EP0035958A2 - Mold for continuous casting - Google Patents

Mold for continuous casting Download PDF

Info

Publication number
EP0035958A2
EP0035958A2 EP81710011A EP81710011A EP0035958A2 EP 0035958 A2 EP0035958 A2 EP 0035958A2 EP 81710011 A EP81710011 A EP 81710011A EP 81710011 A EP81710011 A EP 81710011A EP 0035958 A2 EP0035958 A2 EP 0035958A2
Authority
EP
European Patent Office
Prior art keywords
gas
wall
supplied
pressure
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP81710011A
Other languages
German (de)
French (fr)
Other versions
EP0035958B1 (en
EP0035958A3 (en
Inventor
Siegfried Prof. Dr.Ing. Engler
Herbert Dipl.-Ing. Woithe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vereinigte Aluminium Werke AG
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to AT81710011T priority Critical patent/ATE8467T1/en
Publication of EP0035958A2 publication Critical patent/EP0035958A2/en
Publication of EP0035958A3 publication Critical patent/EP0035958A3/en
Application granted granted Critical
Publication of EP0035958B1 publication Critical patent/EP0035958B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D27/00Treating the metal in the mould while it is molten or ductile ; Pressure or vacuum casting
    • B22D27/04Influencing the temperature of the metal, e.g. by heating or cooling the mould
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/04Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds
    • B22D11/0401Moulds provided with a feed head
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/04Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds
    • B22D11/049Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds for direct chill casting, e.g. electromagnetic casting

Definitions

  • the invention relates to a method for the manufacture of semi-finished product from a non-ferrous metal by means of a continuous casting mold, wherein by supplying as G between the melt on the one hand and the H Dahlkopf- or ' Mold wall on the other hand, a stable pressure gas cushion is built up as a separating layer.
  • W alzbarren and ribbons ° is used any shape and alloy composition in general.
  • the separating layer formed by the gas cushion is intended to prevent the strand surface from touching the wall of the hot head and the rest of the mold wall.
  • the pressurized gas cushion is also intended for the purpose of heat dissipation or one Serve cooling, so that it comes to the so-called edge shell effect.
  • This heat dissipation or cooling in the area of the mold itself is referred to as primary cooling.
  • the strand is further cooled by water from the outside. This is known as secondary cooling.
  • the gas forming the pressure cushion is supplied at a temperature which is at least 100 ° C. above room temperature and that the mold wall remains uncooled.
  • the invention is based on the knowledge that the abovementioned errors can be avoided or reduced in their extent if, contrary to the knowledge previously considered valid, as little heat as possible is dissipated in the radial direction in the area of the mold and if the coarse outer shell zone is thus largely is avoided.
  • a significantly better surface quality of the cast strand is ensured. This in turn has the advantage that the amount of post-processing required is reduced accordingly. This can save considerable costs.
  • Carbon dioxide, nitrogen, argon, air or mixtures of these gases will advantageously be used to form the compressed gas cushion, especially since these gases are particularly low heat conductors.
  • the mold wall is heated before the casting process begins. Accordingly, the hot head wall can also be heated before the casting process begins.
  • the heating can take place either electrically or by means of the compressed gas itself, a combination of these two types of heating also being conceivable.
  • the gas is fed in at such a high temperature that radially outward transport of heat from the melt and thus an outer shell growth are largely prevented in the region of the compressed gas cushion.
  • the pressure gas cushion not only serves to prevent direct contact between the melt and the solidifying part of the strand on the one hand and the mold wall on the other hand, but also at the same time as a thermal separating layer, i.e. as a shield against a mold wall, the one has a lower temperature than the melt and the solidifying part of the strand. In other words, this means that the difference between the temperature of the gas and the liquidus temperature is kept as low as possible or even made zero.
  • the gas supplied escapes downwards and if the gas is supplied at such a pressure and in such an amount that the pressure of the gas in the pressure gas cushion is equal to or greater than the sum of the atmospheric pressure and the metallostatic Pressure of the melt in the area of the compressed gas cushion.
  • the gas used to build up the compressed gas cushion there are several options for supplying the gas used to build up the compressed gas cushion.
  • The. Gas can also be supplied at several points in the hot head cross section. It is advantageous according to the invention that the heated compressed gas is supplied both on the underside of the hot head and on the mold wall itself.
  • the gas pressure can be built up partly in an approximately vertical direction from above and partly in an approximately horizontal direction from the mold wall underneath.
  • An upper limit for the gas temperature to be selected will generally be given by the liquidus temperature or, at most, only a few degrees above this temperature. Since the melt has a temperature during casting that is higher than the liquidus temperature, such a quantity of heat can be released from the melt to the gas without disadvantages that the. corresponds to this temperature difference.
  • the continuous casting mold shown in FIG. 1 has an outer jacket part 11 and an insert part 12. Together with a base part 13 and a wall part 14, these form an annular space 15 which is closed in the circumferential direction and in which the water required for direct cooling is contained. Between the insert part 12 on the one hand and the bottom part 13 and the wall part 14 on the other hand, an annular gap-shaped channel 16 is formed, through which water is distributed over the circumference of a casting strand 17 to the outer circumferential surface thereof.
  • the wall part 14 ensures a uniform supply of the water fed into the annular space 15 at any point over the circumference.
  • the mold has a hot head 18 made of heat insulation the material, which also serves to prevent the liquid melt introduced into the mold from cooling.
  • the hot head 18 has an inwardly projecting wall 19 in contact with the melt, which at its deepest point merges into an obliquely upward and inclined underside 20.
  • a porous wall 21 adjoins the wall 19 offset to the outside. The part of the hot head 18 protruding inwards from this represents the hot head overhang 22.
  • an annular space 23 is formed by the insert part 12, the hot head 18 and by the wall 21 itself, to which gas flows via at least one channel 24 is fed under pressure.
  • the supply can alternatively also take place wholly or partly via cavities which are formed here in the form of a network 25 in the hot head 18 and in which heat can be exchanged between the gas and the hot head 18. If necessary, the mold and in particular its area formed by the hot head 18 can be additionally heated, for example by means of an electrical heater (not shown here).
  • a solidification front runs between the liquid melt, which is designated here by reference number 26, and the casting strand 17, which is made of solidified material.
  • the casting strand 17 is lowered in accordance with the progress of solidification, with new melt 26 being added at the same time.
  • the gas supplied to the annular space 23 has a temperature which corresponds approximately to the liquidus temperature and is therefore only slightly lower than the temperature of the supplied melt 26.
  • the pressure and the quantity of gas supplied in the annular space 23 are dimensioned such that the gas pressure in the compressed gas cushion corresponds approximately to the sum of the atmospheric pressure and the metallostatic pressure of the melt 26 in the region of the wall 21.
  • the pressure gas emerging from this can make contact between the wall 21 and the part of the underside 20 of the hot head 18 adjoining it, on the one hand, and the oxide skin on the outside of the casting strand 17 and in the region of the not yet solidified melt 26, on the other hand, by forming a corresponding pressure gas cushion prevent.
  • Heat dissipation in the radial direction to the outside is prevented by the temperature of the gas.
  • the solidification front 27 therefore also has a relatively flat course in the outer region, which shows that the edge shell effect which is otherwise caused by primary cooling is not or at least barely present.
  • the gas can only escape downward, since the lowest point of the wall 19 is lower than the highest point of the cross-sectional part of the melt located below the hot head overhang 22.
  • the embodiment shown in FIG. 2 contains only one differently designed hot head 28 with a side wall 29 protruding into the melt 26 downwardly open annular recess 30 of approximately U-shaped cross-section forms the underside of the hot head overhang 31.
  • the supply of the heated and pressurized gas takes place through one or more channels 32.
  • the lowest point of the wall also lies here 29 below the highest point of the cross-sectional area of the melt 26 located in the area of the recess 30.
  • the lower area of the hot head 28 is designed as a porous wall 37, behind which an annular space 38 is located. Channels 39 open into these, through which heated compressed gas can be supplied, as can channels 32.
  • the gas supplied can only escape downwards along the outside of the casting strand 17 and cannot escape upwards along the wall 29.
  • FIG. 3 shows a further embodiment only for a hot head 33, the hot head overhang 34 of which now has an obliquely downward nose from which the wall 35 projecting into the melt 26 extends upwards.
  • a portion of the heated and pressurized gas is supplied via channels 36 on the underside of the hot head overhang 34.
  • the lower region of the hot head 33 is also designed as a porous wall 40, behind which an annular space 41 is located. The latter is also supplied with heated compressed gas via channels 42.
  • the method proposed by the invention can be used advantageously not only for the continuous casting of aluminum and aluminum alloys, but generally for non-ferrous metals, for example for copper and magnesium, and their alloys.

Abstract

1. Continuous-casting mould with a wall (21, 37, 40) which is permeable to gases and through which compressed gas issues laterally towards the melt (26), and with a hot top (16, 28, 33) which is located above the mould wall, the wall of this hot-top (18, 28, 33) being inwardly offset in relation to the wall (21, 37, 40) which is permeable to gases and the lower region of this hot-top (18, 28, 33) forming a hot-top overhang (22, 31, 34), characterized in that the hot-top (18, 28, 33) is connected to the wall (21, 37, 40) which is permeable to gases, and in that the wall (21, 37, 40) which is permeable to gases is arranged independently of a liquid-cooling system which provides the primary cooling.

Description

Die Erfindung betrifft ein Verfahren zum Herstellen von Halbzeug aus einem Nichteisen-Metall durch Stranggießen mittels einer Kokille, wobei durch Zuführen von Gas zwischen der Schmelze einerseits und der Heißkopf- bzw.' Kokillenwandung andererseits ein stabiles Druckgaspolster als Trennschicht aufgebaut wird.The invention relates to a method for the manufacture of semi-finished product from a non-ferrous metal by means of a continuous casting mold, wherein by supplying as G between the melt on the one hand and the Heißkopf- or ' Mold wall on the other hand, a stable pressure gas cushion is built up as a separating layer.

Im Rahmen eines derartigen Verfahrens wird im allgemeinen eine Durchlaufkokille zur Herstellung von Rundbarren, Walzbarren und Bändern°beliebiger Form und beliebiger Legierungszusammensetzung verwendet. Die durch das Gaspolster gebildete Trennschicht soll eine Berührung der Strangoberfläche mit der Wandung des HeiBkopfes und der übrigen Kokillenwandung verhindern.In the context of such a process a continuous chill mold for the production of billets, W alzbarren and ribbons ° is used any shape and alloy composition in general. The separating layer formed by the gas cushion is intended to prevent the strand surface from touching the wall of the hot head and the rest of the mold wall.

Obwohl sich Halbzeugfabrikate mit dem Stranggießverfahren wirtschaftlicher herstellen lassen als mit der Verwendung von Standkokillen und auch eine bessere Qualität erreichbar ist, treten beim Stranggießen immer noch Fehlerscheinungen auf, die einer sofortigen Weiterverarbeitung aus dem Gußzustand entgegenstehen. Neben inneren Fehlern wie Rissen und gegebenenfalls auch Porosität gehören hierzu Oberflächenfehler, die als Welligkeit der Stranggußoberfläche, als Aufreißen derselben, als Kaltläufe, als Oberflächenseigerung oder auch als Reiblinien an der Strangoberfläche in Erscheinung treten können. Deshalb müssen die Gußprodukte vor einer Weiterverarbeitung nachbehandelt werden, zum Beispiel durch Fräsen oder durch Abdrehen.Although semi-finished products can be produced more economically with the continuous casting process than with the use of stand molds and a better quality can also be achieved, errors still occur during continuous casting that prevent immediate further processing from the as-cast state. In addition to internal defects such as cracks and possibly also porosity, this includes surface defects which can appear as waviness on the continuous casting surface, as tearing open, as cold runs, as surface segregation or as lines of friction on the strand surface. Therefore, the cast products must be post-treated before further processing, for example by milling or by turning.

Außer dem Zweck, eine Berührung zwischen der Wandung des Heißkopfes und der Kokillenwand einerseits sowie der Strangoberfläche andererseits zu verhindern, soll das Druckgaspolster gleichzeitig dem Zweck der Wärmeabfuhr bzw. einer Kühlung dienen, damit es zu dem sogenannten-Randschaleneffekt kommt. Dies bedeutet die Bildung einer Erstarrungszone im Randbereich des Stranges in Höhe der Kokillenwandung. Diese Wärmeabfuhr bzw. Kühlung im Bereich der Kokille selbst bezeichnet man als Primärkühlung. Unmittelbar vom Verlassen der Kokille an wird der Strang von außen durch Wasser weiter abgekühlt. Dies bezeichnet man als Sekundärkühlung.In addition to the purpose of preventing contact between the wall of the hot head and the mold wall on the one hand and the strand surface on the other hand, the pressurized gas cushion is also intended for the purpose of heat dissipation or one Serve cooling, so that it comes to the so-called edge shell effect. This means the formation of a solidification zone in the edge region of the strand at the level of the mold wall. This heat dissipation or cooling in the area of the mold itself is referred to as primary cooling. Immediately after leaving the mold, the strand is further cooled by water from the outside. This is known as secondary cooling.

Es war Aufgabe der vorliegenden Erfindung, das Auftreten der obengenannten Fehler, insbesondere der Oberflächenfehler, am Gußprodukt zu verhindern und eine notwendige Nachbearbeitung zu vermeiden oder zumindest das Ausmaß dieser Fehlerhaftigkeit und das Ausmaß der erforderlichen. Nachbearbeitung soweit wie möglich herabzusetzen.It is an object of the present invention, the occurrence of the above-mentioned defects, especially surface defects, to prevent the cast product and to avoid any necessary post or at least the extent of this Fehlerhafti g resistance and the extent of required. Reduce post-processing as much as possible.

Zur Lösung dieser Aufgabe wird erfindungsgemäß vorgeschlagen, daß das das Druckpolster bildende Gas mit einer Temperatur zugeleitet wird, die mindestens 100° C über der Raumtemperatur liegt, und daß die Kokillenwand ungekühlt bleibt.To achieve this object, it is proposed according to the invention that the gas forming the pressure cushion is supplied at a temperature which is at least 100 ° C. above room temperature and that the mold wall remains uncooled.

Die Erfindung beruht auf der Erkenntnis, daß sich die genannten Fehler vermeiden bzw. in ihrem Ausmaß herabsetzen lassen, wenn entgegen den bisher für gültig erachteten Erkenntnissen im Bereich der Kokille möglichst wenig Wärme in radialer Richtung nach außen abgeführt wird und wenn somit die grobe Randschalenzone weitgehend vermieden wird. Gleichzeitig wird durch die Verhinderung einer direkten Berührung zwischen der Schmelze und dem erstarrenden Teil des Stranges einerseits und der Kokillenwand andererseits eine wesentlich bessere Oberflächenbeschaffenheit des Gußstranges gewährleistet. Dies wiederum hat den Vorteil, daß das Ausmaß der notwendigen Nachbearbeitung entsprechend herabgesetzt wird. Hierdurch lassen sich erhebliche Kosten einsparen.The invention is based on the knowledge that the abovementioned errors can be avoided or reduced in their extent if, contrary to the knowledge previously considered valid, as little heat as possible is dissipated in the radial direction in the area of the mold and if the coarse outer shell zone is thus largely is avoided. At the same time, by preventing direct contact between the melt and the solidifying part of the strand, on the one hand, and the mold wall, on the other hand, a significantly better surface quality of the cast strand is ensured. This in turn has the advantage that the amount of post-processing required is reduced accordingly. This can save considerable costs.

Zur Bildung des Druckgaspolsters wird man vorteilhaft Kohlendioxid, Stickstoff, Argon, Luft oder Mischungen aus diesen Gasen verwenden, zumal diese Gase in besonders geringem Maße wärmeleitend sind.Carbon dioxide, nitrogen, argon, air or mixtures of these gases will advantageously be used to form the compressed gas cushion, especially since these gases are particularly low heat conductors.

Damit auch eine anfängliche Wärmeabfuhr in radialer Richtung zu Beginn des Gießvorganges weitgehend oder sogar vollständig vermieden werden kann, wird erfindungsgemäß vorgeschlagen, daß die Kokillenwand bereits vor Beginn des Gießvorganges beheizt wird. Entsprechend kann auch die Heißkopfwand bereits vor Beginn des Gießvorganges beheizt werden.So that an initial heat dissipation in the radial direction at the beginning of the casting process can be largely or even completely avoided, it is proposed according to the invention that the mold wall is heated before the casting process begins. Accordingly, the hot head wall can also be heated before the casting process begins.

Das Beheizen kann entweder elektrisch oder durch das Druckgas selbst erfolgen, wobei auch eine Kombination dieser beiden Beheizungsarten denkbar ist.The heating can take place either electrically or by means of the compressed gas itself, a combination of these two types of heating also being conceivable.

Weiterhin wird erfindungsgemäß vorgeschlagen, daß das Gas mit einer so hohen Temperatur zugeleitet wird, daß im Bereich des Druckgaspolsters ein radial nach außen gerichteter Transport von Wärme aus der Schmelze und damit ein Randschalenwachstum weitgehend unterbunden werden. Wenn nur die Gastemperatur ausreichend hoch ist, dient das Druckgaspolster nicht nur zur Verhinderung einer unmittelbaren Berührung zwischen der Schmelze und dem erstarrenden Teil des Stranges einerseits und der Kokillenwand andererseits, sondern gleichzeitig auch als thermische Trennschicht, das heißt als Abschirmung gegenüber einer Kokillenwand, die eine niedrigere Temperatur hat als die Schmelze und der erstarrende Teil des Stranges. Dies bedeutet mit anderen Worten, daß man die Differenz zwischen der Temperatur des Gases und der Liquidustemperatur auf einem möglichst niedrigen Wert hält oder sogar zu null werden läßt.Furthermore, it is proposed according to the invention that the gas is fed in at such a high temperature that radially outward transport of heat from the melt and thus an outer shell growth are largely prevented in the region of the compressed gas cushion. If only the gas temperature is sufficiently high, the pressure gas cushion not only serves to prevent direct contact between the melt and the solidifying part of the strand on the one hand and the mold wall on the other hand, but also at the same time as a thermal separating layer, i.e. as a shield against a mold wall, the one has a lower temperature than the melt and the solidifying part of the strand. In other words, this means that the difference between the temperature of the gas and the liquidus temperature is kept as low as possible or even made zero.

Ferner ist es erfindungsgemäß vorteilhaft, wenn das zugeführte Gas nach unten entweicht und wenn das Gas unter einem solchen Druck und in'einer solchen Menge zugeführt wird, daß der Druck des Gases im Druckgaspolster gleich oder größer ist als die Summe aus dem Atmosphärendruck und dem metallostatischen Druck der Schmelze im Bereich des Druckgaspolsters.Furthermore, it is advantageous according to the invention if the gas supplied escapes downwards and if the gas is supplied at such a pressure and in such an amount that the pressure of the gas in the pressure gas cushion is equal to or greater than the sum of the atmospheric pressure and the metallostatic Pressure of the melt in the area of the compressed gas cushion.

Für die Zuführung des zum Aufbau des Druckgaspolster dienenden Gases gibt es mehrere Möglichkeiten. Das. Gas kann auch gleichzeitig an mehreren Stellen des HeiBkopfquerschnittes zugeführt werden. So ist es erfindungsgemäß vorteilhaft, daß das erhitzte Druckgas sowohl an der Unterseite des Heißkopfes als auch an der Kokillenwand selbst zugeführt wird. Somit kann der Gasdruck teilweise in etwa senkrechter Richtung von oben her und teilweise von der darunterliegenden-Kokillenwandung aus in etwa horizontaler Richtung aufgebaut werden.There are several options for supplying the gas used to build up the compressed gas cushion. The. Gas can also be supplied at several points in the hot head cross section. It is advantageous according to the invention that the heated compressed gas is supplied both on the underside of the hot head and on the mold wall itself. Thus, the gas pressure can be built up partly in an approximately vertical direction from above and partly in an approximately horizontal direction from the mold wall underneath.

Eine obere Grenze für die zu wählende Gastemperatur wird im allgemeinen durch die Liquidustemperatur oder eine allenfalls nur wenige Grade über dieser liegende Temperatur gegeben sein. Da die Schmelze beim Gießen eine Temperatur hat, die höher ist als die Liquidustemperatur, kann ohne Nachteile eine solche Wärmemenge von der Schmelze an das Gas abgegeben werden, die die- . ser Temperaturdifferenz entspricht.An upper limit for the gas temperature to be selected will generally be given by the liquidus temperature or, at most, only a few degrees above this temperature. Since the melt has a temperature during casting that is higher than the liquidus temperature, such a quantity of heat can be released from the melt to the gas without disadvantages that the. corresponds to this temperature difference.

Nachfolgend werden einige vorteilhafte Ausgestaltungen der.Erfindung anhand einer Zeichnung näher beschrieben.Some advantageous embodiments of the invention are described in more detail below with reference to a drawing.

Im einzelnen zeigen:

  • Fig. 1 einen Teilschnitt durch eine Kokille;
  • Fig. 2 in einer der Darstellung nach Figur 1 entsprechende Darstellung einen Teilschnitt durch eine andere Ausführungsform der Kokille.
  • Fig. 3 einen Teilbereich aus einem solchen Teilschnitt, der eine andere Form des Heißkopfüberhanges darstellt.
In detail show:
  • 1 shows a partial section through a mold.
  • 2 in one of the representations according to FIG. 1 corresponding representation of a partial section through another embodiment of the mold.
  • F ig. 3 shows a partial area from such a partial section, which represents a different shape of the hot head overhang.

Für alle Ausführungsformen gilt gemeinsam, daß jeweils der links einer Mittelachse 1o befindliche Teil einer Kokille dargestellt ist, wobei diese einen kreisförmigen Querschnitt hat. Selbstverständlich ist die Erfindung auch für Kokillen anwendbar, die, eine andere Querschhittsform haben.For all embodiments it is common that the part of a mold located to the left of a central axis 10 is shown, whereby this has a circular cross section. Of course, the invention can also be used for molds which have a different cross-sectional shape.

Die in Figur 1 dargestellte Stranggießkokille hat einen äußeren Mantelteil 11 und einen Einsatzteil 12. Diese bilden zusammen mit einem Bodenteil 13 und einem Wandteil 14 einen in Umfangsrichtung geschlossenen Ringraum 15, in dem das für die direkte Kühlung benötigte Wasser enthalten ist. Zwischen dem Einsatzteil 12 einerseits und dem Bodenteil 13 und dem Wandteil 14 andererseits ist ein ringspaltförmiger Kanal 16 gebildet, durch den über den Umfang eines Gießstranges 17 verteilt Wasser an die äußere Umfangsfläche desselben herangeführt wird. Der Wandteil 14 gewährleistet über den Umfang hin eine gleichmäßige Zuführung des an beliebiger Stelle in den Ringraum 15 eingespeisten Wassers.The continuous casting mold shown in FIG. 1 has an outer jacket part 11 and an insert part 12. Together with a base part 13 and a wall part 14, these form an annular space 15 which is closed in the circumferential direction and in which the water required for direct cooling is contained. Between the insert part 12 on the one hand and the bottom part 13 and the wall part 14 on the other hand, an annular gap-shaped channel 16 is formed, through which water is distributed over the circumference of a casting strand 17 to the outer circumferential surface thereof. The wall part 14 ensures a uniform supply of the water fed into the annular space 15 at any point over the circumference.

Die Kokille hat einen Heißkopf 18 aus wärmeisolierendem Material, der unter anderem auch dazu dient, eine Abkühlung der in die Kokille eingebrachten flüssigen Schmelze zu verhindern. Der Heißkopf 18 hat eine nach innen ragende und mit der Schmelze in Berührung stehende Wandung 19, die an ihrem tiefsten Punkt in eine schräg nach oben und geneigt verlaufende Unterseite 20 übergeht. Gegenüber der Wandung 19 nach außen versetzt schließt eine poröse Wand 21 an. Der von dieser aus nach innen hervorstehende Teil des Heißkopfes 18 stellt den Heißkopfüberhang 22 dar. An der Rückseite der Wand 21 ist durch den Einsatzteil 12, den Heißkopf 18 und durch die Wand 21 selbst ein Ringraum 23 gebildet, dem über mindestens einen Kanal 24 Gas unter Druck zugeführt wird. Die Zuführung kann alternativ ganz oder teilweise auch über Hohlräume erfolgen, die hier in Form eines Netzwerkes 25 im Heißkopf 18 ausgebildet sind und in denen Wärme zwischen dem Gas und dem Heißkopf 18 getauscht, werden kann. Gegebenenfalls können die Kokille und insbesondere ihr durch den HeiBkopf 18 gebildeter Bereich zusätzlich beheizt werden, zum Beispiel mittels einer hier nicht dargestellten elektrischen Heizung.The mold has a hot head 18 made of heat insulation the material, which also serves to prevent the liquid melt introduced into the mold from cooling. The hot head 18 has an inwardly projecting wall 19 in contact with the melt, which at its deepest point merges into an obliquely upward and inclined underside 20. A porous wall 21 adjoins the wall 19 offset to the outside. The part of the hot head 18 protruding inwards from this represents the hot head overhang 22. On the rear side of the wall 21, an annular space 23 is formed by the insert part 12, the hot head 18 and by the wall 21 itself, to which gas flows via at least one channel 24 is fed under pressure. The supply can alternatively also take place wholly or partly via cavities which are formed here in the form of a network 25 in the hot head 18 and in which heat can be exchanged between the gas and the hot head 18. If necessary, the mold and in particular its area formed by the hot head 18 can be additionally heated, for example by means of an electrical heater (not shown here).

Zwischen der flüssigen Schmelze, die hier mit der Bezugsziffer 26 bezeichnet ist, und dem aus bereits erstarrtem Material bestehenden Gießstrang 17 verläuft eine mit der Bezugsziffer 27 bezeichnete Erstarrungsfront.A solidification front, designated by reference number 27, runs between the liquid melt, which is designated here by reference number 26, and the casting strand 17, which is made of solidified material.

Während des Gießens wird der Gießstrang 17 entsprechend dem Fortschritt der Erstarrung abgesenkt, wobei gleichzeitig neue Schmelze 26 hinzugegeben wird. Das dem Ringraum 23 zugeführte Gas hat eine Temperatur, die etwa der Liquidustemperatur entspricht und somit nur wenig niedriger ist als die Temperatur der zugeführten Schmelze 26. Der Druck sowie die zugeführte Menge des Gases im Ringraum 23 sind so bemessen, daß der Gasdruck im Druckgaspolster
etwa der Summe aus dem Atmosphärendruck und dem metallostatischen Druck der Schmelze 26 im Bereich der Wand 21 entspricht. Somit kann das aus dieser austretende Druckgas eine Berührung zwischen der Wand 21 und dem an diese angrenzenden Teil der Unterseite 20 des Heißkopfes 18 einerseits und der Oxydhaut an der Außenseite des Gießstranges 17 und im Bereich der noch nicht erstarrten Schmelze 26 andererseits durch Bildung eines entsprechenden Druckgaspolsters verhindern. Durch die Temperatur des Gases wird eine Wärmeabfuhr in radialer Richtung nach außen unterbunden. Die Erstarrungsfront 27 hat deshalb auch im äußeren Bereich einen verhältnismäßig flachen Verlauf, der erkennen läßt, daß der sonst durch Primärkühlung bewirkte Randschaleneffekt nicht oder zumindest kaum mehr vorhanden ist. Wie Figur 1 ferner erkennen läßt, kann das Gas nur nach unten entweichen, da der tiefste Punkt der Wandung 19 tiefer liegt, als der höchste Punkt des unterhalb des Heißkopfüberhanges 22 befindlichen Querschnittsteils der Schmelze.
During casting, the casting strand 17 is lowered in accordance with the progress of solidification, with new melt 26 being added at the same time. The gas supplied to the annular space 23 has a temperature which corresponds approximately to the liquidus temperature and is therefore only slightly lower than the temperature of the supplied melt 26. The pressure and the quantity of gas supplied in the annular space 23 are dimensioned such that the gas pressure in the compressed gas cushion
corresponds approximately to the sum of the atmospheric pressure and the metallostatic pressure of the melt 26 in the region of the wall 21. Thus, the pressure gas emerging from this can make contact between the wall 21 and the part of the underside 20 of the hot head 18 adjoining it, on the one hand, and the oxide skin on the outside of the casting strand 17 and in the region of the not yet solidified melt 26, on the other hand, by forming a corresponding pressure gas cushion prevent. Heat dissipation in the radial direction to the outside is prevented by the temperature of the gas. The solidification front 27 therefore also has a relatively flat course in the outer region, which shows that the edge shell effect which is otherwise caused by primary cooling is not or at least barely present. As can also be seen in FIG. 1, the gas can only escape downward, since the lowest point of the wall 19 is lower than the highest point of the cross-sectional part of the melt located below the hot head overhang 22.

Erst unterhalb der porösen Wand 21 und damit unterhalb der Erstarrungsfront 27 erfolgt eine Kühlung durch das aus dem ringspaltförmigen Kanal 16 austretende Wasser. Unmittelbar im Austrittsbereich des Kanals 16 wird die Kühlwirkung an der Außenfläche des Gießstranges 17 zunächst noch dadurch etwas herabgesetzt, daß das Druckgas dort mit einer verhältnismäßig hohen Temperatur austritt. Für Aluminium-Strangguß zum Beispiel gilt eine Temperatur in der Größenordnung von 700° C.Only below the porous wall 21 and thus below the solidification front 27 is there cooling by the water emerging from the annular gap-shaped channel 16. Immediately in the exit region of the channel 16, the cooling effect on the outer surface of the casting strand 17 is initially somewhat reduced by the fact that the compressed gas exits there at a relatively high temperature. For example, for aluminum continuous casting, a temperature in the order of 700 ° C applies.

Gegenüber der Ausführungsform nach Figur 1 enthält die in Figur 2 dargestellte Ausführungsform nur einen unterschiedlich ausgebildeten Heißkopf 28 mit einer in die Schmelze 26 hineinragenden seitlichen Wandung 29. Eine nach unten offene ringförmige Aussparung 30 von etwa U-förmigem Querschnitt bildet die Unterseite des Heißkopfüberhanges 31. Die Zuführung des erwärmten und unter Druck stehenden Gases erfolgt durch ein oder mehrere Kanäle 32. Wie Figur 2 erkennen läßt, liegt auch hier der tiefste Punkt der Wandung 29 unterhalb des höchsten Punktes des im Bereich der Aussparung 30 befindlichen Querschnittsbereiches der Schmelze 26. Der untere Bereich des Heißkopfes 28 ist als poröse Wand 37 ausgebildet, hinter der sich ein Ringraum 38 befindet. In diesen münden Kanäle 39, durch die ebenso wie durch die Kanäle 32 erhitztes Druckgas zugeführt werden kann. Wie Figur 2 erkennen läßt, kann das zugeführte Gas nur an der Außenseite des Gießstranges 17 entlang nach unten entweichen und nicht entlang der Wandung 29 nach oben austreten.Compared to the embodiment according to FIG. 1, the embodiment shown in FIG. 2 contains only one differently designed hot head 28 with a side wall 29 protruding into the melt 26 downwardly open annular recess 30 of approximately U-shaped cross-section forms the underside of the hot head overhang 31. The supply of the heated and pressurized gas takes place through one or more channels 32. As can be seen in FIG. 2, the lowest point of the wall also lies here 29 below the highest point of the cross-sectional area of the melt 26 located in the area of the recess 30. The lower area of the hot head 28 is designed as a porous wall 37, behind which an annular space 38 is located. Channels 39 open into these, through which heated compressed gas can be supplied, as can channels 32. As can be seen in FIG. 2, the gas supplied can only escape downwards along the outside of the casting strand 17 and cannot escape upwards along the wall 29.

Figur 3 schließlich zeigt eine weitere Ausführungsform nur für einen Heißkopf 33, dessen Heißkopf-Uberhang 34 jetzt eine schräg nach unten gerichtete Nase hat, von der aus sich die in die Schmelze 26 hineinragende Wandung 35 nach oben erstreckt. Ein Teil des erwärmten und unter entsprechendem Druck stehenden Gases wird über Kanäle 36 an der Unterseite des HeißkopfÜberhanges 34 zugeführt. Im übrigen ist auch hier der untere Bereich des Heißkopfes 33 als poröse Wand 4o ausgebildet, hinter der sich ein Ringraum 41 befindet. Letzterer wird über Kanäle 42 ebenfalls mit erhitztem Druckgas versorgt.Finally, FIG. 3 shows a further embodiment only for a hot head 33, the hot head overhang 34 of which now has an obliquely downward nose from which the wall 35 projecting into the melt 26 extends upwards. A portion of the heated and pressurized gas is supplied via channels 36 on the underside of the hot head overhang 34. For the rest, the lower region of the hot head 33 is also designed as a porous wall 40, behind which an annular space 41 is located. The latter is also supplied with heated compressed gas via channels 42.

Im übrigen gilt, soweit es hier nicht ausdrücklich unter Bezug auf die Figuren 2 und/oder 3 anders beschrieben ist, daß im Zusammenhang mit der Ausführungsform nach Figur 1 Gesagte.Otherwise, unless expressly described here with reference to FIGS. 2 and / or 3, what has been said in connection with the embodiment according to FIG. 1 applies.

Das von der Erfindung vorgeschlagene Verfahren ist nicht nur zum Stranggießen von Aluminium und Aluminium-Legierungen mit Vorteil anwendbar, sondern allgemein für Nichteisen-Metalle, zum Beispiel für Kupfer und Magnesium, sowie deren Legierungen.The method proposed by the invention can be used advantageously not only for the continuous casting of aluminum and aluminum alloys, but generally for non-ferrous metals, for example for copper and magnesium, and their alloys.

Durch die Unterbringung von Kühlwasser in dem Ringraum 15 und durch die Ableitung desselben über den ringspaltförmigen Kanal 16 wird in keinem Fall eine indirekte Kühlung der Schmelze auf dem Weg über die Kokillenwand bewirkt. Ein Wärmefluß bestimmter Größe durch den Heißkopf insbesondere in'Richtung auf das Kühlwasser ist unvermeidbar, im übrigen aber für das Verfahren ohne Bedeutung. Es ist aber vorteilhaft, das Kühlsystem so auszubilden und mit Hilfe des ringspaltförmigen Kanals 16 die Kühlung in einer genau definierten und scharf begrenzten Zone des Gußstranges zur Wirkung zu bringen, um eine möglichst gleichmäßige Schrumpfung des Gußstranges über dem Umfang zu erzielen.By accommodating cooling water in the annular space 15 and by draining it via the annular-shaped channel 16, indirect cooling of the melt on the way over the mold wall is never brought about. A heat flow of a certain size through the hot head, in particular in the direction of the cooling water, is unavoidable, but is otherwise of no importance for the process. However, it is advantageous to design the cooling system and to bring the cooling into effect in a precisely defined and sharply delimited zone of the cast strand with the aid of the annular gap-shaped channel 16 in order to achieve the most uniform possible shrinkage of the cast strand over the circumference.

BezugsziffernlisteReference number list

  • 10 Mittelachse10 central axis
  • 11 Mantelteil11 jacket part
  • 12 Einsatzteil12 insert
  • 13 Bodenteil13 bottom part
  • 14 Wandteil14 wall part
  • 15 Ringraum15 annulus
  • 16 Kanal16 channel
  • 17 Gießstrang17 casting strand
  • 18 Heißkopf18 hot head
  • 19 Wandung19 wall
  • 20 Unterseite .20 bottom.
  • 21 Wand21 wall
  • 22 Heißkopfüberhang22 Hot head overhang
  • 23 Ringraum23 annulus
  • 24 Kanal24 channel
  • 25 Netzwerk25 network
  • 26 Schmelze26 melt
  • 27 Erstarrungsfront27 Solidification front
  • 28 Heißkopf28 hot head
  • 29 Wandung29 wall
  • 30 Aussparung30 recess
  • 31 Heißkopfüberhang31 Hot head overhang
  • 32 Kanal32 channel
  • 33 Heißkopf33 hot head
  • 34 Heißkopfüberhang34 Hot head overhang
  • 35 Wandung35 wall
  • 36 Kanal36 channel
  • 37 Wand37 wall
  • 38 Ringraum38 annulus
  • 39 Kanal39 channel
  • 40 Wand40 wall
  • 41 Ringraum41 annulus
  • 42 Kanal42 channel

Claims (10)

1. Verfahren zum Herstellen von Halbzeug aus einem Nichteisen-Metall durch Stranggießen mittels einer Kokille, wobei durch Zuführung von Gas zwischen der Schmelze einerseits und der Heißkopf- bzw. Kokillenwandung andererseits ein stabiles Druckgaspolster als Trennschicht aufgebaut wird, dadurch gekennzeichnet, daß das Gas mit einer Temperatur zugeleitet wird, die mindestens 100°C über der Raumtemperatur liegt, und daß die Kokillenwand ungekühlt bleibt.1. A process for the production of semi-finished products from a non-ferrous metal by continuous casting using a mold, a stable pressure gas cushion being built up as a separating layer by supplying gas between the melt on the one hand and the hot-head or mold wall on the other hand, characterized in that the gas with is supplied to a temperature which is at least 100 ° C above room temperature, and that the mold wall remains uncooled. 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Kokillenwand bereits vor Beginn des Gießvorganges beheizt wird.2. The method according to claim 1, characterized in that the mold wall is heated before the start of the casting process. 3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Heißkopfwand bereits vor Beginn des Gießvorganges beheizt wird.3. The method according to claim 1 or 2, characterized in that the hot head wall is heated before the start of the casting process. 4. Verfahren nach Anspruch 2 oder 3, dadurch gekennzeichnet, daß das Beheizen elektrisch erfolgt.4. The method according to claim 2 or 3, characterized in that the heating takes place electrically. 5. Verfahren nach Anspruch 2 oder 3, dadurch gekennzeichnet, daß das Beheizen durch das Druckgas selbst erfolgt.5. The method according to claim 2 or 3, characterized in that the heating is carried out by the compressed gas itself. 6. Verfahren nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, daß das Gas mit einer so hohen Temperatur zugeleitet wird, daß im Bereich des Druckgaspolsters ein radial nach außen gerichteter Transport von Wärme aus der Schmelze und damit ein Randschalenwachstum weitgehend unterbunden werden.6. The method according to any one of the preceding claims, characterized in that the gas is supplied at such a high temperature that a radially outward transport of heat from the melt and thus an edge shell growth are largely prevented in the region of the pressure gas cushion. 7. Verfahren nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, daß das zugeführte Gas nach unten entweicht und daß das Gas unter einem solchen Druck und in einer solchen Menge zugeführt wird, daß der Druck des Gases im Druckgaspolster gleich oder größer ist als die Summe aus dem Atmosphärendruck und dem metallostatischen Druck der Schmelze im Bereich-des Druckgaspolsters.7. The method according to any one of the preceding claims, characterized in that the supplied gas escapes downwards and that the gas is supplied under such a pressure and in such an amount that the pressure of the gas in the pressure gas cushion is equal to or greater than the sum of the atmospheric pressure and the metallostatic pressure of the melt in the area of the compressed gas cushion. 8. Verfahren nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, daß zur Bildung des Druckgaspolsters Kohlendioxid, Stickstoff, Argon, Luft oder Mischungen aus diesen Gasen dienen.8. The method according to any one of the preceding claims, characterized in that carbon dioxide, nitrogen, argon, air or mixtures of these gases are used to form the compressed gas cushion. 9. Verfahren nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, daß das erhitzte Druckgas sowohl an der Unterseite des Heißkopfes als auch an der Kokillenwand selbst zugeführt wird.9. The method according to any one of the preceding claims, characterized in that the heated compressed gas is supplied both on the underside of the hot head and on the mold wall itself. 10. Verfahren nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, daß das erhitzte Druckgas durch poröse Wandungsteile dem Druckgaspolster zugeführt wird.1 0 . Method according to one of the preceding claims, characterized in that the heated compressed gas is supplied to the compressed gas cushion through porous wall parts.
EP81710011A 1980-03-07 1981-03-04 Mold for continuous casting Expired EP0035958B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT81710011T ATE8467T1 (en) 1980-03-07 1981-03-04 CONTINUOUS CASTING MOLD.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3008781A DE3008781C2 (en) 1980-03-07 1980-03-07 Process for the continuous casting of metals
DE3008781 1980-03-07

Publications (3)

Publication Number Publication Date
EP0035958A2 true EP0035958A2 (en) 1981-09-16
EP0035958A3 EP0035958A3 (en) 1981-11-25
EP0035958B1 EP0035958B1 (en) 1984-07-18

Family

ID=6096546

Family Applications (1)

Application Number Title Priority Date Filing Date
EP81710011A Expired EP0035958B1 (en) 1980-03-07 1981-03-04 Mold for continuous casting

Country Status (3)

Country Link
EP (1) EP0035958B1 (en)
AT (1) ATE8467T1 (en)
DE (2) DE3008781C2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3338185A1 (en) * 1982-10-20 1984-05-03 Wagstaff Engineering Inc., Spokane, Wash. METHOD AND DEVICE FOR CASTING METALS
FR2747060A1 (en) * 1996-04-05 1997-10-10 Ugine Savoie Sa CONTINUOUS CASTING PROCESS FOR METALS AND CASTING PLANT FOR IMPLEMENTING SAME
BE1015358A3 (en) * 2003-02-12 2005-02-01 Ct Rech Metallurgiques Asbl Continuous pouring procedure for molten metal uses feeder of refractory material and double meniscus
EP1704004A1 (en) * 2003-12-11 2006-09-27 Novelis Inc. Horizontal continuous casting of metals
CN105108080A (en) * 2015-08-05 2015-12-02 东北大学 Semicontinuous casting crystallizer for restraining cracking of magnesium alloy ingot blank and use method of semicontinuous casting crystallizer
CN110340329A (en) * 2019-08-28 2019-10-18 江苏亚太航空科技有限公司 A kind of aluminium and aluminium alloy low pressure Semi-continuous casting crystallizer cooling system

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3207777C2 (en) * 1982-03-04 1984-09-06 Deutsche Forschungs- und Versuchsanstalt für Luft- und Raumfahrt e.V., 5000 Köln Method and device for continuous pipe casting of metals, inbes. Nickel and cobalt alloys
EP0109170B2 (en) * 1982-10-15 1990-01-24 Alcan International Limited Improvements in casting aluminium alloys
US4598763A (en) * 1982-10-20 1986-07-08 Wagstaff Engineering, Inc. Direct chill metal casting apparatus and technique
FR2585597B1 (en) * 1985-07-30 1987-10-09 Pechiney Aluminium METHOD AND DEVICE FOR CASTING IN METAL LOAD
FR2599650B2 (en) * 1985-07-30 1988-08-26 Pechiney Aluminium METAL LOADING DEVICE
CA2071902A1 (en) * 1989-11-01 1991-05-02 Alcan International Limited Method of controlling the rate of heat extraction in mould casting
US5873405A (en) * 1997-06-05 1999-02-23 Alcan International Limited Process and apparatus for direct chill casting
US7322397B2 (en) * 2004-11-16 2008-01-29 Rmi Titanium Company Continuous casting of reactionary metals using a glass covering
CN110842048B (en) * 2019-11-27 2021-05-28 杭州富通电线电缆有限公司 Method for producing copper rod and copper rod wire drawing device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE833394C (en) * 1942-01-14 1952-03-06 Wieland Werke Ag Casting mold for continuous casting of metals
DE869541C (en) * 1943-10-23 1953-03-05 Wieland Werke Ag Heated casting mold for continuous casting of metals
FR2090111A1 (en) * 1970-05-18 1972-01-14 Livanov Vladimir Ptfe gas evolving boundary layer - on continuous casting mould
GB2014487A (en) * 1978-02-18 1979-08-30 British Aluminium Co Ltd Varying metal-mould contact in continuous casting

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2518903A1 (en) * 1974-07-12 1976-01-22 Atsumi Ohno Continuous casting billets free from surface defects - using gas-curtain in mould to prevent melt touching the mould wall
NO790471L (en) * 1978-02-18 1979-08-21 British Aluminium Co Ltd CAST METALS.

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE833394C (en) * 1942-01-14 1952-03-06 Wieland Werke Ag Casting mold for continuous casting of metals
DE869541C (en) * 1943-10-23 1953-03-05 Wieland Werke Ag Heated casting mold for continuous casting of metals
FR2090111A1 (en) * 1970-05-18 1972-01-14 Livanov Vladimir Ptfe gas evolving boundary layer - on continuous casting mould
GB2014487A (en) * 1978-02-18 1979-08-30 British Aluminium Co Ltd Varying metal-mould contact in continuous casting

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3338185A1 (en) * 1982-10-20 1984-05-03 Wagstaff Engineering Inc., Spokane, Wash. METHOD AND DEVICE FOR CASTING METALS
FR2747060A1 (en) * 1996-04-05 1997-10-10 Ugine Savoie Sa CONTINUOUS CASTING PROCESS FOR METALS AND CASTING PLANT FOR IMPLEMENTING SAME
WO1997037795A1 (en) * 1996-04-05 1997-10-16 Ugine Savoie Facility and method for the continuous casting of metals
KR100449675B1 (en) * 1996-04-05 2005-01-15 아스꼬메탈 Facility and method for the continuous casting of metals
BE1015358A3 (en) * 2003-02-12 2005-02-01 Ct Rech Metallurgiques Asbl Continuous pouring procedure for molten metal uses feeder of refractory material and double meniscus
EP1704004A1 (en) * 2003-12-11 2006-09-27 Novelis Inc. Horizontal continuous casting of metals
EP1704004A4 (en) * 2003-12-11 2007-03-07 Novelis Inc Horizontal continuous casting of metals
NO337972B1 (en) * 2003-12-11 2016-07-18 Novelis Inc Molding and horizontal casting method
CN105108080A (en) * 2015-08-05 2015-12-02 东北大学 Semicontinuous casting crystallizer for restraining cracking of magnesium alloy ingot blank and use method of semicontinuous casting crystallizer
CN105108080B (en) * 2015-08-05 2017-03-29 东北大学 Suppress the Semi-continuous casting crystallizer and its using method of magnesium alloy ingot blank cracking
CN110340329A (en) * 2019-08-28 2019-10-18 江苏亚太航空科技有限公司 A kind of aluminium and aluminium alloy low pressure Semi-continuous casting crystallizer cooling system

Also Published As

Publication number Publication date
EP0035958B1 (en) 1984-07-18
DE3008781A1 (en) 1981-09-17
EP0035958A3 (en) 1981-11-25
DE3164805D1 (en) 1984-08-23
DE3008781C2 (en) 1982-08-26
ATE8467T1 (en) 1984-08-15

Similar Documents

Publication Publication Date Title
EP0035958A2 (en) Mold for continuous casting
DE2909990A1 (en) METHOD OF CASTING BLOCKS
CH661673A5 (en) CONTINUOUS METHOD FOR METALS AND DEVICE FOR IMPLEMENTING IT.
DE202013012631U1 (en) In-situ homogenization of DC cast metals with additional quenching
DE10051959A1 (en) Method and device for continuous casting and subsequent shaping of a steel casting strand, in particular a casting strand with block format or pre-profile format
DD141276A5 (en) METHOD AND APPARATUS FOR THE CONTINUOUS CASTING OF ROUGHFUL PRODUCTS
DE2426979A1 (en) CONTINUOUS CASTING PROCESS FOR CASTING BLOCKS OR STRIPS MADE OF METAL
DE2518903A1 (en) Continuous casting billets free from surface defects - using gas-curtain in mould to prevent melt touching the mould wall
DE60205168T2 (en) Method and device for vertical casting of rough blocks and ingot produced in this way
DE3832306C2 (en) Method and device for continuous casting of hollow metal blocks
DE1252375B (en) Process for casting steel alloys using the low-pressure casting process and further processing of the cast parts
DE3247002C1 (en) Method and device for casting thin steel strands during continuous casting
DE19710887C2 (en) Use of a mold for the production of bars from light metal or a light metal alloy, in particular from magnesium or a magnesium alloy
DE2406252C3 (en) Method and device for continuous casting and further processing of the cast strand
DE640080C (en) Casting mold for making ingots
DE1925862A1 (en) Process for the production of strands in the continuous casting process and device for carrying out the process
DD239546A5 (en) METHOD FOR ADJUSTING THE HEIGHT OF THE GUIDE LINE OF THE FREE METAL SURFACE WITH THE COCKULE IN VERTICAL CASTING
EP0229589B1 (en) Device and process for continuous casting of metals
DE3502532A1 (en) DEVICE FOR THE CONTINUOUS PRODUCTION OF HOLLOW METAL CASTING BLOCKS
DE1218120B (en) Device for continuous casting of metal bars
DE916575C (en) Process for the continuous casting of metallic materials
DE1931206A1 (en) Method and device for the continuous casting of metal
DE2551587A1 (en) METHOD OF MANUFACTURING STEEL BLOCKS
EP0846510B1 (en) Use of a mould for producing bars of light metal or their alloys, especially magnesium or magnesium alloy
DE2124134A1 (en) Process for the continuous casting of metal blocks and permanent molds for carrying out this process

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT NL SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT NL SE

17P Request for examination filed

Effective date: 19811027

ITF It: translation for a ep patent filed

Owner name: DR. ING. A. RACHELI & C.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LI NL SE

REF Corresponds to:

Ref document number: 8467

Country of ref document: AT

Date of ref document: 19840815

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3164805

Country of ref document: DE

Date of ref document: 19840823

ET Fr: translation filed
BECH Be: change of holder

Free format text: 840718 *VERREINIGTE ALUMINIUM-WERKE A.G.

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: VEREINIGTE ALUMINIUMWERKE AKTIENGESELLSCHAFT, BERL

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

ITPR It: changes in ownership of a european patent

Owner name: CESSIONE;VEREINIGTE ALUMINIUM - WERKE AG

NLS Nl: assignments of ep-patents

Owner name: VEREINIGTE ALUMINIUM-WERKE AKTIENGESELLSCHAFT TE B

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732

ITTA It: last paid annual fee
EAL Se: european patent in force in sweden

Ref document number: 81710011.8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19950210

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19950317

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19950324

Year of fee payment: 15

Ref country code: AT

Payment date: 19950324

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19950331

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19950406

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19950418

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19950523

Year of fee payment: 15

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19960304

Ref country code: AT

Effective date: 19960304

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19960305

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19960331

Ref country code: CH

Effective date: 19960331

Ref country code: BE

Effective date: 19960331

BERE Be: lapsed

Owner name: VERREINIGTE ALUMINIUM-WERKE A.G.

Effective date: 19960331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19961001

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19960304

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19961129

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19961001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19961203

EUG Se: european patent has lapsed

Ref document number: 81710011.8

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST