EP0039014B1 - Method of manufacturing compacts from powder - Google Patents

Method of manufacturing compacts from powder Download PDF

Info

Publication number
EP0039014B1
EP0039014B1 EP81102953A EP81102953A EP0039014B1 EP 0039014 B1 EP0039014 B1 EP 0039014B1 EP 81102953 A EP81102953 A EP 81102953A EP 81102953 A EP81102953 A EP 81102953A EP 0039014 B1 EP0039014 B1 EP 0039014B1
Authority
EP
European Patent Office
Prior art keywords
powder
capsule
temperature
pressure
press
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP81102953A
Other languages
German (de)
French (fr)
Other versions
EP0039014A1 (en
Inventor
Hans Gunnar Larsson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ABB Norden Holding AB
Original Assignee
ASEA AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ASEA AB filed Critical ASEA AB
Priority to AT81102953T priority Critical patent/ATE9449T1/en
Publication of EP0039014A1 publication Critical patent/EP0039014A1/en
Application granted granted Critical
Publication of EP0039014B1 publication Critical patent/EP0039014B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/1208Containers or coating used therefor
    • B22F3/1216Container composition
    • B22F3/1241Container composition layered
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/14Both compacting and sintering simultaneously
    • B22F3/15Hot isostatic pressing

Definitions

  • the invention relates to a method for producing compacts from powder according to the preamble of claim 1. Such a method is described in the older, not previously published EP-A-0 014 975.
  • EP-A-0 014 975 describes a process for the production of metallic compacts in which the starting material is a metal powder.
  • powder is enclosed in a capsule, the capsule is heated with the powder, the capsule in the.
  • Pressure chamber of a press used and surrounded with a layer of an easily deformable, thermally stable powder with a layer structure of powder grains easily sliding together and with good heat-insulating properties.
  • a piston is inserted into the pressure chamber and compresses the powder and binds the powder grains to one another, so that a homogeneous body is obtained whose density is completely or approximately equal to the theoretical maximum density.
  • the easily deformable powder is preferably talc, but another material with similar properties, such as pyrophyllite, can also be used.
  • the finished pressed compacts are further processed into workpieces, the shape and size of which differ from the shape and size of the compact.
  • the known method is not suitable for the production of compacts, the shape and size of which almost matches the shape and size of the finished workpiece.
  • the invention has for its object to develop a method of the type mentioned, with which compacts can be produced, the shape and size of which largely corresponds to a workpiece of complicated shape, so that only a small amount of processing of the compact is required in order to to obtain the final shape and dimensions of the finished workpiece.
  • the powder is enclosed in a first capsule, which has the same shape as the finished product, but is slightly larger.
  • the powder is degassed and the capsule is closed.
  • This first capsule is placed approximately in the middle of a second, larger capsule.
  • This second capsule can have a simple shape.
  • the space between the two capsules is filled with an agent that is viscous at the pressing temperature.
  • the second capsule with its contents is heated to a temperature at which the powder grains are bound together under pressure, whereupon they are placed in the pressure chamber of a press and surrounded by an easily deformable material such as talc or pyrophyllite.
  • a piston is then inserted into the pressure chamber, which pressurizes the contents of the pressure chamber.
  • the material that surrounds the first capsule with a complicated shape is so viscous that it exerts all-round isostatic pressure on the capsule and compresses it without significantly changing its proportions. Under the combined effect of this compression and the high temperature, the powder grains are bound together so that a solid body is formed.
  • the material between the two capsules can be a salt, a metal or a type of glass, the melting or softening temperature of this material being far below the pressing temperature used.
  • the pressing pressure is generally above 1 kbar, preferably between 3 and 10 kbar.
  • the pressing temperature depends on the material. Suitable press temperatures are 1050-1100 ° C for steel (high-speed steel), 1100-1250 ° C for superalloys, 1000-1700 ° C for ceramic material and 1400-1500 ° C for hard metal.
  • a high temperature results in a high density even at relatively low pressure and a short pressing time. If the powder temperature is lowered, the same high density can be obtained by increasing the pressure and / or the pressing time. Below a certain temperature it is no longer possible to achieve a bond and a usable density.
  • the viscous material between the two capsules also acts as a heat accumulator that surrounds the inner capsule and delays its cooling. This prevents small and protruding parts with large areas in relation to the enclosed powder volume from being cooled in terms of their volume. These parts therefore maintain the binding temperature for a long time so that pressure can be applied as long as the conditions for binding are met. It is therefore possible to press workpieces with very thin, outstanding parts.
  • 1 denotes a press table and 2 a movable piston of a press, which is otherwise not shown.
  • a press cylinder 3 with a loose inner bottom 4 is placed on the press table.
  • This inner capsule 5 is placed in the middle of an outer capsule 7, and is surrounded on all sides by a means 8 which is so viscous at the pressing temperature that it essentially behaves like a liquid and thereby exerts pressure on the inner capsule 5 from all sides exerts and compresses the powder enclosed in the capsule without the shape to change the capsule 5 significantly.
  • the outer capsule 7 is placed in the pressure chamber 9. which is formed from the press cylinder 3, the bottom 4 and the piston 2.
  • the outer capsule 7 is surrounded on all sides with a layer of talcum powder 10.
  • pressure is applied to the talcum powder 10.
  • Talc powder does not have ideal properties as a pressure-transmitting agent, since it would change the shape of a capsule embedded in it to a certain extent. This imperfection is a major disadvantage when a workpiece of complex shape is to be pressed into almost its final shape and dimensions.
  • the viscous agent 8 the capsule 5 is exposed to all-round pressure, so that no or only an insignificant change in shape occurs during pressing.
  • the material 8 can be one which is powdery at room temperature or which consists of blocks pressed or cast from powder, which together form a cavity adapted to the capsule 5. If the material 8 assumes its viscous properties when heated, there is a risk that the capsule 5 will sink or rise. To prevent this, 7 supports can be fitted between the inner capsule 5 and the outer capsule.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Press-Shaping Or Shaping Using Conveyers (AREA)

Abstract

A method for manufacturing an article to an intended near final shape and size with powder as the starting material. The powder is placed in a first capsule having the shape of the desired article and a size which allows for a suitable decrease in volume when pressing the powder into a solid body. This first capsule is placed in a second larger capsule and is surrounded on all its sides by a medium which is viscous at the compression temperature. The second outer capsule with its contents is heated, inserted into a press chamber, and surrounded by a readily deformable heat-insulating material such as talcum powder. A piston is inserted into the press chamber and acts to generate a pressure which compresses the material in the first capsule into a homogeneous, solid body.

Description

Die Erfindung betrifft ein Verfahren zur Herstellung von Preßlingen aus Pulver gemäß dem Oberbegriff des Anspruches 1. Ein solches Verfahren wird in der älteren, nicht vorveröffentlichten EP-A-0 014 975 beschrieben.The invention relates to a method for producing compacts from powder according to the preamble of claim 1. Such a method is described in the older, not previously published EP-A-0 014 975.

In der genannten EP-A-0 014 975 wird ein Verfahren zur Herstellung von metallischen Preßlingen beschrieben, bei dem das Ausgangsmaterial ein Metallpulver ist. Gemäß diesem Verfahren wird Pulver in eine Kapsel eingeschlossen, die Kapsel mit dem Pulver erhitzt, die Kapsel in den . Druckraum einer Presse eingesetzt und mit einer Schicht aus einem leichtverformbaren, thermisch stabilen Pulver mit einer Schichtstruktur von leicht aneinandergleitenden Pulverkörnern und mit guten wärmeisolierenden Eigenschaften umgeben. Ein Kolben wird in den Druckraum eingeführt und bewirkt das Zusammenpressen des Pulvers sowie eine Bindung der Pulverkörner untereinander, so daß man einen homogenen Körper erhält, dessen Dichte völlig oder annähernd gleich der theoretischen maximalen Dichte ist. Mit Rücksicht auf den Preis und die Verfügbarkeit besteht das leichtverformbare Pulver vorzugsweise aus Talk, doch kann auch ein anderes Material mit ähnlichen Eigenschaften, wie beispielsweise Pyrophyllit, verwendet werden. Die fertiggepreßten Preßlinge werden dabei zu Werkstücken weiterverarbeitet, deren Form und Größe von der Form und Größe des Preßlings verschieden ist. Das bekannte Verfahren eignet sich nicht zur Herstellung von Preßlingen, deren Form und Größe nahezu mit der Form und Größe des fertigen Werkstückes übereinstimmt.EP-A-0 014 975 describes a process for the production of metallic compacts in which the starting material is a metal powder. According to this method, powder is enclosed in a capsule, the capsule is heated with the powder, the capsule in the. Pressure chamber of a press used and surrounded with a layer of an easily deformable, thermally stable powder with a layer structure of powder grains easily sliding together and with good heat-insulating properties. A piston is inserted into the pressure chamber and compresses the powder and binds the powder grains to one another, so that a homogeneous body is obtained whose density is completely or approximately equal to the theoretical maximum density. In view of price and availability, the easily deformable powder is preferably talc, but another material with similar properties, such as pyrophyllite, can also be used. The finished pressed compacts are further processed into workpieces, the shape and size of which differ from the shape and size of the compact. The known method is not suitable for the production of compacts, the shape and size of which almost matches the shape and size of the finished workpiece.

Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren der eingangs genannten Art zu entwickeln, mit dem Preßlinge hergestellt werden können, deren Form und Größe bereits weitgehend mit einem Werkstück komplizierter Form übereinstimmt, so daß nur noch eine geringe Bearbeitung des Preßlings erforderlich ist, um die endgültige Form und die endgültigen Abmessungen des fertigen Werkstücks zu erhalten.The invention has for its object to develop a method of the type mentioned, with which compacts can be produced, the shape and size of which largely corresponds to a workpiece of complicated shape, so that only a small amount of processing of the compact is required in order to to obtain the final shape and dimensions of the finished workpiece.

Zur Lösung dieser Aufgabe wird ein Verfahren nach dem Oberbegriff des Anspruches 1 vorgeschlagen, welches erfindungsgemäß die im kennzeichenden Teil des Anspruches 1 genannten Merkmale hat.To solve this problem, a method is proposed according to the preamble of claim 1, which according to the invention has the features mentioned in the characterizing part of claim 1.

Vorteilhafte Weiterbildungen der Erfindung sind in den Unteransprüchen genannt.Advantageous developments of the invention are mentioned in the subclaims.

Gemäß der Erfindung wird das Pulver in eine erste Kapsel eingeschlossen, welche dieselbe Form wie das fertige Produkt hat, jedoch etwas größer ist. Das Pulver wird entgast und die Kapsel wird verschlossen. Diese erste Kapsel wird etwa in der Mitte einer zweiten, größeren Kapsel placiert. Diese zweite Kapsel kann eine einfache Form haben. Der Raum zwischen den beiden Kapseln wird mit einem Mittel gefüllt, das bei der Preßtemperatur viskos ist. Die zweite Kapsel mit ihrem Inhalt wird auf eine Temperatur erhitzt, bei welcher die Pulverkörner unter Druck aneinandergebunden werden, worauf sie in dem Druckraum einer Presse placiert und von einem leichtverformbaren Material, wie Talk oder Pyrophyllit, umgeben wird. Anschließend wird ein Kolben in die Druckkammer eingeführt, der den Inhalt der Druckkammer unter Druck setzt. Das Material, das die erste Kapsel mit komplizierter Form umgibt, ist so viskos, daß es einen allseitigen isostatischen Druck auf die Kapsel ausübt und diese verdichtet, ohne ihre Proportionen nennenswert zu verändern. Unter der gemeinsamen Wirkung dieser Verdichtung und der hohen Temperatur werden die Pulverkörner aneinandergebunden, so daß ein massiver Körper gebildet wird.According to the invention, the powder is enclosed in a first capsule, which has the same shape as the finished product, but is slightly larger. The powder is degassed and the capsule is closed. This first capsule is placed approximately in the middle of a second, larger capsule. This second capsule can have a simple shape. The space between the two capsules is filled with an agent that is viscous at the pressing temperature. The second capsule with its contents is heated to a temperature at which the powder grains are bound together under pressure, whereupon they are placed in the pressure chamber of a press and surrounded by an easily deformable material such as talc or pyrophyllite. A piston is then inserted into the pressure chamber, which pressurizes the contents of the pressure chamber. The material that surrounds the first capsule with a complicated shape is so viscous that it exerts all-round isostatic pressure on the capsule and compresses it without significantly changing its proportions. Under the combined effect of this compression and the high temperature, the powder grains are bound together so that a solid body is formed.

Das Material zwischen den beiden Kapseln kann ein Salz, ein Metall oder eine Glassorte sein, wobei die Schmelz- oder Erweichungstemperatur dieses Materials weit unterhalb der verwendeten Preßtemperatur liegt. Der Preßdruck liegt in der Regel über 1 kBar, vorzugsweise zwischen 3 und 10 kBar. Die Preßtemperatur ist materialabhängig. Geeignete Preßtemperaturen sind für Stahl (Schnellstahl) 1050-1100° C, für Superlegierungen 1100-1250°C, für keramisches Material 1000-1700°C und für Hartmetall 1400-1500°C. Eine hohe Temperatur bewirkt eine hohe Dichte bereits bei relativ niedrigem Druck und eine kurze Preßzeit. Wird die Pulvertemperatur gesenkt, so kann man dieselbe hohe Dichte erhalten, indem der Druck und/oder die Preßzeit erhöht werden. Unterhalb einer bestimmten Temperatur ist es nicht mehr möglich, eine Bindung und eine brauchbare Dichte zu erzielen.The material between the two capsules can be a salt, a metal or a type of glass, the melting or softening temperature of this material being far below the pressing temperature used. The pressing pressure is generally above 1 kbar, preferably between 3 and 10 kbar. The pressing temperature depends on the material. Suitable press temperatures are 1050-1100 ° C for steel (high-speed steel), 1100-1250 ° C for superalloys, 1000-1700 ° C for ceramic material and 1400-1500 ° C for hard metal. A high temperature results in a high density even at relatively low pressure and a short pressing time. If the powder temperature is lowered, the same high density can be obtained by increasing the pressure and / or the pressing time. Below a certain temperature it is no longer possible to achieve a bond and a usable density.

Das viskose Material zwischen den beiden Kapseln wirkt auch als ein Wärmespeicher, der die innere Kapsel umgibt und deren Abkühlung verzögert. Hierdurch wird verhindert, daß hinsichtlich ihres Volumens kleine und hervorstehende Teile mit großen Flächen im Verhältnis zu dem eingeschlossenen Pulvervolumen abgekühlt werden. Diese Teile behalten daher die Bindungstemperatur während einer langen Zeit bei, so daß ein Druck aufgebracht werden kann, solange die Voraussetzung für eine Bindung gegeben sind. Es ist daher möglich, Werkstücke mit sehr dünnen herausragenden Teilen zu pressen.The viscous material between the two capsules also acts as a heat accumulator that surrounds the inner capsule and delays its cooling. This prevents small and protruding parts with large areas in relation to the enclosed powder volume from being cooled in terms of their volume. These parts therefore maintain the binding temperature for a long time so that pressure can be applied as long as the conditions for binding are met. It is therefore possible to press workpieces with very thin, outstanding parts.

Anhand der Figur soll das Verfahren nach der Erfindung näher erläutert werden.The method according to the invention will be explained in more detail with reference to the figure.

In der Figur bezeichnet 1 einen Preßtisch und 2 einen beweglichen Kolben einer im übrigen nicht dargestellten Presse. Auf dem Preßtisch ist ein Preßzylinder 3 mit einem losen inneren Boden 4 placiert. Eine innere Kapsel 5, deren Form mit der Form eines fertigen Werkstücks übereinstimmt, ist mit Pulver 6 gefüllt. Diese innere Kapsel 5 ist in der Mitte einer äußeren Kapsel 7 placiert, und von allen Seiten von einem Mittel 8 umgeben, das bei Preßtemperatur so viskos ist, daß es sich im wesentlichen wie eine Flüssigkeit verhält und dadurch einen allseitigen Druck auf die innere Kapsel 5 ausübt und das in der Kapsel eingeschlossene Pulver komprimiert, ohne die Form der Kapsel 5 nennenswert zu verändern. Die äußere Kapsel 7 ist in dem Druckraum 9. placiert. der aus dem Preßzylinder 3, dem Boden 4 und dem Kolben 2 gebildet wird. Die äußere Kapsel 7 ist von allen Seiten mit einer Schicht aus Talkpulver 10 umgeben. Wenn der Kolben 2 in den Preßzylinder 3 eingeführt wird, wird ein Druck auf das Talkpulver 10 ausgeübt. Dieser pflanzt sich bis zur äußeren Kapsel 7 fort. Das Talkpulver hat als druckübertragendes Mittel keine idealen Eigenschaften, da es die Form einer in ihm eingebetteten Kapsel in gewissem Maße verändern würde. Diese Unvollkommenheit ist ein großer Nachteil, wenn ein Werkstück komplizierter Form in nahezu seine endgültige Form und Abmessung gepreßt werden soll. Dank des viskosen Mittels 8 wird die Kapsel 5 einem allseitigen Druck ausgesetzt, so daß beim Pressen keine oder nur eine unbedeutende Formveränderung auftritt. Bei dem Material 8 kann es sich um ein solches handeln, das bei Raumtemperatur pulverförmig ist oder das aus Pulver gepreßten oder gegossenen Blöcken besteht, die zusammen eine der Kapsel 5 angepaßte Aushöhlung bilden. Wenn das Material 8 bei der Erhitzung seine viskosen Eigenschaften annimmt, besteht die Gefahr, daß die Kapsel 5 nach unten sinkt oder nach oben steigt. Um dies zu verhindern, können zwischen der inneren Kapsel 5 und der äußeren Kapsel 7 Stützen angebracht werden.In the figure, 1 denotes a press table and 2 a movable piston of a press, which is otherwise not shown. A press cylinder 3 with a loose inner bottom 4 is placed on the press table. An inner capsule 5, the shape of which corresponds to the shape of a finished workpiece, is filled with powder 6. This inner capsule 5 is placed in the middle of an outer capsule 7, and is surrounded on all sides by a means 8 which is so viscous at the pressing temperature that it essentially behaves like a liquid and thereby exerts pressure on the inner capsule 5 from all sides exerts and compresses the powder enclosed in the capsule without the shape to change the capsule 5 significantly. The outer capsule 7 is placed in the pressure chamber 9. which is formed from the press cylinder 3, the bottom 4 and the piston 2. The outer capsule 7 is surrounded on all sides with a layer of talcum powder 10. When the piston 2 is inserted into the press cylinder 3, pressure is applied to the talcum powder 10. This propagates to the outer capsule 7. Talc powder does not have ideal properties as a pressure-transmitting agent, since it would change the shape of a capsule embedded in it to a certain extent. This imperfection is a major disadvantage when a workpiece of complex shape is to be pressed into almost its final shape and dimensions. Thanks to the viscous agent 8, the capsule 5 is exposed to all-round pressure, so that no or only an insignificant change in shape occurs during pressing. The material 8 can be one which is powdery at room temperature or which consists of blocks pressed or cast from powder, which together form a cavity adapted to the capsule 5. If the material 8 assumes its viscous properties when heated, there is a risk that the capsule 5 will sink or rise. To prevent this, 7 supports can be fitted between the inner capsule 5 and the outer capsule.

Claims (8)

1. Method for manufacturing a pressed part from a powder, whereby said powder (6) is first filled into a first capsule (5), which is then heated and subjected at bonding temperature in the press chamber of a press to such a pressure that the powder grains are bonded together and form a substantially massive and solid body, whereby in order to transfer pressure; which is generated by a pressure piston (2) insertable into the press chamber, on the powder-filled .capsule (5) a readily deformable powder (10) is fed into the press chamber, which powder is thermally stable and highly thermally insulating and has a layer structure of powder grains easily slidable against each other, characterized in that the first capsule (5) before being heated is placed into a second larger capsule (7), that the space between said capsules (5, 7) is filled with a medium (8) being viscous at bonding temperature, and that the second capsule (7) with its contents is placed into the press chamber (9) of the press in such a way that the second capsule (7) is surrounded by the readily deformable powder (10).
2. Method according to claim 1, characterized in that the readily deformable powder (10) consists of talcum or pyrophyllite.
3. Method according to claim 1 or 2, characterized in that the first capsule (5) is given a shape which essentially corresponds to the form of the finished work piece and has a size which takes account of the decrease in volume.
4. Method according to any of claim 1 to 3, characterized in that the material (8) between the capsules (5, 7) is plastic or completely liquid at compacting temperature.
5. Method according to claim 4, characterized in that the material (8) between said capsules consists of a salt, a metal, or a kind of glass the melting temperature or softening temperature of which is much lower than the selected compacting temperature.
6. Method according to any of the preceding claims, characterized in that the compacting pressure is at least 1 kilobar.
7. Method according to claim 6, characterized in that the compacting pressure is 3 to 10 kilobar.
8. Method according to any of the preceding claims, characterized in that the compacting temperature is in the range of 1100 to 1150"C when the powder to be compacted is a highspeed tool steel powder.
EP81102953A 1980-04-25 1981-04-16 Method of manufacturing compacts from powder Expired EP0039014B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT81102953T ATE9449T1 (en) 1980-04-25 1981-04-16 PROCESS FOR THE MANUFACTURE OF POWDER PRESSINGS.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
SE8003138 1980-04-25
SE8003138A SE426790B (en) 1980-04-25 1980-04-25 PROCEDURE FOR ISOSTATIC PRESSURE OF POWDER IN A Capsule

Publications (2)

Publication Number Publication Date
EP0039014A1 EP0039014A1 (en) 1981-11-04
EP0039014B1 true EP0039014B1 (en) 1984-09-19

Family

ID=20340831

Family Applications (1)

Application Number Title Priority Date Filing Date
EP81102953A Expired EP0039014B1 (en) 1980-04-25 1981-04-16 Method of manufacturing compacts from powder

Country Status (6)

Country Link
US (1) US4389362A (en)
EP (1) EP0039014B1 (en)
JP (1) JPS56169703A (en)
AT (1) ATE9449T1 (en)
DE (1) DE3166124D1 (en)
SE (1) SE426790B (en)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL68071A (en) * 1982-04-28 1985-12-31 Roc Tec Inc Method of consolidating material with a cast pressure transmitter
CA1222152A (en) * 1982-09-20 1987-05-26 Walter J. Rozmus Method and assembly for hot consolidating materials
SE460461B (en) * 1983-02-23 1989-10-16 Metal Alloys Inc PROCEDURE APPLY HOT ISOSTATIC COMPRESSION OF A METALLIC OR CERAMIC BODY IN A BOTTLE OF PRESSURE TRANSFERING PARTICLES
FR2542228B1 (en) * 1983-03-10 1985-08-02 Cegedur PRESSURE SINTERING OF ALUMINUM ALLOY POWDERS
FR2548562B1 (en) * 1983-07-08 1989-02-24 Commissariat Energie Atomique COMPOSITE LOPIN FOR HOT PROCESSING
US4539175A (en) * 1983-09-26 1985-09-03 Metal Alloys Inc. Method of object consolidation employing graphite particulate
US4564501A (en) * 1984-07-05 1986-01-14 The United States Of America As Represented By The Secretary Of The Navy Applying pressure while article cools
US4603062A (en) * 1985-01-07 1986-07-29 Cdp, Ltd. Pump liners and a method of cladding the same
SE455277B (en) * 1986-03-21 1988-07-04 Uddeholm Tooling Ab SET FOR POWDER METAL SURGICAL PREPARING A FORM THROUGH HEAT COMPRESSION OF POWDER IN A CERAMIC FORM BY A PARTICULATED PRESSURE MEDIUM
US4744943A (en) * 1986-12-08 1988-05-17 The Dow Chemical Company Process for the densification of material preforms
US4808224A (en) * 1987-09-25 1989-02-28 Ceracon, Inc. Method of consolidating FeNdB magnets
US4980340A (en) * 1988-02-22 1990-12-25 Ceracon, Inc. Method of forming superconductor
US4933140A (en) * 1988-11-17 1990-06-12 Ceracon, Inc. Electrical heating of graphite grain employed in consolidation of objects
US4853178A (en) * 1988-11-17 1989-08-01 Ceracon, Inc. Electrical heating of graphite grain employed in consolidation of objects
US5294382A (en) * 1988-12-20 1994-03-15 Superior Graphite Co. Method for control of resistivity in electroconsolidation of a preformed particulate workpiece
US4915605A (en) * 1989-05-11 1990-04-10 Ceracon, Inc. Method of consolidation of powder aluminum and aluminum alloys
US4975414A (en) * 1989-11-13 1990-12-04 Ceracon, Inc. Rapid production of bulk shapes with improved physical and superconducting properties
SE465712B (en) * 1990-03-01 1991-10-21 Asea Brown Boveri MAKE POWDER MANUFACTURED BY POWDER BY ISOSTATIC COMPACTING IN A DEFORMABLE Capsule
US5110542A (en) * 1991-03-04 1992-05-05 Vital Force, Inc. Rapid densification of materials
US5374392A (en) * 1991-12-04 1994-12-20 The Dow Chemical Company Process for densification of powdered ceramics and cermets at temperatures above 1400 degrees centigrade
US5985207A (en) * 1995-11-16 1999-11-16 Vawter; Paul D. Method for manufacturing powder metallurgical tooling
US5623727A (en) * 1995-11-16 1997-04-22 Vawter; Paul Method for manufacturing powder metallurgical tooling
US5972521A (en) * 1998-10-01 1999-10-26 Mcdonnell Douglas Corporation Expanded metal structure and method of making same
US20060140812A1 (en) * 2003-06-20 2006-06-29 Lherbier Louis W Manufacturing of controlled porosity metallic tools
US7651657B2 (en) * 2003-06-20 2010-01-26 Crs Holdings, Inc. Manufacturing of controlled porosity metallic tools
US20050147520A1 (en) * 2003-12-31 2005-07-07 Guido Canzona Method for improving the ductility of high-strength nanophase alloys
RU2497211C1 (en) * 2012-07-24 2013-10-27 Федеральное государственное унитарное предприятие "Научно-исследовательский институт Научно-производственное объединение "ЛУЧ" (ФГУП "НИИ НПО "ЛУЧ") Method to manufacture fuel rods with zirconium shell
RU2508572C1 (en) * 2012-11-06 2014-02-27 Федеральное государственное унитарное предприятие "Научно-исследовательский институт Научно-производственное объединение "ЛУЧ" (ФГУП "НИИ НПО "ЛУЧ") Method of moulding cermet core billets
RU2507616C1 (en) * 2012-11-06 2014-02-20 Федеральное государственное унитарное предприятие "Научно-исследовательский институт Научно-производственное объединение "ЛУЧ" (ФГУП "НИИ НПО "ЛУЧ") Method to manufacture fuel rods

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0014975A1 (en) * 1979-02-27 1980-09-03 Asea Ab Process for manufacturing compressed bodies from metal powder

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2568157A (en) * 1951-09-18 Process of making refractory bodies
FR2038758A5 (en) * 1969-03-28 1971-01-08 Commissariat Energie Atomique
US3700435A (en) * 1971-03-01 1972-10-24 Crucible Inc Method for making powder metallurgy shapes
SE7609074L (en) * 1975-08-27 1977-02-28 United Technologies Corp PROCEDURE AND APPLIANCE FOR HYDROSTATIC METAL POWDER HOT PRESSING
US4142888A (en) * 1976-06-03 1979-03-06 Kelsey-Hayes Company Container for hot consolidating powder
FR2376713A1 (en) * 1977-01-11 1978-08-04 Carbox Ab Isostatic compaction vessel housing two liquids - constituting primary and secondary pressurisation agents separated by flexible diaphragm (SW 16.5.77)
US4414028A (en) * 1979-04-11 1983-11-08 Inoue-Japax Research Incorporated Method of and apparatus for sintering a mass of particles with a powdery mold
US4260582A (en) * 1979-07-18 1981-04-07 The Charles Stark Draper Laboratory, Inc. Differential expansion volume compaction

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0014975A1 (en) * 1979-02-27 1980-09-03 Asea Ab Process for manufacturing compressed bodies from metal powder

Also Published As

Publication number Publication date
SE426790B (en) 1983-02-14
JPS56169703A (en) 1981-12-26
US4389362A (en) 1983-06-21
EP0039014A1 (en) 1981-11-04
ATE9449T1 (en) 1984-10-15
SE8003138L (en) 1981-10-26
DE3166124D1 (en) 1984-10-25

Similar Documents

Publication Publication Date Title
EP0039014B1 (en) Method of manufacturing compacts from powder
DE69915797T2 (en) METHOD FOR PRODUCING SEALED PARTS THROUGH UNIAXIAL PRESSING AGGLOMERED BALL-MOLDED METAL POWDER.
DE3434703A1 (en) METHOD FOR STRENGTHENING A METALLIC, METALLIC / CERAMIC OR CERAMIC STRUCTURE AND DEVICE FOR ITS IMPLEMENTATION
DE4211319A1 (en) Process for the production of sintered iron molded parts with a non-porous zone
DE2933373C2 (en) Method of manufacturing an article from silicon nitride by isostatic pressing, wherein the preformed body is enclosed in an envelope made of glass
DE2055533A1 (en) Method of manufacturing essentially lent massive extruded bodies from metal powder
DE2360914C2 (en) Binding, deoxidizing and carburizing agents for the manufacture of preforms from metal powders
EP0014975B1 (en) Process for manufacturing compressed bodies from metal powder
DE19717894A1 (en) Porous metal especially aluminium matrix material production
DE19906875A1 (en) Semiconductor assembly, especially with microwave chips e.g. for a mobile telephone, has a thin heat radiating substrate formed by diffusion metallization of molten copper into a molybdenum pressing
DE2702073A1 (en) METHOD OF MANUFACTURING AN ARTICLE FROM SILICON NITRIDE
DE4331590C1 (en) Pressed insulating composite moulding
EP0419685A1 (en) Method and device for making articles from powder materials
DE2250495B2 (en) Process for the hot isostatic pressing of objects from a sintered steel sheet
EP0327064A2 (en) Process for preparing articles by powder metallurgy, especially elongated articles such as rods, sections, tubes or such
EP0280202B1 (en) Method of manufacturing a synchro ring
DE1959430A1 (en) Process for producing substantially solid bodies from metal powders
DE3406171A1 (en) METHOD FOR COMPRESSING A METAL OR CERAMIC BODY
DE2029116C3 (en) Process for the manufacture of a dense, elongated, hot-pressed body from metal powder
DE3311865C1 (en) Process for powder-metallurgical production of a hot working tool mould
WO2002055238A2 (en) Method for producing a sintered component with superimposed oscillations during the pressing process
DE4319000C1 (en) Prodn. of components out of powder materials
DE969109C (en) Process for the production of metallic hollow bodies, such as tubes, by extrusion
SU872028A1 (en) Metallic powder pressing method
DE1293964C2 (en) PROCESS FOR MANUFACTURING HIGH DENSITY SINTER IRON PARTS

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT DE FR GB IT

17P Request for examination filed

Effective date: 19820406

ITF It: translation for a ep patent filed

Owner name: JACOBACCI & PERANI S.P.A.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): AT DE FR GB IT

REF Corresponds to:

Ref document number: 9449

Country of ref document: AT

Date of ref document: 19841015

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3166124

Country of ref document: DE

Date of ref document: 19841025

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19860327

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19890416

Ref country code: AT

Effective date: 19890416

GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19891228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19900103

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST