of the bolts used for fixing each of the side walls of the mold to the mold frame under the effect of vibration.
  • each of the side walls of the mold has at least one conduit for cooling water in the axial direction of the mold.
  • This conduit has a cooling water supply opening and a cooling water discharge opening on the outer surface of each of the side walls of the mold, the cooling water supply opening being connected to a cooling water supply pipe with a fixed end, and the cooling water discharge opening being connected to a cooling water discharge pipe with a fixed end. If the positions of the cooling water supply opening and the cooling water discharge opening correspond to loops of the vibration wave, however, the above-mentioned vibration wave is inhibited by the cooling water supply pipe and the cooling water discharge pipe, thus resulting in such problems as a largely decreased vibration efficiency of the mold and breakage of the junctions of the cooling water supply pipe and the cooling water discharge pipe with the cooling water supply opening and the cooling water discharge opening.
  • An object of the-present invention is therefore to provide, when vibrating the mold in a continuous casting machine in the axial direction of the mold with the use of a plurality of ultrasonic vibrators, a continuous casting mold for vibrating the mold at a high efficiency in the continuous casting machine.
  • Another object of the present invention is to provide a continuous casting mold in which bolts for fixing each of the side walls of the mold to the mold frame do not loosen nor break under the effect of vibration of the mold.
  • Another object of the present invention is to provide a continuous casting mold in which the junctions of the cooling water supply opening and the cooling water discharge opening provided on the outer surface of each of the mold side walls with the cooling water supply pipe and the cooling water discharge pipe do not break under the effect of vibration of the mold.
  • a continuous casting mold which comprises:
  • mold of the present invention is described below by means of an example with reference to drawings.
  • Fig. 1 is a plan view of the mold of the present invention
  • Fig. 2 is a partial cutaway descriptive view of Fig. 1 cut along the line A-A
  • Fig. 3 is a sectional view of Fig. 2 cut along the line B-B.
  • 2 is a mold; the side walls of the mold 2 are divided into individual side walls, to the outer surface of which a plurality of ultrasonic vibrators 4 are fitted, through a mold frame 1 described later, along at least one straight line at prescribed intervals in the axial direction of the mold 2.
  • the plurality of ultrasonic vibrators 4 are individually connected to electric source not shown for generating ultrasonic vibration and generate vibration waves of identical wave lengths in the axial direction of the mold 2.
  • the resultant horizontal vibration waves are deviated vertically by 90°, become longitudinal vibration waves 11 in the axial direction of the mold 2, i.e., in the same direction as the withdrawing direction of cast strand, and vibrate the mold 2 in the axial direction thereof, as shown in Fig. 2.
  • lla are nodes of the vibration wave 11, and llb are loops of the vibration wave 11.
  • Positions at which the plurality of ultrasonic vibrators 4 are fitted to the individual side walls of the mold 2 should be such that a loop llb of the vibration wave 11 may be located at the both end faces of the mold 2 and the distance between two adjacent ones of the ultrasonic vibrators 4 may be a half the wave length of the vibration wave 11, to achieve an efficient vibration of the mold 2.
  • the resultant positions of the ultrasonic vibrators 4 correspond respectively to the positions of the nodes lla of the vibration wave 11.
  • the plurality of ultrasonic vibrators 4 are fixed, such means as bolts, to a plurality of projections 3 provided at positions on the outer surface of the side walls of the mold corresponding to the positions of the above-mentioned nodes lla.
  • 10 are fitting bores of the ultrasonic vibrators 4, provided in the above-mentioned projections 3.
  • two ultrasonic vibrators 4 are fitted to each of the side walls of the mold 2.
  • an appropriate number of ultrasonic vibrators 4 should be provided to efficiently vibrate the mold 2.
  • 1 is a mold frame for supporting the mold 2; and each of the side walls of the mold 2 is fixed to the mold frame 1.
  • the mold frame is fixed to the side walls of the mold 2 at positions corresponding to at least two nodes lla of the vibration waves 11 produced in the axial direction of the mold 2 under the effect of vibration of the plurality of ultrasonic vibrators 4.
  • 6 are a plurality of bolts for fixing the side walls of the mold 2 to the mold frame 1; and 7 are a .plurality of nuts.
  • the mold frame 1 is fixed to the side walls of the mold 2 through the plurality of projections provided at positions on the outer surfaces of the side walls of the mold 2 corresponding to the above-mentioned nodes lla.
  • 8 are fitting bores of the bolts 6, provided in the projections 3.
  • Each of the side walls of the mold 2. has in the inside thereof at least one conduit 9 for cooling water in the axial direction of the mold 2.
  • This conduit 9 has, on the outer surface of the side wall of the mold 2, a cooling water supply opening 9a and a cooling water discharge opening 9b.
  • a cooling water supply pipe 5 with a fixed end is connected, through the mold frame 1, to the cooling water supply opening 9a, and a cooling water discharge pipe 5' with a fixed end is connected, through the mold frame 1, to the cooling water discharge opening 9b.
  • the above-mentioned cooling water supply pipe 5 is connected through a pipe to a cooling water source not shown.
  • each side wall of the mold 2 is cooled by cooling water fed from the cooling water supply pipe 5, flowing through the conduit 9 and discharged from the cooling water discharge pipe 5'.
  • the cooling water supply opening 9a and the cooling water discharge opening 9b are arranged on the projections 3 at positions corresponding to the nodes lla of the vibration wave 11 produced in the axial direction of the mold 2.
  • the cooling water supply pipe 5 and the cooling water discharge pipe 5' are thus connected respectively to the cooling water supply opening 9a and the cooling water discharge opening 9b provided on each side wall of the mold 2 at positions corresponding to the nodes lla of the vibration wave 11.
  • the cooling water discharge opening 9b is arranged at the position on each side wall of the mold 2 corresponding to the uppermost node of the nodes lla of the vibration wave 11, and the cooling water supply opening 9a is arranged at the position corresponding to the lowermost node of the nodes lla.
  • Two ultrasonic vibrators 4 are fitted at the positions corresponding to two intermediate nodes of the nodes lla.
  • Each side wall of the mold 2 is fixed to the mold frame 1 at the positions corresponding to all the nodes lla of the vibration wave 11.
  • each side wall of the mold 2 should be fixed to the mold frame 1 at positions corresponding to at least two nodes lla of the vibration wave 11.
  • the positions on each of the side walls of the mold 2 corresponding to the nodes lla of the vibration wave 11 may be easily detected by a known means or may be determined through calculation.
  • each of the side walls of the mold 2. is fixed to the mold frame 1 at positions corresponding to at least two nodes lla of the vibration wave 11 produced in the axial direction of the mold 2 by vibration of the plurality of ultrasonic vibrators 4. Therefore, the vibration wave 11 produced in the mold 2 by the plurality of ultrasonic vibrators 4 is never inhibited by the mold frame 1, and the bolts 6 for fixing each side wall of the mold 2 to the mold frame 1 never loosen nor break under the effect of vibration.
  • the cooling water supply opening 9a to be connected with the cooling water supply pipe 5 and the cooling water discharge opening 9b to be connected with the cooling water discharge pipe 5' are arranged respectively at the positions corresponding to the nodes lla of the vibration wave 11. Therefore, the vibration wave 11 produced in the mold 2 by the plurality of ultrasonic vibrators 4 is never inhibited by the cooling water supply pipe 5 and the cooling water discharge pipe 5'. In addition, the junction between the cooling water supply pipe 5 and the cooling water supply opening 9a, and the junction between the cooling water discharge pipe 5' and the cooling water discharge opening 9b are never broken.
  • the vibration efficiency imparted to the mold 2 by the ultrasonic vibrators 4 is largely improved, and it is thus possible to vibrate the mold 2 at a high efficiency in the axial direction thereof.
  • Fig. 4 is a plan view showing another embodiment of the mold of the present invention.
  • This example is the same as that shown in Figs. 1 to 3 except that the side walls of the mold 2' are formed'into an integral structure, and each of the side walls of the mold 2' has a plurality of conduits 9"for cooling water provided in the inside of each side wall of the mold 2' in the axial direction of the mold 2'.
  • a cooling water supply opening and a cooling water discharge opening may be provided for each of the plurality of conduits 9' for cooling water on the outer surface of each side wall of the mold 2', or the plurality of conduits 9' may be gathered into one conduit at each end to provide one cooling water supply opening and one cooling water discharge opening for each side wall of the mold 2'.
  • the plurality of ultrasonic vibrators are fitted to the outer surface of each of the side walls of the mold along a straight line at prescribed intervals in the axial direction of the mold.
  • the plurality of ultrasonic vibrators are fitted to the outer surface of each of the side walls of the mold along a straight line at prescribed intervals in the axial direction of the mold.
  • the plurality of ultrasonic vibrators are fitted at prescribed intervals.along a plurality of straight lines in the axial direction of the mold, these plurality of straight lines being arranged at prescribed intervals, it is possible to further improve the vibration efficiency of the mold in the axial direction thereof.
  • the mold of the present invention is applicable to a vertical type continuous casting machine as well as to a horizontal type continuous casting machine. In all cases, it is possible to vibrate the mold in the axial direction thereof at a high efficiency.
  • the mold of the present invention it is possible to vibrate the mold in the axial direction thereof at a high efficiency with the use of a plurality of ultrasonic vibrators which are fitted to the outer surface of each of the side walls of the mold in the axial direction thereof along at least one straight line at prescribed intervals, thereby permitting prevention of seizure of a cast strand to the inner surface of the mold.
  • Bolts for fixing each of the side walls of the mold to the mold frame never loosen nor break under the effect of vibration of the mold.
  • the junctions of the cooling water supply opening and the cooling water discharge opening provided on the outer surface of each of the side walls of the mold with the cooling water supply pipe and the cooling water discharge pipe are never broken by vibration of the mold.
  • the mold of the present invention In the case where the mold of the present invention is applied to a horizontal type continuous casting machine, the mold can be vibrated in the axial direction thereof at a high efficiency in a state where a perfect seal is maintained at the junction between the tundish and the mold. According to the mold of the present invention, therefore, many industrially useful effects are provided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Continuous Casting (AREA)

Abstract

Un probleme rencontre dans la coulee en continu est le grippage de la piece coulee sur la surface interieure d'un moule lorsque la piece coulee est retiree du moule. A cet effet, un procede connu consiste a monter une pluralite de vibrateurs ultrasoniques a des intervalles predetermines le long d'au moins une ligne droite dans le sens axial du moule sur les surfaces externes de ses parois laterales respectives. L'action vibratoire des vibrateurs ultrasoniques fait vibrer le moule dans le sens axial de maniere a empecher le grippage de la piece coulee sur la surface interne du moule. L'efficacite des vibrations induites par les vibrateurs ultrasoniques n'est pas satisfaisante avec le moule conventionnel susmentionne de telle sorte qu'il n'a pas ete possible d'empecher de maniere fiable le grippage de la piece coulee sur la surface interieure du moule. Le moule de coulage en continu de l'invention elimine le probleme precedent et vibre de maniere efficace, et comprend une pluralite de vibrateurs ultrasoniques montes a des intervalles predetermines le long d'au moins une ligne droite dans le sens axial du moule sur les surfaces externes des parois laterales respectives du moule, les parois laterales respectives du moule etant fixees sur un cadre de coulee et comprenant au moins un passage d'eau de refroidissement dans le sens axial, le passage d'eau comprenant une ouverture d'alimentation en eau de refroidissement et une ouverture de sortie d'eau de refroidissement sur les surfaces externes des parois laterales respectives du moule. Les parois laterales respectives du moule sont fixees sur le bati du moule en des positions correspondant a au moins deux ou plusieurs noeuds des ondes oscillatoires produites dans le sens axial du moule par vibration des vibrateurs ultrasoniques. L'ouverture d'alimentation en eau de refroidissement et l'ouverture de sortie d'eau de refroidissement sont disposees respectivement en des positions correspondant aux noeuds respectifs.
EP19810900077 1979-12-29 1980-12-22 Moule de coulee en continu. Withdrawn EP0042437A4 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP19280A JPS5699052A (en) 1979-12-29 1979-12-29 Vibrating device of mold for continuous casting
JP192/80 1979-12-29

Publications (2)

Publication Number Publication Date
EP0042437A1 true EP0042437A1 (fr) 1981-12-30
EP0042437A4 EP0042437A4 (fr) 1982-07-13

Family

ID=11467124

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19810900077 Withdrawn EP0042437A4 (fr) 1979-12-29 1980-12-22 Moule de coulee en continu.

Country Status (7)

Country Link
EP (1) EP0042437A4 (fr)
JP (1) JPS5699052A (fr)
BR (1) BR8009006A (fr)
DE (1) DE3050165C2 (fr)
GB (1) GB2079201B (fr)
IT (1) IT1134907B (fr)
WO (1) WO1981001809A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4691757A (en) * 1984-05-10 1987-09-08 Voest-Alpine Aktiengesellschaft Arrangement provided at a continuous casting plant

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59175455U (ja) * 1983-05-13 1984-11-22 新日本製鐵株式会社 連続鋳造用超音波振動鋳型
CN114932205B (zh) * 2022-06-02 2024-04-05 福建圣力智能工业科技股份有限公司 一种连铸机用结晶器润滑装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4524849Y1 (fr) * 1966-06-25 1970-09-29
JPS5486432A (en) * 1977-12-22 1979-07-10 Nippon Kokan Kk Oscilliating apparatus for continuous casting mold

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None *
See also references of WO8101809A1 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4691757A (en) * 1984-05-10 1987-09-08 Voest-Alpine Aktiengesellschaft Arrangement provided at a continuous casting plant

Also Published As

Publication number Publication date
EP0042437A4 (fr) 1982-07-13
GB2079201B (en) 1983-09-21
IT8026978A0 (it) 1980-12-24
DE3050165C2 (de) 1985-05-30
WO1981001809A1 (fr) 1981-07-09
JPS5699052A (en) 1981-08-10
IT1134907B (it) 1986-08-20
BR8009006A (pt) 1981-10-27
JPS6143140B2 (fr) 1986-09-26
GB2079201A (en) 1982-01-20
DE3050165T1 (fr) 1982-04-22

Similar Documents

Publication Publication Date Title
US5355935A (en) Method and device for vibrating an ingot mould for the continuous casting of metals
SU1597092A3 (ru) Кристаллизатор дл непрерывного вертикального лить стальной ленты
US4457356A (en) Method of vibrating continuous casting mold
US4498518A (en) Continuous casting mold provided with ultrasonic vibrators
US3952791A (en) Method of continuous casting using linear magnetic field for core agitation
JPH0371937B2 (fr)
EP0042437A1 (fr) Moule de coulee en continu
AU757475B2 (en) High speed continuous casting device and relative method
JPS6141658B2 (fr)
KR840002321B1 (ko) 연속 주조용 주형
KR840001297B1 (ko) 연속 주조용 주형
KR20000053199A (ko) 양질의 얇은 강철 박판의 고속 연속 주조용 장치의 개량된 유닛
JPH02229652A (ja) 連続鋳造プラントにおける金型出口部の溶湯を攪拌するための攪拌装置
JPH0411287B2 (fr)
JPS58151949A (ja) 浸漬ノズルの詰り防止方法
JPS60152348A (ja) 双ベルト式連続鋳造機
EP0686444A1 (fr) Partie en aval d'une lignotière pour coulée continue ayant des faces latérales minces
JPS6143145B2 (fr)
KR101620703B1 (ko) 쌍롤박판 주조기의 탕면응고 방지장치
JPS61176450A (ja) 無限軌道型連続鋳造設備
SU799910A1 (ru) Способ очистки отливки
JPS6143144B2 (fr)
SU1168326A1 (ru) Установка непрерывной разливки стали горизонтального типа
JPS6143141B2 (fr)
JPS6057414B2 (ja) 金属の連続鋳造用鋳型

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19810806

AK Designated contracting states

Designated state(s): DE FR GB

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19840817

RIN1 Information on inventor provided before grant (corrected)

Inventor name: KAWADA, HIROSHI

Inventor name: HASEBE, NOBUHISA