EP0040383B1 - Method and apparatus for stirring the molten metal in a continuous-casting strand - Google Patents

Method and apparatus for stirring the molten metal in a continuous-casting strand Download PDF

Info

Publication number
EP0040383B1
EP0040383B1 EP81103569A EP81103569A EP0040383B1 EP 0040383 B1 EP0040383 B1 EP 0040383B1 EP 81103569 A EP81103569 A EP 81103569A EP 81103569 A EP81103569 A EP 81103569A EP 0040383 B1 EP0040383 B1 EP 0040383B1
Authority
EP
European Patent Office
Prior art keywords
pouring
ingot mould
stream
fields
pouring stream
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP81103569A
Other languages
German (de)
French (fr)
Other versions
EP0040383A1 (en
Inventor
Sten Dipl.-Ing. Kollberg
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ABB Norden Holding AB
Original Assignee
ASEA AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ASEA AB filed Critical ASEA AB
Publication of EP0040383A1 publication Critical patent/EP0040383A1/en
Priority to ES511019A priority Critical patent/ES8303148A3/en
Application granted granted Critical
Publication of EP0040383B1 publication Critical patent/EP0040383B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • B22D11/11Treating the molten metal
    • B22D11/114Treating the molten metal by using agitating or vibrating means
    • B22D11/115Treating the molten metal by using agitating or vibrating means by using magnetic fields

Definitions

  • the invention relates to a method for stirring in a casting strand according to the preamble of claim 1 and an apparatus for performing the method.
  • the invention has for its object to develop a method and implementation arrangement by which the difficulties outlined above are eliminated.
  • beat which according to the invention in the kenn. drawing part of claim 1 said features.
  • a device for performing the method is characterized by the features mentioned in claim 7.
  • a static magnetic field with a large penetration depth is thus generated and the high speed of the steel in the pouring jet is used when penetrating into the melt in the mold (penetration speed).
  • This penetration speed is on the order of 1 to 1.5 m / sec.
  • the movement of the steel is slowed down by the magnetic field and the pouring jet splinters.
  • the mode of operation is comparable to an eddy current brake.
  • the depth of penetration is reduced and most of the slag is deposited on the surface and no longer gets stuck on the inside of the strand shell that has already solidified.
  • the static magnetic field can also be generated by one or more permanent magnets.
  • a simple and effective device for “stirring” in the mold is thus obtained, the slag being separated off without getting caught in the blank.
  • the poles (the area of attack of the field) are arranged at an acute angle to the pouring jet in such a way that the pouring jet essentially splinters upwards. This prevents slag from being pressed down in the pouring direction, where it can get caught.
  • more heat is added to the surface in the mold, especially on the pouring tube.
  • the impulse exerted by the pouring jet on the melt in the mold is reduced and its effect is spread out from the point of entry into the melt in such a way that the stream of the pouring jet does not hit the narrow side of the blank, which causes a slag accumulation at the edge of the blank and one Shell erosion can be reduced.
  • the invention therefore makes it possible to also produce steel with a high surface quality in terms of slag purity.
  • Figure 1 shows how a pouring stream over a pouring tube 1 from a casting box or not shown another melt container comes.
  • the pouring tube has a downward double drain, and the impulse is directed to the narrow side of the mold 4, where slag settles in the strand shell. There is also a risk of slag penetration further down in the pouring direction (arrows 5).
  • FIG. 2 shows the penetration with pouring jets directed upwards from a pouring tube 8, indicated by the arrows 9.
  • FIG. 3 shows how the pouring jets 10 coming from a pouring tube 11 are directed in the melt and are broken up, whereby slag particles are more easily separated on the surface.
  • the stirring can also be carried out by conventional multi-phase stirrers supplied with alternating current, which are mounted behind the mold in (on) or in the casting direction, in order to also obtain the usual stirring effects during continuous casting.
  • the pouring stream can also be broken up and influenced if it is poured into the melt from a pouring box rather than through a pouring tube.
  • FIGS. 4 and 5 The device according to the invention is illustrated in FIGS. 4 and 5, where a static magnetic field B from a stirrer in the form of an iron core 15 carrying coils 16 'supplied with direct current is shown.
  • the field can be directed inward to the left of the pouring tube 18, which has a double drain, and outward to the right of the pouring tube.
  • the splitting of the pouring jets 16 and 17 takes place in the manner indicated by arrows in FIG. 3, and the slag only settles to a small extent on the narrow sides of the mold and further down in the pouring direction.
  • the device for carrying out the method can be equipped with one or more controllable DC stirrers. It can also contain one or more multi-phase AC stirrers, which are arranged on the mold or in the casting direction behind the mold, with their stirring direction being oriented perpendicularly or in the longitudinal direction to the casting direction.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)

Description

Die Erfindung betrifft ein Verfahren zur Umrührung in einem Giessstrang gemäss dem Oberbegriff des Anspruches 1 sowie eine Vorrichtung zur Durchführung des Verfahrens.The invention relates to a method for stirring in a casting strand according to the preamble of claim 1 and an apparatus for performing the method.

Beim Stranggiessen, bei dem ein Giessstrahl direkt oder durch ein Giessrohr aus einem Giesskasten oder einem anderen Metallschmelzenbehälter mit einer gewissen kinetischen Energie in eine Schmelze, d.h. in die nicht erstarrten Bereiche eines Giessstrangs gelangt, dringt der Giessstrang einschliesslich der mitgeführten Schlakkenteilchen tief in den Sumpf ein, was eine Abscheidung bzw. ein Hochfliessen der Schlacke an die Oberfläche unmöglich macht. Eine grosse Eindringtiefe des Giessstrahls erhöht die Gefahr, dass Schlackenteilchen an den Seiten des Strangs hängen bleiben und somit ihre Abscheidung an der Oberfläche erschweren.In continuous casting, in which a pouring jet directly or through a pouring tube from a casting box or other metal melt container with a certain kinetic energy into a melt, i.e. If it reaches the non-solidified areas of a casting strand, the casting strand including the entrained slag particles penetrates deep into the sump, which makes it impossible to separate or flow up the slag to the surface. A large penetration depth of the pouring jet increases the risk that slag particles get caught on the sides of the strand and thus make it difficult to separate them from the surface.

Aufgrund des Impulses, den der Giessstrahl der Schmelze versetzt (wir sprechen hier also nicht von dem freien Giessstrahl vor dem Auftreffen auf die Schmelze) wird auch Schlacke an die Kokillenwand und dort in erstarrte und erstarrende Bereiche der Schmelze geschoben, wo sich die Schlakke festsetzen und folglich nicht abgeschieden werden kann.Due to the impulse that the pouring jet gives off the melt (we are not talking about the free pouring jet before it hits the melt), slag is also pushed onto the mold wall and into solidified and solidifying areas of the melt, where the slag settles and consequently cannot be deposited.

Aufgrund einer starken Abkühlung und einer geringen Wärmezufuhr kann auch an der Oberfläche am Giessrohr eine Erstarrung eintreten. Diese drei Faktoren tragen auf verschiedene Art zu einer schlechteren Qualität des fertigen Rohlings bei.Due to strong cooling and a low heat input, solidification can also occur on the surface of the pouring tube. These three factors contribute to the poorer quality of the finished blank in different ways.

Um u.a. die vorgenannten Probleme zu beheben, wäre es wünschenswert, das Strömungsbild in der Kokille steuern zu können, um dadurch einen schlackenfreieren Stahl mit geringerer Rohlingsbehandlung zu erhalten und um auch schweren Stahl giessen zu können.To i.a. To solve the above-mentioned problems, it would be desirable to be able to control the flow pattern in the mold in order to obtain a slag-free steel with less blank treatment and to be able to cast heavy steel as well.

Bei der Umrührung der Schmelze in einer Kokille mit Wechselstromumrührern ist es wegen der abschirmenden Wirkung der dicken Kokillenwände schwierig, mit dem magnetischen Feld in die Schmelze einzudringen. Die Wände der Kokille bestehen aus bis zu 80 mm dicken Kupferplatten, wodurch das Eindringen des magnetischen Feldes in die Schmelze auch bei niedrigen Frequenzen sehr erschwert wird. Die Eindringtiefe in Kupfer beträgt bei beispielsweise 1,5 Hz 50-60 mm, und somit muss vom Feld mindestens diese Eindringtiefe überwunden werden, bevor es die Schmelze erreicht. Die Schwierigkeit, mit üblichen Umrührern in der Kokille die Eindringung des Giessstrahls zu unterbrechen oder zu verringern, ist somit offensichtlich.When stirring the melt in a mold with AC stirrers, it is difficult to penetrate the melt with the magnetic field because of the shielding effect of the thick mold walls. The walls of the mold consist of copper plates up to 80 mm thick, which makes it very difficult for the magnetic field to penetrate the melt, even at low frequencies. The penetration depth in copper is, for example, 1.5 Hz 50-60 mm, and thus the field must at least overcome this penetration depth before it reaches the melt. The difficulty of interrupting or reducing the penetration of the pouring jet with conventional stirrers in the mold is therefore obvious.

Es ist auch zu beachten, dass die Oberfläche der Schmelze in der Kokille nicht beunruhigt werden darf, dass die Wärmezufuhr an die Oberfläche trotzdem jedoch am liebsten verbessert werden soll.It should also be noted that the surface of the melt in the mold must not be disturbed, but that the heat input to the surface should still be improved.

Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren nebst Durchführungsanordnung zu entwickeln, durch welches die oben aufgezeigten Schwierigkeiten beseitigt werden.The invention has for its object to develop a method and implementation arrangement by which the difficulties outlined above are eliminated.

Zur Lösung dieser Aufgabe wird ein Verfahren nach dem Oberbegriff des Anspruches 1 vorge. schlagen, welches erfindungsgemäss die im kenn. zeichnenden Teil des Anspruches 1 genannter Merkmale hat.To solve this problem, a method according to the preamble of claim 1 is provided. beat, which according to the invention in the kenn. drawing part of claim 1 said features.

Vorteilhafte Weiterbildungen des Verfahrens sind in den Ansprüchen 2 bis 6 genannt.Advantageous developments of the method are mentioned in claims 2 to 6.

Eine Vorrichtung zur Durchführung des Verfahrens ist durch die in Anspruch 7 genannten Merkmale gekennzeichnet.A device for performing the method is characterized by the features mentioned in claim 7.

Vorteilhafte Weiterbildungen dieser Vorrichtung sind in den Ansprüchen 8 bis 12 genannt.Advantageous developments of this device are mentioned in claims 8 to 12.

Gemäss der Erfindung wird also ein statisches Magnetfeld mit grosser Eindringtiefe erzeugt und die hohe Geschwindigkeit des Stahls im Giessstrahl beim Eindringen in die Schmelze in der Kokille (Eindringgeschwindigkeit) ausgenutzt. Diese Eindringgeschwindigkeit liegt in der Grössenordnung von 1 bis 1.5 m/sec. Durch das Magnetfeld wird die Bewegung des Stahls gebremst und der Giessstrahl zersplittert. Die Wirkungsweise ist vergleichbar mit einer Wirbelstrombremse. Die Eindringtiefe wird vermindert und der grösste Teil der Schlacke wird auf der Oberfläche abgeschieden und bleibt nicht mehr an der Innenseite der bereits erstarrten Strangschale hängen.According to the invention, a static magnetic field with a large penetration depth is thus generated and the high speed of the steel in the pouring jet is used when penetrating into the melt in the mold (penetration speed). This penetration speed is on the order of 1 to 1.5 m / sec. The movement of the steel is slowed down by the magnetic field and the pouring jet splinters. The mode of operation is comparable to an eddy current brake. The depth of penetration is reduced and most of the slag is deposited on the surface and no longer gets stuck on the inside of the strand shell that has already solidified.

Das statische Magnetfeld kann auch durch einen oder mehrere Dauermagnete erzeugt werden. Man erhält so eine einfache und wirksame Vorrichtung zum «Umrühren» in der Kokille, wobei die Schlacke abgeschieden wird, ohne im Rohling hängenzubleiben.The static magnetic field can also be generated by one or more permanent magnets. A simple and effective device for “stirring” in the mold is thus obtained, the slag being separated off without getting caught in the blank.

Bei einer bevorzugten Ausführung des Verfahrens beim Giessen mit einem Giessrohr werden die Pole (die Angriffsfläche des Feldes) derart in einem spitzen Winkel zu dem Giessstrahl angeordnet, dass eine Zersplitterung des Giessstrahls im wesentlichen nach oben hin erfolgt. Hierdurch wird vermieden, dass Schlacke in Giessrichtung nach unten gedrückt wird, wo sie hängen bleiben kann. Zugleich wird hierdurch der Oberfläche in der Kokille, insbesondere am Giessrohr, mehr Wärme zugeführt. Der vom Giessstrahl auf die Schmelze in der Kokille ausgeübte Impuls wird vermindert und in seiner Wirkung vom Eintritt in die Schmelze an derart in die Breite gezogen, dass der Strom des Giessstrahls nicht die Schmalseite des Rohlings trifft, wodurch eine Schlackenansammlung am Rand des Rohlings und eine Schalenerosion verringert werden. Durch die Erfindung ist es daher möglich, auch Stahl mit einer hinsichtlich der Schlackenreinheit hohen Oberflächengüte herzustellen.In a preferred embodiment of the method when casting with a pouring tube, the poles (the area of attack of the field) are arranged at an acute angle to the pouring jet in such a way that the pouring jet essentially splinters upwards. This prevents slag from being pressed down in the pouring direction, where it can get caught. At the same time, more heat is added to the surface in the mold, especially on the pouring tube. The impulse exerted by the pouring jet on the melt in the mold is reduced and its effect is spread out from the point of entry into the melt in such a way that the stream of the pouring jet does not hit the narrow side of the blank, which causes a slag accumulation at the edge of the blank and one Shell erosion can be reduced. The invention therefore makes it possible to also produce steel with a high surface quality in terms of slag purity.

Anhand der Figuren soll die Erfindung näher erläutert werden. Es zeigen

  • Figur 1 und 2 das Eindringen des Giessstrahls in die Schmelze für verschiedene Arten von Giessrohren,
  • Figur 3 die Wirkungsweise des Verfahrens und der Vorrichtung nach der Erfindung,
  • Figur 4 und 5 Beispiele für die Anordnung und Ausbildung der Umrührer.
The invention will be explained in more detail with reference to the figures. Show it
  • 1 and 2 the penetration of the pouring jet into the melt for different types of pouring tubes,
  • FIG. 3 the mode of operation of the method and the device according to the invention,
  • Figures 4 and 5 examples of the arrangement and design of the stirrer.

Figur 1 zeigt, wie ein Giessstrahl über ein Giessrohr 1 aus einem nicht gezeigten Giesskasten oder einem anderen Schmelzenbehälter kommt. Das Giessrohr hat einen nach unten gerichteten Doppelabfluss, und der Impuls wird auf die Schmalseite der Kokille 4 gerichtet, wo sich Schlacke in der Strangschale absetzt. Auch besteht die Gefahr einer Schlackenpenetration weiter unten in der Giessrichtung (Pfeile 5).Figure 1 shows how a pouring stream over a pouring tube 1 from a casting box or not shown another melt container comes. The pouring tube has a downward double drain, and the impulse is directed to the narrow side of the mold 4, where slag settles in the strand shell. There is also a risk of slag penetration further down in the pouring direction (arrows 5).

Figur 2 zeigt die Penetration mit nach oben gerichteten Giessstrahlen aus einem Giessrohr 8, angedeutet durch die Pfeile 9.FIG. 2 shows the penetration with pouring jets directed upwards from a pouring tube 8, indicated by the arrows 9.

Figur 3 zeigt, wie die aus einem Giessrohr 11 kommenden Giessstrahlen 10 in der Schmelze gerichtet sind und zersplittert werden, wobei Schlackenpartikel leichter an der Oberfläche abgeschieden werden.FIG. 3 shows how the pouring jets 10 coming from a pouring tube 11 are directed in the melt and are broken up, whereby slag particles are more easily separated on the surface.

Ein oder mehrere statische Magnetfelder 19, die durch gleichstromgespeiste «Umrührer» oder durch Dauermagnete erzeugt werden, liegen quer zur Giessrichtung mit der Angriffsfläche (den Polen) 12 in einem spitzen Winkel zum Giessstrahl 10, wobei der Strahl im wesentlichen in mehrere nach oben gerichtete Teilstrahlen 13 zersplittert wird und die Schlacke an der Oberfläche abgeschieden werden kann. Nur kleinere (oder gar keine) Teile der Schlackenpartikel bleiben an der Schmalseite oder im Rohling hängen. Man kann eine steuerbare Stabilisierung des Giessstrahls erreichen, indem man unter dem Feld 12 ein weiteres statisches Feld 14 anordnet.One or more static magnetic fields 19, which are generated by direct current-supplied “stirrers” or by permanent magnets, lie transversely to the casting direction with the contact surface (the poles) 12 at an acute angle to the casting jet 10, the jet essentially in several upwardly directed partial jets 13 is fragmented and the slag can be separated on the surface. Only smaller (or no) parts of the slag particles get stuck on the narrow side or in the blank. Controllable stabilization of the pouring jet can be achieved by arranging a further static field 14 under the field 12.

Eventuell kann die Umrührung zusätzlich durch übliche mehrphasige, mit Wechselstrom gespeiste Umrührer erfolgen, die in (an) oder in Giessrichtung gesehen hinter der Kokille angebracht sind, um auch die üblichen Umrühreffekte beim kontinuierlichen Giessen zu erhalten.Possibly, the stirring can also be carried out by conventional multi-phase stirrers supplied with alternating current, which are mounted behind the mold in (on) or in the casting direction, in order to also obtain the usual stirring effects during continuous casting.

Man kann den Giessstrahl auch zersplittern und beeinflussen, wenn dieser nicht durch ein Giessrohr, sondern in einem freien Strahl aus einem Giesskasten in die Schmelze abgegossen wird.The pouring stream can also be broken up and influenced if it is poured into the melt from a pouring box rather than through a pouring tube.

Die Vorrichtung nach der Erfindung ist in den Figuren 4 und 5 veranschaulicht, wo ein statisches Magnetfeld B von einem Umrührer in Form eines Eisenkerns 15, der gleichstromgespeiste Spulen 16' trägt, gezeigt ist. Das Feld kann im Sinne der Zeichenebene links von dem Giessrohr 18, welches einen doppelten Abfluss hat, nach innen und rechts vom Giessrohr nach aussen gerichtet sein. Die Zersplitterung der Giessstrahlen 16 und 17 geschieht in der in Figur 3 durch Pfeile angedeuteten Weise, und die Schlacke setzt sich nur in geringem Masse an den Schmalseiten der Kokille und weiter unten in Giessrichtung ab. Die Vorrichtung zur Durchführung des Verfahrens kann mit einem oder mehreren steuerbaren Gleichstromumrührern ausgerüstet sein. Sie kann ausserdem einen oder mehrere mehrphasige Wechselstromumrührer enthalten, die an der Kokille oder in Giessrichtung hinter der Kokille angeordnet sind, wobei sie mit ihrer Rührrichtung senkrecht oder in Längsrichtung zur Giessrichtung orientiert sein können.The device according to the invention is illustrated in FIGS. 4 and 5, where a static magnetic field B from a stirrer in the form of an iron core 15 carrying coils 16 'supplied with direct current is shown. In the sense of the drawing plane, the field can be directed inward to the left of the pouring tube 18, which has a double drain, and outward to the right of the pouring tube. The splitting of the pouring jets 16 and 17 takes place in the manner indicated by arrows in FIG. 3, and the slag only settles to a small extent on the narrow sides of the mold and further down in the pouring direction. The device for carrying out the method can be equipped with one or more controllable DC stirrers. It can also contain one or more multi-phase AC stirrers, which are arranged on the mold or in the casting direction behind the mold, with their stirring direction being oriented perpendicularly or in the longitudinal direction to the casting direction.

Claims (12)

1. Method for stirring the unsolidified portions of a pouring stream, formed in an ingot mould, whereby a pouring stream flows either through a pouring pipe or directly into the ingot mould, characterized in that in the area of the ingot mould where the pouring stream (10) intrudes the body of molten metal already amassed in the ingot mould at least one static magnetic field (19) is provided that reduces the pouring streams's velocity and splits it up so as to weaken or absorb its momentum.
2. Method according to claim 1, characterized in that the working surface (the poles) (12) of the field are located at such an acute angle in relation to the pouring stream that the splitting up occurs substantially upwardly (13).
3. Method according to claim 1 or 2, characaterized in that for controlling the splitting process several static fields (12', 12, 14) are located one after the other in the pouring direction.
4. Method according to any of the preceding claims, characterized in that several static fields (12', 12) are located one after the other in the direction of the pouring stream (10) or in the new direction taken by the pouring stream under the effect of the preceding magnetic fields.
5. Method according to any of the claims 1 to 4, characterized in that the amplitude of the magnetic field/fields varies periodically at a low frequency in such a way that the intruding flow movements (5 and 9) are spread out periodically over a bigger volume, thereby reducing the penetration depth.
6. Method according to any of the preceding claims, characterized in that in addition to the static field/fields in alternating magnetic field is applied which is generated at least by one multi-phase, alternating current supplied stirrer located at and/or behind the ingot mould.
7. Apparatus for carrying out the method according to any of the preceding claims comprising a machine for continuous casting having an ingot mould open at the bottom, whereby the molten metal can be poured out of a ladle or an intermediate vessel into the ingot mould either through one or more pouring pipes (18) or directly in an open stream, characterized in that at least one electromagnetic «stirrer», which generates a static magnetic field, is arranged in, at, or beside the ingot mould in such a way that the field (19) acts on the pouring stream (16, 17) immediately after the stream's intrusion into the body of molten metal already amassed in the ingot mould thereby reducing the velocity of the pouring stream and splitting it up.
8. Apparatus according to claim 7, characterized in that the stirrer consists of one or more iron cores (15) carrying coils (16) to be supplied by direct current, or consisting of one or more permanent magnets.
9. Apparatus according to claim 7 or 8, characterized in that the stirrer is arranged in such a way that the working surfaces (12) of the field form an acute angle in relation to the pouring stream (10, 16, 17) intruding into the molten metal, and that the splitting up of the pouring stream occurs substantially upwardly.
10. Apparatus according to any of claim 7 to 9, characterized in that there are two or more stirrers (12, 14) generating static fields, which stirrers are arranged specially in such a way that their fields are directed parallel to each other and that they are located one after the other in the pouring direction.
11. Apparatus according to any of claim 7 to 10, characterized in that there are at least two stirrers (12', 12), which are arranged in the direction of the pouring stream (10) or in the direction taken by the pouring stream under the effect of the preceding magnetic fields.
12. Apparatus according to any of claim 7 to 11, characterized in that at least one multi-phase, alternating current supplied stirrer is arranged at or in the pouring direction behind the ingot mould.
EP81103569A 1980-05-19 1981-05-11 Method and apparatus for stirring the molten metal in a continuous-casting strand Expired EP0040383B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
ES511019A ES8303148A3 (en) 1980-05-19 1982-03-31 Method and its corresponding device for agitating the unsolidified regions of a cast steel bar. (Machine-translation by Google Translate, not legally binding)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
SE8003695 1980-05-19
SE8003695A SE436251B (en) 1980-05-19 1980-05-19 SET AND DEVICE FOR MOVING THE NON-STANDED PARTS OF A CASTING STRING

Publications (2)

Publication Number Publication Date
EP0040383A1 EP0040383A1 (en) 1981-11-25
EP0040383B1 true EP0040383B1 (en) 1983-10-12

Family

ID=20340983

Family Applications (1)

Application Number Title Priority Date Filing Date
EP81103569A Expired EP0040383B1 (en) 1980-05-19 1981-05-11 Method and apparatus for stirring the molten metal in a continuous-casting strand

Country Status (7)

Country Link
US (1) US4495984A (en)
EP (1) EP0040383B1 (en)
JP (1) JPS5717356A (en)
BR (1) BR8103058A (en)
CA (1) CA1178779A (en)
DE (1) DE3161171D1 (en)
SE (1) SE436251B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3134220B1 (en) 2014-04-25 2019-09-04 ThyssenKrupp Steel Europe AG Method and device for thin-slab strand casting

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5853669A (en) * 1981-09-28 1983-03-30 Hitachi Ltd Fuel injection pump device for internal-combustion engine
SE8202431L (en) * 1982-04-19 1983-10-20 Asea Ab MOVING STRING
FR2530510B1 (en) * 1982-07-23 1985-07-05 Cegedur ELECTROMAGNETIC CASTING PROCESS FOR METALS IN WHICH AT LEAST ONE MAGNETIC FIELD DIFFERENT FROM THE CONTAINMENT FIELD
FR2530511B1 (en) * 1982-07-23 1985-07-05 Cegedur PROCESS FOR CASTING METALS IN WHICH MAGNETIC FIELDS ARE OPERATED
JPS5976647A (en) * 1982-10-22 1984-05-01 Kawasaki Steel Corp Method and device for stirring molten metal for casting in continuous casting
SE459401B (en) * 1986-10-20 1989-07-03 Asea Ab SETTING AND DEVICE FOR BRAKING AND / OR MOVING OF THE UNUSED PARTIES OF A CASTING STRING
JPS63260652A (en) * 1987-04-20 1988-10-27 Kawasaki Steel Corp Method for preventing involvement of mold powder in continuous casting
US4824078A (en) * 1987-08-19 1989-04-25 Massachusetts Institute Of Technology Magnetic streamlining and flow control in tundishes
US4949778A (en) * 1987-12-16 1990-08-21 Kawasaki Steel Corporation Immersion nozzle for continuous casting
KR930002836B1 (en) * 1989-04-27 1993-04-10 가와사끼 세이데쓰 가부시까가이샤 Method and apparatus for continuous casting
US5033534A (en) * 1990-03-02 1991-07-23 Nkk Corporation Method for continuous casting of steel
EP0523837B1 (en) * 1991-06-05 1997-02-19 Kawasaki Steel Corporation Continuous casting method of steel slab
CA2059030C (en) * 1992-01-08 1998-11-17 Jun Kubota Method for continuous casting of slab
JP3188273B2 (en) * 1994-03-29 2001-07-16 新日本製鐵株式会社 Control method of flow in mold by DC magnetic field
US5540672A (en) * 1994-06-13 1996-07-30 Kimberly-Clark Corporation Absorbent article having dual asymmetric leg elastics
SE9500684L (en) * 1995-02-22 1996-07-08 Asea Brown Boveri Methods and apparatus for string casting
GB2312861B (en) * 1996-05-08 1999-08-04 Keith Richard Whittington Valves
DE19625932A1 (en) * 1996-06-28 1998-01-08 Schloemann Siemag Ag Electromagnetic brake for a continuous casting mold
EP0832704A1 (en) * 1996-09-19 1998-04-01 Hoogovens Staal B.V. Continuous casting machine
SE509112C2 (en) 1997-04-18 1998-12-07 Asea Brown Boveri Device for continuous casting of two blanks in parallel
SE9703170D0 (en) * 1997-09-03 1997-09-03 Asea Brown Boveri Method and apparatus for controlling the metal flow in an injection molding mold by applying electromagnetic fields at a plurality of levels
FR2772294B1 (en) * 1997-12-17 2000-03-03 Rotelec Sa ELECTROMAGNETIC BRAKING EQUIPMENT OF A MOLTEN METAL IN A CONTINUOUS CASTING SYSTEM
KR100376504B1 (en) 1998-08-04 2004-12-14 주식회사 포스코 Continuous casting method and continuous casting apparatus used
KR101213559B1 (en) * 2004-12-22 2012-12-18 겐조 다카하시 Apparatus and method for agitating, and melting furnace attached to agitation apparatus using agitation apparatus
DE102009029889A1 (en) * 2008-07-15 2010-02-18 Sms Siemag Ag Electromagnetic brake device on continuous casting molds

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA531772A (en) * 1956-10-16 Continuous Metalcast Co. Method and apparatus for the continuous casting of metal
US3153820A (en) * 1961-10-09 1964-10-27 Charles B Criner Apparatus for improving metal structure
DE1962341B2 (en) * 1969-12-12 1971-06-24 Aeg Elotherm Gmbh ARRANGEMENT OF A MULTI-PHASE ELECTROMAGNETIC WINDING ON THE STRAND GUIDE FRAMEWORK OF A CONTINUOUS CASTING PLANT
US3693697A (en) * 1970-08-20 1972-09-26 Republic Steel Corp Controlled solidification of case structures by controlled circulating flow of molten metal in the solidifying ingot
US3842895A (en) * 1972-01-10 1974-10-22 Massachusetts Inst Technology Metal alloy casting process to reduce microsegregation and macrosegregation in casting
FR2187465A1 (en) * 1972-06-08 1974-01-18 Siderurgie Fse Inst Rech Continuously casting metal melts - with reduced amount of inclusions, has molten metal introduced below melt surface
US4200137A (en) * 1975-04-22 1980-04-29 Republic Steel Corporation Process and apparatus for the continuous casting of metal using electromagnetic stirring
SE410153B (en) * 1976-05-21 1979-10-01 Asea Ab STRAND MOLDING FACILITY
FR2358222A1 (en) * 1976-07-13 1978-02-10 Siderurgie Fse Inst Rech NEW PROCESS AND DEVICE FOR THE ELECTROMAGNETIC BREWING OF CONTINUOUS FLOWING METAL PRODUCTS
FR2391015A1 (en) * 1977-05-18 1978-12-15 Siderurgie Fse Inst Rech IMPROVEMENT OF THE CENTRIFUGAL CONTINUOUS CASTING PROCESS OF METAL PRODUCTS AND IMPLEMENTATION DEVICE
JPS5419377A (en) * 1977-07-14 1979-02-14 Sharp Corp Production of semiconductor device
US4158380A (en) * 1978-02-27 1979-06-19 Sumitomo Metal Industries Limited Continuously casting machine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3134220B1 (en) 2014-04-25 2019-09-04 ThyssenKrupp Steel Europe AG Method and device for thin-slab strand casting

Also Published As

Publication number Publication date
CA1178779A (en) 1984-12-04
DE3161171D1 (en) 1983-11-17
JPH0220349B2 (en) 1990-05-09
SE436251B (en) 1984-11-26
SE8003695L (en) 1981-11-20
EP0040383A1 (en) 1981-11-25
BR8103058A (en) 1982-02-09
JPS5717356A (en) 1982-01-29
US4495984A (en) 1985-01-29

Similar Documents

Publication Publication Date Title
EP0040383B1 (en) Method and apparatus for stirring the molten metal in a continuous-casting strand
DE69724498T2 (en) Method for casting steel strips
DE2731238A1 (en) METHOD AND DEVICE FOR CONTINUOUS PASTING, IN PARTICULAR STEEL, UNDER THE EFFECT OF A MAGNETIC WALKING FIELD
DE69010404T3 (en) Continuous casting method and apparatus.
DE69710808T2 (en) Continuous casting method and apparatus using multiple electromagnetic stirrers
DE69219317T2 (en) METHOD AND DEVICE FOR POURING INTO A MOLD
DE60003945T2 (en) METHOD FOR VERTICAL CONTINUOUS CASTING OF METALS USING ELECTROMAGNETIC FIELDS, AND SYSTEM FOR CARRYING OUT IT
DE2528931C2 (en) Method for stirring the molten metal in a continuous casting mold
DE2401145B2 (en) Method for electromagnetic stirring of the sump during continuous casting
WO2007073863A1 (en) Method and device for the continuous casting of preliminary steel sections, in particular preliminary double-t sections
DE2819160C2 (en)
EP0043987A1 (en) Apparatus for the continuous casting of metal in a closed gating system
DE3730300A1 (en) Method and apparatus for the electromagnetic stirring of metal melts in a continuous casting mould
DE1583601A1 (en) Method and apparatus for cooling a molten metal strand
DE69019954T2 (en) Process for the continuous casting of steel.
DE69614274T2 (en) METHOD AND DEVICE FOR CASTING METAL
EP0009803B1 (en) Method for continuously casting steel
DE69217515T2 (en) Continuous casting of steel
DE1803473A1 (en) Continuous metal casting installation
DE69403950T2 (en) MAGNETIC STIRRING BY AC POWER FOR CONTINUOUS METAL POURING
DE3873698T2 (en) METHOD AND DEVICE FOR TREATING THE UNSTOOLED AREAS OF A CASTING STRAND.
DE69517599T2 (en) METHOD FOR POURING INTO A MOLD
DD145069A5 (en) METHOD FOR CONTINUOUS GASING OF METAL
DE2944159A1 (en) METHOD FOR PRODUCING A DEOXIDATED STEEL SLAM BY CONTINUOUSLY POURING
DE2318639A1 (en) METHOD OF PASTING STEEL INTO A CONTINUOUS CASTING CLOTH AND A PIPE TO IT

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): DE FR GB IT

17P Request for examination filed

Effective date: 19820324

ITF It: translation for a ep patent filed
GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): DE FR GB IT

REF Corresponds to:

Ref document number: 3161171

Country of ref document: DE

Date of ref document: 19831117

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19930702

Year of fee payment: 4

EPTA Lu: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20000508

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20000510

Year of fee payment: 20

Ref country code: FR

Payment date: 20000510

Year of fee payment: 20

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20010510

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Effective date: 20010510