EP0035756B1 - Process and apparatus for decreasing heat and mass transfer in the immediate wall surroundings of fluidized bed reactors - Google Patents
Process and apparatus for decreasing heat and mass transfer in the immediate wall surroundings of fluidized bed reactors Download PDFInfo
- Publication number
- EP0035756B1 EP0035756B1 EP81101578A EP81101578A EP0035756B1 EP 0035756 B1 EP0035756 B1 EP 0035756B1 EP 81101578 A EP81101578 A EP 81101578A EP 81101578 A EP81101578 A EP 81101578A EP 0035756 B1 EP0035756 B1 EP 0035756B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- fluidized bed
- reactor
- wall
- walls
- heat
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000000034 method Methods 0.000 title claims description 7
- 238000012546 transfer Methods 0.000 title description 10
- 230000003247 decreasing effect Effects 0.000 title 1
- 239000000463 material Substances 0.000 claims description 15
- 239000012530 fluid Substances 0.000 claims description 8
- 239000010410 layer Substances 0.000 description 9
- 239000007787 solid Substances 0.000 description 9
- 238000006243 chemical reaction Methods 0.000 description 6
- 238000002485 combustion reaction Methods 0.000 description 6
- 230000002829 reductive effect Effects 0.000 description 6
- 230000000694 effects Effects 0.000 description 5
- 230000003628 erosive effect Effects 0.000 description 4
- 230000017525 heat dissipation Effects 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 3
- 238000009413 insulation Methods 0.000 description 3
- 239000004576 sand Substances 0.000 description 3
- 230000035882 stress Effects 0.000 description 3
- 238000005243 fluidization Methods 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 1
- 229920005372 Plexiglas® Polymers 0.000 description 1
- 238000004026 adhesive bonding Methods 0.000 description 1
- 238000009412 basement excavation Methods 0.000 description 1
- 239000011449 brick Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000009417 prefabrication Methods 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 239000011241 protective layer Substances 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D13/00—Heat-exchange apparatus using a fluidised bed
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J8/00—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
- B01J8/18—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
- B01J8/1836—Heating and cooling the reactor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J8/00—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
- B01J8/18—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
- B01J8/1872—Details of the fluidised bed reactor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16L—PIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
- F16L59/00—Thermal insulation in general
- F16L59/14—Arrangements for the insulation of pipes or pipe systems
- F16L59/147—Arrangements for the insulation of pipes or pipe systems the insulation being located inwardly of the outer surface of the pipe
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2208/00—Processes carried out in the presence of solid particles; Reactors therefor
- B01J2208/00008—Controlling the process
- B01J2208/00017—Controlling the temperature
- B01J2208/00106—Controlling the temperature by indirect heat exchange
- B01J2208/00115—Controlling the temperature by indirect heat exchange with heat exchange elements inside the bed of solid particles
- B01J2208/00132—Tubes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2208/00—Processes carried out in the presence of solid particles; Reactors therefor
- B01J2208/00008—Controlling the process
- B01J2208/00017—Controlling the temperature
- B01J2208/00477—Controlling the temperature by thermal insulation means
- B01J2208/00495—Controlling the temperature by thermal insulation means using insulating materials or refractories
Definitions
- the invention relates to a method and a device for reducing the heat, material and pulse exchange in the immediate vicinity of the wall in fluidized bed reactors, in which a granular solid is flown by a fluid from below and is thereby set into an intensive, whirled movement (fluidized bed).
- the reduction in heat, material and pulse exchange is e.g. B. in chemical reactors or combustion chambers is often desirable in order to reduce heat loss or to protect the walls at the same time from corrosive and erosive stress.
- fluidized beds Due to the intensive movement of solids, fluidized beds have z. B. an extraordinarily good heat transfer capacity.
- the heat transfer coefficients on the fluidized bed side are, for example, about an order of magnitude higher than in heat exchangers which are only exposed to gas (M. Baerns, Chem. Lng. Techn., 40 [1968], 737). This property, which is often quite desirable, can lead to undesirably high heat dissipation via the reactor walls in some applications or in certain operating phases.
- the mass transfer in fluidized beds is also greatly promoted by the swirling of the solid, so that mixing of solids in fluidized bed reactors can easily be carried out and lead to very homogeneous products.
- ceramic linings e.g. B. by stamping or masonry, common (Lueger, Lexikon dertechnik, 4th edition [1965], Vol. 7, page 266, Stuttgart).
- the peculiarity of the brick lining means that the number of wall penetrations is kept as low as possible at these points due to the increased susceptibility to failure of the lining.
- fluidized bed reactors with high thermal stress on the reaction space such as. B. high-performance combustion chambers, but must be cooled by a heat exchanger immersed in the layer in order to be able to regulate the reaction temperature.
- the walls are not suitable due to the large number of openings; one rather uses cooled fin tube walls, in which bushings are easy to manufacture and which have sufficient strength.
- the increased heat dissipation via the cooled walls must be accepted with this design (E. Wied, steam generator with fluidized bed combustion under atmospheric and excess pressure conditions, VGB-Krafttechnikstechnik, 58 [1978], 8, 554).
- this design E. Wied, steam generator with fluidized bed combustion under atmospheric and excess pressure conditions, VGB-Krafttechnik, 58 [1978], 8, 554
- stamping out the reactor with a heat-insulating material has only a comparatively small effect, since the number of fastening pins in the wall only slightly reduces the heat transfer coefficient.
- the durability of the stamping out in the area of the many bushings, as are required for heat exchanger bundles is very limited, and damage can only be eliminated with great effort. This also applies if a lining does not have to be installed for thermal insulation, but for protection against corrosive and erosive attack (W. Gumz, Short Manual of Fuel and Furnace Technology, 3rd edition, pages 600-603, Berlin, Göttingen, Heidelberg, 1962; Koppers Handbuch der Fueltechnik, 3rd edition, page 363, Essen).
- the invention is therefore based on the object of overcoming the aforementioned disadvantages without significantly changing the favorable properties of the fluidized bed.
- the heat transfer through the reactor walls as well as the mass and momentum exchange near the wall should be significantly reduced.
- this object can be achieved in a surprisingly simple and technically advanced manner according to the present invention if the flow resistance for the fluid near the wall is increased to such an extent that the fluidized bed is no longer whirled up in this area.
- This can be achieved by installing internals in the reaction apparatus which protrude from the reactor walls.
- these internals are preferably rib-shaped with a preferably horizontal extension.
- the spacing of the ribs in the flow direction of the fluid is at most about half as large as the rib height transversely thereto.
- the ribs can protrude perpendicularly from the wall or can be inclined.
- the internals can also be arranged according to the invention parallel to the reactor wall and form a gap therewith, the width u. a. depends on the desired insulation effect.
- the internals according to the invention can be installed in segments, which reduces the thermal material stresses and simplifies the assembly and possible storage of such ribs and enables prefabrication and also subsequent installation.
- Internals according to the invention can be attached to the inner wall of the reactor by welding, screwing, gluing or similar techniques will. In any case, they offer the advantage of a certain stiffening of the reactor wall and it is therefore possible to reduce the material dimensions and / or other stiffening, as are common especially in thermally stressed reactors. As far as the internals are those that are arranged parallel to the reactor wall and form a gap with it, it can be advantageous to use this z. B. give a scale structure to stabilize them against heat distortion. The latter is particularly recommended if the internals in question consist of sheet metal strips bent according to the shape of the reactor.
- the fluidized material itself is used to protect the wall or to insulate the fluidized bed reactor. Therefore, no complex stamping or the like has to be carried out, but when the reactor is filled with layer material and the subsequent fluidization, the protective layer automatically forms in the rest zone. In addition, the material flows out of the rest zone when draining the reactor filling, for example when the apparatus is shut down, and gives the walls z. B. free for inspections.
- baffles installed parallel to the wall are particularly suitable for draining the layer material completely out of the quiet zone, while rib-shaped baffles provide particularly good accessibility to the walls after the layer material has been drained and also e.g. B. can pass through between the rows of tubes of a heat exchanger bundle without difficulty.
- rib-shaped baffles provide particularly good accessibility to the walls after the layer material has been drained and also e.g. B. can pass through between the rows of tubes of a heat exchanger bundle without difficulty.
- special effects can be achieved, e.g. B. complete drainage of the layer material when emptying the reactor or vice versa a retention of a particularly large amount of layer material on the walls even after emptying the reactor.
- Another advantage is that there is no need to take into account the thermal shock resistance of brickwork or excavations, i. H. regardless of its protective equipment, the reactor can be heated or cooled as quickly as required.
- the internals protruding from the fluidized bed reactor wall 5 can either be straight 6 or inclined 7, 8, angled upwards 9 or downwards 10 or can also be arranged parallel to the reactor wall 5. In the latter case, they can be held, for example, by spacers 12, which can be designed so that they additionally hinder the movement of solids. This creates a gap 13 with the inner wall of the reactor.
- Ribs (according to figure - reference numerals 6 to 10) of approximately 80 mm in height and approximately 40 mm from one another were selected as internals, which stood essentially perpendicularly from the inner wall of the reactor. Pipes were led through the wall between the internals, as shown in the figure; Eddy material was sand. The internals were only attached to one side of the rectangular model reactor, the walls of which were made of plexiglass. When the sand was whirled up, it became clear that intensive solid movement also occurred on the walls without fittings, also around the pipes passed through the wall, but in the area of the fittings according to the invention the sand was completely at rest.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Combustion & Propulsion (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
- Fluidized-Bed Combustion And Resonant Combustion (AREA)
Description
Die Erfindung betrifft ein Verfahren und eine Vorrichtung zur Verminderung des Wärme-, Stoff- und Impulsaustausches in unmittelbarer Wandnähe in Wirbelschichtreaktoren, in denen ein gekörnter Feststoff durch ein Fluid von unten angeströmt und dadurch in eine intensive, aufgewirbelte Bewegung versetzt wird (Wirbelschicht).The invention relates to a method and a device for reducing the heat, material and pulse exchange in the immediate vicinity of the wall in fluidized bed reactors, in which a granular solid is flown by a fluid from below and is thereby set into an intensive, whirled movement (fluidized bed).
Die Verminderung des Wärme-, Stoff- und Impulsaustausches ist z. B. bei chemischen Reaktoren oder Brennkammern häufig wünschenswert, um die Wärmeverluste zu verringern oder auch die Wandungen eventuell gleichzeitig vor korrosiver und erosiver Beanspruchung zu schützen.The reduction in heat, material and pulse exchange is e.g. B. in chemical reactors or combustion chambers is often desirable in order to reduce heat loss or to protect the walls at the same time from corrosive and erosive stress.
Infolge der intensiven Feststoffbewegung weisen Wirbelschichten z. B. ein außerordentlich gutes Wärmeübertragungsvermögen auf. Die wirbelschichtseitigen Wärmeübergangskoeffizienten sind beispielsweise etwa eine Größenordnung höher als bei Wärmetauschern, die nur von Gas beaufschlagt werden (M. Baerns, Chem. lng. Techn., 40 [1968], 737). Diese häufig durchaus erwünschte Eigenschaft kann in manchen Anwendungsfällen oder in bestimmten Betriebsphasen zu ungewollt hohen Wärmeableitungen über die Reaktorwandungen führen. Auch der Stoffaustausch wird in Wirbelschichten durch die Aufwirbelung des Feststoffes stark begünstigt, so daß Vermischungen von Feststoffen in Wirbelschichtreaktoren leicht durchgeführt werden können und zu sehr homogenen Produkten führen.Due to the intensive movement of solids, fluidized beds have z. B. an extraordinarily good heat transfer capacity. The heat transfer coefficients on the fluidized bed side are, for example, about an order of magnitude higher than in heat exchangers which are only exposed to gas (M. Baerns, Chem. Lng. Techn., 40 [1968], 737). This property, which is often quite desirable, can lead to undesirably high heat dissipation via the reactor walls in some applications or in certain operating phases. The mass transfer in fluidized beds is also greatly promoted by the swirling of the solid, so that mixing of solids in fluidized bed reactors can easily be carried out and lead to very homogeneous products.
Um unerwünscht hohe Wärmeableitungen über die Wandungen und/oder korrosiven und erosiven Angriff zu vermindern, sind keramische Auskleidungen, z. B. durch Ausstampfen oder Ausmauern, üblich (Lueger, Lexikon der Technik, 4. Auflage [1965], Bd. 7, Seite 266, Stuttgart). Die Eigenart der Ausmauerung bedingt es jedoch, daß die Anzahl der Wanddurchführungen wegen der erhöhten Störanfälligkeit der Auskleidung an diesen Stellen so gering wie möglich gehalten wird. Bei Wirbelschichtreaktoren mit hoher thermischer Belastung des Reaktionsraumes, wie z. B. Hochleistungsbrennkammern, muß jedoch durch einen in die Schicht eintauchenden Wärmetauscher gekühlt werden, um die Reaktionstemperatur regeln zu können. In diesem Fall ist eine Ausmauerung der Wände wegen der vielen Durchführungen unzweckmäßig; man wendet dabei vielmehr gekühlte Flossenrohrwände an, bei denen Durchführungen leicht herzustellen sind und die eine ausreichende Festigkeit haben. Die erhöhte Wärmeableitung über die gekühlten Wände muß bei dieser Konstruktion aber hingenommen werden (E. Wied, Dampferzeuger mit Wirbelschichtfeuerung unter atmosph. und Überdruckbedingungen, VGB-Kraftwerkstechnik, 58 [1978], 8, 554). Insbesondere beim Aufheizen des Wirbelschichtreaktors wirkt sich das dahingehend aus, daß unverhältnismäßig große Aufheizleistungen erforderlich werden, die i. a. durch Fremdenergie aufgebracht werden müssen.In order to reduce undesirably high heat dissipation through the walls and / or corrosive and erosive attack, ceramic linings, e.g. B. by stamping or masonry, common (Lueger, Lexikon der Technik, 4th edition [1965], Vol. 7, page 266, Stuttgart). However, the peculiarity of the brick lining means that the number of wall penetrations is kept as low as possible at these points due to the increased susceptibility to failure of the lining. In fluidized bed reactors with high thermal stress on the reaction space, such as. B. high-performance combustion chambers, but must be cooled by a heat exchanger immersed in the layer in order to be able to regulate the reaction temperature. In this case, the walls are not suitable due to the large number of openings; one rather uses cooled fin tube walls, in which bushings are easy to manufacture and which have sufficient strength. The increased heat dissipation via the cooled walls must be accepted with this design (E. Wied, steam generator with fluidized bed combustion under atmospheric and excess pressure conditions, VGB-Kraftwerkstechnik, 58 [1978], 8, 554). In particular when heating the fluidized bed reactor, this has the effect that disproportionately large heating powers are required, which i. a. must be brought up by external energy.
Ein Ausstampfen des Reaktors mit einem wärmedämmenden Material bringt nur eine vergleichsweise geringe Wirkung, da durch die große Zahl der Befestigungsstifte die Wärmedurchgangszahl der Wand nur geringfügig verkleinert wird. Zudem ist die Haltbarkeit der Ausstampfung im Bereich der vielen Durchführungen, wie sie für Wärmetauscherbündel erforderlich sind, sehr begrenzt, und Schäden lassen sich nur mit großem Aufwand beseitigen. Das gilt auch, wenn eine Auskleidung nicht zur Wärmedämmung, sondern zum Schutz vor korrosivem und erosivem Angriff angebracht werden muß (W. Gumz, Kurzes Handbuch der Brennstoff- und Feuerungstechnik, 3. Auflage, Seiten 600-603, Berlin, Göttingen, Heidelberg, 1962; Koppers Handbuch der Brennstofftechnik, 3. Auflage, Seite 363, Essen).Stamping out the reactor with a heat-insulating material has only a comparatively small effect, since the number of fastening pins in the wall only slightly reduces the heat transfer coefficient. In addition, the durability of the stamping out in the area of the many bushings, as are required for heat exchanger bundles, is very limited, and damage can only be eliminated with great effort. This also applies if a lining does not have to be installed for thermal insulation, but for protection against corrosive and erosive attack (W. Gumz, Short Manual of Fuel and Furnace Technology, 3rd edition, pages 600-603, Berlin, Göttingen, Heidelberg, 1962; Koppers Handbuch der Fueltechnik, 3rd edition, page 363, Essen).
Der Erfindung liegt daher die Aufgabe zugrunde, die vorgenannten Nachteile zu überwinden, ohne die günstigen Eigenschaften der Wirbelschicht wesentlich zu verändern. Insbesondere sollten der Wärmedurchgang durch die Reaktorwandungen sowie der Stoff- und Impulsaustausch in Wandnähe erheblich vermindert werden.The invention is therefore based on the object of overcoming the aforementioned disadvantages without significantly changing the favorable properties of the fluidized bed. In particular, the heat transfer through the reactor walls as well as the mass and momentum exchange near the wall should be significantly reduced.
Es hat sich gezeigt, daß sich diese Aufgabe gemäß vorliegender Erfindung in überraschend einfacher und technisch fortschrittlicher Weise lösen läßt, wenn der Strömungswiderstand für das Fluid in Wandnähe so weit erhöht wird, daß die Wirbelschicht in diesem Bereich nicht mehr aufgewirbelt wird. Dieses kann verwirklicht werden, indem Einbauten in den Reaktionsapparat eingebracht werden, die von den Reaktorwandungen abstehen. Diese Einbauten sind erfindungsgemäß vorzugsweise rippenförmig mit einer bevorzugt horizontalen Erstreckung. Um das Wirbeln in Wandnähe besonders sicher zu unterbinden, ist erfindungsgemäß der Abstand der Rippen in Strömungsrichtung des Fluids höchstens etwa halb so groß wie die Rippenhöhe quer dazu. Die Rippen können sowohl senkrecht von der Wand abstehen als auch geneigt sein. Die Einbauten können aber erfindungsgemäß auch parallel zur Reaktorwand angeordnet sein und mit dieser einen Spalt bilden, dessen Weite u. a. von der gewünschten Dämmwirkung abhängt.It has been shown that this object can be achieved in a surprisingly simple and technically advanced manner according to the present invention if the flow resistance for the fluid near the wall is increased to such an extent that the fluidized bed is no longer whirled up in this area. This can be achieved by installing internals in the reaction apparatus which protrude from the reactor walls. According to the invention, these internals are preferably rib-shaped with a preferably horizontal extension. In order to particularly reliably prevent swirling near the wall, the spacing of the ribs in the flow direction of the fluid is at most about half as large as the rib height transversely thereto. The ribs can protrude perpendicularly from the wall or can be inclined. The internals can also be arranged according to the invention parallel to the reactor wall and form a gap therewith, the width u. a. depends on the desired insulation effect.
Die erfindungsgemäßen Einbauten können gemäß einer Weiterbildung der Erfindung segmentweise angebracht werden, was die thermischen Materialspannungen mindert und die Montage und mögliche Lagerhaltung solcher Rippen vereinfacht und ein Vorfertigen und auch nachträgliches Einbauen ermöglicht.According to a further development of the invention, the internals according to the invention can be installed in segments, which reduces the thermal material stresses and simplifies the assembly and possible storage of such ribs and enables prefabrication and also subsequent installation.
Erfindungsgemäße Einbauten können an der Reaktorinnenwand durch Schweißen, Schrauben, Kleben oder ähnliche Techniken befestigt werden. In jedem Fall bieten sie den Vorteil einer gewissen Aussteifung der Reaktorwandung und es können deshalb die Materialabmessungen und/oder sonstigen Aussteifungen, wie sie vor allem bei thermisch belasteten Reaktoren gebräuchlich sind, vermindert werden. Soweit es sich bei den Einbauten um solche handelt, die parallel zur Reaktorwand angeordnet sind und mit dieser einen Spalt bilden, kann es von Vorteil sein, diesen z. B. eine Schuppenstruktur zu geben, um sie gegen Wärmeverzug zu stabilisieren. Letzteres empfiehlt sich vor allem dann, wenn die fraglichen Einbauten etwa aus entsprechend der Reaktorform gebogenen Blechstreifen bestehen.Internals according to the invention can be attached to the inner wall of the reactor by welding, screwing, gluing or similar techniques will. In any case, they offer the advantage of a certain stiffening of the reactor wall and it is therefore possible to reduce the material dimensions and / or other stiffening, as are common especially in thermally stressed reactors. As far as the internals are those that are arranged parallel to the reactor wall and form a gap with it, it can be advantageous to use this z. B. give a scale structure to stabilize them against heat distortion. The latter is particularly recommended if the internals in question consist of sheet metal strips bent according to the shape of the reactor.
Es hat sich gezeigt, daß die Dämmwirkung der erfindungsgemäßen Einbauten um so größer ist, je breiter die Spalten sind oder je weiter die Rippen in den Reaktorraum hineinragen.It has been shown that the insulation effect of the internals according to the invention is greater the wider the gaps or the further the ribs protrude into the reactor space.
Durch Einbauten dieser Art wird der Strömungswiderstand für das Fluid in unmittelbarer Wandnähe so weitgehend erhöht, daß die Wirbelbewegung des Feststoffes, durch die der gute Wärme- und Stoffaustausch in Wirbelschichten bewirkt wird, in der Randzone zum Erliegen kommt. Dieses Ergebnis ist insofern überraschend, als nichtrandnahe Einbauten, z. B. Wärmetauscherrohre, von der Wirbelschicht flüssigkeitsähnlich umspült werden (Fluidization, J. F. Davidson, D. Harrison [eds.], London und New York [1971], z. B. Kapitel 11).By means of installations of this type, the flow resistance for the fluid in the immediate vicinity of the wall is increased to such an extent that the vortex movement of the solid, by which the good heat and mass transfer in fluidized beds is brought about, comes to a standstill in the peripheral zone. This result is surprising insofar as built-in components not close to the edge, e.g. B. heat exchanger tubes are surrounded by the fluidized bed in a liquid-like manner (Fluidization, J.F. Davidson, D. Harrison [eds.], London and New York [1971], eg Chapter 11).
Von besonderem Vorteil ist bei dem beschriebenen Verfahren, daß für den Schutz der Wandung bzw. zur Wärmedämmung des Wirbelschichtreaktors das Wirbelgut selbst genutzt wird. Daher braucht kein aufwendiges Ausstampfen oder ähnliches zu erfolgen, sondern beim Auffüllen des Reaktors mit Schichtmaterial und dem anschließenden Fluidisieren bildet sich selbsttätig die Schutzschicht in der Ruhezone aus. Zudem fließt das Material aus der Ruhezone beim Ablassen der Reaktorfüllung, etwa beim Stillsetzen des Apparates, mit ab und gibt die Wände z. B. für Inspektionen frei.It is of particular advantage in the described method that the fluidized material itself is used to protect the wall or to insulate the fluidized bed reactor. Therefore, no complex stamping or the like has to be carried out, but when the reactor is filled with layer material and the subsequent fluidization, the protective layer automatically forms in the rest zone. In addition, the material flows out of the rest zone when draining the reactor filling, for example when the apparatus is shut down, and gives the walls z. B. free for inspections.
Wenn der Strömungswiderstand in Wandnähe durch Einbauten erhöht wird, sind insbesondere die parallel zur Wand angebrachten Einbauten geeignet, das Schichtmaterial auch aus der Ruhezone vollständig mit abfließen zu lassen, während rippenförmige Einbauten besonders gute Zugänglichkeit der Wände nach dem Ablassen des Schichtmaterials gewähren und auch z. B. zwischen den Rohrreihen eines Wärmetauscherbündels ohne Schwierigkeiten durchlaufen können. Durch Neigen usw. der Rippen lassen sich hier besondere Effekte erreichen, z. B. vollständiges Ablaufen des Schichtmaterials beim Entleeren des Reaktors oder auch umgekehrt ein Zurückhalten von besonders viel Schichtmaterial an den Wänden auch nach dem Entleeren des Reaktors.If the flow resistance near the wall is increased by baffles, the baffles installed parallel to the wall are particularly suitable for draining the layer material completely out of the quiet zone, while rib-shaped baffles provide particularly good accessibility to the walls after the layer material has been drained and also e.g. B. can pass through between the rows of tubes of a heat exchanger bundle without difficulty. By tilting the ribs, etc., special effects can be achieved, e.g. B. complete drainage of the layer material when emptying the reactor or vice versa a retention of a particularly large amount of layer material on the walls even after emptying the reactor.
Ein weiterer Vorteil besteht darin, daß man auf die Temperaturwechselbeständigkeit von Ausmauerungen oder Ausstampfungen keine Rücksicht zu nehmen braucht, d. h. man kann den Reaktor, ungeachtet seiner Schutzeinbauten, beliebig schnell aufheizen oder abkühlen lassen.Another advantage is that there is no need to take into account the thermal shock resistance of brickwork or excavations, i. H. regardless of its protective equipment, the reactor can be heated or cooled as quickly as required.
Da die randnahe Ruhezone nicht an der Wirbelbewegung teilnimmt, erfolgt dort auch nur ein stark gehemmter Stoffaustausch mit der wirbelnden Kernzone des Reaktors. Das ist von Vorteil bei Reaktionen mit korrosionsfördernden Reaktionsteilnehmern, um die Wandungen des Reaktors zu schützen, aber auch bei Reaktionen mit starker Wärmetönung, da in der Ruhezone somit nicht nur die Wärmedurchgangszahl verringert ist, sondern auch keine oder nur noch eine stark verminderte Reaktion stattfindet. Weiterhin tritt eine eventuelle erosive Beanspruchung nur noch an den leicht erneuerbaren Einbauten auf, während die eigentliche Reaktorwand durch die Ruhezone geschützt wird.Since the rest zone near the edge does not participate in the vortex movement, there is only a strongly inhibited mass transfer with the swirling core zone of the reactor. This is advantageous for reactions with corrosion-promoting reactants to protect the walls of the reactor, but also for reactions with strong heat, since not only is the heat transfer coefficient reduced in the quiet zone, but there is no or only a greatly reduced reaction. Furthermore, any erosive stress only occurs on the easily renewable internals, while the actual reactor wall is protected by the quiet zone.
Anhand der Zeichnung wird eine Vorrichtung (vergrößerter Ausschnitt) zur Ausführung des erfindungsgemäßen Verfahrens lediglich beispielsweise näher erläutert. Hierbei zeigt die Figur die Anordnung und verschiedene Formen der die Wirbelbewegung unterbindenden Einbauten zur Erzielung einer Ruhezone in der Wandnähe des Reaktors.With the aid of the drawing, an apparatus (enlarged section) for executing the method according to the invention is only explained in more detail, for example. The figure shows the arrangement and various forms of the internals which prevent the swirl movement in order to achieve a quiet zone in the vicinity of the wall of the reactor.
Gemäß der Figur - vergrößerter Ausschnitt eines gewöhnlichen Wirbelschichtreaktors - ist letzterer mit Feststoff (Wirbelgut) 1 beschickt, der von unten mit dem durch den Anströmboden 2 eintretenden Fluid (Gas oder Flüssigkeit) aufgewirbelt wird. Die intensive Feststoffbewegung, die Ursache für den guten Stoff- und Wärmeaustausch innerhalb der Schicht und von der Schicht auf die Wände ist, wird beispielsweise durch Einbauten 6 bis 11 in unmittelbarer Wandnähe so weit herabgesetzt, daß keine Wirbelbewegung mehr auftritt und infolgedessen Stoff- und Wärmeaustausch stark vermindert werden. Wenn sich in der Schicht z. B. Wärmetauscherrohre 3 oder Meßwertgeber 4 oder ähnliches befinden, die durch die Reaktorwände geführt sind, so können die die Wirbelbewegung hemmenden Einbauten 6 bis 10 z. B. vorteilhaft rippenförmig ausgebildet sein. Dadurch können die Durchführungen in die Zwischenräume zwischen den Rippen verlegt werden, was zu einer besonders einfachen Konstruktion führt. Die von der Wirbelschichtreaktorwand 5 abstehenden Einbauten können entweder gerade 6 oder geneigt 7, 8 sein, nach oben 9 oder nach unten 10 abgewinkelt oder auch parallel 11 zur Reaktorwand 5 angeordnet sein. Im letzteren Fall können sie beispielsweise durch Abstandshalter 12 gehalten werden, die so ausgeführt werden können, daß sie zusätzlich die Feststoffbewegung behindern. Hierdurch entsteht ein Spalt 13 mit der Reaktorinnenwand.According to the figure - enlarged section of a conventional fluidized bed reactor - the latter is charged with solid (fluidized material) 1, which is whirled up from below with the fluid (gas or liquid) entering through the
In einem Wirbelschichtreaktormodell (Länge 400 mm, Breite 500 mm, Höhe 800 mm) wurde die Wirksamkeit der Erfindung in der nachfolgenden Weise nachgewiesen:The effectiveness of the invention was demonstrated in a fluidized bed reactor model (length 400 mm, width 500 mm, height 800 mm) in the following manner:
Als Einbauten wurden Rippen (gemäß Figur - Bezugszeichen 6 bis 10) von ca. 80 mm Höhe und ca. 40 mm gegenseitigem Abstand gewählt, die im wesentlichen senkrecht von der Reaktorinnenwand abstanden. Zwischen den Einbauten waren Rohre durch die Wand geführt, wie in der Figur dargestellt; Wirbelgut war Sand. Die Einbauten waren nur an einer Seite des rechteckigen Modellreaktors angebracht, dessen Wände aus Plexiglas bestanden. Beim Aufwirbeln des Sandes zeigte sich deutlich, daß an den Wänden ohne Einbauten intensive Feststoffbewegung auch um die durch die Wand durchgeführten Rohre herum auftrat, im Bereich der erfindungsgemäßen Einbauten war der Sand jedoch vollständig in Ruhe.Ribs (according to figure -
In einer Wirbelschichtfeuerungsbrennkammer (Länge 400 mm, Breite 800 mm, Wirbelschichthöhe 1000 mm) mit einer zu Testzwecken gekühlten Seitenwand (800 mm) wurden in orientierenden Versuchen verschiedene Einbauten vor der gekühlten Fläche in einem Abstand von etwa 50 mm parallel zu ihr angebracht, welche die Aufwirbelung verhindern und damit die Wärmeableitung über die gekühlte Wand verringern sollten. Es zeigte sich, daß bei Aufheizversuchen mit kohlenstoffhaltigem Wirbelgut in dieser Brennkammer unter sonst völlig gleichen Bedingungen nur etwa die halbe Zeit zur Erreichung der Betriebstemperatur von ca. 850°C benötigt wurde, als beim Betrieb dieser Brennkammer ohne die Einbauten. Aus diesem Ergebnis läßt sich schließen, daß der Wärmeübergang auf die gekühlte Wand durch die Verhinderung des Aufwirbelns in Wandnähe um mehr als ca. 30% vermindert wird.In a fluidized bed combustion chamber (length 400 mm, width 800 mm, fluid bed height 1000 mm) with a side wall cooled for test purposes (800 mm), various internals were installed in front of the cooled surface at a distance of about 50 mm parallel to it, which the Prevent turbulence and thus reduce heat dissipation through the cooled wall. It was found that in heating tests with carbon-containing fluidized material in this combustion chamber under otherwise completely identical conditions, it took only about half the time to reach the operating temperature of approximately 850 ° C. than when this combustion chamber was operated without the internals. From this result it can be concluded that the heat transfer to the cooled wall is reduced by more than about 30% by preventing the whirling up near the wall.
Claims (6)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE3009198 | 1980-03-11 | ||
DE3009198 | 1980-03-11 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0035756A1 EP0035756A1 (en) | 1981-09-16 |
EP0035756B1 true EP0035756B1 (en) | 1983-07-27 |
Family
ID=6096797
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP81101578A Expired EP0035756B1 (en) | 1980-03-11 | 1981-03-05 | Process and apparatus for decreasing heat and mass transfer in the immediate wall surroundings of fluidized bed reactors |
Country Status (3)
Country | Link |
---|---|
US (1) | US4407355A (en) |
EP (1) | EP0035756B1 (en) |
JP (1) | JPS56163751A (en) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4619314A (en) * | 1983-08-05 | 1986-10-28 | Ishikawajima-Harima Jukogyo Kabushiki Kaisha | Device for preventing wear of heat transfer tubes in fluidized-bed boiler |
FI74127C (en) * | 1984-02-17 | 1987-12-10 | Neste Oy | Ignition device for floating bed boiler |
US4940007A (en) * | 1988-08-16 | 1990-07-10 | A. Ahlstrom Corporation | Fast fluidized bed reactor |
FI84202C (en) * | 1989-02-08 | 1991-10-25 | Ahlstroem Oy | Reactor chamber in a fluidized bed reactor |
US5324421A (en) * | 1990-10-04 | 1994-06-28 | Phillips Petroleum Company | Method of protecting heat exchange coils in a fluid catalytic cracking unit |
GB2264442A (en) * | 1992-02-26 | 1993-09-01 | Trevor James Keirle | "fluidised bed apparatus and method of operation" |
EP1183096B1 (en) * | 1999-04-14 | 2003-03-19 | Sasol Technology (Proprietary) Limited | Inhibiting of erosion of vessels |
US6579365B1 (en) | 1999-11-22 | 2003-06-17 | Glatt Air Techniques, Inc. | Apparatus for coating tablets |
DE10144747A1 (en) * | 2001-09-11 | 2003-03-27 | Buehler Ag | Apparatus for continuous heat treatment of granular materials, has fluidization chambers separated by partitions which have sieve bottom, below which fluidizing gas inlet is mounted |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2623810A (en) * | 1947-06-18 | 1952-12-30 | Lummus Co | Kiln with protecting wall structure |
US2835483A (en) * | 1954-02-03 | 1958-05-20 | Fmc Corp | Apparatus for heating fluids |
FR1231082A (en) * | 1959-03-21 | 1960-09-26 | Snecma | Improvement in heat exchange processes |
FR2110050A5 (en) * | 1970-10-22 | 1972-05-26 | Ceskoslovenska Akademie Ved | |
FR2261497A1 (en) * | 1974-02-19 | 1975-09-12 | Cerca | Heat transfer control in a furnace or refrigerated vessel - using a fluidisable granular insulant |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NL186923C (en) * | 1953-04-21 | Saarbergwerke Ag | METHOD AND INSTALLATION FOR GENERATING ENERGY WITH A COMBINED GAS STEAM PLANT. | |
JPS4945463B1 (en) * | 1969-01-24 | 1974-12-04 | ||
US3783528A (en) * | 1971-01-05 | 1974-01-08 | Badger Co | Reactor staging |
US4096909A (en) * | 1976-12-23 | 1978-06-27 | Dorr-Oliver Incorporated | Fluidized bed process heater |
-
1981
- 1981-03-05 EP EP81101578A patent/EP0035756B1/en not_active Expired
- 1981-03-09 US US06/242,127 patent/US4407355A/en not_active Expired - Fee Related
- 1981-03-11 JP JP3593581A patent/JPS56163751A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2623810A (en) * | 1947-06-18 | 1952-12-30 | Lummus Co | Kiln with protecting wall structure |
US2835483A (en) * | 1954-02-03 | 1958-05-20 | Fmc Corp | Apparatus for heating fluids |
FR1231082A (en) * | 1959-03-21 | 1960-09-26 | Snecma | Improvement in heat exchange processes |
FR2110050A5 (en) * | 1970-10-22 | 1972-05-26 | Ceskoslovenska Akademie Ved | |
FR2261497A1 (en) * | 1974-02-19 | 1975-09-12 | Cerca | Heat transfer control in a furnace or refrigerated vessel - using a fluidisable granular insulant |
Also Published As
Publication number | Publication date |
---|---|
JPS56163751A (en) | 1981-12-16 |
EP0035756A1 (en) | 1981-09-16 |
US4407355A (en) | 1983-10-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE2756837A1 (en) | Fluidized bed process heater | |
EP0035756B1 (en) | Process and apparatus for decreasing heat and mass transfer in the immediate wall surroundings of fluidized bed reactors | |
DE2025584A1 (en) | ||
DE2738879A1 (en) | HEAT EXCHANGE PLATE FOR SHAFT WALL | |
DE3145292C2 (en) | Tube fission furnace for indirect heating of fissile media | |
EP0155341A2 (en) | Standing reactor for the production of methanol | |
DE3208421C2 (en) | ||
DE1401371B2 (en) | Continuous boiler with overpressure firing | |
DE2632467B2 (en) | Thermal insulating component | |
DE3117195A1 (en) | Method and appliance for reducing the heat exchange and mass transfer immediately adjacent to the walls of fluidised-bed reactors | |
DE1953628A1 (en) | Tube bank heat exchanger | |
DE2234573A1 (en) | NUCLEAR STEAM GENERATOR | |
DE69110640T2 (en) | Boiler with a supported heat transfer bundle. | |
CH507496A (en) | Heat exchanger | |
DE1264447B (en) | Steam generator with bandages for the walls covered by pipes | |
DE3816195C2 (en) | Convection-cooled concrete container for the transport and storage of heat-generating radioactive materials | |
DE2640728C3 (en) | Heat exchanger, preferably for gaseous media, which is made up of several similar assemblies with a vertical axis | |
DE69712618T2 (en) | DEVICE FOR STEAM CRACKING WITH PROTECTIVE AGENTS AGAINST EROSION | |
DE2936199C2 (en) | Process for superheating gaseous media | |
DE2414757C2 (en) | Reflector cooling for pebble bed reactors | |
DE914183C (en) | Water tube boiler for steam and hot water, especially for medium operating pressure | |
DE2913461A1 (en) | Gas cooled atomic reactor hot gas duct elbow - is fitted with inclined perforated plate having specific parameters for uniform flow profile | |
DE3828646A1 (en) | Heating surface for coupling out heat from a fluid flow loaded with solid particles | |
DE2807612A1 (en) | HEAT EXCHANGER | |
AT312634B (en) | Steam generating boiler |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Designated state(s): BE FR GB IT NL |
|
17P | Request for examination filed |
Effective date: 19820304 |
|
ITF | It: translation for a ep patent filed | ||
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Designated state(s): BE FR GB IT NL |
|
ET | Fr: translation filed | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 19840313 Year of fee payment: 4 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 19840315 Year of fee payment: 4 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 19840331 Year of fee payment: 4 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Effective date: 19851001 |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee | ||
BERE | Be: lapsed |
Owner name: BERGWERKSVERBAND G.M.B.H. Effective date: 19870331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19871130 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19881118 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Effective date: 19890331 |