EP0040897A1 - Verfahren zur Herstellung einer Elektrode mit einer gleichmässig verteilten Katalysatorschicht auf einem porösen Substrat - Google Patents

Verfahren zur Herstellung einer Elektrode mit einer gleichmässig verteilten Katalysatorschicht auf einem porösen Substrat Download PDF

Info

Publication number
EP0040897A1
EP0040897A1 EP81300306A EP81300306A EP0040897A1 EP 0040897 A1 EP0040897 A1 EP 0040897A1 EP 81300306 A EP81300306 A EP 81300306A EP 81300306 A EP81300306 A EP 81300306A EP 0040897 A1 EP0040897 A1 EP 0040897A1
Authority
EP
European Patent Office
Prior art keywords
substrate
sulfur dioxide
solution
electrode
palladium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP81300306A
Other languages
English (en)
French (fr)
Inventor
Peter Lu Wen-Tong
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CBS Corp
Original Assignee
Westinghouse Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Westinghouse Electric Corp filed Critical Westinghouse Electric Corp
Publication of EP0040897A1 publication Critical patent/EP0040897A1/de
Ceased legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/042Electrodes formed of a single material
    • C25B11/043Carbon, e.g. diamond or graphene
    • C25B11/044Impregnation of carbon

Definitions

  • This invention relates to a process for preparing electrodes for the anodic oxidation of sulfur dioxide and of the type in which and a platinum group metal- containing catalyst solution is coated onto a high-surface-area porous substrate and dried thus forming a -film on the substrate surface.
  • the present invention resides in a process for preparing electrodes for the anodic oxidation of sulfur dioxide and of the type in which a platinum group metal containing catalyst solution is coated onto a high-surface-area porous substrate and dried, thus forming a film on the substrate surface, characterized by:
  • a pressure differential of 100-100 milli-meters of. mercury is applied across the substrate and the latter is radiantly heated.
  • the sulfur cycle hydrogen generation system of Fig. 1 is a typical use of the sulfur dioxide oxidation electrode of this invention.
  • an electrolyzer 1 contains an aqueous solution of sulfuric acid 2 which is saturated with 50 2 .
  • Direct current is applied to the solution through an anode 3 (made by the process described herein) and a cathode 4.
  • Sulfuric acid and hydrogen gas are generated at the anode 3 and the cathode 4, respectively.
  • Inlets 5 and 6 are provided for the addition of more dilute sulfuric acid and additional sulfur dioxide.
  • the hydrogen product leaves by outlet 7 where it separates from the sulfuric acid. Unconsumed sulfur dioxide leaves by outlet 8 with the more concentrated sulfuric acid solution, and both are recycled.
  • a portion of the sulfuric acid from outlet 8 passes to vaporizer 9 where water is evaporated and its concentration is increased.
  • the concentrated sulfuric acid then passes to oxygen generator 10 where the sulfuric acid is heated over a catalyst, for example, of platinum or vanadium pentoxide, to decompose it into water, sulfur dioxide, and oxygen which pass to oxygen recovery unit 11.
  • a catalyst for example, of platinum or vanadium pentoxide
  • oxygen recovery unit 11 the sulfur dioxide is separated from the oxygen by lowering the temperature to condense the sulfur dioxide into a liquid.
  • the sulfur dioxide and the water are then returned to inlet 6 of the electrolytic cell 1, thus completing the cycle.
  • a hydrogen-ion-permeable membrane 12 separates the fluid around the anode 3 from the fluid around the cathode 4.
  • Fig. 6 The appearance and microstructures of a typical carbon (plate) substrate are illustrated in Fig. 6. These inexpensive carbon substrates provide good porosity, electrical conductivity and mechanical strength. While anodes of carbon (graphite) catalyzed with fine platinum particles -have been used for preparation of sulfuric acid from sulfur dioxide, commercially available platinum-coated carbon electrodes have been found to have an extremely non-uniform coating of platinum. All such electrodes had, as shown in Fig. 5, areas which were clearly uncoated.
  • a five by five centimeter porous carbon substrate (mean pore size approximately nine microns) was activated by oxidation in a concentrated nitric acid (13.5 normal at 80°C) .
  • the oxidized carbon substrate 13 was mounted (as shown in Fig. 3) in a lucite holder 14 using a seal around the perimeter of the substrate. The substrate was then positioned in a horizontal plane with its underside exposed to a cavity 18 that was connected to a vacuum pump.
  • the palladium-covered carbon substrate prepared as above is further treated, for example, at a temperature of 400-500°C in a stream of helium gas containing 5% oxygen.
  • Fig. 4 also illustrates the use of a positive pressure cavity 22 (as opposed to the vacuum cavity of Fig. 3) as a means for applying the pressure differential across the substrate 13.
  • a positive pressure cavity 22 as opposed to the vacuum cavity of Fig. 3
  • the pressure could be applied by a pump directly to the coating solution (thus the pressure chamber 22 would be completely filled with fluid) or by using sufficient depth of solution to provide the pressure hydrostatically. Neither of these techniques, however, lend themselves to radiant heating from the side to which the solution is applied and thus the arrangement of Fig. 3 is preferred.
  • the differential pressure should be less than about 100 millimeters of mercury if carbon substrates are used to avoid damage to the substrate.
  • a differential pressure of 10-30 millimeters of mercury is used with carbon substrates.
  • Other types of substrates e.g. a sub-. strate sintered from finely divided titanium powder
  • the upper limit of the pressure differential is determined by the strength of the substrate.
  • the palladium or palladium oxide catalyst is preferred (although other platinum group of metals can also be uniformly deposited by the techniques described herein) and palladium is preferably deposited using radiant heating to 40-60°C.
EP81300306A 1980-05-23 1981-01-23 Verfahren zur Herstellung einer Elektrode mit einer gleichmässig verteilten Katalysatorschicht auf einem porösen Substrat Ceased EP0040897A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US15311080A 1980-05-23 1980-05-23
US153110 1998-09-15

Publications (1)

Publication Number Publication Date
EP0040897A1 true EP0040897A1 (de) 1981-12-02

Family

ID=22545807

Family Applications (1)

Application Number Title Priority Date Filing Date
EP81300306A Ceased EP0040897A1 (de) 1980-05-23 1981-01-23 Verfahren zur Herstellung einer Elektrode mit einer gleichmässig verteilten Katalysatorschicht auf einem porösen Substrat

Country Status (7)

Country Link
EP (1) EP0040897A1 (de)
JP (1) JPS579889A (de)
AU (1) AU6609981A (de)
BR (1) BR8100253A (de)
CA (1) CA1150231A (de)
ES (1) ES502417A0 (de)
ZA (1) ZA81173B (de)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0066349A1 (de) * 1981-06-01 1982-12-08 Westinghouse Electric Corporation Elektrode mit Kohlenstofftuch als Trägermaterial
EP0092603A1 (de) * 1982-04-15 1983-11-02 Westinghouse Electric Corporation Elektrodenherstellungsverfahren
EP0683247A1 (de) * 1994-05-20 1995-11-22 Bayer Ag Verfahren zur Herstellung stabiler Graphitkathoden für die Salzsäureelektrolyse
GB2365023A (en) * 2000-07-18 2002-02-13 Ionex Ltd Increasing the surface area of an electrode
US7238841B2 (en) 1997-02-28 2007-07-03 E. I. Du Pont De Nemours And Company Polymer-supported phosphorus ligands for catalysts

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1329153A (en) * 1970-01-09 1973-09-05 Solvay Electrodes for electrochemical processes
DE2002298B2 (de) * 1970-01-20 1973-10-11 Guenter Dipl.-Chem. 4134 Rheinberg Barthel Verfahren zur Herstellung von Elektro den fur die technische Wasserelektrolyse
US3778307A (en) * 1967-02-10 1973-12-11 Chemnor Corp Electrode and coating therefor
US4164457A (en) * 1977-06-23 1979-08-14 Kernforschungsanlage Julich Gesellschaft Mit Beschrankter Haftung Method of recovering hydrogen and oxygen from water

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3778307A (en) * 1967-02-10 1973-12-11 Chemnor Corp Electrode and coating therefor
GB1329153A (en) * 1970-01-09 1973-09-05 Solvay Electrodes for electrochemical processes
DE2002298B2 (de) * 1970-01-20 1973-10-11 Guenter Dipl.-Chem. 4134 Rheinberg Barthel Verfahren zur Herstellung von Elektro den fur die technische Wasserelektrolyse
US4164457A (en) * 1977-06-23 1979-08-14 Kernforschungsanlage Julich Gesellschaft Mit Beschrankter Haftung Method of recovering hydrogen and oxygen from water

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0066349A1 (de) * 1981-06-01 1982-12-08 Westinghouse Electric Corporation Elektrode mit Kohlenstofftuch als Trägermaterial
EP0092603A1 (de) * 1982-04-15 1983-11-02 Westinghouse Electric Corporation Elektrodenherstellungsverfahren
EP0683247A1 (de) * 1994-05-20 1995-11-22 Bayer Ag Verfahren zur Herstellung stabiler Graphitkathoden für die Salzsäureelektrolyse
US5575985A (en) * 1994-05-20 1996-11-19 Bayer Aktiengesellschaft Preparation of stable graphite
CN1052038C (zh) * 1994-05-20 2000-05-03 拜尔公司 适于在电解过程中作为阴极的石墨体的制备方法
US7238841B2 (en) 1997-02-28 2007-07-03 E. I. Du Pont De Nemours And Company Polymer-supported phosphorus ligands for catalysts
GB2365023A (en) * 2000-07-18 2002-02-13 Ionex Ltd Increasing the surface area of an electrode
GB2365023B (en) * 2000-07-18 2002-08-21 Ionex Ltd A process for improving an electrode

Also Published As

Publication number Publication date
CA1150231A (en) 1983-07-19
ZA81173B (en) 1982-04-28
JPS579889A (en) 1982-01-19
BR8100253A (pt) 1982-01-12
ES8300878A1 (es) 1982-11-01
AU6609981A (en) 1981-11-26
ES502417A0 (es) 1982-11-01

Similar Documents

Publication Publication Date Title
Devilliers et al. Cr (III) oxidation with lead dioxide-based anodes
Grubb et al. Batteries with solid ion‐exchange membrane electrolytes: II. Low‐temperature hydrogen‐oxygen fuel cells
US4498942A (en) Electrolysis apparatus using a diaphragm of a solid polymer electrolyte, and method for production thereof
US4414092A (en) Sandwich-type electrode
Watanabe et al. Electrocatalysis by ad-atoms: Part XXIII. Design of platinum ad-electrodes for formic acid fuel cells with ad-atoms of the IVth and the Vth groups
US5516972A (en) Mediated electrochemical oxidation of organic wastes without electrode separators
WO1996005336A1 (en) Electrochemical device for removal and regeneration of oxygen and method
US5407550A (en) Electrode structure for ozone production and process for producing the same
JP2003051322A (ja) 機能性セラミック層の製造方法
US20030047459A1 (en) Electrochemical reacting electrode, method of making, and application device
US4142949A (en) Process for producing an electrode for use in the electrolytic generation of hydrogen peroxide
EP0560740B1 (de) Apparat und Verfahren zur elektrolytischen Herstellung von Ozon
US5676808A (en) Electrolytic cell using gas diffusion electrode
Doblhofer et al. Polymer‐Metal Composite Thin Films on Electrodes
EP0040897A1 (de) Verfahren zur Herstellung einer Elektrode mit einer gleichmässig verteilten Katalysatorschicht auf einem porösen Substrat
US3222265A (en) Electrolysis method and apparatus employing a novel diaphragm
CN113061926A (zh) 一种用于pem水电解池的亚氧化钛阳极扩散层及其制备方法与应用
JPH06330367A (ja) ガス電極の製造方法
US3196050A (en) Method of preparing a catalyst impregnated carbon electrode
KR860700273A (ko) 특히 전해전극을 위한 복합 촉매물질 및 그 제조방법
GB2028373A (en) Producing hydrogen and sulphuric acid by electrochemical decomposition of an electrolyte containing sulphur dioxide
EP0036709B1 (de) Verfahren zur Herstellung einer Polychelat-Beschichtung und mit einer solchen Beschichtung versehene Elektrode
US6165333A (en) Cathode assembly and method of reactivation
RU2749729C1 (ru) Способ получения многослойных металлических наноструктурированных каталитических покрытий
JPH10102273A (ja) 水電解セル

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): BE CH DE FR GB IT LI NL SE

17P Request for examination filed

Effective date: 19820601

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 19840604

RIN1 Information on inventor provided before grant (corrected)

Inventor name: WEN-TONG, PETER LU