EP0039702A1 - Electronic scanning device in the polarisation plane. - Google Patents

Electronic scanning device in the polarisation plane.

Info

Publication number
EP0039702A1
EP0039702A1 EP80902117A EP80902117A EP0039702A1 EP 0039702 A1 EP0039702 A1 EP 0039702A1 EP 80902117 A EP80902117 A EP 80902117A EP 80902117 A EP80902117 A EP 80902117A EP 0039702 A1 EP0039702 A1 EP 0039702A1
Authority
EP
European Patent Office
Prior art keywords
panels
electric field
diodes
wires
electromagnetic wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP80902117A
Other languages
German (de)
French (fr)
Other versions
EP0039702B1 (en
Inventor
Claude David Chekroun
Yves Claude Michel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
D'ETUDES DU RADANT Ste
RADANT ETUDES
Original Assignee
D'ETUDES DU RADANT Ste
RADANT ETUDES
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by D'ETUDES DU RADANT Ste, RADANT ETUDES filed Critical D'ETUDES DU RADANT Ste
Priority to AT80902117T priority Critical patent/ATE6108T1/en
Publication of EP0039702A1 publication Critical patent/EP0039702A1/en
Application granted granted Critical
Publication of EP0039702B1 publication Critical patent/EP0039702B1/en
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/30Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array
    • H01Q3/34Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means
    • H01Q3/36Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means with variable phase-shifters
    • H01Q3/38Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means with variable phase-shifters the phase-shifters being digital
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/44Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the electric or magnetic characteristics of reflecting, refracting, or diffracting devices associated with the radiating element
    • H01Q3/46Active lenses or reflecting arrays

Definitions

  • the present invention relates to an electronic scanning device for focusing and / or deflecting in a plane, a beam emitted by a microwave source. It is known, as described in French Patent 2,063,967, to change the phase shift of a beam emitted by a radiating microwave source by interposing on the wave path a dielectric panel in which are embedded arrays of conductive wires that the 'we give back. at will continuous or interrupted by means of switches and in particular of drodes placed on these wires, the networks being located in planes parallel to the electric field of the incident wave at each point of the panel, It is also known to add several panels one behind the other on the path of the microwave incidence wave.
  • the electronic scanning device according to the invention allows scanning in a plane parallel to the electric field of the incident wave. It consists of a new application of the dielectric panels described in French patent 2,063,967, To constitute the electronic scanning device conforming to the object of the invention, as shown in FIG. 1, several dielectric panels (1 a, 1 b, 1 c, etc.) are associated in which planar networks of conductive wires (2) which can be made continuous or discontinuous at will by means of diodes (3) placed on these wires, fac .
  • the wires of all the networks are parallel to the electric field vector (4) of the incident wave, emitted by a radiating-microwave source (6), that in each of the panels all the diodes are controlled simultaneously 'and identically by a sufficient voltage to make them at will conductive or not, applied to the terminals of the control wires (5) perpendicular to the electric field, therefore without effect on it, that all the panels [1 a, 1 b, 1 c ...) are superimposed in the same plane to constitute a set through which the incident wave propagates.
  • the incident wave can be broken down into as many bands parallel ⁇ it has superimposed panels,
  • the phase shift introduced is uniform on each strip, it can vary from one strip to another.
  • This phase shift according to the bands and this by acting on the control voltage of the diodes in each panel; one can either focus or deflect the incident wave in the plane parallel to the wires carrying diodes.
  • the choice of the size of the panels in the direction of the direction of the diode carrying wires results from the condition of suppression of the lobes of networks of the antenna diagram constituted by the association of the above panels illuminated by an incident plane wave.
  • phase shifting elements in order to spot the beam of a microwave electromagnetic wave in a direction ⁇ it is known that to avoid the appearance of lobes of networks, it is advisable to respect a certain relationship between the pitch of the elements phase shifters, wavelength, sine of the angle l'angle of depointing and of number N of juxtaposed elements, which is written:
  • the lateral dimension in the direction perpendicular to the diode-carrying wires depends on the width of the main lobe desired and is sufficient to intercept the diameter of the microwave beam emitted by the source placed in front of the panel.
  • the pitch of the diodes, the pitch of the wires and the thickness of the dielectric material are chosen as a function of the desired phase shift, of the characteristics (in particular capacitance) of the diodes, of the dielectric constant of the material and of the wavelength of the incident electromagnetic energy.
  • the optimal value of the step of the phase-shifting elements sought in all the antennas a. electronic scanning is close to the half-wavelength of the radiated microwave energy. It is known that for a pitch of phase-shifting elements less than or equal to the half-wavelength of the radiated microwave energy, there does not appear any grating lobe in the radiation diagram of the antenna thus formed, whatever or the desired scanning angle. Unlike electronic scanning antennas using phase shifters guide, the process following the invention easily allows this condition to be met. say that one can choose the height h of a panel measured 'in the direction of the wires carrying diodes less than or equal to half --- wavelength of the microwave energy radiated by the microwave source (see figure 1),
  • the length of the wires carrying diodes incorporated in the dielectric material is equal to the height h of the panel therefore less than or equal to the half-wavelength of the radiated microwave energy, if it is desired that it does not appear no network lobes in the radiation pattern.
  • the number of diodes carried by each diode carrying wire of a panel will be small, it may vary, depending on the capacity of the selected diodes and the desired phase shift, from 1 to 10 diodes.
  • the difference in potential to be applied to the wire carrying diodes connected in the same direction on this wire, so that each diode is blocked and makes the wire electrically cut into sections, is equal to the product, by the number of diodes, of the voltage which 'You must apply the opposite to a single diode, i.e. around 20 volts, so that it is blocked. If, for example, four diodes are placed on the wire, the potential difference aiix terminals of the diode-carrying wire necessary to make it cut into sections will be 80 volts. A voltage of 5 volts applied according to the polarity opposite to the wire terminals will make this wire continuous.
  • the inyerse voltage of the order of 80 volts is low enough not to require any special insulation in the panel or at. the outside of the panel; the single power supply device and the switch, responsible for supplying these voltages, applying them and then cutting them in very short times (10 microseconds) to a panel will therefore be extremely easy to achieve given the low voltage required with regard to voltages required in other scanning devices.
  • the control voltage of the diodes of a panel is advantageously applied by means of two control wires connecting one, all the upper ends of the wires carrying diodes mounted in the same direction, the other all the ends.
  • control wires one connecting all the midpoints of the wires diode torers mounted in this case in two equal groups of opposite directions, the other two connecting at an outside point to the panel the upper and lower ends of all the diode carrying wires of the panel; these control wires, perpendicular to the wires carrying diodes and therefore to the electric field vector of the radiated microwave wave have no effect thereon.
  • the configuration, comprising three control wires, greatly simplifies the choice of diodes.
  • This active lens consists of 124 panels forming four layers of 31 panels superimposed, placed one behind the other on the path of the incident microwave wave emitted by the source at the frequency of 3100 Megahertz.
  • Each of the 93 panels (7), all identical to each other, of the first three layers of superposed panels, can give, by the modification of the state of its diodes, a differential phase shift of 90 degrees to the incident microwave wave.
  • Each of the 31 panels (8) all identical to each other of the fourth layer of panels can give a differential phase shift of 45 degrees.
  • Each of the 31 groups formed by 3 panels (7) and 1 panel (8) joined one behind the other and intercepting the same band of the incident microwave wave (E) can give it a differential phase shift varying from 0 to 360 degrees in 45 degree steps.
  • the sheets (11) and (13) have a thickness of 0.5 millimeter and a dielectric constant of 5, the sheet (12) a thickness of 3.5 millimeters and a dielectric constant of 4.1. These three sheets are placed one behind the other on the path of the incident microwave with intervals equal to 7 millimeters.
  • 32 metal wires (14) with a diameter of 0.5 millimeter and a length equal to 30 mm are arranged on the external face of the sheets (11) and (13).
  • the panel height of 45.3 millimeters; these wires (14) are parallel to the electric field vector of the incident microwave wave and each carry four PIN type switching diodes (15) welded in steps of 11.33 millimeters.
  • each wire (14) is welded to each wire (14) so that in the direction of the direct current they are oriented towards the point located in the middle of the wire (14); on each wire (14) there are therefore two diodes in series in one direction and two diodes in series in the other direction.
  • the upper ends of the wires (14) are connected to a metal wire (16) located at the top of each of the sheets (11) and (13), perpendicular to the wires (14) and are thus connected to the terminal A of a voltage and / or current supply located outside the panel and specific to this panel.
  • the lower ends of the wires (14) are connected by metallic wires to the same terminal A of this voltage and / or current supply.
  • All the points located in the middle of the wires (14) of the sheets (11) and (13) are connected and connected together, by a metal wire (18) of 0.5 millimeter in diameter, perpendicular to the wires (14), to the 'other terminal 3 of the same voltage and / or current supply.
  • the differential phase shift caused by this panel, on the incident microwave, between the two polarity states of terminals A and B of the power supply device controlling the 256 diodes of the panel simultaneously and identically, is 20 degrees.
  • FIG. 5 shows one of the 31 panels of the fourth layer of the active lens; this panel, 1 meter long and 45.3 millimeters high, comprises four sheets of dielectric material (21) (22) (23) (24).
  • the sheets (21) and (24) have a thickness of 3 millimeters and a dielectric constant of 5, the sheets (22) and (23) have a thickness of 0.5 millimeters and a dielectric constant of 4.1.
  • These four sheets of dielectric material are placed one behind the other on the path of the incident microwave with the following intervals 5 millimeters between the sheets (21) and (22), 11 millimeters between (22) and (23) and 5 millimeters between (23) and.
  • the upper and lower ends of all the conductive wires (25) carrying diodes of the panel are connected by two perpendicular conductive wires (27) to terminal C of a voltage supply external to the panel and specific to this panel. All the points located in the middle of all the wires (25) are connected by two perpendicular conductive wires (28) 0.5 mm in diameter to the other terminal D of the same voltage supply. On the same faces of the sheets (22) and (23), in the middle of the intervals between the wires (25) are placed sections of metal wires (29) of 0.5 millimeter in diameter and 20.5 millimeters in length. . Differential phase shift. caused by the panel, following the polarity reversal at terminals C and D, on the incident wave is 45 degrees.
  • 124 panels in a rigid block forming an active lens is made by means of 32 metal plates (10) of 1000 millimeters in length by 110.5 millimeters in width and 2.6 millimeters in thickness,
  • FIG. 6 shows the values of the phase shift caused by the introduction of a group of adjoining panels formed by 3 panels (7) and 1 panel (8) on the path of an incident microwave wave of 3100 megahertz, according to all the possible combinations of the states of the diodes of each of the panels.
  • this phase shift takes the 8 multiple values of 45 degrees between 0 or 360 degrees and 315 degrees.

Abstract

Dispositif de balayage electronique d'un faisceau emis par une source rayonnante hyperfrequence (6) dans le plan parallele au champ electrique (4) du rayonnement emis. Dispositif constitue de panneaux dephaseurs unitaires (1a, 1b, 1c) associes et commandes de facon a provoquer au rayonnement hyperfrequence intercepte un gradient de phase dans la direction du vecteur champ electrique de ce rayonnement. Dispositif de balayage electronique dans lequel des panneaux dephaseurs unitaires sont accoles, superposes et commandes individuellement de facon a obtenir un dephasage de 0 a 360 degres dans le plan parallele au vecteur champ electrique de l'onde hyperfrequence incidente.Device for electronic scanning of a beam emitted by a microwave radiant source (6) in the plane parallel to the electric field (4) of the emitted radiation. Device consisting of unitary phase shifter panels (1a, 1b, 1c) associated and controlled so as to cause the intercepted microwave radiation to have a phase gradient in the direction of the electric field vector of this radiation. Electronic scanning device in which unitary phase shifter panels are joined together, superimposed and individually controlled so as to obtain a phase shift of 0 to 360 degrees in the plane parallel to the electric field vector of the incident microwave wave.

Description

DISPOSlTIF DE BALAYAGE ELECTRONIQUE DANS LE PLAN DE POLARISATION ELECTRONIC SCANNING DEVICE IN THE POLARIZATION PLAN
La présente invention a pour objet un dispositif de balayage électronique permettant de focaliser et/ou défléchir dans un plan, un faisceau émis par une source hyperfréquence. II est connu, comme décrit au Brevet français 2.063.967, de changer le déphasage d'un faisceau émis par une source rayonnante hyperfréquence en interposant sur le trajet de l'onde un panneau diélectrique dans lequel sont noyés des réseaux de fils conducteurs que l'on rend. à volonté continus ou interrompus par l'intermédiaire d'Interrupteurs et notamment de drodes placées sur ces fils, les réseaux étant situés dans des- pians parallèles au champ électrique de l'onde incidente en chaque point du panneau, Il est également connu d'accoler plusieurs panneaux les uns derrière les autres sur le trajet de l'onde incidence hyperfréquence. Il est connu enfin de focaliser et défléchir l'onde hyperfréquence incidente dans un plan en utilisant de tels panneaux et en agissant sur les ten sions de commande des diodes on a une lentille active dans le plan perpendiculaire aux réseaux de fils porteurs de diodes noyés dans les panneaux et on obtient alors un halayage électronique dans un plan perpendiculaire au champ électrique de l'onde incidente.The present invention relates to an electronic scanning device for focusing and / or deflecting in a plane, a beam emitted by a microwave source. It is known, as described in French Patent 2,063,967, to change the phase shift of a beam emitted by a radiating microwave source by interposing on the wave path a dielectric panel in which are embedded arrays of conductive wires that the 'we give back. at will continuous or interrupted by means of switches and in particular of drodes placed on these wires, the networks being located in planes parallel to the electric field of the incident wave at each point of the panel, It is also known to add several panels one behind the other on the path of the microwave incidence wave. Finally, it is known to focus and deflect the incident microwave wave in a plane by using such panels and by acting on the diode control voltages there is an active lens in the plane perpendicular to the networks of wires carrying diodes embedded in the panels and an electronic beam is obtained in a plane perpendicular to the electric field of the incident wave.
La limitation des possibilités de balayage au seul plan perpendiculaire au champ électrique de l'onde présente des inconvénients . Le dispositif de balayage électronique selon l'invention permer au contraire de balayer dans un plan parallèle au champ électrique de l'onde incidente. Il consiste en une nouvelle application des panneaux diélectriques décrits au brevet français 2,063.967, Pour constituer le dispositif de balayage électronique con forme à l'objet de l'inyention, on associe comme montré dans la figure 1 plusieurs panneaux diélectriques (1 a, 1 b, 1 c ...) dans lesquels sont noyés des réseaux plans de fils con ducteurs (2) qui peuvent être rendus continus ou disconti nus à volonté par l'intermédiaire de diodes (3) placées sur ces fils, de faç.on que les fils de tous les réseaux soient parallèles au vecteur champ électrique (4) de l'onde incidente , émise par une source rayonnante-hyperfréquence (6), que dans chacun des panneaux toutes les diodes soient commandées simultanément' et identiquement par une tension suffisante pour les rendre à volonté conductrices ou non, appliquées aux bornes des fils de commande (5) perpendiculaires au champ électrique donc sans effet sur celui-ci, que tous les panneaux [1 a, 1 b, 1 c ...) soient superposés dans un même plan pour constituer un ensemble à travers lequel se propage l'onde incidente. Il est bien entendu possible d'accoler plusieurs panneaux (1 a1, 1 a2, 1 a3... ; 1 b1...) les uns derrière les autres sur le trajet de l'onde incidente hyperfréquence : dans ce cas les panneaux superposés accolés (1 a2, 1 b2, 1 C2) se trouvent dans le même plan comme le montre la figure 2 . Tous les panneaux associés ont même dimension dans le sens de la direction des fils porteurs de diodes, Tous les panneaux superposés ont une structure identique (a1, b1, c1). Les panneaux accolés peuvent avoir des structures différentes (a1, a2, a3).Limiting the possibilities of scanning to the single plane perpendicular to the electric field of the wave has drawbacks. On the contrary, the electronic scanning device according to the invention allows scanning in a plane parallel to the electric field of the incident wave. It consists of a new application of the dielectric panels described in French patent 2,063,967, To constitute the electronic scanning device conforming to the object of the invention, as shown in FIG. 1, several dielectric panels (1 a, 1 b, 1 c, etc.) are associated in which planar networks of conductive wires (2) which can be made continuous or discontinuous at will by means of diodes (3) placed on these wires, fac . it is that the wires of all the networks are parallel to the electric field vector (4) of the incident wave, emitted by a radiating-microwave source (6), that in each of the panels all the diodes are controlled simultaneously 'and identically by a sufficient voltage to make them at will conductive or not, applied to the terminals of the control wires (5) perpendicular to the electric field, therefore without effect on it, that all the panels [1 a, 1 b, 1 c ...) are superimposed in the same plane to constitute a set through which the incident wave propagates. It is of course possible to attach several panels (1 to 1 , 1 to 2 , 1 to 3 ...; 1 b 1 ...) one behind the other on the path of the microwave incident wave: in this case the overlapped panels joined (1 a 2 , 1 b 2 , 1 C 2 ) are in the same plane as shown in Figure 2. All the associated panels have the same dimension in the direction of the direction of the diode-carrying wires. All the superimposed panels have an identical structure (a 1 , b 1 , c 1 ). The adjoining panels can have different structures (a 1 , a 2 , a 3 ).
Du fait que toutes les diodes d'un panneau sont commandées simultanément et identiquement, l'effet de ce panneau sur le déphasage de l'onde qui le traverse est uniforme. En accolant par groupe une succession de panneaux superposés sur le trajet de l'onde et en commandant toutes les diodes de chaque groupe par des tensions de même polarité on introduit sur cette onde incidente des déphasages uniformes et pouvant aller de 0 à 360° par incréments liés au nombes de panneaux accolés dans chaque groupe.Because all the diodes of a panel are controlled simultaneously and identically, the effect of this panel on the phase shift of the wave passing through it is uniform. By joining in groups a succession of superimposed panels on the wave path and by controlling all the diodes of each group by voltages of the same polarity, uniform phase shifts can be introduced on this incident wave which can range from 0 to 360 ° in increments linked to the number of panels attached to each group.
Si les diodes de différents panneaux superposés dans un même plan sont commandées par des tensions de polarités différentes on produit sur l'onde des effets différents et l'on crée ainsi un gradiant de phase, L'onde incidente peut être décomposée en autant de bandes parallèles qu'il γ a de panneaux superposés, Le déphasage introduit est uniforme sur chaque bande, il peut varier d'une bande à l'autre. En faisant varier ce déphasage selon les bandes et ce en agissant sur la tension de commande des diodes dans chaque panneau; on peut soit focaliser soit défléchir l'onde 'incidente dans le plan parallèle aux fils porteurs de diodes. Le choix de la dimension des panneaux dans le sens de la direction des fils porteurs de diodes résulte de la condition de suppression des lobes de réseaux du diagramme de l'antenne constituée par l'association des panneaux ci-dessus illuminés par une onde plane incidente dont le vecteur champ électrique est parallèle aux fils métalliques porteurs de diodes. Lorsque l'on juxtapose des éléments déphaseurs en vue de dépointer le faisceau d'une onde électromagnétique hyperfréquence dans une direction θ il est connu que pour éyiter l'apparition des lobes de réseaux, il convient de respecter une certaine relation entre le pas des éléments déphaseurs, la longueur d'onde, le sinus de l'angle θ de dépointage et de nombre N d'éléments juxtaposés, qui s'écrit : La dimension latérale dans le sens perpendiculaire aux fils porteurs de diodes dépend de la largeur du lobe principal désirée et est suffisante pour intercepter le diamètre du faisceau hyperfréquence émis par la source placée devant le panneau. Comme il est connu, pour chaque panneau on choisit le pas des diodes, le pas des fils et l'épaisseur du matériau diélectrique en fonction du déphasage désiré, des caractéristiques (en particulier capacité) des diodes, de la constante diélectrique du matériau et de la longueur d'onde de l'énergie électromagnétique incidente.If the diodes of different panels superimposed in the same plane are controlled by voltages of different polarities, different effects are produced on the wave and a phase gradient is created. The incident wave can be broken down into as many bands parallel γ it has superimposed panels, The phase shift introduced is uniform on each strip, it can vary from one strip to another. By varying this phase shift according to the bands and this by acting on the control voltage of the diodes in each panel; one can either focus or deflect the incident wave in the plane parallel to the wires carrying diodes. The choice of the size of the panels in the direction of the direction of the diode carrying wires results from the condition of suppression of the lobes of networks of the antenna diagram constituted by the association of the above panels illuminated by an incident plane wave. whose electric field vector is parallel to the metallic wires carrying diodes. When juxtaposing phase shifting elements in order to spot the beam of a microwave electromagnetic wave in a direction θ it is known that to avoid the appearance of lobes of networks, it is advisable to respect a certain relationship between the pitch of the elements phase shifters, wavelength, sine of the angle l'angle of depointing and of number N of juxtaposed elements, which is written: The lateral dimension in the direction perpendicular to the diode-carrying wires depends on the width of the main lobe desired and is sufficient to intercept the diameter of the microwave beam emitted by the source placed in front of the panel. As is known, for each panel, the pitch of the diodes, the pitch of the wires and the thickness of the dielectric material are chosen as a function of the desired phase shift, of the characteristics (in particular capacitance) of the diodes, of the dielectric constant of the material and of the wavelength of the incident electromagnetic energy.
La valeur optimale du pas des éléments déphaseurs recherchée dans toutes les antennes a. balayage électronique est voisine de la demi-longueur d'onde de l'énergie hyperfréquence rayonnée. Il est connu que pour un pas d'éléments déphaseurs inférieur ou égal à la demi-longueur d'onde de l'énergie hyperfréquence rayonnée il n'apparaît pas de lobe de réseau dans le diagramme de rayonnement de l'antenne ainsi constituée, quelque soit l'angle de balayage recherché. Contrairement aux antennes à balayage électronique utilisant des déphaseurs en guide, le procédé suiyant l'invention permet aisément de respecter cette condition c'est à. dire que l'on peut choisir la hauteur h d'un panneau mesurée 'dans le sens des fils porteurs de diodes inférieure ou égale à la demi---longueur d'onde de l'énergie hyperfréquence rayonnée par la source hyperfréquence ( voir figure 1),The optimal value of the step of the phase-shifting elements sought in all the antennas a. electronic scanning is close to the half-wavelength of the radiated microwave energy. It is known that for a pitch of phase-shifting elements less than or equal to the half-wavelength of the radiated microwave energy, there does not appear any grating lobe in the radiation diagram of the antenna thus formed, whatever or the desired scanning angle. Unlike electronic scanning antennas using phase shifters guide, the process following the invention easily allows this condition to be met. say that one can choose the height h of a panel measured 'in the direction of the wires carrying diodes less than or equal to half --- wavelength of the microwave energy radiated by the microwave source (see figure 1),
La longueur des fils porteurs de diodes incorporés dans le matériau diélectrique est égale à la hauteur h du panneau donc inférieure ou égale à la demi-longueur d'onde de l'énergie hyperfréquence rayonnée, si l'on désire qu'il n'apparaisse pas de lobesde réseau dans le diagramme de rayonnement. Le nombre de diodes portées par chaque fil porteur de diode d'un panneau sera faible, il pourra varier, suivant la capacité des diodes choisies et du déphasage souhaité, de 1 à 10 diodes.The length of the wires carrying diodes incorporated in the dielectric material is equal to the height h of the panel therefore less than or equal to the half-wavelength of the radiated microwave energy, if it is desired that it does not appear no network lobes in the radiation pattern. The number of diodes carried by each diode carrying wire of a panel will be small, it may vary, depending on the capacity of the selected diodes and the desired phase shift, from 1 to 10 diodes.
La différence de potentiel à appliquer au fil porteur de diodes connectées dans le même sens sur ce fil, pour que chaque diode soît bloquée et rende le fil électriquement coupé en tronçpns, est égale au produit, par le nombre de diodes, de la tension qu'il faut appliquer en inverse à une seule diode, soit environ 20 volts, pour qu'elle soit bloquée. Si l'on met par exemple quatre diodes sur le fil, la différence de potentiel aiix bornes du fil porteur de diodes nécessaire pour rendre celui-ci coupé en tronçons sera de 80 volts. Une tension de 5 volts appliquée suivant la polarité opposée aux bornes du fil rendra ce fil continu. La tension inyerse de l'ordre de 80 volts est suffisamment faible pour ne pas nécessiter d'isolation spéciale dans le panneau ni à. l'extérieur du panneau ; le dispositif unique d'alimentation et le commutateur, chargé de fournir ces tensions, de les appliquer puis de les couper en des temps très courts (10 microsecondes) à un panneau sera donc extrêmement facile à réaliser étant donné la faible tension nécessaire au regard des tensions nécessaires dans les autres dispositifs de balayage. La tension de commande des diodes d'un panneau est avantageusement appliquée par l'intermédiaire, soit de deux fils de commande reliant l'un, toutes les extrémités supérieures des fils porteurs de diodes montées dans le même sens, l'autre toutes les extrémités inférieures, soit de trois fils de com mande , l'un reliant tous les points milieux des fils por- teurs de diodes montées dans ce cas en deux groupes égaux de sens opposé, les deux autres reliant en un point extérieur au panneau les extrémités supérieures et inférieures de tous les fils porteurs de diodes du panneau ; ces fils de commande, perpendiculaires aux fils porteurs de diodes et donc au vecteur champ électrique de l'onde hyperfréquence rayonnée sont sans effet sur celle-ci, La configuration, comportant trois fils de commande, simplifie beaucoup le choix des diodes. Par la diminution du nombre de diodes en série, montées dans le même sens, on diminue encore la valeur de la différence du potentiel nécessaire à rendre le fil porteur de diodes électriquement coupé en tronçons, on facilite l'ëgalîté de répartition des tensions de blocage des diodes le long de ce fil porteur de diodes et ce en un temps plus court, on peut supprimer la résistance d'équilibrage de très forte valeur, qu'il fallait ajouter en parallèle à chaque diode dans le cas d'utilisation avec de très fortes puissances hyperfréquences rayonnées. On donne ci-après, a. titre d'exemple non limitatif la description de la réalisation d'une lentille active électronique permettant la mise en oeuvre du procédé suivant l'invention en se référant à la figure 3. Cette lentille active est constituée de 124 panneaux formant quatre couches de 31 panneaux superposés, accolées les unes derrière les autres sur le trajet de l'onde hyperfréquence incidente émise par la source à la fréquence de 3100 Mégahertz. Chacun des 93 panneaux (7), tous identiques entre eux, des trois premières couches de panneaux superposés, peut donner par la modification d'état de ses diodes, un déphasage différentiel de 90 degrés à l'onde hyperfréquence incidente. Chacun des 31 panneaux (8) tous identiques entre eux de la quatrième couche de panneaux peut donner un déphasage différentiel de 45 degrés. Chacun des 31 groupes formés des 3 panneaux (7) et 1 panneau (8) accolés les uns derrière les autres et interceptant la même bande de l'onde hyperfréquence incidente (E) peut donner à celle-ci un déphasage différentiel variant de 0 à 360 degrés par pas de 45 degrés. Ces 31 groupes de 4 panneaux sont assemblés par fixation mécanique sur 32 plaques métalliques planes (10) peroendîculaireε aux réseaux de fils porteurs de diodes, donc au yecteur champ électrique E de l'onde hyperfréquence incidente, L'épaisseur de ces lames métalliques perpendiculaires au champ élec trique (E)de l'onde hyperfréquence est inférieure au vingtîè me de cette longueur d'onde et est' donc sans effet mesurable sur celle-ci. Sur la figure 4 on a représenté un des 93 panneaux de trois premières couches du dispositif de balaya ge électronique ou lentille active, Ce panneau de 1 mètre de long et de 45,3 millimètres de haut comprend trois feuil les de matériau diélectrique (il) (12) et (13). Les feuilles (11) et (13) ont une épaisseur de 0,5 millimètre et une cons tante diélectrique de 5 , la feuille (12) une épaisseur de 3,5 millimètres et une constante diélectrique de 4,1. Ces trois feuilles sont placées l'une derrière l'autre sur le trajet de l'onde hyperfréquence incidente avec des interval les égaux de 7 millimètres. Sur la face externe des feuilles (11) et (13 ) sont disposés au pas de 30 millimètres 32 fils métalliques (14) de 0,5 millimètre de diamètre et de longueur égale à. la hauteur du panneau de 45,3 millimètres ; ces fils (14) sont parallèles au vecteur champ électrique de l'onde hyperfréquence incidente et sont porteurs chacun de quatre diodes (15) de commutation de type PIN soudées au pas de 11,33 millimètres, Ces quatre diodes (15) sont soudées sur chaque fil (14) de manière que dans le sens du courant di rect elles soient orientées vers le point situé au milieu du fil (14) ; sur chaque fil (14) il y a donc deux diodes en séries dans un sens et deux diodes en série dans l'autre sens. Les extrémités supérieures des fils (14) sont connectées à un fil métallique (16) situé en haut de chacune des feuilles (11) et (13), perpendiculaire aux fils (14) et se trouvent reliées ainsi à la borne A d'une alimentation en tension et/ou courant située à l'extérieur du panneau et propre à ce panneau. De même les extrémités inférieures des fils (14) sont connectées par des fils métalliques à la même borne A de cette ali mentation en tension et/ou courant.The difference in potential to be applied to the wire carrying diodes connected in the same direction on this wire, so that each diode is blocked and makes the wire electrically cut into sections, is equal to the product, by the number of diodes, of the voltage which 'You must apply the opposite to a single diode, i.e. around 20 volts, so that it is blocked. If, for example, four diodes are placed on the wire, the potential difference aiix terminals of the diode-carrying wire necessary to make it cut into sections will be 80 volts. A voltage of 5 volts applied according to the polarity opposite to the wire terminals will make this wire continuous. The inyerse voltage of the order of 80 volts is low enough not to require any special insulation in the panel or at. the outside of the panel; the single power supply device and the switch, responsible for supplying these voltages, applying them and then cutting them in very short times (10 microseconds) to a panel will therefore be extremely easy to achieve given the low voltage required with regard to voltages required in other scanning devices. The control voltage of the diodes of a panel is advantageously applied by means of two control wires connecting one, all the upper ends of the wires carrying diodes mounted in the same direction, the other all the ends. lower, or three control wires, one connecting all the midpoints of the wires diode torers mounted in this case in two equal groups of opposite directions, the other two connecting at an outside point to the panel the upper and lower ends of all the diode carrying wires of the panel; these control wires, perpendicular to the wires carrying diodes and therefore to the electric field vector of the radiated microwave wave have no effect thereon. The configuration, comprising three control wires, greatly simplifies the choice of diodes. By reducing the number of diodes in series, mounted in the same direction, the value of the potential difference necessary to make the diode-carrying wire electrically cut into sections is further reduced, the equalization of the blocking voltages is facilitated diodes along this diode carrying wire and in a shorter time, we can remove the balancing resistance of very high value, which had to be added in parallel to each diode in the case of use with very strong radiated microwave powers. We give below, a. by way of nonlimiting example the description of the production of an electronic active lens allowing the implementation of the method according to the invention with reference to FIG. 3. This active lens consists of 124 panels forming four layers of 31 panels superimposed, placed one behind the other on the path of the incident microwave wave emitted by the source at the frequency of 3100 Megahertz. Each of the 93 panels (7), all identical to each other, of the first three layers of superposed panels, can give, by the modification of the state of its diodes, a differential phase shift of 90 degrees to the incident microwave wave. Each of the 31 panels (8) all identical to each other of the fourth layer of panels can give a differential phase shift of 45 degrees. Each of the 31 groups formed by 3 panels (7) and 1 panel (8) joined one behind the other and intercepting the same band of the incident microwave wave (E) can give it a differential phase shift varying from 0 to 360 degrees in 45 degree steps. These 31 groups of 4 panels are assembled by mechanical fixing on 32 flat metal plates (10) peroendîulaireε aux networks of wires carrying diodes, therefore to the electric field yector E of the incident microwave wave, The thickness of these metal blades perpendicular to the electric field (E) of the microwave wave is less than the twentieth of this length of wave and is' therefore without measurable effect on it. In FIG. 4, one of the 93 panels of the first three layers of the electronic scanning device or active lens is represented. This panel, 1 meter long and 45.3 millimeters high, comprises three sheets of dielectric material (it). (12) and (13). The sheets (11) and (13) have a thickness of 0.5 millimeter and a dielectric constant of 5, the sheet (12) a thickness of 3.5 millimeters and a dielectric constant of 4.1. These three sheets are placed one behind the other on the path of the incident microwave with intervals equal to 7 millimeters. On the external face of the sheets (11) and (13), 32 metal wires (14) with a diameter of 0.5 millimeter and a length equal to 30 mm are arranged. the panel height of 45.3 millimeters; these wires (14) are parallel to the electric field vector of the incident microwave wave and each carry four PIN type switching diodes (15) welded in steps of 11.33 millimeters. These four diodes (15) are welded to each wire (14) so that in the direction of the direct current they are oriented towards the point located in the middle of the wire (14); on each wire (14) there are therefore two diodes in series in one direction and two diodes in series in the other direction. The upper ends of the wires (14) are connected to a metal wire (16) located at the top of each of the sheets (11) and (13), perpendicular to the wires (14) and are thus connected to the terminal A of a voltage and / or current supply located outside the panel and specific to this panel. Likewise, the lower ends of the wires (14) are connected by metallic wires to the same terminal A of this voltage and / or current supply.
Tous les points situés au milieu des fils (14) des feuilles (11) et (13) sont connectés et reliés ensemble, par un fil métallique (18) de 0,5 millimètre de diamètre,perpendiculaire aux fils (14), à l'autre borne 3 de la même alimentation en tension et/ou courant. Le déphasage différentiel provoqué par ce panneau, sur l'onde hyperfréquence incidente, entre les deux états de polarité des bornes A et B du dispositif d'alimentation commandant simultanément et identiquement les 256 diodes du pan neau, est de 20 degrés.All the points located in the middle of the wires (14) of the sheets (11) and (13) are connected and connected together, by a metal wire (18) of 0.5 millimeter in diameter, perpendicular to the wires (14), to the 'other terminal 3 of the same voltage and / or current supply. The differential phase shift caused by this panel, on the incident microwave, between the two polarity states of terminals A and B of the power supply device controlling the 256 diodes of the panel simultaneously and identically, is 20 degrees.
Sur la figure 5 on a représenté un des 31 panneaux de la quatrième couche de la lentille active; ce panneau de 1 mètre de longueur et de 45,3 millimètres de hauteur comprend quatre feuilles de matériau diélectrique (21) (22) (23) (24). Les feuilles (21) et (24) ont une épaisseur de 3 millimètres et une constante diélectrique de 5, les feuilles (22) et (23) une épaisseur de 0,5 millimètre et une constante diélectrique de 4,1. Ces quatre feuilles de matériau diélectrique sont placées l'une derrière l'autre sur le trajet de l'onde hyper- fréquence incidente avec les intervalles suivants 5 millimètres entre les feuilles (21) et (22), 11 millimètres entre (22) et (23) et 5 millimètres entre (23) et. (24), Sur la face externe des feuilles (22) et (23) sont disposés, au pas de 40 millimètres, 24 fils métalliques (25) de 0,5 millimètre de diamètre et de longueur égale à la hauteur du panneau de 45,3 millimètres , Ces fils (25) sont parallèles au vecteur champ électrique de l'onde hyperfréquence incidente et sont porteurs chacun de quatre diodes (26) de commutation de type PIN soudées au pas de 11,33 millimètres. Ces quatre diodes sont soudées sur chaque fil (25) de manière que dans le sens du courant direct elles soient orientées vers le point situé au milieu du fil (25). Sur chaque fil (25) il y a donc deux diodes en série dans un sens et deux diodes en série dans l'autre sens. Les extrémités supérieures et inférieures de tous les fils (25) conducteurs porteurs de diodes du panneau sont reliées par deux fils conducteurs perpendiculaires (27) a la borne C d'une alimentation en tension extérieure au panneau et propre à ce panneau. Tous les points situés au milieu de tous les fils (25) sont reliés par deux fils conducteurs perpendiculaires (28) de 0,5 millimètre de diamètre à l'autre borne D de la même alimentation en tension. Sur les mêmes faces des feuilles (22) et (23) , au milieu des intervalles compris entre les fils (25) sont placés des tronçons de fils métalliques (29) de 0,5 millimètre de diamètre et de 20,5 millimètres de longueur. Le déphasage différentiel. provoqué par le panneau, suite à l'inversion de polarité aux bornes C et D, sur l'onde incidente est de 45 degrés.FIG. 5 shows one of the 31 panels of the fourth layer of the active lens; this panel, 1 meter long and 45.3 millimeters high, comprises four sheets of dielectric material (21) (22) (23) (24). The sheets (21) and (24) have a thickness of 3 millimeters and a dielectric constant of 5, the sheets (22) and (23) have a thickness of 0.5 millimeters and a dielectric constant of 4.1. These four sheets of dielectric material are placed one behind the other on the path of the incident microwave with the following intervals 5 millimeters between the sheets (21) and (22), 11 millimeters between (22) and (23) and 5 millimeters between (23) and. (24), On the outer face of the sheets (22) and (23) are arranged, in steps of 40 millimeters, 24 metal wires (25) of 0.5 millimeter in diameter and of length equal to the height of the panel of 45 , 3 millimeters, These wires (25) are parallel to the electric field vector of the incident microwave wave and each carry four PIN type switching diodes (26) welded in steps of 11.33 millimeters. These four diodes are soldered on each wire (25) so that in the direction of the direct current they are oriented towards the point located in the middle of the wire (25). On each wire (25) there are therefore two diodes in series in one direction and two diodes in series in the other direction. The upper and lower ends of all the conductive wires (25) carrying diodes of the panel are connected by two perpendicular conductive wires (27) to terminal C of a voltage supply external to the panel and specific to this panel. All the points located in the middle of all the wires (25) are connected by two perpendicular conductive wires (28) 0.5 mm in diameter to the other terminal D of the same voltage supply. On the same faces of the sheets (22) and (23), in the middle of the intervals between the wires (25) are placed sections of metal wires (29) of 0.5 millimeter in diameter and 20.5 millimeters in length. . Differential phase shift. caused by the panel, following the polarity reversal at terminals C and D, on the incident wave is 45 degrees.
En se reportant à la figure 3 on .voit que l'assemblage desReferring to Figure 3 we see that the assembly of
124 panneaux en un bloc rigide formant une lentille active se fait par l'intermédiaire de 32 plaques (10) métalliques de 1000 millimètres de longueur par 110, 5 millimètres de largeur et de 2,6 millimètres d'épaisseur,124 panels in a rigid block forming an active lens is made by means of 32 metal plates (10) of 1000 millimeters in length by 110.5 millimeters in width and 2.6 millimeters in thickness,
Sur la figure 6 on a représenté les valeurs du déphasage provoqué par l'introduction d'un groupe de panneaux accolés formés de 3 panneaux (7) et 1 panneau (8) sur le trajet d'une onde hyperfréquence incidente de 3100 Mégahertz, suivant toutes les combinaisons possibles des états des diodes de chacun des panneaux. On constate que ce déphasage prend les 8 valeurs multiples de 45 degrés comprises entre 0 ou 36O degrés et 315 degrés. Sur le figure 7 on a tracé le diagramme de rayonnement obtenu en illuminant la lentille active telle que décrite par les figures 3, 4 et 5 par une onde hyperfréquence à 3100 Mégahertz dont le vecteur champ électrique est parallèle aux fils porteurs de diodes de la lentille, Chacun des 31 group de panneaux de la lentille est commandé de manière à provoquer sur l'onde incidente la loi de déphasage en créneaux in diquée sur la figure, orientée dans le sens du vecteur champ électrique de l'onde incidente. On constate un dépoîntage an gulaire du faisceau hyperfréquence incident de 25,0.7 degrés dans le plan comprenant le vecteur champ électrique. FIG. 6 shows the values of the phase shift caused by the introduction of a group of adjoining panels formed by 3 panels (7) and 1 panel (8) on the path of an incident microwave wave of 3100 megahertz, according to all the possible combinations of the states of the diodes of each of the panels. We note that this phase shift takes the 8 multiple values of 45 degrees between 0 or 360 degrees and 315 degrees. In Figure 7 we have drawn the radiation diagram obtained by illuminating the active lens as described in Figures 3, 4 and 5 by a microwave wave at 3100 Megahertz whose electric field vector is parallel to the son carrying the diodes of the lens , Each of the 31 groups of lens panels is controlled so as to cause on the incident wave the phase shift law in slots indicated in the figure, oriented in the direction of the electric field vector of the incident wave. There is an angular deposition of the incident microwave beam of 25.0.7 degrees in the plane comprising the electric field vector.

Claims

REVENDICATIONS
1. Dispositif de balayage électronique comportant des panneaux diélectriques dans lesquels sont noyés des réseaux plans de fils conducteurs qui peuvent être rendus continus ou discontinus à yolonté par l'intermédiaire de diodes placées sur ces fils, de façon telle que les fils de tous les réseaux soient parallèles au vecteur champ électrique de l'onde incidente émise par une source rayonnante hyperfréquence, caractérisé en ce que l'on associe plusieurs panneaux dans chacun desquels toutes les diodes sont commandées simultanément et identiquement par un dispositif unique, de façon que des panneaux soient superposés dans un même plan pour constituer un ensemble à travers lequel se propage l'onde incidente et que des ensembles de panneaux superposés soient accolés sur le trajet de l'onde incidente, chacun des panneaux imposant à l'onde un déphasage et l'ensemble des panneaux par une commande convenable permettant d'introduire des déphasages allant de 0° à 360º dans le plan parallèle au vecteur champ électrique de l'onde électromagnétique traversant le dispositif. 1. Electronic scanning device comprising dielectric panels in which are embedded flat networks of conductive wires which can be made continuous or discontinuous as desired by means of diodes placed on these wires, such that the wires of all the networks are parallel to the electric field vector of the incident wave emitted by a microwave radiating source, characterized in that several panels are associated in each of which all the diodes are controlled simultaneously and identically by a single device, so that panels are superimposed in the same plane to constitute an assembly through which the incident wave propagates and that sets of superimposed panels are placed side by side on the path of the incident wave, each of the panels imposing on the wave a phase shift and the assembly panels by a suitable control allowing to introduce phase shifts going from 0 ° to 360 º in the plane parallel to the electric field vector of the electromagnetic wave passing through the device.
2. Dispositif de balayage électronique dans le plan parallèle au vecteur champ électrique de l'onde électromagnétique le traversant selon la revendication 1 caractérisé en outre en ce que chaque ensemble de panneaux superposés dans un même plan est constitué de plusieurs panneaux dont la longueur permet d'intercepter tout le faisceau de l'onde incidente et dont la hauteur est faible en regard de la dimension du faisceau de l'onde, chaque panneau étant muni d'un dispositif unique de commande simultanée de toutes les diodes du panneau, pouvant être actionné individuellement et que les panneaux qui sont accolés sur le trajet de l'onde hyperfréquence les traversant sont de la même hauteur.2. An electronic scanning device in the plane parallel to the electric field vector of the electromagnetic wave passing through it according to claim 1 further characterized in that each set of panels superimposed in the same plane consists of several panels whose length allows d '' intercept the whole beam of the incident wave and whose height is small compared to the dimension of the wave beam, each panel being provided with a single device for simultaneous control of all the diodes of the panel, which can be actuated individually and that the panels which are joined together on the path of the microwave wave passing through them are of the same height.
3. Dispositif de balayage électronique dans le plan parallèle au vecteur champ électrique de l'onde électromagnétique le traversant selon la revendication 2 caractérisé en outre en ce que tous les panneaux superposés ou accolés ont la même hauteur et que cette hauteur est de l'ordre de la longueur d'onde de l'onde électromagnétique traversant le dispositif. 3. An electronic scanning device in the plane parallel to the electric field vector of the electromagnetic wave passing through it according to claim 2 further characterized in that all the superimposed or contiguous panels have the same height and that this height is of the order the wavelength of the electromagnetic wave passing through the device.
4. Dispositif de balayage électronique dans le plan parallèle au vecteur champ électrique de l'onde électromagnétique le traversant selon la revendication 3 caractérisé en outre en ce que l'on accole un nombre de panneaux et un type de panneau tels que l'incrément de déphasage apporté par chacune d'eux à l'onde électromagnétique combiné ou non à l'incrément de déphasage apporté par les autres, provoque une variation de phase entre 0 et 360° de cette onde électromagnétique,4. An electronic scanning device in the plane parallel to the electric field vector of the electromagnetic wave passing through it according to claim 3 further characterized in that we add a number of panels and a type of panel such that the phase shift increment provided by each of them to the electromagnetic wave combined or not with the phase shift increment provided by the others, causes a phase variation between 0 and 360 ° of this electromagnetic wave,
5. Dispositif de balayage électronique dans le plan parallèle au vecteur champ électrique de l'onde électromagnétique le traversant selon la revendication 3 caractérisé en outre en ce que le dispositif unique de commande simultanée des diodes d'unpanneau comporte pour l'alimentation des diodes des fils conducteurs métalliques placés perpendiculairement au champ electrique de l'onde et reliant l'ensemble des fils porteurs de diodes d'un panneau.5. An electronic scanning device in the plane parallel to the electric field vector of the electromagnetic wave passing through it according to claim 3 further characterized in that the single device for simultaneous control of the diodes of a panel comprises for supplying the diodes of the metallic conductor wires placed perpendicular to the electric field of the wave and connecting all the wires carrying diodes of a panel.
6. Dispositif de balayage électronique dans le plan parallèle au vecteur électrique de l'onde éleetromagnétique le traversant selon la revendication 3 , caractérisé en outre en ce que les panneaux superposés sont séparés les uns des autres par des plaques métalliques communes à tous les panneaux accolés, placées perpendiculairement au vecteur champ électrique de l'onde électromagnétique, pouvant supporter les fils de commande, et dont l'épaisseur est inférieure au 1/20 è de la longueur d'onde transmise. 6. An electronic scanning device in the plane parallel to the electric vector of the electromagnetic wave passing through it according to claim 3, further characterized in that the superimposed panels are separated from each other by metal plates common to all the attached panels. , placed perpendicular to the electric field vector of the electromagnetic wave, capable of supporting the control wires, and whose thickness is less than 1/20 è of the transmitted wavelength.
EP80902117A 1979-11-13 1980-11-07 Electronic scanning device in the polarisation plane Expired EP0039702B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT80902117T ATE6108T1 (en) 1979-11-13 1980-11-07 DEVICE FOR ELECTRONIC SENSING IN THE PLANE OF POLARIZATION.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR7927873A FR2469808A1 (en) 1979-11-13 1979-11-13 ELECTRONIC SCANNING DEVICE IN THE POLARIZATION PLAN
FR7927873 1979-11-13

Publications (2)

Publication Number Publication Date
EP0039702A1 true EP0039702A1 (en) 1981-11-18
EP0039702B1 EP0039702B1 (en) 1984-02-01

Family

ID=9231575

Family Applications (1)

Application Number Title Priority Date Filing Date
EP80902117A Expired EP0039702B1 (en) 1979-11-13 1980-11-07 Electronic scanning device in the polarisation plane

Country Status (5)

Country Link
US (1) US4447815A (en)
EP (1) EP0039702B1 (en)
DE (1) DE3066427D1 (en)
FR (1) FR2469808A1 (en)
WO (1) WO1981001486A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4735379A (en) * 1985-11-18 1988-04-05 Aerospatiale Societe Nationale Industrielle System for automatically guiding a missile and missile provided with such a system

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2734409B1 (en) * 1981-04-30 1997-06-27 Radant Etudes METHOD AND DEVICE FOR PRODUCING PHASE PHASES OF A MICROWAVE ELECTROMAGNETIC WAVE BEAM
FR2509095B1 (en) * 1981-07-02 1985-10-04 Radant Etudes ELECTRONIC PROCESS AND DEVICE FOR DEPHASING PROPAGATED MICROWAVE WAVES IN A GUIDE
FR2514203B1 (en) * 1981-10-05 1986-04-25 Radant Etudes MICROWAVE ADAPTIVE SPATIAL FILTER FOR ANY POLARIZED ANTENNA AND METHOD OF IMPLEMENTING SAME
FR2723210B1 (en) * 1983-05-06 1997-01-10 Cmh Sarl ANTI-DETECTION METHOD AND DEVICE FOR RADAR
FR2549300B1 (en) * 1983-07-13 1988-03-25 Tran Dinh Can ELECTROMECHANICAL SCANNING DEVICE, PARTICULARLY FOR RADAR ANTENNA
FR2714768B1 (en) * 1984-07-12 1996-07-05 Radant Etudes Electronic scanning device with active lens and integrated illuminating source.
FR2738398B1 (en) * 1988-04-08 1997-11-28 Thomson Csf Radant DIODE PHASE PANEL AND ITS APPLICATION TO A MICROWAVE LENS AND AN ELECTRONIC SCANNING ANTENNA
FR2879358A1 (en) 1988-06-29 2006-06-16 Thales Sa Electronically-scanned antenna illuminator for e.g. emitting microwave towards scanning device, has flat reflector reflecting microwave emitted by horn type primary source, and another flat reflector rotating polarization of reflected wave
US4975712A (en) * 1989-01-23 1990-12-04 Trw Inc. Two-dimensional scanning antenna
FR2655482B1 (en) * 1989-12-05 1992-02-28 Thomson Csf Radant ELECTROMAGNETIC WAVE ABSORPTION DEVICE, SPATIALLY SELECTIVE, FOR MICROWAVE ANTENNA.
FR2656468B1 (en) * 1989-12-26 1993-12-24 Thomson Csf Radant MAGIC MICROWAVE RADIATION SOURCE AND ITS APPLICATION TO AN ELECTRONIC SCANNING ANTENNA.
FR2747842B1 (en) * 1990-06-15 1998-09-11 Thomson Csf Radant MULTIBAND MICROWAVE LENS AND ITS APPLICATION TO AN ELECTRONIC SCANNING ANTENNA
FR2725077B1 (en) * 1990-11-06 1997-03-28 Thomson Csf Radant BIPOLARIZATION MICROWAVE LENS AND ITS APPLICATION TO AN ELECTRONICALLY SCANNED ANTENNA
FR2671194B1 (en) * 1990-12-27 1993-12-24 Thomson Csf Radant PROTECTION SYSTEM FOR ELECTRONIC EQUIPMENT.
FR2671637B1 (en) * 1991-01-15 1994-09-16 Thomson Csf METHOD AND APPARATUS FOR TESTING PARALLEL JOINED DIODES ASSEMBLED IN PARALLEL.
GB9313109D0 (en) * 1993-06-25 1994-09-21 Secr Defence Radiation sensor
FR2708808B1 (en) * 1993-08-06 1995-09-01 Thomson Csf Radant Four phase phase shifting panel and its application to a microwave lens and an electronic scanning antenna.
US5475349A (en) * 1994-09-29 1995-12-12 Westinghouse Electric Corp. Frequency multipliers using diode arrays
FR2786610B1 (en) 1997-02-03 2001-04-27 Thomson Csf ACTIVE MICROWAVE REFLECTOR FOR ELECTRONIC SCANNING ANTENNA
SE513226C2 (en) 1998-12-03 2000-08-07 Ericsson Telefon Ab L M Continuous aperture sweeping antenna
FR2789521A1 (en) 1999-02-05 2000-08-11 Thomson Csf TWO-BAND ELECTRONIC SCANNING ANTENNA WITH ACTIVE MICROWAVE REFLECTOR
FR2807213B1 (en) 2000-03-31 2003-07-25 Thomson Csf HYPERFREQUENCY DEPHASER, AND ELECTRONIC SCAN ANTENNA CONTAINING SUCH DEPHASERS
FR2812457B1 (en) 2000-07-28 2004-05-28 Thomson Csf ACTIVE BI-POLARIZATION MICROWAVE REFLECTOR, ESPECIALLY FOR AN ELECTRONICALLY BALANCED ANTENNA
US6703982B2 (en) * 2001-08-22 2004-03-09 Raytheon Company Conformal two dimensional electronic scan antenna with butler matrix and lens ESA
US6999040B2 (en) * 2003-06-18 2006-02-14 Raytheon Company Transverse device array phase shifter circuit techniques and antennas
US7106265B2 (en) * 2004-12-20 2006-09-12 Raytheon Company Transverse device array radiator ESA
US7463212B1 (en) 2005-09-14 2008-12-09 Radant Technologies, Inc. Lightweight C-sandwich radome fabrication
US7420523B1 (en) 2005-09-14 2008-09-02 Radant Technologies, Inc. B-sandwich radome fabrication
US8362965B2 (en) 2009-01-08 2013-01-29 Thinkom Solutions, Inc. Low cost electronically scanned array antenna
EP2618128A1 (en) * 2012-01-19 2013-07-24 Canon Kabushiki Kaisha Detecting device, detector, and imaging apparatus using the same
US9099782B2 (en) 2012-05-29 2015-08-04 Cpi Radant Technologies Division Inc. Lightweight, multiband, high angle sandwich radome structure for millimeter wave frequencies

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR14650E (en) * 1910-06-03 1912-01-22 Derobert Bosch Method and device for starting polycylindrical explosion engines
GB1047471A (en) * 1962-05-03 1900-01-01
US3274601A (en) * 1962-12-12 1966-09-20 Blass Antenna Electronics Corp Antenna system with electronic scanning means
US3276023A (en) * 1963-05-21 1966-09-27 Dorne And Margolin Inc Grid array antenna
FR2063967B1 (en) * 1969-10-15 1973-10-19 Bony Gilbert
FR2400781A1 (en) * 1977-06-24 1979-03-16 Radant Etudes HYPERFREQUENCY ANTENNA, FLAT, NON-DISPERSIVE, ELECTRONIC SCAN
FR2395620A1 (en) * 1977-06-24 1979-01-19 Radant Etudes IMPROVEMENT OF THE ELECTRONIC SWEEPING PROCESS USING DEPHASER DIELECTRIC PANELS
FR2412960A1 (en) * 1977-12-20 1979-07-20 Radant Etudes HYPERFREQUENCY DEPHASER AND ITS APPLICATION TO ELECTRONIC SCAN

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO8101486A1 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4735379A (en) * 1985-11-18 1988-04-05 Aerospatiale Societe Nationale Industrielle System for automatically guiding a missile and missile provided with such a system

Also Published As

Publication number Publication date
WO1981001486A1 (en) 1981-05-28
US4447815A (en) 1984-05-08
EP0039702B1 (en) 1984-02-01
FR2469808B1 (en) 1983-09-23
FR2469808A1 (en) 1981-05-22
DE3066427D1 (en) 1984-03-08

Similar Documents

Publication Publication Date Title
EP0039702B1 (en) Electronic scanning device in the polarisation plane
EP0237429B1 (en) Controlled-phase reflector array, and antenna comprising such an array
EP3073569B1 (en) Compact butler matrix , planar bi-dimensional beam-former, and planar antenna with such a butler matrix
EP0000308B1 (en) Electronic scanning device comprising dielectric panels as phaseshifters
EP0014650B1 (en) Microwave adaptive spatial filter and its method of use in lowering or suppressing the sidelobes of the radiation pattern of an antenna
CA1290449C (en) Device for exciting a circularly polarized wage guide by means of a planar antenna
EP1723693A2 (en) Antenna with variable misalignment comprising at least one phase-changing element
FR2725077A1 (en) BIPOLARIZATION HYPERFREQUENCY LENS AND ITS APPLICATION TO AN ELECTRONIC SCANNING ANTENNA
FR2584872A1 (en) CIRCULAR POLARIZED BROADBAND FLAT ANTENNA, USES THEREOF, APPLICATIONS, AND METHOD OF MANUFACTURING THE SAME
JPH0580358A (en) Light beam-steering gear by sub-opening address assignment
EP0206846B1 (en) Microwave phase shifter, especially in the millimeter wave range, with a piezoelectric control
EP0462864A1 (en) Device for feeding radiating elements of an antenna array and its application for an antenna of a landing help system type MLS
FR2856524A1 (en) TRANSVERSAL DEVICE NETWORK DEHASTER AND ANTENNAS USING THE SAME
WO2004001899A1 (en) Phase-shifting cell for antenna reflector
FR2512280A1 (en) Solid state microwave antenna sweep reflector - has number of addressable diodes in matrix selectively switched to form transparent or reflective panel
EP1551078A1 (en) Omnidirectional antenna with steerable diagram
EP0595726A1 (en) Phase shifter for electromagnetic waves and application in an antenna with electronic scanning
FR2662026A1 (en) PLANE ORIENTABLE ANTENNA, OPERATING IN MICROWAVE.
FR3089358A1 (en) Multiple access radiant element
FR2845205A1 (en) DEPHASER CAPABLE OF CONTINUOUS PHASE VARIATION
FR2629641A1 (en) HYPERFREQUENCY DEHASE CIRCUIT
FR2552273A1 (en) Omnidirectional microwave antenna
EP0088681B1 (en) Dual-reflector antenna with incorporated polarizer
FR2668304A1 (en) Reciprocal phase shifter in dielectric guide with ferrite
EP0156684A1 (en) Microwave radiating element and its use in an electronically scanned array

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19810520

AK Designated contracting states

Designated state(s): AT CH DE FR GB LU NL SE

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): AT CH DE FR GB LI LU NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19840201

Ref country code: NL

Effective date: 19840201

Ref country code: AT

Effective date: 19840201

REF Corresponds to:

Ref document number: 6108

Country of ref document: AT

Date of ref document: 19840215

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3066427

Country of ref document: DE

Date of ref document: 19840308

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19841130

Ref country code: LI

Effective date: 19841130

Ref country code: CH

Effective date: 19841130

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19991014

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19991015

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19991123

Year of fee payment: 20

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20001106

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Effective date: 20001106