EP0035679B1 - Process and apparatus for continuous hydrolysis of cellulosic plant materials for obtaining sugars - Google Patents

Process and apparatus for continuous hydrolysis of cellulosic plant materials for obtaining sugars Download PDF

Info

Publication number
EP0035679B1
EP0035679B1 EP81101260A EP81101260A EP0035679B1 EP 0035679 B1 EP0035679 B1 EP 0035679B1 EP 81101260 A EP81101260 A EP 81101260A EP 81101260 A EP81101260 A EP 81101260A EP 0035679 B1 EP0035679 B1 EP 0035679B1
Authority
EP
European Patent Office
Prior art keywords
stage
screw
hydrolysate
pressure
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP81101260A
Other languages
German (de)
French (fr)
Other versions
EP0035679A1 (en
Inventor
Franz Johann Reitter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to AT81101260T priority Critical patent/ATE8275T1/en
Publication of EP0035679A1 publication Critical patent/EP0035679A1/en
Application granted granted Critical
Publication of EP0035679B1 publication Critical patent/EP0035679B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C13SUGAR INDUSTRY
    • C13KSACCHARIDES OBTAINED FROM NATURAL SOURCES OR BY HYDROLYSIS OF NATURALLY OCCURRING DISACCHARIDES, OLIGOSACCHARIDES OR POLYSACCHARIDES
    • C13K1/00Glucose; Glucose-containing syrups
    • C13K1/02Glucose; Glucose-containing syrups obtained by saccharification of cellulosic materials

Definitions

  • the invention relates to a process for the continuous hydrolysis of pentosan-containing hemicelluloses, cellulose and corresponding compounds in vegetable biosubstance to sugar, in which the biosubstance, which has been suitably pre-comminuted, is subjected to temperature and pressure conditions in a first stage in the presence of dilute acid, in which essentially the hemicelluloses and only partially the cellulose are hydrolyzed to pentoses and partially hexoses during a first reaction time, whereupon the reaction mixture suddenly relaxes on the one hand and on the other hand the hydrolyzate is separated from the biosubstance, in at least one further stage in the presence of dilute mineral acid and under increased temperature and pressure conditions cellulose in the biosubstance is hydrolyzed to hexoses during a further reaction time, whereupon the reaction mixture suddenly relaxes again on the one hand and the hydrolyzate from the remaining bios on the other hand substance is separated, and the hydrolysis in each hydrolysis stage is carried out in a continuous horizontal tube cooker as the reaction space
  • DD-A-130 582 has already proposed the use of a tubular reactor provided with movable internals for carrying out short-term intensive hydrolysis, into which the biomass is to be fed against the internal pressure with a plug-forming, conical feed screw with acid supply.
  • the discharge device can be a screen screw press, which enables the liquid to be separated under pressure, which enables a partial dehumidification of the residue and a separate expansion of the liquid and residue.
  • the object of the present invention is to provide specific procedural and corresponding device-specific configurations of the method with which a short-term reaction is possible under improved conditions.
  • the aim is to further reduce the energy requirement compared to known working methods and to increase the yield of sugars obtained.
  • This object is achieved according to the invention for a process of the type mentioned at the outset by largely removing air and excess liquid in the filling screw in the biosubstance, carrying out the hydrolysis in the reaction chamber in the vapor phase and the hydrolyzate behind each hydrolysis stage in several separation stages from the reaction mixture is separated.
  • the word “continuously” refers primarily to the course of the process within a hydrolysis stage.
  • the at least two-stage hydrolysis process according to the invention can therefore, if necessary, also be carried out with a one-stage system by operating it intermittently as the first stage or subsequent stage. In larger systems, however, the system should also be designed in several stages, since certain circuit advantages according to the invention can only be achieved with a multi-stage system.
  • the perforated casing of the filling screw makes it possible to introduce the pre-shredded material largely free of excess liquid and, more importantly, largely free of air pockets, which have a negative effect on the chemistry of hydrolysis, into the pressurized reaction space in the digester .
  • the biosubstance comes into contact with liquid before it enters the reaction space.
  • the biosubstance is expediently pre-impregnated with the mineral acid-containing digestion liquid before entering the first hydrolyzing stage. For a perfect impregnation it is necessary to work with a certain excess of liquid, which can be reduced to the level provided for the hydrolysis again without a further process step by means of the perforated filling screw upstream of the cooker.
  • the tube cooker itself offers the possibility of carrying out the hydrolysis with the shortest reaction times and with the least possible excess of liquid in the vapor phase, with considerable immediate energy savings in the cooking and secondary energy savings resulting from the fact that the hydrolyzate is obtained in a relatively high concentration.
  • the reaction mixture can be discharged from the cooker by means of a known blow valve via a blow line into a cyclone-like blow tank.
  • the separation of the hydrolyzate from the reaction mixture is followed by the sudden expansion, namely the blowing out of the reaction mixture from the cooker.
  • the multistage removal of the hydrolyzate from the reaction mixture behind each hydrolyzation stage is expediently carried out in countercurrent to the hydrolyzate, with separation here being understood to mean practically countercurrent washing with the lowest possible hydrolyzate dilution, in which the last separation stage is generally carried out with fresh water for washing out the organic substance, and the concentrated hydrolyzate to be fed for further processing is removed from the first separation stage following the cooker alone.
  • Separating screws and / or twin-wire presses are advantageously used as separating or separating devices. In general, a three-stage hydrolyzate separation is sufficient for the process.
  • separating screws should be understood to mean screw presses which are similar in principle to the filling screws. They are provided with a perforated jacket for liquid separation, but, if they are not required to work against a container pressure, do not need to form a pressure-stopper and can also be operated with less compression if required.
  • the hydrolyzate is separated off, at least in the first separation stage, while the pressure in the reaction space is closed, the sudden expansion of the reaction mixture into the blow tank only taking place after this first separation stage.
  • the first separating device consists of a screw separator which is connected directly to the discharge end of the tube cooker and forms a unit under pressure with the cooker.
  • the screw separator is provided outside of its conical, perforated casing with a pressure-resistant housing arranged at a distance from the casing, through which only the plug tube at the end of the screw casing is passed.
  • the separated liquid collects in the pressure-resistant housing and can be drawn off via an outlet line under pressure or via a pressure relief valve.
  • the reaction mixture or the mass remaining after the first hydrolyzate separation is blown out of the plug tube of the screw separator into a blow tank via a blow line. Further separation stages for the hydrolyzate separation can then follow the blow tank.
  • it can be expedient to blow out the hydrolyzate separated in this screw separator into a separate blow tank via a blow valve. If work is to be carried out in the complete countercurrent of the hydrolyzate for the hydrolyzate separation, this must be raised to the corresponding pressure level of the boiler outlet for the first separation stage by means of a pump.
  • This embodiment of the method or the system provided for carrying out the method has the advantage that a separate blow valve for the solid substance on the stove. which u. U. has a certain susceptibility to failure, can be dispensed with.
  • the discharge end of the cooker is formed solely by the separating screw and its conical jacket.
  • the metered discharge of the reaction mixture from the cooker takes place by a corresponding rotary movement of the screw. It is not absolutely necessary to squeeze the hydrolyzate in the screw separator, since hydrolyzate separation is already caused by a pressure difference between the interior of the cooker and the shell of the screw giving housing can take place.
  • Another advantage of this procedure is that, for example, in a two-stage process, the hydrolyzate separated in the second stage can be kept under such a pressure that either the steam escaping from the hydrolyzate with a certain relaxation can be used to heat the first stage, or the hydrolyzate itself can be used as an acidic disintegrant under pressure for simultaneous heating in the first hydrolyzing stage.
  • the latter option is only available if the hydrolyzates of the individual hydrolyzation stages are not to be sent directly to further processing.
  • the hydrolyzate of the second stage which generally still contains sufficient mineral acids, directly as the digestion liquid for the first hydrolysis stage.
  • the hydrolyzate would not only be conducted in the hydrolyzate separation stages following each hydrolysis stage, but through the entire system in countercurrent, so that only the hydrolyzate of the first separation stage is fed to the first hydrolysis stage for further processing.
  • the filling screw for the boiler of the next stage is expediently used at the same time as the last separation stage for the hydrolyzate separation in the previous stage.
  • these separating screws can be designed essentially in the same way as the filling screws of the cookers. This results in considerable simplifications in terms of plant technology. Since the filling screw is used anyway to remove excess liquid from the organic substance before it enters the cooker, the filling screw can also be used at the same time to remove residues of the hydrolysate produced in the previous stage from the mass.
  • a vertical downpipe is generally arranged between the filling screw and the actual cooking tube, in the upper end of which the plug of the filling screw opens horizontally.
  • This arrangement is therefore chosen in order to arrange a closure device for the mouth, a so-called “blow back damper”, opposite the mouth of the filling screw, which can be used to prevent the stove from being blown out if the pressure stop fails due to the material plug.
  • the lowest possible liquid-to-solid ratio should be aimed for, which should be in the range of 3: 1 to 1.5: 1, but preferably in the range of 2:.
  • the use of a filling screw with a perforated screw housing has the particular advantage that, even after impregnation of the organic substance in a two-cell mixer, excess digestion liquid can be squeezed out again immediately before the mass enters the cooker, without an additional process step being necessary for this. It should again be emphasized that an essential point of the claimed process is that, using a filling screw, it is possible to remove almost 100% of the air, which is extremely damaging to the hydrolysis, from the comminuted organic substance before entering the cooker.
  • the invention also relates to a system suitable for carrying out the method.
  • the above description of the features essential to the method of the invention is extensive also applicable to the associated system.
  • the process according to the invention and associated systems are explained in more detail below with reference to the attached process diagrams.
  • the comminuted and pre-cleaned organic substance at 1 reaches a double-shaft mixer 3 of known type in a conveyor belt 2, which is preferably provided with an automatic weighing device (not shown), in which the organic substance is pre-impregnated with acidic digestion liquid, which is supplied via a line 5 provided with an automatic control valve 4.
  • the digestion liquid is expediently metered as a function of the biological substance weighed in per unit of time over the conveyor belt. Blown steam from the process for heating the organic substance is additionally fed into the double-shaft mixer via a line 6.
  • the liquid is intensively mixed with the organic substance by the two rotating screws of the mixer, the liquid penetrating the moist raw material in order to prepare it for the rapid vapor phase digestion.
  • the impregnated organic substance falls by gravity through a chute 7 into the feed opening of the screw filler 8, which is part of the cooker.
  • the bio-substance is pressed into the conical shell surrounding the screw by the filling screw which is rotatably mounted in the screw filler, whereby a dense plug is formed which forms the pressure-side closure of the interior of the cooker.
  • the organic substance falls from the outlet opening of the screw filler 8 through a chamber designed as a chute 10, which opens into the horizontal cooker tube of the cooker 11.
  • the inside of the cooker 11 is provided with a screw conveyor (not shown in FIG. 1), the speed of which can be changed in order to be able to influence the residence time of the organic substance in the cooker.
  • the cooker 11 is also only shown with one cooker tube, but depending on the throughput and dwell time, it can also be designed as a two-tube cooker or as a cooker with several cooker tubes.
  • the cooker 11 is heated with steam via a line 12 with a plurality of cooker connections, which in the present exemplary embodiment, as will be explained further below, is obtained by relaxing the pressurized hydrolyzate of the second hydrolysis stage.
  • the reaction mixture falls into a discharge device, which in the exemplary embodiment consists of a pellet separator 13, which is similar in construction to the screw filler 8.
  • the reaction mixture is fed via a line 14 hydrolyzate from the second hydrolyzate separation stage operated in countercurrent.
  • the hydrolyzate separated by the cone jacket of the screw separator 13, which is the total hydrolyzate from the two hydrolysis stages shown in the circuit of the exemplary embodiment leaves the hydrolysis plant here and is fed to the intended further processing.
  • the narrowed mouthpiece of the screw separator 13 is connected via a blow line 15 to a cyclone-like blow tank 16, into which the blow line 15 is inserted tangentially at the upper end.
  • An emergency valve 17 is also provided in the blow line 15 immediately behind the mouthpiece of the screw separator 13.
  • the discharge amount from the cooker is determined by the speed of rotation of the screw.
  • the hydrolyzate is separated - by the pressure drop between the interior of the cooker 11 or the screw separator 13 and the exterior surrounding the cone housing. An additional pressing action by the screw can be advantageous, but is not absolutely necessary.
  • the residual substance remaining in the screw separator 13 after separation of the total hydrolyzate is blown out via the blow line 15 into the blow tank 16, in which a pressure release takes place, through which steam is released from the remaining reaction mixture.
  • the blow tank 16 is essentially closed and is kept under a slight excess pressure in order to catch the released steam and to feed it back into the process. As already mentioned, part of this blow steam is fed to the twin-shaft mixer 3 via the line 6. Remaining blowing steam arrives via a line 17 to other recycling points in the process.
  • the screw separator 19 also serves as a screw filler for the cooker of the following stage and thus represents the connection point between the first and second hydrolysis stages.
  • the liquid squeezed out in each screw separator is in each case returned to the previous hydrolyzate separation stage.
  • the liquid squeezed out in the screw separator 19 passes via a line 20 back into the blow tank 16 and thus before the screw separator 18, and the liquid separated therein via the already mentioned line 14 into the discharge end of the cooker 11 before the screw separator 13 directly connected to it Since this requires the liquid to be fed into the pressure chamber of the cooker, a pressure booster pump 21 is provided in line 14 in order to raise the washing hydrolyzate to the corresponding pressure level.
  • the biosubstance After the residual hydrolyzate of the first hydrolyzation stage has been largely removed from the remaining biosubstance in the worm separator 19 working as the third hydrolyzate separation stage, the biosubstance, after it has passed the mouthpiece of the worm filler 19 forming the worm filler for the second hydrolysis stage, is metered in via a line 22 mineral acid , preferably dilute sulfuric acid, added as a catalyst for the hydrolysis.
  • mineral acid preferably dilute sulfuric acid
  • the impregnated residual organic substance passes through a chute 22 'into the tube cooker 23 of the second hydrolysis stage, which is of the same type as the cooker 11 of the first hydrolysis stage, but its special data can and therefore cannot be adapted to the requirements of the second stage needs to exactly match the stove of the first stage.
  • the cooker 23 of the second hydrolysis stage which is generally operated under higher pressure than the first stage, is heated with fresh steam via a line 24.
  • the units following the boiler 23 of the second hydrolyzing stage essentially correspond to those of the first hydrolyzing stage.
  • the cooker 23 is connected at its discharge end to a screw separator 25 which is connected to a blow tank 28 via a blow line 27 provided with an additional blow valve 26. This is followed by two further screw separators 29 and 30.
  • the residual organic substance is added via a line 31 washing water, which is preferably heated and can be process water obtained elsewhere in the overall system.
  • the last washing hydrolyzate separated in the screw separator 30 is returned via a line 32 into the blow tank 28 and thus before the screw separator 29 forming the second hydrolyzate separation stage.
  • the liquid separated in this passes through a line 33 upstream of the screw separator 25, which is under boiler pressure, which is why a pressure booster pump 34 is also provided in this line 33.
  • the pressurized hydrolyzate of the second hydrolyzing stage which is separated off in the screw separator 25 connected to the cooker 23, is fed back via line 35 into the first hydrolyzing stage, first to an expansion vessel 36 from which the vapor released by expansion, such as already mentioned above, is introduced via line 12 as heating steam into the cooker 11 of the first stage.
  • the relaxed hydrolyzate of the second stage passes from the expansion vessel 36 via line 4 for pre-impregnation of the fresh organic substance into the twin-shaft mixer 3 of the first hydrolysis stage.
  • live steam is only used to heat the second stage cooker.
  • the first stage cooker is heated with the flash steam from the second stage hydrolyzate.
  • the hydrolyzate is passed through the entire system in counterflow and enriched. Washing water is added only before the last separation stage after the second hydrolysis stage.
  • the three-stage hydrolyzate separation behind the second cooker is operated in countercurrent, and the hydrolyzate separated in the first separation stage behind the second cooker, namely in the screw separator 25, is completely added to the biosubstance before the first hydrolyzing stage and enriched with the hydrolyzate of this stage within the first hydrolyzing stage , a countercurrent washout also taking place behind the first stage digester, so that the concentrated total hydrolyzate of both hydrolysis stages can be removed from the first hydrolyzate separation stage behind the first digester. Since the mineral acid-containing hydrolyzate of the second hydrolysis stage is used as the digestion liquid in the first hydrolysis stage, mineral acid need not be added again here. Fresh mineral acid is added alone before the boiler of the second hydrolysis stage. On the additional representation of known control and control devices Rules of the process flow were deliberately omitted in the process diagram of FIG. 1.
  • the method variant of FIG. 2 differs from the method diagram of FIG. 1 in that not a screw separator connected to the discharge end of the cooker 11 is connected to the discharge end of the cooker 11, but only a vessel 40 is provided, which is connected via the blow line 15 the blow tank 16 is connected.
  • the discharge from the cooker 11 is regulated solely by the blow valve 17.
  • a three-stage hydrolyzate separation by means of screw separators 18, 41 and 42 is provided behind the blow tank 16 in the variant of FIG. 2, none of these separation stages being under pressure.
  • a line 43 is led into the blow line 15, via which a neutralizing agent, preferably milk of lime, can be injected directly into the blow line.
  • a neutralizing agent preferably milk of lime
  • the mouth of the line 43 into the blow line 15, which consists of suitable injection devices, is preferably located close behind the blow valve in the practical embodiment, in order to achieve effective mixing between the reaction mixture and neutralizing agent, which is practically one, by the turbulence prevailing in the blow line abrupt neutralization of the reaction mixture should lead.
  • the second (not shown) hydrolyzing stage is operated in a corresponding manner, however, it is not possible to return the neutralized hydrolyzate from the second stage as a digestion liquid to the first stage, since the acid contained in it, necessary as a catalyst, passes through neutralization has been removed. Accordingly, fresh acid is already supplied to the first hydrolysis stage via a line 44 as a catalyst. It is introduced into the twin-shaft mixer 3 and into the screw filler 8.
  • the cooker 11 of the first stage is at least partially heated with live steam via a line 45.
  • the possibility of withdrawing part of the hydrolyzate from the second cooker immediately after the pressure has been closed, from a vessel corresponding to the vessel 40 behind the first cooker 11 without an actual separating device, and of recovering some of the steam by relaxing this hydrolyzate portion. which, as shown in the exemplary embodiment in FIG. 2, can be fed via a line 46 as partial heating steam to the lower stage cooker 11 of the first stage.
  • mixed organic matter consisting of one third of wood, residual and waste materials can be made from one ton of dry-made.
  • Grain straw and waste paper about 500 kg of sugar, and that can be produced as a mixture of pentoses and hexoses.
  • the amount of catalyst required is about 0.3% based on that raw material used.
  • the reaction time in the first hydrolysis stage is approximately 2 1/2 minutes at 180 ° C. and the reaction time in the second hydrolysis stage is approximately 4 1/2 minutes at approximately 235 ° C.
  • the remaining cellulignin after the second stage is about 25 to 28% of the starting substance and is sufficient to obtain the required process heat as a vapor by combustion at a pressure of about 28 to 30 bar.
  • the steam supply that is required for the cooking process in such a way that the steam entry is provided directly behind the entry point of the compressed biomass and such is directed to the plug that disintegration can take place through the steam.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Emergency Medicine (AREA)
  • Biochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Processing Of Solid Wastes (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • External Artificial Organs (AREA)
  • Compounds Of Unknown Constitution (AREA)

Abstract

PCT No. PCT/DE81/00036 Sec. 371 Date Oct. 15, 1981 Sec. 102(e) Date Oct. 15, 1981 PCT Filed Feb. 21, 1981 PCT Pub. No. WO81/02428 PCT Pub. Date Sep. 3, 1981.Process and apparatus for the continuous hydrolysis of plant biomass containing cellulose and hemicellulose. Chopped biomass is treated in a first stage in the presence of dilute acid, at temperatures and pressure conditions under which the hemicellulose and, partially, the cellulose are hydrolyzed during a first reaction to pentoses and partially, hexoses, whereupon the reaction mixture pressure is suddenly released and the hydrolysate is separated from the biomass, and in at least a further stage, cellulose in the biomass is hydrolyzed in the presence of dilute mineral acid and under more severe temperature and pressure conditions, to hexoses, whereupon again the reaction mixture pressure is suddenly released and the hydrolysate is separated from the remaining biomass, and in which the neutralized hydrolysate, is further processed for the production of sugars, wherein each hydrolysis stage comprises as reaction chamber, a continuously operating horizontal tube digester containing horizontal conveyor devices, the digester being connected on the entrance side with a conical worm filler with a perforated cone casing for the injection of the biomass and the outlet side is fitted with an outlet device which forms a pressure seal of the exit side of the reaction chamber, and which is connected via a blow pipe with a cyclone-shaped blow tank.

Description

Technisches GebietTechnical field

Die Erfindung betrifft ein Verfahren zur kontinuierlichen Hydrolyse von pentosanhaltigen Hemicellulosen, Cellulose und entsprechenden Verbindungen in pflanzlicher Biosubstanz zu Zukkern, bei dem die in geeigneter Weise vorzerkleinerte Biosubstanz in einer ersten Stufe unter Anwesenheit von verdünnter Säure Temperatur-und Druckbedingungen unterworfen wird, bei denen im wesentlichen die Hemicellulosen und nur teilweise die Cellulose während einer ersten Reaktionszeit zu Pentosen und teilweise Hexosen hydrolysiert werden, worauf das Reaktionsgemisch einerseits plötzlich entspannt und andererseits das Hydrolysat von der Biosubstanz abgetrennt wird, in mindestens einer weiteren Stufe unter Anwesenheit von verdünnter Mineralsäure und unter verschärften Temperatur- und Druckbedingungen Cellulose in der Biosubstanz während einer weiteren Reaktionszeit zu Hexosen hydrolysiert wird, worauf erneut einerseits das Reaktionsgemisch plötzlich entspannt und andererseits das Hydrolysat von der Restbiosubstanz abgetrennt wird, und wobei die Hydrolyse in jeder Hydrolysierstufe in einem kontinuierlichen Horizontalröhrenkocher als Reaktionsraum durchgeführt und die Einschleusung der Biosubstanz in den Horizontalröhrenkocher mittels einer einen Druckabschluß bildenden Füllschnecke erfolgt. Die Erfindung betrifft ferner eine Anlage zur Durchführung eines solchen Verfahrens.The invention relates to a process for the continuous hydrolysis of pentosan-containing hemicelluloses, cellulose and corresponding compounds in vegetable biosubstance to sugar, in which the biosubstance, which has been suitably pre-comminuted, is subjected to temperature and pressure conditions in a first stage in the presence of dilute acid, in which essentially the hemicelluloses and only partially the cellulose are hydrolyzed to pentoses and partially hexoses during a first reaction time, whereupon the reaction mixture suddenly relaxes on the one hand and on the other hand the hydrolyzate is separated from the biosubstance, in at least one further stage in the presence of dilute mineral acid and under increased temperature and pressure conditions cellulose in the biosubstance is hydrolyzed to hexoses during a further reaction time, whereupon the reaction mixture suddenly relaxes again on the one hand and the hydrolyzate from the remaining bios on the other hand substance is separated, and the hydrolysis in each hydrolysis stage is carried out in a continuous horizontal tube cooker as the reaction space and the biosubstance is introduced into the horizontal tube cooker by means of a filling screw forming a pressure seal. The invention further relates to a plant for performing such a method.

Die industrielle Erzeugung von Zucker aus cellulosehaltigen Rohmaterialien, insbesondere aus Holz in Hackschnitzelform, ist während des letzten Krieges jahrelang durchgeführt worden, bis durch die günstigeren wirtschaftlichen Verhältnisse nach dem letzten Krieg die Holzverzukkerung mit den herkömmlichen Anlagen unrentabel wurde. Die kürzlichen Preissteigerungen auf dem Weltrohölmarkt haben wieder Überlegungen in den Vordergrund gerückt, welche alternativen Rohstoffquellen zur Erzeugung von Brennkraftstoffen für Verbrennungskraftmaschinen herangezogen werden können. In diesem Zusammenhang rückt auch die aus wirtschaftlichen Gründen in der Zwischenzeit aufgegebene Verzuckerung von cellulosehaltiger, pflanzlicher Biosubstanz wieder in den Blickpunkt des Interesses, da sich die so erzeugten Zucker zumindest teilweise zu Äthylalkohol vergären lassen, der "i!s Anteil in Kraftstoffen oder unmittelbar als Kraftstoff verwendet werden kann.The industrial production of sugar from cellulose-containing raw materials, in particular from wood in the form of wood chips, has been carried out for many years during the last war, until, thanks to the more favorable economic conditions after the last war, wood sugarification with the conventional systems became unprofitable. The recent price increases on the world crude oil market have once again brought considerations into the foreground as to which alternative raw material sources can be used to produce fuels for internal combustion engines. In this context, the saccharification of cellulose-containing, vegetable biosubstance, which has since been abandoned for economic reasons, is again in the focus of interest, since the sugars produced in this way can be at least partially fermented to ethyl alcohol, the "i! S share in fuels or directly as Fuel can be used.

Stand der TechnikState of the art

Neuere kontinuierliche Hydrolyseverfahren sind beispielsweise in US-A-2801 939 und in US-A-3212932 beschrieben. Der Schwerpunkt dieser beiden Patentschriften liegt auf den Reaktions- und übrigen Verfahrensbedingungen. In beiden Patentschriften wird zwar erwähnt, daß sich die Verfahren kontinuierlich durchführen ließen, es ist den Patentschriften im einzelnen aber nicht zu entnehmen, wie dies mit wirtschaftlichen Mitteln durchgeführt werden soll. Lediglich aus der US-A-2801 939 geht hervor, daß die Biomasse derart zerkleinert und mit einem hohen Flüssigkeitsüberschuß vermischt werden soll, daß sie pumpfähig wird. Eine hohe Verdünnung führt jedoch zu hohen Energiekosten und. was noch entscheidender ist, zu einer geringen Zukkerkonzentration im Hydrolysat. die hohe Eindampfenergien erfordert.More recent continuous hydrolysis processes are described, for example, in US-A-2801 939 and in US-A-3212932. The focus of these two patents is on the reaction and other process conditions. Although it is mentioned in both patents that the processes can be carried out continuously, it is not apparent from the patents in detail how this should be carried out using economic means. Only US-A-2801 939 shows that the biomass should be comminuted and mixed with a large excess of liquid in such a way that it becomes pumpable. However, high dilution leads to high energy costs and. more importantly, to a low sugar concentration in the hydrolyzate. which requires high evaporation energies.

In der DD-A-130 582 ist zur Durchführung einer Kurzzeitintensivhydrolyse bereits die Verwendung eines mit beweglichen Einbauten versehenen Rohrreaktors vorgeschlagen worden, in den die Biomasse gegen den im Innern herrschenden Druck mit einer pfropfenbildenden, konischen Eintragsschnecke mit Säurezuführung eingespeist werden soll. Dabei kann die Austragsvorrichtung eine Siebschneckenpresse sein, die eine Abtrennung der Flüssigkeit unter Druck ermöglicht, wodurch eine teilweise Entfeuchtung des Rückstandes sowie eine separate Entspannung von Flüssigkeit und Rückstand ermöglicht wird.DD-A-130 582 has already proposed the use of a tubular reactor provided with movable internals for carrying out short-term intensive hydrolysis, into which the biomass is to be fed against the internal pressure with a plug-forming, conical feed screw with acid supply. The discharge device can be a screen screw press, which enables the liquid to be separated under pressure, which enables a partial dehumidification of the residue and a separate expansion of the liquid and residue.

Darstellung der ErfindungPresentation of the invention

Gegenüber dem Stand der Technik besteht die Aufgabe der vorliegenden Erfindung darin, konkrete verfahrensmäßige und entsprechende vorrichtungstechnische Ausgestaltungen des Verfahrens anzugeben, mit denen eine Kurzzeitreaktion unter verbesserten Bedingungen möglich ist. Insbesondere ist angestrebt, den Energiebedarf gegenüber bekannten Arbeitsweisen weiter zu vermindern und die Ausbeute an erhaltenen Zuckern zu erhöhen.Compared to the prior art, the object of the present invention is to provide specific procedural and corresponding device-specific configurations of the method with which a short-term reaction is possible under improved conditions. In particular, the aim is to further reduce the energy requirement compared to known working methods and to increase the yield of sugars obtained.

Diese Aufgabe wird für ein Verfahren der eingangs bezeichneten Art erfindungsgemäß dadurch gelöst, daß in der Biosubstanz enthaltene Luft und überschüssige Flüssigkeit in der Füllschnecke weitgehend entfernt werden, die Hydrolyse im Reaktionsraum in der Dampfphase durchgeführt und das Hydrolysat hinter jeder Hydrolysierstufe in mehreren Trennstufen aus dem Reaktionsgemisch abgetrennt wird.This object is achieved according to the invention for a process of the type mentioned at the outset by largely removing air and excess liquid in the filling screw in the biosubstance, carrying out the hydrolysis in the reaction chamber in the vapor phase and the hydrolyzate behind each hydrolysis stage in several separation stages from the reaction mixture is separated.

Wenn vorliegend von einem kontinuierlichen Verfahren die Rede ist, so soll sich das Wort « kontinuierlich in erster Linie auf den Verfahrensablauf innerhalb einer Hydrolysierstufe beziehen. Das mindestens zweistufige Hydrolysierverfahren gemäß der Erfindung kann daher notfalls auch mit einer einstufigen Anlage durchgeführt werden, indem diese intermittierend als erste Stufe oder Folgestufe betrieben wird. Bei größeren Anlagen sollte jedoch auch die Anlage mehrstufig ausgeführt werden, da gewisse schaltungstechnische Vorteile gemäß der Erfindung nur mit einer mehrstufigen Anlage verwirklicht werden können.If the term "continuous process" is used here, the word "continuously refers primarily to the course of the process within a hydrolysis stage. The at least two-stage hydrolysis process according to the invention can therefore, if necessary, also be carried out with a one-stage system by operating it intermittently as the first stage or subsequent stage. In larger systems, however, the system should also be designed in several stages, since certain circuit advantages according to the invention can only be achieved with a multi-stage system.

Durch die mit perforiertem Mantel versehene Füllschnecke ist es möglich, das vorzerkleinerte Material weitgehend frei von überschüssiger Flüssigkeit, und was noch entscheidender ist, weitgehend frei von Lufteinschlüssen, die sich nachteilig auf den Chemismus der Hydrolyse auswirken, in den unter Druck befindlichen Reaktionsraum im Kocher einzuschleusen. Bei fast allen praktischen Verfahrensvarianten kommt die Biosubstanz vor Eintritt in den Reaktionsraum mit Flüssigkeit in Berührung. Bei Verfahrensvarianten mit nicht sehr kurzen Reaktionszeiten wird die Biosubstanz zweckmäßigerweise vor Eintritt in die erste Hydrolysierstufe unter intensivem Mischen mit der mineralsäurehaltigen Aufschlußflüssigkeit vorimprägniert. Für eine einwandfreie Imprägnierung muß dabei mit einem bestimmten Flüssigkeitsüberschuß gearbeitet werden, der ohne weiteren Verfahrensschritt mittels der dem Kocher vorgeschalteten perforierten Füllschnecke wieder auf das für die Hydrolyse vorgesehene Maß vermindert werden kann. Aber auch, wenn mit extrem kurzen Hydrolysezeiten gearbeitet werden soll, bei denen es zweckmäßig ist, die wässrige mineralsaure Katalysatorlösung erst unmittelbar in den Kocher einzuspritzen, wird die Biosubstanz im allgemeinen vorher einer Naßreinigung und eventuell auch einer Vorerwärmung unterzogen, wobei sie mit Flüssigkeit in Berührung kommt, deren Überschuß dann auf einfachste Weise in der perforierten Füllschnecke des Kochers wieder Beseitigt werden kann.The perforated casing of the filling screw makes it possible to introduce the pre-shredded material largely free of excess liquid and, more importantly, largely free of air pockets, which have a negative effect on the chemistry of hydrolysis, into the pressurized reaction space in the digester . In almost all practical process variants, the biosubstance comes into contact with liquid before it enters the reaction space. In process variants with not very short reaction times, the biosubstance is expediently pre-impregnated with the mineral acid-containing digestion liquid before entering the first hydrolyzing stage. For a perfect impregnation it is necessary to work with a certain excess of liquid, which can be reduced to the level provided for the hydrolysis again without a further process step by means of the perforated filling screw upstream of the cooker. But even if you want to work with extremely short hydrolysis times, when it is advisable to inject the aqueous mineral acid catalyst solution directly into the cooker, the biosubstance is generally subjected to wet cleaning and possibly preheating beforehand, in contact with liquid comes, the excess can then be easily removed in the perforated filling screw of the cooker again.

Der Röhrenkocher selbst bietet die Möglichkeit, die Hydrolyse bei kürzesten Reaktionszeiten und mit geringstmöglichem Flüssigkeitsüberschuß in der Dampfphase durchzuführen, wobei sich erhebliche unmittelbare Energieeinsparungen bei der Kochung und sekundäre Energieeinsparungen dadurch ergeben, daß das Hydrolysat in verhältnismäßig hoher Konzentration anfällt.The tube cooker itself offers the possibility of carrying out the hydrolysis with the shortest reaction times and with the least possible excess of liquid in the vapor phase, with considerable immediate energy savings in the cooking and secondary energy savings resulting from the fact that the hydrolyzate is obtained in a relatively high concentration.

Der Austrag des Reaktionsgemisches aus dem Kocher kann mittels eines bekannten Blasventiles über eine Blasleitung in einen zyklonartigen Blastank erfolgen. In diesem Fall der Verfahrensführung schließt sich die Abtrennung des Hydrolysates von dem Reaktionsgemisch an das plötzliche Entspannen, nämlich das Ausblasen des Reaktionsgemisches aus dem Kocher an. Die mehrstufige Abtrennung des Hydrolysates aus dem Reaktionsgemisch hinter jeder Hydrolysierstufe erfolgt zweckmäßigerweise im Gegenstrom des Hydrolysates, wobei unter Abtrennung hier praktisch eine Gegenstromwäsche mit möglichst geringer Hydrolysatverdünnung verstanden werden soll, bei der in der letzten Trennstufe im allgemeinen mit Frischwasser zum Auswaschen der Biosubstanz gearbeitet wird und das der Weiterverarbeitung zuzuführende, konzentrierte Hydrolysat allein aus der ersten, sich an den Kocher anschließenden Trennstufe abgeführt wird. Als Trenn- oder Separiervorrichtungen finden vorteilhafterweise Separierschnecken und/ oder Doppelsiebpressen Verwendung. Im allgemeinen ist eine dreistufige Hydrolysatabtrennung für das Verfahren ausreichend.The reaction mixture can be discharged from the cooker by means of a known blow valve via a blow line into a cyclone-like blow tank. In this case of carrying out the process, the separation of the hydrolyzate from the reaction mixture is followed by the sudden expansion, namely the blowing out of the reaction mixture from the cooker. The multistage removal of the hydrolyzate from the reaction mixture behind each hydrolyzation stage is expediently carried out in countercurrent to the hydrolyzate, with separation here being understood to mean practically countercurrent washing with the lowest possible hydrolyzate dilution, in which the last separation stage is generally carried out with fresh water for washing out the organic substance, and the concentrated hydrolyzate to be fed for further processing is removed from the first separation stage following the cooker alone. Separating screws and / or twin-wire presses are advantageously used as separating or separating devices. In general, a three-stage hydrolyzate separation is sufficient for the process.

Unter « Separierschnecken sollen im Rahmen der vorliegenden Anmeldung Schneckenpressen verstanden werden, die den Füllschnecken dem Prinzip nach ähnlich sind. Sie sind für die Flüssigkeitsabtrennung mit einem perforierten Mantel versehen, brauchen aber, sofern sie nicht zum Arbeiten gegen einen Behälterdruck benötigt werden, keinen druckabschließenden Pfropfen zu bilden und können je nach Bedarf auch mit geringerer Verdichtung betrieben werden. Bei einer sehr vorteilhaften Verfahrensausgestaltung findet die Hydrolysatabtrennung zumindest in der ersten Trennstufe noch unter dem Druckabschluß des Reaktionsraumes statt, wobei das plötzliche Entspannen des Reaktionsgemisches in den Blastank hinein erst nach dieser ersten Trennstufe vorgenommen wird. In diesem Fall besteht die erste Separiervorrichtung aus einem Schneckenseparator, der unmittelbar an das Austragsende des Röhrenkochers angeschlossen ist und mit dem Kocher eine unter Druckabschluß befindliche Einheit bildet. Zu diesem Zweck ist der Schneckenseparator außerhalb seines konischen, perforierten Mantels mit einem im Abstand vom Mantel angeordneten, druckfesten Gehäuse versehen, durch welches lediglich das Pfropfenrohr am Ende des Schneckenmantels hindurchgeführt ist. In dem Druckfesten Gehäuse sammelt sich die abgetrennte Flüssigkeit an, die über eine Austrittsleitung unter Druck oder über ein Druckentspannungsventil abgezogen werden kann. Aus dem Pfropfenrohr des Schneckenseparators hinaus wird das Reaktionsgemisch bzw. die nach der ersten Hydrolysatabtrennung verbleibende Masse über eine Blasleitung in einen Blastank ausgeblasen. An den Blastank können sich dann weitere Trennstufen für die Hydrolysatabtrennung anschließen. Bei einer speziellen Ausführungsform kann es zweckmäßig sein, das in diesem Schneckenseparator abgetrennte Hydrolysat über ein Blasventil in einen getrennten Blastank auszublasen. Soll für die Hydrolysatabtrennung im vollständigen Gegenstrom des Hydrolysates gearbeitet werden, so muß dieses für die erste Trennstufe mittels einer Pumpe auf das entsprechende Druckniveau des Kocherausganges angehoben werden.In the context of the present application, “separating screws” should be understood to mean screw presses which are similar in principle to the filling screws. They are provided with a perforated jacket for liquid separation, but, if they are not required to work against a container pressure, do not need to form a pressure-stopper and can also be operated with less compression if required. In a very advantageous embodiment of the process, the hydrolyzate is separated off, at least in the first separation stage, while the pressure in the reaction space is closed, the sudden expansion of the reaction mixture into the blow tank only taking place after this first separation stage. In this case, the first separating device consists of a screw separator which is connected directly to the discharge end of the tube cooker and forms a unit under pressure with the cooker. For this purpose, the screw separator is provided outside of its conical, perforated casing with a pressure-resistant housing arranged at a distance from the casing, through which only the plug tube at the end of the screw casing is passed. The separated liquid collects in the pressure-resistant housing and can be drawn off via an outlet line under pressure or via a pressure relief valve. The reaction mixture or the mass remaining after the first hydrolyzate separation is blown out of the plug tube of the screw separator into a blow tank via a blow line. Further separation stages for the hydrolyzate separation can then follow the blow tank. In a special embodiment, it can be expedient to blow out the hydrolyzate separated in this screw separator into a separate blow tank via a blow valve. If work is to be carried out in the complete countercurrent of the hydrolyzate for the hydrolyzate separation, this must be raised to the corresponding pressure level of the boiler outlet for the first separation stage by means of a pump.

Diese Ausgestaltung des Verfahrens bzw. der zur Durchführung des Verfahrens vorgesehenen Anlage weist den Vorteil auf, daß auf ein getrenntes Blasventil für die Festsubstanz am Kocher. welches u. U. eine gewisse Störanfälligkeit aufweist, verzichtet werden kann. Der austragsseitige Druckabschluß des Kochers wird allein durch die Separierschnecke und deren konischen Mantel gebildet. Das dosierte Austragen des Reaktionsgemisches aus dem Kocher findet dabei durch eine entsprechende Drehbewegung der Schnecke statt. Ein Auspressen des Hydrolysates in dem Schneckenseparator ist nicht unbedingt erforderlich, da eine Hydrolysatabtrennung bereits durch ein Druckgefälle zwischen Kocherinnenraum und dem den Schneckenmantel umgebenden Gehäuse erfolgen kann. Ein weiterer Vorteil dieser Verfahrensführung besteht darin, daß beispielsweise bei einem zweistufigen Verfahren das in der zweiten Stufe abgetrennte Hydrolysat unter einem solchen Druck gehalten werden kann, daß entweder der bei gewisser Entspannung aus dem Hydrolysat entweichende Dampf zum Beheizen der ersten Stufe verwendet werden kann, oder das Hydrolysat selbst als säurehaltiges Aufschlußmittel unter Druck zum gleichzeitigen Beheizen in der ersten Hydrolysierstufe verwendet werden kann. Die letztere Möglichkeit ist nur dann gegeben, wenn die Hydrolysate der einzelnen Hydrolysierstufen nicht jeweils unmittelbar der Weiterverarbeitung zugeführt werden sollen.This embodiment of the method or the system provided for carrying out the method has the advantage that a separate blow valve for the solid substance on the stove. which u. U. has a certain susceptibility to failure, can be dispensed with. The discharge end of the cooker is formed solely by the separating screw and its conical jacket. The metered discharge of the reaction mixture from the cooker takes place by a corresponding rotary movement of the screw. It is not absolutely necessary to squeeze the hydrolyzate in the screw separator, since hydrolyzate separation is already caused by a pressure difference between the interior of the cooker and the shell of the screw giving housing can take place. Another advantage of this procedure is that, for example, in a two-stage process, the hydrolyzate separated in the second stage can be kept under such a pressure that either the steam escaping from the hydrolyzate with a certain relaxation can be used to heat the first stage, or the hydrolyzate itself can be used as an acidic disintegrant under pressure for simultaneous heating in the first hydrolyzing stage. The latter option is only available if the hydrolyzates of the individual hydrolyzation stages are not to be sent directly to further processing.

Zum Erzielen eines minimalen Einsatzes an mineralsaurem Katalysator ist es zweckmäßig, wie oben beschrieben vorzugehen und zumindest bei einer zweistufigen Hydrolyse das Hydrolysat der zweiten Stufe, welches im allgemeinen noch genügend mineralische Säuren enthält, unmittelbar als Aufschlußflüssigkeit für die erste Hydrolysierstufe zu verwenden. In diesem Fall würde das Hydrolysat nicht nur in den sich an jede Hydrolysierstufe anschließenden Hydrolysatabtrennstufen sondern durch die ganze Anlage im Gegenstrom geführt, so daß nur das Hydrolysat der ersten Trennstufe der ersten Hydrolysierstufe der Weiterverarbeitung zugeführt wird.To achieve a minimal use of mineral acid catalyst, it is expedient to proceed as described above and, at least in the case of a two-stage hydrolysis, to use the hydrolyzate of the second stage, which generally still contains sufficient mineral acids, directly as the digestion liquid for the first hydrolysis stage. In this case, the hydrolyzate would not only be conducted in the hydrolyzate separation stages following each hydrolysis stage, but through the entire system in countercurrent, so that only the hydrolyzate of the first separation stage is fed to the first hydrolysis stage for further processing.

Auch wenn es einerseits die genannten Vorteile mit sich bringt, die erfindungsgemäße Anlage vollständig im Gegenstrom des Hydrolysats zu betreiben, so können doch andere Gesichtspunkte dafür maßgebend sein, auf eine solche Hydrolysatführung zu verzichten und das Hydrolysat jeder Hydrolysierstufe unmittelbar der Weiterverarbeitung zuzuführen.Even if, on the one hand, it brings the advantages mentioned to operate the system according to the invention completely in countercurrent to the hydrolyzate, other considerations can be decisive in doing without such a hydrolyzate system and feeding the hydrolyzate directly to each hydrolyzing stage for further processing.

Dies ist insbesondere bei einer weiteren vorteilhaften Ausgestaltung des Verfahrens der Fall, bei der das Hydrolysat hinter jeder einzelnen Hydrolysierstufe, und zwar bereits im Austragsende des Kochers oder in der Blasleitung neutralisiert wird. Der außerordentliche Vorteil dieser Verfahrensvariante liegt darin, daß dem Reaktionsgemisch dadurch seine stark korrodierenden Eigenschaften genommen werden und die sich an die Blasleitung anschließenden Anlagenaggregate einschließlich des Blastanks, vor allem aber die weiteren Separiervorrichtungen bzw. Gegenstromwascheinrichtungen für das Hydrolysat nicht aus säurebeständigen Materialien gefertigt zu werden brauchen. Dieser Umstand ist für den praktischen Betrieb der Anlage und für die erforderlichen Investitionskosten von Bedeutung.This is the case in particular in a further advantageous embodiment of the method in which the hydrolyzate is neutralized after each individual hydrolyzing stage, specifically already in the discharge end of the cooker or in the blow line. The extraordinary advantage of this process variant lies in the fact that the reaction mixture is thus deprived of its highly corrosive properties and the plant units including the blow tank connected to the blow line, but above all the further separating devices or countercurrent washing devices for the hydrolyzate need not be made from acid-resistant materials . This is important for the practical operation of the system and for the necessary investment costs.

Für den Fall, daß auf die Hydrolysatabtrennung hinter einer Hydrolysierstufe eine weitere Hydrolysierstufe folgt, wird die Füllschnecke für den Kocher der Folgestufe zweckmäßigerweise gleichzeitig als letzte Trennstufe für die Hydrolysatabtrennung in der vorhergehenden Stufe verwendet. Dies ist möglich, da, insoweit Separierschnecken für die Hydrolysatabtrennung Verwendung finden, diese Separierschnecken im wesentlichen in gleicher Weise ausgeführt sein können wie die Füllschnecken der Kocher. Hierdurch ergeben sich anlagetechnisch erhebliche Vereinfachungen. Da die Füllschnecken ohnehin dazu dient, überschüssige Flüssigkeit aus der Biosubstanz zu beseitigen, bevor diese in den Kocher eintritt, kann die Füllschnecke auch gleichzeitig dazu eingesetzt werden, Reste des in der vorangegangenen Stufe erzeugten Hydrolysates aus der Masse abzutrennen.In the event that a further hydrolyzing stage follows the hydrolyzate separation behind a hydrolyzing stage, the filling screw for the boiler of the next stage is expediently used at the same time as the last separation stage for the hydrolyzate separation in the previous stage. This is possible because, as far as separating screws are used for the hydrolyzate separation, these separating screws can be designed essentially in the same way as the filling screws of the cookers. This results in considerable simplifications in terms of plant technology. Since the filling screw is used anyway to remove excess liquid from the organic substance before it enters the cooker, the filling screw can also be used at the same time to remove residues of the hydrolysate produced in the previous stage from the mass.

Bei Horizontalröhrenkochern, wie sie von der Zellstoffherstellung her bekannt sind, ist zwischen Füllschnecke und eigentlicher Kocherröhre im allgemeinen ein senkrechtes Fallrohr angeordnet, in dessen oberes Ende das Pfropfenrohr der Füllschnecke horizontal mündet. Diese Anordnung wird deshalb gewählt, um gegenüber der Mündung der Füllschnecke eine Verschlußeinrichtung für die Mündung, einen sogenannten « blow back damper anzuordnen, mit der bei versagendem Druckabschluß durch den Materialpfropfen ein Ausblasen des Kochers unterbunden werden kann.In horizontal tube cookers, such as are known from pulp production, a vertical downpipe is generally arranged between the filling screw and the actual cooking tube, in the upper end of which the plug of the filling screw opens horizontally. This arrangement is therefore chosen in order to arrange a closure device for the mouth, a so-called “blow back damper”, opposite the mouth of the filling screw, which can be used to prevent the stove from being blown out if the pressure stop fails due to the material plug.

Da es im Gegensatz zur Zellstoffherstellung, bei der das Endprodukt der Feststoff ist, welcher in seiner Faserstruktur möglichst nicht geschädigt werden soll, bei der Hydrolyse nicht auf den Feststoff, sondern auf das Hydrolysat als Produkt ankommt, ist es zweckmäßig, das Ausgangsmaterial weitgehend zu zerkleinern. Es hat sich gezeigt, daß unter solchen Voraussetzungen ein sicherer Druckabschluß durch den Pfropfen der Füllschnecke erreichbar ist, so daß man die Füllschnecke unmittelbar in die Kocherröhre münden lassen kann. Dies kann bei Hydrolyse mit sehr kurzer Reaktionszeit von Bedeutung sein. Um den stark verdichteten Pfropfen nach seinem unmittelbaren Eintritt in die Kocherröhre für den Reaktionsablauf wieder disintegrieren zu können, ist es vorteilhaft, zu diesem Zweck hinter der Mündung der Füllschnecke Dampfzuführungen im Innern des Kochers vorzusehen.In contrast to pulp production, in which the end product is the solid, which should not be damaged in its fiber structure, the hydrolysis does not depend on the solid but on the hydrolyzate as the product, so it is advisable to largely shred the starting material . It has been shown that, under such conditions, a reliable pressure closure can be achieved by grafting the filling screw, so that the filling screw can be opened directly into the cooker tube. This can be important in hydrolysis with a very short reaction time. In order to be able to disintegrate the heavily compacted plug after its direct entry into the cooker tube for the course of the reaction, it is advantageous for this purpose to provide steam feeds inside the cooker behind the mouth of the filling screw.

Anzustreben ist ein möglichst geringes Flüssigkeit-zu-Feststoff-Verhältnis, das etwa im Bereich von 3:1 bis 1,5 :1, vorzugsweise aber im Bereich von 2 : liegen sollte. Die Verwendung einer Füllschnecke mit perforiertem Schneckengehäuse bietet den besonderen Vorteil, daß auch nach einer Imprägnierung der Biosubstanz in einem Zweisellenmischer überschüssige Aufschlußflüssigkeit unmittelbar vor Eintritt der Masse in den Kocher wieder abgepreßt werden kann, ohne daß hierfür ein zusätzlicher Verfahrensschritt erforderlich wird. Es sei nochmals besonders hervorgehoben, daß ein wesentlicher Punkt des beanspruchten Verfahrens darin liegt, daß es unter Verwendung einer Füllschnecke gelingt, die für die Hydrolyse äußerst schädliche Luft vor Eintritt in den Kocher fast 100 %ig aus der zerkleinerten Biosubstanz zu entfernen.The lowest possible liquid-to-solid ratio should be aimed for, which should be in the range of 3: 1 to 1.5: 1, but preferably in the range of 2:. The use of a filling screw with a perforated screw housing has the particular advantage that, even after impregnation of the organic substance in a two-cell mixer, excess digestion liquid can be squeezed out again immediately before the mass enters the cooker, without an additional process step being necessary for this. It should again be emphasized that an essential point of the claimed process is that, using a filling screw, it is possible to remove almost 100% of the air, which is extremely damaging to the hydrolysis, from the comminuted organic substance before entering the cooker.

Die Erfindung betrifft auch eine zur Durchführung des Verfahrens geeignete Anlage. Die obige Beschreibung der für das Verfahren erfindungswesentlichen Merkmale ist weitgehend auch auf die zugehörige Anlage anwendbar. Im folgenden werden das erfindungsgemäße Verfahren und zugehörige Anlagen unter Hinweis auf die beigefügten Verfahrensschemata im einzelnen noch näher erläutert.The invention also relates to a system suitable for carrying out the method. The above description of the features essential to the method of the invention is extensive also applicable to the associated system. The process according to the invention and associated systems are explained in more detail below with reference to the attached process diagrams.

Kurzbeschreibung der ZeichnungenBrief description of the drawings

Es zeigen :

  • Figur 1 ein Verfahrensschema einer ersten Ausführungsform des erfindungsgemäßen Verfahrens ;
  • Figur 2 ein Verfahrensschema der ersten Hydrolysierstufe einer Verfahrensvariante ;
  • Figur 3 eine spezielle Anordnung des Schneckenfüllers im Verhältnis zum Horizontalröhrenkocher.
Show it :
  • Figure 1 is a process diagram of a first embodiment of the method according to the invention;
  • FIG. 2 shows a process diagram of the first hydrolysis stage of a process variant;
  • Figure 3 shows a special arrangement of the screw filler in relation to the horizontal tube cooker.

Beschreibung der besten Ausführungsformen der ErfindungDescription of the best modes for carrying out the invention

Entsprechend dem Verfahrensschema der Fig. 1 gelangt die zerkleinerte und vorgereinigte Biosubstanz bei 1 mittels eines Förderbandes 2, das vorzugsweise mit einer (nicht gezeigten) automatischen Wägeeinrichtung versehen ist, in einen Doppelwellenmischer 3 bekannter Bauart, in dem die Biosubstanz mit säurehaltiger Aufschlußflüssigkeit vorimprägniert wird, welche über eine mit einem automatischen Regeiventil 4 versehene Leitung 5 zugeführt wird. Die Dosierung der Aufschlußflüssigkeit erfolgt zweckmäßigerweise in Abhängigkeit von der über des Förderband pro Zeiteinheit eingewogenen Biosubstanz. Über eine Leitung 6 wird zusätzlich Blasdampf aus dem Prozeß zum Aufheizen der Biosubstanz in den Doppelwellenmischer eingegeben.According to the process diagram of FIG. 1, the comminuted and pre-cleaned organic substance at 1 reaches a double-shaft mixer 3 of known type in a conveyor belt 2, which is preferably provided with an automatic weighing device (not shown), in which the organic substance is pre-impregnated with acidic digestion liquid, which is supplied via a line 5 provided with an automatic control valve 4. The digestion liquid is expediently metered as a function of the biological substance weighed in per unit of time over the conveyor belt. Blown steam from the process for heating the organic substance is additionally fed into the double-shaft mixer via a line 6.

In dem als Imprägnator vorzugsweise verwendeten Doppelwellenmischer 3 wird die Flüssigkeit von den zwei rotierenden Schnecken des Mischers intensiv mit der Biosubstanz vermischt, wobei die Flüssigkeit das feuchte Rohmaterial durchdringt, um es für den schnellen Dampfphasenaufschluß vorzubereiten. Von der Austragsöffnung des Doppelwellenmischers fällt die imprägnierte Biosubstanz durch Schwerkraft durch einen Fallschacht 7 in die Zuführöffnung des Schneckenfüllers 8, der Teil des Kochers ist. Im Schneckenfüller 8 wird die Biosubstanz durch die in dem Schneckenfüller drehbar gelagerte Füllschnecke in den die Schnecke umgebenden Konusmantel gepreßt, wodurch ein dichter Pfropfen gebildet wird, welcher den eingangsseitigen Druckabschluß des Kocherinnenraumes bildet. Durch das perforierte, konische Schneckengehäuse hindurch wird überschüssige Flüssigkeit aus der Biosubstanz ausgepreßt, welche über eine Leitung 9 in den Imprägnierkreislauf zurückgeführt wird. Im Schneckenfüller 8 wird weiterhin der größte Teil der in der Biosubstanz enthaltenen Luft entfernt und die Füllschnecke transportiert das Material mit geringem Feuchtigkeitsgehalt in den Kocher, wodurch Kochdampf gespart wird und die Hydrolyse in der Dampfphase erleichtert wird.In the double-shaft mixer 3, which is preferably used as an impregnator, the liquid is intensively mixed with the organic substance by the two rotating screws of the mixer, the liquid penetrating the moist raw material in order to prepare it for the rapid vapor phase digestion. From the discharge opening of the twin-shaft mixer, the impregnated organic substance falls by gravity through a chute 7 into the feed opening of the screw filler 8, which is part of the cooker. In the screw filler 8, the bio-substance is pressed into the conical shell surrounding the screw by the filling screw which is rotatably mounted in the screw filler, whereby a dense plug is formed which forms the pressure-side closure of the interior of the cooker. Excess liquid is pressed out of the bio-substance through the perforated, conical screw housing, which is returned to the impregnation circuit via a line 9. In the screw filler 8, most of the air contained in the organic substance is also removed and the filling screw transports the material with a low moisture content into the cooker, which saves cooking steam and facilitates hydrolysis in the steam phase.

Von der Auslaßöffnung des Schneckenfüllers 8 fällt die Biosubstanz durch eine als Fallschacht 10 ausgebildete Kammer, die in die waagerechte Kocherröhre des Kochers 11 mündet. Der Kocher 11 ist im Innern mit einer (in Fig. 1 nicht gezeigten) Förderschnecke versehen, deren Geschwindigkeit verändert werden kann, um die Verweilzeit der Biosubstanz im Kocher beeinflussen zu können. In der schematischen Darstellung der Fig. 1 ist der Kocher 11 ferner nur mit einer Kocherröhre dargestellt, er kann je nach Durchsatzmenge und Verweilzeit jedoch auch als Zweiröhrenkocher oder als Kocher mit noch mehreren Kocherröhren ausgebildet werden.The organic substance falls from the outlet opening of the screw filler 8 through a chamber designed as a chute 10, which opens into the horizontal cooker tube of the cooker 11. The inside of the cooker 11 is provided with a screw conveyor (not shown in FIG. 1), the speed of which can be changed in order to be able to influence the residence time of the organic substance in the cooker. In the schematic representation of FIG. 1, the cooker 11 is also only shown with one cooker tube, but depending on the throughput and dwell time, it can also be designed as a two-tube cooker or as a cooker with several cooker tubes.

Der Kocher 11 wird über eine Leitung 12 mit mehreren Kocheranschlüssen mit Dampf beheizt, der im vorliegenden Ausführungsbeispiel, wie weiter unte noch erläutert werden wird, durch Entspannung des unter Druck gehaltenen Hydrolysats der zweiten Hydrolysierstufe gewonnen wird. Am Ende des Kochers fällt das Reaktionsgemisch in eine Austragseinrichtung, die im Ausführungsbeispiel aus einem Scheckenseparator 13 besteht, der in seinem Aufbau dem Schneckenfüller 8 ähnlich ist. Am Eingang des Schneckenseparators 13 wird dem Reaktionsgemisch über eine Leitung 14 Hydrolysat aus der im Gegenstrom betriebenen zweiten Hydrolysattrennstufe zugeführt. Das durch den Konusmantel des Schneckenseparators 13 abgetrennte Hydrolysat, welches bei der Schaltung des Ausführungsbeispieles das Gesamthydrolysat aus beiden dargestellten Hydrolysierstufen ist, verläßt hier die Hydrolyseanlage und wird der vorgesehenen Weiterverarbeitung zugeleitet. Das verengte Mundstück des Schneckenseparators 13 ist über eine Blasleitung 15 mit einem zyklonartig ausgebildeten Blastank 16 verbunden, in den die Blasleitung 15 am oberen Ende tangential eingeführt ist. Unmittelbar hinter dem Mundstück des Schneckenseparators 13 ist in der Blasleitung 15 noch ein Notventil 17 vorgesehen. Die Austragsmenge aus dem Kocher wird dabei durch die Drehgeschwindigkeit der Schnecke bestimmt. Die Hydrolysatabtrennung - erfolgt durch das Druckgefälle zwischen dem Innenraum des Kochers 11 bzw. des Schneckenseparators 13 und dem dessen Konusgehäuse umgebenden Außenraum. Eine zusätzliche Preßwirkung durch die Schnecke kann vorteilhaft sein, ist aber nicht unbedingt erforderlich.The cooker 11 is heated with steam via a line 12 with a plurality of cooker connections, which in the present exemplary embodiment, as will be explained further below, is obtained by relaxing the pressurized hydrolyzate of the second hydrolysis stage. At the end of the cooker, the reaction mixture falls into a discharge device, which in the exemplary embodiment consists of a pellet separator 13, which is similar in construction to the screw filler 8. At the entrance of the screw separator 13, the reaction mixture is fed via a line 14 hydrolyzate from the second hydrolyzate separation stage operated in countercurrent. The hydrolyzate separated by the cone jacket of the screw separator 13, which is the total hydrolyzate from the two hydrolysis stages shown in the circuit of the exemplary embodiment, leaves the hydrolysis plant here and is fed to the intended further processing. The narrowed mouthpiece of the screw separator 13 is connected via a blow line 15 to a cyclone-like blow tank 16, into which the blow line 15 is inserted tangentially at the upper end. An emergency valve 17 is also provided in the blow line 15 immediately behind the mouthpiece of the screw separator 13. The discharge amount from the cooker is determined by the speed of rotation of the screw. The hydrolyzate is separated - by the pressure drop between the interior of the cooker 11 or the screw separator 13 and the exterior surrounding the cone housing. An additional pressing action by the screw can be advantageous, but is not absolutely necessary.

Die nach Abtrennen des Gesamthydrolysates im Schneckenseparator 13 zurückbleibende Restsubstanz wird über die Blasleitung 15 in den Blastank 16 ausgeblasen, in dem eine Druckentspannung stattfindet, durch die Dampf aus dem restlichen Reaktionsgemisch frei wird. Der Blastank 16 ist im wesentlichen geschlossen ausgeführt und wird unter einem geringen Überdruck gehalten, um den freiwerdenden Dampf aufzufangen und dem Prozeß wieder zuzuführen. Ein Teil dieses Blasdampfes wird, wie bereits erwähnt, über die Leitung 6 dem Doppelwellenmischer 3 zugeführt. Restlicher Blasdampf gelangt über eine Leitung 17 zu anderen Verwertungsstellen im Prozeß.The residual substance remaining in the screw separator 13 after separation of the total hydrolyzate is blown out via the blow line 15 into the blow tank 16, in which a pressure release takes place, through which steam is released from the remaining reaction mixture. The blow tank 16 is essentially closed and is kept under a slight excess pressure in order to catch the released steam and to feed it back into the process. As already mentioned, part of this blow steam is fed to the twin-shaft mixer 3 via the line 6. Remaining blowing steam arrives via a line 17 to other recycling points in the process.

An das untere Austragsende des Blastanks 16 schließen sich in Reihe geschaltet zwei weitere Schneckenseparatoren 18 und 19 an, die zur möglichst vollständigen und verdünnungsbegrenzten Auswaschung des Hydrolysates aus der Biosubstanz im Flüssigkeitsgegenstrom betrieben werden. Der Schneckenseparator 19 dient gleichzeitig als Schneckenfüller für den Kocher der folgenden Stufe und stellt somit die Verbindungsstelle zwischen der ersten und zweiten Hydrolysierstufe dar.Connected in series to the lower discharge end of the blow tank 16 are two further screw separators 18 and 19, which are operated in the liquid countercurrent for the most complete and dilution-limited washing out of the hydrolyzate from the bio substance. The screw separator 19 also serves as a screw filler for the cooker of the following stage and thus represents the connection point between the first and second hydrolysis stages.

Die in jedem Schneckenseparator ausgepreßte Flüssigkeit wird in Verwirklichung des Gegenstrom-Waschprinzips jeweils vor die vorhergehende Hydrolysattrennstufe zurückgeführt. So gelangt die im Schneckenseparator 19 ausgepreßte Flüssigkeit über eine Leitung 20 zurück in den Blastank 16 und damit vor den Schneckenseparator 18, und die in diesem abgetrennte Flüssigkeit über die bereits erwähnte Leitung 14 in das Austragsende des Kochers 11 vor den mit diesem unmittelbar verbundenen Schneckenseparator 13. Da damit eine Einspeisung der Flüssigkeit in den Druckraum des Kochers erforderlich ist, ist in der Leitung 14 eine Druckerhöhungspumpe 21 vorgesehen, um das Waschhydrolysat auf das entsprechende Druckniveau anzuheben.In accordance with the countercurrent washing principle, the liquid squeezed out in each screw separator is in each case returned to the previous hydrolyzate separation stage. Thus, the liquid squeezed out in the screw separator 19 passes via a line 20 back into the blow tank 16 and thus before the screw separator 18, and the liquid separated therein via the already mentioned line 14 into the discharge end of the cooker 11 before the screw separator 13 directly connected to it Since this requires the liquid to be fed into the pressure chamber of the cooker, a pressure booster pump 21 is provided in line 14 in order to raise the washing hydrolyzate to the corresponding pressure level.

Nachdem in dem als dritte Hydrolysatabtrennstufe arbeitenden Schneckenseparator 19 das Resthydrolysat der ersten Hydrolysierstufe weitgehend aus der restlichen Biosubstanz entfernt worden ist, wird der Biosubstanz, nachdem sie das Mundstück des den Schneckenfüller für die zweite Hydrolysierstufe bildenden Schneckenseparators 19 passiert hat, über eine Leitung 22 dosiert Mineralsäure, vorzugsweise verdünnte Schwefelsäure, als Katalysator für die Hydrolyse zugegeben. Durch die Entspannung des Materials hinter dem Schneckenmundstück wird die Säure bereitwillig von diesem aufgenommen. Aus dem Schneckenfüller 19 gelangt die imprägnierte Restbiosubstanz über einen Fallschacht 22' in den Röhrenkocher 23 der zweiten Hydrolysierstufe, der vom gleichen Typ wie der Kocher 11 der ersten Hydrolysierstufe ist, in seinen speziellen Daten aber den Erfordernissen der zweiten Stufe angepaßt sein kann und deshalb nicht genau mit dem Kocher der ersten Stufe übereinzustimmen braucht. Im Ausführungsbeispiel wird der Kocher 23 der zweiten Hydrolysierstufe, die im allgemeinen unter höherem Druck als die erste Stufe betrieben wird, über eine Leitung 24 mit Frischuampf beheizt.After the residual hydrolyzate of the first hydrolyzation stage has been largely removed from the remaining biosubstance in the worm separator 19 working as the third hydrolyzate separation stage, the biosubstance, after it has passed the mouthpiece of the worm filler 19 forming the worm filler for the second hydrolysis stage, is metered in via a line 22 mineral acid , preferably dilute sulfuric acid, added as a catalyst for the hydrolysis. By relaxing the material behind the snail mouthpiece, the acid is readily absorbed by it. From the screw filler 19, the impregnated residual organic substance passes through a chute 22 'into the tube cooker 23 of the second hydrolysis stage, which is of the same type as the cooker 11 of the first hydrolysis stage, but its special data can and therefore cannot be adapted to the requirements of the second stage needs to exactly match the stove of the first stage. In the exemplary embodiment, the cooker 23 of the second hydrolysis stage, which is generally operated under higher pressure than the first stage, is heated with fresh steam via a line 24.

Die sich an den Kocher 23 der zweiten Hydrolysierstufe anschließenden Aggregate entsprechen im wesentlichen denjenigen der ersten Hydroiysierstufe. Der Kocher 23 ist an seinem Austragsende mit einem Schneckenseparator 25 verbunden, der über eine mit einem zusätzlichen Blasventil 26 versehene Blasleitung 27 mit einem Blastank 28 in Verbindung steht. An diesen schließen sich zwei weitere Schneckenseparatoren 29 und 30 an.The units following the boiler 23 of the second hydrolyzing stage essentially correspond to those of the first hydrolyzing stage. The cooker 23 is connected at its discharge end to a screw separator 25 which is connected to a blow tank 28 via a blow line 27 provided with an additional blow valve 26. This is followed by two further screw separators 29 and 30.

Die aus dem Mundstück des letzten Schneckenseparators 30 austretende, weitgehend aus Lignin bestehende Restbiosubstanz verläßt hier den Prozeß und wird zweckmäßigerweise zur Energiegewinnung durch Verbrennen in einer Kesselanlage verwertet. Zwischen den Schneckenseparatoren 29 und 30 wird der Restbiosubstanz über eine Leitung 31 Waschwasser zugegeben, welches vorzugsweise erwärmt ist und an anderer Stelle der Gesamtanlage anfallendes Prozeßwasser sein kann. Das letzte, in dem Schneckenseparator 30 abgetrennte Waschhydrolysat wird über eine Leitung 32 in den Blastank 28 und damit vor den die zweite Hydrolysatabtrennstufe bildenden Schneckenseparator 29 zurückgeführt. Die in diesem abgetrennte Flüssigkeit gelangt über eine Leitung 33 vor den unter Kocherdruck stehenden Schneckenseparator 25, weswegen auch in dieser Leitung 33 eine Druckerhöhungspumpe 34 vorgesehen ist. Das unter Druck gehaltene Hydrolysat der zweiten Hydrolysierstufe, welches in dem mit dem Kocher 23 verbundenen Schneckenseparator 25 abgetrennt wird, wird über eine Leitung 35 zurück in die erste Hydrolysierstufe geführt und zwar zuerst zu einem Entspannungsgefäß 36, aus dem der durch Entspannung freiwerdende Dampf, wie bereits oben erwähnt, über die Leitung 12 als Heizdampf in den Kocher 11 der ersten Stufe eingeleitet wird. Das entspannte Hydrolysat der zweiten Stufe gelangt aus dem Entspannungsgefäß 36 über die Leitung 4 zur Vorimprägnierung der frischen Biosubstanz in den Doppelwellenmischer 3 der ersten Hydrolysierstufe.The residual bio-substance emerging from the mouthpiece of the last screw separator 30 and consisting largely of lignin leaves the process here and is expediently used for energy generation by combustion in a boiler system. Between the screw separators 29 and 30, the residual organic substance is added via a line 31 washing water, which is preferably heated and can be process water obtained elsewhere in the overall system. The last washing hydrolyzate separated in the screw separator 30 is returned via a line 32 into the blow tank 28 and thus before the screw separator 29 forming the second hydrolyzate separation stage. The liquid separated in this passes through a line 33 upstream of the screw separator 25, which is under boiler pressure, which is why a pressure booster pump 34 is also provided in this line 33. The pressurized hydrolyzate of the second hydrolyzing stage, which is separated off in the screw separator 25 connected to the cooker 23, is fed back via line 35 into the first hydrolyzing stage, first to an expansion vessel 36 from which the vapor released by expansion, such as already mentioned above, is introduced via line 12 as heating steam into the cooker 11 of the first stage. The relaxed hydrolyzate of the second stage passes from the expansion vessel 36 via line 4 for pre-impregnation of the fresh organic substance into the twin-shaft mixer 3 of the first hydrolysis stage.

Wie sich aus dem Verfahrensschema der Fig. 1 insgesamt ergibt, wird Frischdampf nur zum Beheizen des Kochers der zweiten Stufe eingesetzt. Der Kocher der ersten Stufe wird mit dem Entspannungsdampf aus dem Hydrolysat der zweiten Stufe beheizt. Das Hydrolysat wird durch die gesamte Anlage im Gegenstrom geführt und angereichert. Lediglich vor der letzten Trennstufe hinter der zweiten Hydrolysierstufe wird Waschwasser zugegeben. Die dreistufige Hydrolysatabtrennung hinter dem zweiten Kocher wird im Gegenstrom betrieben, und das in der ersten Trennstufe hinter dem zweiten Kocher, nämlich in dem Schneckenseparator 25 abgetrennte Hydrolysat wird vollständig der Biosubstanz vor der ersten Hydrolysierstufe zugegeben und innerhalb der ersten Hydrolysierstufe mit dem Hydrolysat dieser Stufe angereichert, wobei hinter dem Kocher der ersten Stufe ebenfalls eine Gegenstromauswaschung stattfindet, so daß das aufkonzentrierte Gesamthydrolysat beider Hydrolysierstufen aus der ersten Hydrolysattrennstufe hinter dem ersten Kocher abgeführt werden kann. Da als Aufschlußflüssigkeit in der ersten Hydrolysierstufe das mineralsäurehaltige Hydrolysat der zweiten Hydrolysierstufe verwendet wird, braucht hier auch nicht erneut Mineralsäure zugegeben zu werden. Die Zugabe frischer Mineralsäure erfolgt allein vor dem Kocher der zweiten Hydrolysierstufe. Auf die zusätzliche Darstellung an sich bekannter Einrichtungen zum Steuern und Regeln des Prozeßablaufes wurde im Verfahrensschema der Fig. 1 absichtlich verzichtet.As can be seen from the overall process diagram of FIG. 1, live steam is only used to heat the second stage cooker. The first stage cooker is heated with the flash steam from the second stage hydrolyzate. The hydrolyzate is passed through the entire system in counterflow and enriched. Washing water is added only before the last separation stage after the second hydrolysis stage. The three-stage hydrolyzate separation behind the second cooker is operated in countercurrent, and the hydrolyzate separated in the first separation stage behind the second cooker, namely in the screw separator 25, is completely added to the biosubstance before the first hydrolyzing stage and enriched with the hydrolyzate of this stage within the first hydrolyzing stage , a countercurrent washout also taking place behind the first stage digester, so that the concentrated total hydrolyzate of both hydrolysis stages can be removed from the first hydrolyzate separation stage behind the first digester. Since the mineral acid-containing hydrolyzate of the second hydrolysis stage is used as the digestion liquid in the first hydrolysis stage, mineral acid need not be added again here. Fresh mineral acid is added alone before the boiler of the second hydrolysis stage. On the additional representation of known control and control devices Rules of the process flow were deliberately omitted in the process diagram of FIG. 1.

In Fig. 2 ist eine Variante des erfindungsgemäßen Verfahrens in Form eines vereinfachten Verfahrensschemas dargestellt, wobei hier jedoch nur die erste Hydrolysierstufe gezeigt ist, an die sich eine oder zwei weitere gleichartige Hydrolysierstufen anschließen können.2 shows a variant of the process according to the invention in the form of a simplified process scheme, but only the first hydrolysis stage is shown here, to which one or two further similar hydrolysis stages can follow.

Die Verfahrensvariante der Fig. 2 unterscheidet sich von dem Verfahrensschema der Fig. 1 dadurch, daß sich an das Austragsende des Kochers 11 nicht ein mit diesem unter Druckabschluß stehender Schneckenseparator anschließt, sondern daß lediglich ein Gefäß 40 vorgesehen ist, welches über die Blasleitung 15 mit dem Blastank 16 verbunden ist. Der Austrag aus dem Kocher 11 wird bei dieser Ausführungsform allein durch das Blasventil 17 reguliert. Zum Ausgleich für den fehlenden Schneckenseparator am Kocherausgang ist bei der Variante der Fig. 2 eine dreistufige Hydrolysatabtrennung mittels Schneckenseparatoren 18, 41 und 42 hinter dem Blastank 16 vorgesehen, wobei keine dieser Trennstufen unter Druckabschluß steht.The method variant of FIG. 2 differs from the method diagram of FIG. 1 in that not a screw separator connected to the discharge end of the cooker 11 is connected to the discharge end of the cooker 11, but only a vessel 40 is provided, which is connected via the blow line 15 the blow tank 16 is connected. In this embodiment, the discharge from the cooker 11 is regulated solely by the blow valve 17. To compensate for the missing screw separator at the cooker outlet, a three-stage hydrolyzate separation by means of screw separators 18, 41 and 42 is provided behind the blow tank 16 in the variant of FIG. 2, none of these separation stages being under pressure.

Ein wesentliches Merkmal des in Fig. 2 wiedergegebenen Verfahrensschemas besteht darin, daß dort eine Leitung 43 in die Blasleitung 15 geführt ist, über die ein Neutralisationsmittel, vorzugsweise Kalkmilch, unmittelbar in die Blasleitung eingespritzt werden kann. Die Einmündung der Leitung 43 in die Blasleitung 15, die aus geeigneten Einspritzeinrichtungen besteht, befindet sich bei der praktischen Ausführung vorzugsweise dicht hinter dem Blasventil, um durch die in der Blasleitung herrschende Turbulenz eine wirkungsvolle Durchmischung zwischen Reaktionsgemisch und Neutralisationsmittel zu erreichen, die praktisch zu einer schlagartigen Neutralisation des Reaktionsgemisches führen soll.An essential feature of the process diagram shown in FIG. 2 is that a line 43 is led into the blow line 15, via which a neutralizing agent, preferably milk of lime, can be injected directly into the blow line. The mouth of the line 43 into the blow line 15, which consists of suitable injection devices, is preferably located close behind the blow valve in the practical embodiment, in order to achieve effective mixing between the reaction mixture and neutralizing agent, which is practically one, by the turbulence prevailing in the blow line abrupt neutralization of the reaction mixture should lead.

Der entscheidende Vorteil dieser Verfahrensweise besteht darin, daß der Blastank 16 und alle folgenden Aggregate dieser Stufe, insbesondere die Schneckenseparatoren 18, 41 und 42 nicht aus säurebeständigem Material ausgeführt zu werden brauchen. Aus dem gleichen Grunde wurde bei dieser Variante auch auf die an sich günstige Anordnung eines Schneckenseparators unmittelbar am Austritt des Kochers 11 verzichtet.The decisive advantage of this procedure is that the blow tank 16 and all subsequent units of this stage, in particular the screw separators 18, 41 and 42, do not have to be made of acid-resistant material. For the same reason, this variant also dispenses with the advantageous arrangement of a screw separator directly at the outlet of the cooker 11.

Unter der Voraussetzung, daß in der zweiten (nicht dargestellten) Hydrolysierstufe in entsprechender Weise gearbeitet wird, ist es jedoch nicht möglich, das neutralisierte Hydrolysat der zweiten Stufe als Aufschlußflüssigkeit in die erste Stufe zurückzuführen, da die in ihm enthaltene, als Katalysator notwendige Säure durch die Neutralisation beseitigt worden ist. Dementsprechend wird hier bereits der ersten Hydrolysierstufe frische Säure über eine Leitung 44 als Katalysator zugeführt. Die Einleitung erfolgt in den Doppelwellenmischer 3 und in den Schneckenfüller 8.Provided that the second (not shown) hydrolyzing stage is operated in a corresponding manner, however, it is not possible to return the neutralized hydrolyzate from the second stage as a digestion liquid to the first stage, since the acid contained in it, necessary as a catalyst, passes through neutralization has been removed. Accordingly, fresh acid is already supplied to the first hydrolysis stage via a line 44 as a catalyst. It is introduced into the twin-shaft mixer 3 and into the screw filler 8.

Bei Fehlern einer unter Druckabschluß arbeitenden ersten Hydrolysattrennstufe hinter dem Kocher der (nicht gezeigten) zweiten Hydrolysierstufe fällt dort auch nicht genügend unter Druck befindliches Hydrolysat an, aus welchem durch Entspannung der gesamte Heizdampf für den Kocher der ersten Stufe gewonnen werden könnte. Deshalb wird bei dieser Ausführungsform auch der Kocher 11 der ersten Stufe zumindest teilweise über eine Leitung 45 mit Frischdampf beheizt. Es besteht jedoch die Möglichkeit, aus einem dem Gefäß 40 hinter dem ersten Kocher 11 entsprechenden Gefäß hinter dem zweiten Kocher ohne eigentliche Separiervorrichtung ein Teil des Hydrolysates aus dem zweiten Kocher unmittelbar unter Druckabschluß abzuziehen, und durch Entspannen dieses Hydrolysatanteiles einen Teil an Dampf zu gewinnen, der, wie im Ausführungsbeispiel der Fig. 2 gezeigt, über eine Leitung 46 als teilweiser Heizdampf dem unter niedrigerem Druck arbeitenden Kocher 11 der ersten Stufe zugeführt werden kann. Diese Maßnahme ermöglicht es zumindest zum Teil, gewisse Vorteile der Schaltung nach Fig. 1 in den Verfahrensablauf nach Fig. 2 zu übernehmen.If a first hydrolyzate separation stage operating under pressure is faulty behind the boiler of the second hydrolyzation stage (not shown), there is not enough hydrolyzate under pressure from which the entire heating steam for the boiler of the first stage could be obtained by expansion. Therefore, in this embodiment, the cooker 11 of the first stage is at least partially heated with live steam via a line 45. However, there is the possibility of withdrawing part of the hydrolyzate from the second cooker immediately after the pressure has been closed, from a vessel corresponding to the vessel 40 behind the first cooker 11 without an actual separating device, and of recovering some of the steam by relaxing this hydrolyzate portion. which, as shown in the exemplary embodiment in FIG. 2, can be fed via a line 46 as partial heating steam to the lower stage cooker 11 of the first stage. This measure makes it possible, at least in part, to take on certain advantages of the circuit according to FIG. 1 in the method sequence according to FIG. 2.

Während nach dem Verfahrensschema der Fig. 1 das Hydrolysat vollständig im Gegenstrom durch die gesamte Anlage geführt wird, ist es bei der Zwischenneutralisation gemäß Fig. 2 nur möglich, die neutralisierten Hydrolysate der einzelnen Stufen als solche zusammenzuführen, um sie einer gemeinsamen Weiterverarbeitung zu unterziehen. Abgesehen von der vollständigen Gegenstromführung des Hydrolysates können die Verfahrensmerkmale beider Ausführungsformen jedoch auch kombiniert werden. So ist es möglich, auch bei einer Verfahrensführung nach Fig. 2 am Ausgang jedes Kochers jeweils eine unter Kocherdruck arbeitende Separiervorrichtung vorzusehen. Eine solche Maßnahme kann auch allein auf die zweite Hydrolysierstufe beschränkt werden, da es dann zumindest möglich ist, das gesamte unter Druckabschluß gewonnene Hydrolysat der zweiten Stufe der Erzeugung von Kochdampf für die erste Stufe nutzbar zu machen. Der Nachteil gegenüber der Ausführungsform nach Fig. 2 besteht dann darin, daß zumindest die vor dem Blastank angeordnete, unter Druckabschluß stehende Separiervorrichtung aus säurefestem Material gefertigt werden muß, da die Neutralisation erst in der Blasleitung hinter dieser Trennstufe stattfindet. Andererseits ist es nach der Verfahrensführung der Fig. 1 auch möglich, das Reaktionsgemisch in der Blasleitung 15 der ersten Hydrolysierstufe zu neutralisieren, aber auf eine entsprechende Maßnahme in der zweiten Hydrolysierstufe zu verzichten. Damit können zumindest die Schneckenseparatoren 18 und 19 aus billigerem Material gefertigt werden.1, the hydrolyzate is passed completely in countercurrent through the entire system, in the intermediate neutralization according to FIG. 2 it is only possible to combine the neutralized hydrolyzates of the individual stages as such in order to subject them to further processing. Apart from the complete countercurrent flow of the hydrolyzate, the process features of both embodiments can also be combined. It is thus possible to provide a separating device operating under the pressure of the cooker at the outlet of each cooker, even in a process according to FIG. Such a measure can also be limited to the second hydrolyzing stage alone, since it is then at least possible to utilize the entire hydrolyzate obtained under pressure in the second stage of the production of cooking steam for the first stage. The disadvantage compared to the embodiment according to FIG. 2 is that at least the separating device which is arranged in front of the blow tank and is under pressure must be made of acid-resistant material, since the neutralization only takes place in the blow line behind this separation stage. On the other hand, according to the procedure of FIG. 1, it is also possible to neutralize the reaction mixture in the blow line 15 of the first hydrolysis stage, but to dispense with a corresponding measure in the second hydrolysis stage. This means that at least the screw separators 18 and 19 can be made from cheaper material.

Mit einer Hydrolysieranlage entsprechend dem Verfahrensschema der Fig. 2 in zweistufiger Ausführung können aus einer Tonne trocken gedachter gemischter Biosubstanz, bestehend aus je ein Drittel Holz, Rest- und Abfallstoffen. Getreidestroh und Müll-Altpapier etwa 500 kg Zucker, und zwar als Mischung aus Pentosen und Hexosen hergestellt werden. Die erforderliche Menge an Katalysator beträgt etwa 0,3 %, bezogen auf das eingesetzte Rohmaterial.With a hydrolysis plant according to the process diagram of FIG. 2 in a two-stage embodiment, mixed organic matter consisting of one third of wood, residual and waste materials can be made from one ton of dry-made. Grain straw and waste paper about 500 kg of sugar, and that can be produced as a mixture of pentoses and hexoses. The amount of catalyst required is about 0.3% based on that raw material used.

Dabei beträgt die Reaktionszeit in der ersten Hydrolysierstufe etwa 2 1/2 Minuten bei 180°C und die Reaktionszeit in der zweiten Hydrolysierstufe etwa 4 1/2 Minuten bei etwa 235 °C. Das verbleibende Cellulignin nach der zweiten Stufe beträgt etwa 25 bis 28 % der Ausgangssubstanz und genügt, um durch Verbrennung die erforderliche Prozeßwärme als Dampf mit einem Druck von etwa 28 bis 30 bar zu gewinnen.The reaction time in the first hydrolysis stage is approximately 2 1/2 minutes at 180 ° C. and the reaction time in the second hydrolysis stage is approximately 4 1/2 minutes at approximately 235 ° C. The remaining cellulignin after the second stage is about 25 to 28% of the starting substance and is sufficient to obtain the required process heat as a vapor by combustion at a pressure of about 28 to 30 bar.

Für den in Fig. 3 dargestellten unmittelbaren Anschluß des Schneckenfüllers 8 an die Kocherröhre 11 sind besondere Bedingungen für die Dimensionierung der Schnecke und die Ausbildung des Pfropfenrohres erforderlich, um mit hoher Sicherheit ein gelegentliches Rückblasen des Kochers durch den Schneckenfüller 8 zu vermeiden. Es hat sich gezeigt, daß diese Bedingungen insbesondere dann erreicht werden können, wenn innerhalb des Schneckenfüllers zwischen Schneckeneintritt und Pfropfenrohr ein volumetrisches Verdichtungsverhältnis von mindestens 1 4 besteht und das Verhältnis von Länge zu Durchmesser des Pfropfenrohres mindestens 2 : 1 beträgt. Dabei soll die Schnecke dann insgesamt aber so dimensioniert sein, daß bei der vorgesehenen Materialbeschickung eine Dichte der Biomasse im Pfropfenrohr von mindestens 350 kg/m3 erzeugt wird. Unter diesen Bedingungen kann bei einer direkten Verbindung zwischen Schneckenfüller und Kocher sicher gearbeitet werden, wobei diese unmittelbare Verbindung für kurze Reaktionszeiten und einen schnellen Reaktionsablauf bevorzugt gewählt wird.For the direct connection of the screw filler 8 to the cooker tube 11 shown in FIG. 3, special conditions for the dimensioning of the screw and the formation of the plug tube are required in order to avoid, with high certainty, an occasional blow back of the cooker by the screw filler 8. It has been shown that these conditions can be achieved in particular if there is a volumetric compression ratio of at least 1 4 within the screw filler between the screw inlet and the plug tube and the ratio of length to diameter of the plug tube is at least 2: 1. The screw should then be dimensioned overall so that a density of the biomass in the plug tube of at least 350 kg / m 3 is generated with the intended material loading. Under these conditions, it is possible to work safely with a direct connection between the screw filler and the cooker, this direct connection being preferred for short reaction times and a fast reaction sequence.

Um den dabei erzeugten, in den Kocher eintretenden Pfropfen verhältnismäßig hoher Dichte für den nachfolgenden Reaktionsprozeß wieder ausreichend zu disintegrieren, ist es zweckmäßig, die ohnehin für den Kochprozeß erforderliche Dampfzufuhr so anzuordnen, daß der Dampfeintritt unmittelbar hinter der Eintrittsstelle der komprimierten Biomasse vorgesehen wird und derart auf den Pfropfen gerichtet ist, daß eine Disintegration durch den Dampf erfolgen kann.In order to sufficiently disintegrate the plug of comparatively high density that enters the cooker for the subsequent reaction process, it is expedient to arrange the steam supply that is required for the cooking process in such a way that the steam entry is provided directly behind the entry point of the compressed biomass and such is directed to the plug that disintegration can take place through the steam.

Claims (13)

1. A process for the continuous hydrolysis of pentosancontaining hemicelluloses, cellulose, and related compounds in plant biosubstance to sugars, whereby in an initial stage, in the presence of diluted acid, the suitably precrushed biosubstance in subjected to temperature and pressure contitions in which mainly the hemicelluloses and only to some extent the cellulose are hydrolysed to pentoses and partly to hexoses during an initial reaction period, whereupon the reaction mixture is on the one hand suddenly depressured and the hydrolysate is separated from the biosubstance, whereby in at least one further stage, in the presence of dilute mineral acids and under increased temperature and pressure conditions, cellulose in the biosubstance is hydrolysed to hexoses during a further reaction period, whereupon the reaction mixture is once again suddenly depressured on the one hand and the hydrolysate on the other hand is separated from the remaining biosubstance, and whereby the hydrolysate is performed in each hydrolysing stage in a continuous horizontal digester tube (11, 23) as reaction chamber and the feeding of the biosubstance into the horizontal digester tube (11, 23) is performed by means of a screw feeder (8, 19) forming a pressure sealing, characterized in that the biosubstance is relieved largely from surplus liquid and air, that the hydrolysis is performed in the steam phase in the reaction space and that the hydrolysate is separated from the reaction mixture in several separation stages (e. g. 13, 18, 19).
2. The process according to claim 1, characterized in that the biomass for feeding to the reaction space is compressed in the volume ratio of at least 1 to 4 and brought to a density of at least 350 kg/m 3.
3. The process according to claim 1 or 2, characterized in that the compressed biomass fed to the reaction space is disintegrated again by immediate influence of steam.
4. The process according to any one of claims 1 to 3, characterized in that the acid-containing, aqueous digestion liquid is immediately injected into the pressured reaction space.
5. The process according to any one of claims 1 to 4, characterized in that the reaction mixture is neutralized prior to and during the sudden depressurization when discharging from the reaction space preferably by means of lime-milk.
6. The process according to any one of claims 1 to 5, characterized in that a first separation of the hydrolysate from the reaction mixture is effected still prior to the sudden depressurization with pressure sealing of the reaction space, and that the hydrolysate, separated from the remaining reaction mixture is suddenly depressurized.
7. A plant for carrying out the process according to any one of claims 1 to 6 comprising a continuously operated horizontal tube digester provided in the interior with horizontal conveyor fittings which at the feed-in end is connected with a screw feeder with a conical screw for feeding the biosubstance into the reaction space and the discharge end of which is provided with a discharge apparatus forming the discharge-end pressure-sealing of the reaction space, said discharge apparatus being connected by a blow tube to a cyclone-type blow tank, characterized in that the conical srezw of the screw feeder (8, 19) is surrounded by a perforated conical wall.
8. Apparatus according to claim 7, characterized in that the plug tube (115) provided at the end of the conical wall of the screw feeder (8, 19) discharges immediately into the digester tube.
9. Apparatus according to claim 7 or 8, characterized in that the ratio of length to diameter of the plug tube (115) is at least 2 to 1.
10. Apparatus according to claim 7 or 9, characterized in that the horizontal axis of the screw feeder (8) is at right angle to the axis of the digester (11) and that the plug tube (115) discharges approximately tangentially into the upper region of the digester tube (11).
11. Apparatus according to any one of claims 7 to 10, characterized in that the discharge apparatus of the digester (11) is a screw separator (13, 25) being under pressure sealing with the same and serving as first hydrolysate-separating device the perforated conical wall (66) of which is surrounded by a pressure-tight housing (71).
12. Apparatus according to claim 11, characterized in that the screw separator (13, 25) is of substantially the same construction like the screw feeder (8, 19).
13. Apparatus according to claim 11 or 12, characterized in that in case of a multi-stage hydrolysis system the screw feeder of a subsequent stage is connected simultaneously as last hydrolysate-separating device of the preceding stage.
EP81101260A 1980-02-23 1981-02-21 Process and apparatus for continuous hydrolysis of cellulosic plant materials for obtaining sugars Expired EP0035679B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT81101260T ATE8275T1 (en) 1980-02-23 1981-02-21 PROCESS AND PLANT FOR CONTINUOUS HYDROLYSIS OF CELLULOSIC, VEGETABLE SUBSTANCE FOR PRODUCTION OF SUGAR.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3006887 1980-02-23
DE3006887 1980-02-23

Publications (2)

Publication Number Publication Date
EP0035679A1 EP0035679A1 (en) 1981-09-16
EP0035679B1 true EP0035679B1 (en) 1984-07-04

Family

ID=6095428

Family Applications (1)

Application Number Title Priority Date Filing Date
EP81101260A Expired EP0035679B1 (en) 1980-02-23 1981-02-21 Process and apparatus for continuous hydrolysis of cellulosic plant materials for obtaining sugars

Country Status (10)

Country Link
US (1) US4427453A (en)
EP (1) EP0035679B1 (en)
JP (1) JPS57500091A (en)
AT (1) ATE8275T1 (en)
BR (1) BR8107083A (en)
DE (1) DE3164501D1 (en)
ES (1) ES499625A0 (en)
FI (1) FI810523L (en)
NZ (1) NZ196322A (en)
WO (1) WO1981002428A1 (en)

Families Citing this family (75)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4668340A (en) * 1984-03-20 1987-05-26 Kamyr, Inc. Method of countercurrent acid hydrolysis of comminuted cellulosic fibrous material
CA1198703A (en) * 1984-08-02 1985-12-31 Edward A. De Long Method of producing level off d p microcrystalline cellulose and glucose from lignocellulosic material
NZ209527A (en) * 1984-09-13 1988-10-28 Jack Tama Haigh Just Process for the continuous hydrolysis of cellulose-containing material
US4615742A (en) * 1985-01-10 1986-10-07 The United States Of America As Represented By The Department Of Energy Progressing batch hydrolysis process
US4637835A (en) * 1985-06-28 1987-01-20 Power Alcohol, Inc. Methods of hydrolyzing cellulose to glucose and other (poly)saccharides
DE3729428A1 (en) * 1987-09-03 1989-03-16 Werner & Pfleiderer METHOD AND DEVICE FOR HYDROLYTIC CLEAVING OF CELLULOSE
US5248484A (en) * 1991-08-05 1993-09-28 Martin Marietta Energy Systems, Inc. Attrition reactor system
US5338366A (en) * 1993-01-04 1994-08-16 Kamyr, Inc. Acid pre-hydrolysis reactor system
US5597714A (en) * 1993-03-26 1997-01-28 Arkenol, Inc. Strong acid hydrolysis of cellulosic and hemicellulosic materials
US5562777A (en) * 1993-03-26 1996-10-08 Arkenol, Inc. Method of producing sugars using strong acid hydrolysis of cellulosic and hemicellulosic materials
US5876505A (en) * 1998-01-13 1999-03-02 Thermo Fibergen, Inc. Method of producing glucose from papermaking sludge using concentrated or dilute acid hydrolysis
BR9902606B1 (en) * 1999-06-23 2011-04-19 catalytic cellulignin fuel.
US20030154975A1 (en) * 2001-09-17 2003-08-21 Lightner Gene E. Separation of sugars derived from a biomass
DE10158120A1 (en) * 2001-11-27 2003-06-18 Ties Karstens Process for separating xylose from xylan-rich lignocelluloses, especially wood
EP1793944A4 (en) * 2004-09-30 2011-12-07 Iogen Energy Corp Continuous flowing pre-treatment system with steam recovery
EP1690980A1 (en) * 2005-02-11 2006-08-16 Agrotechnology and Food Innovations B.V. Process and apparatus for conversion of biomass
BR122014013416B1 (en) 2005-07-19 2018-03-06 Inbicon A/S METHOD FOR CONVERSION OF A RAW MATERIAL OF A CELLULOSIS MATERIAL, THE CELLULOSIS MATERIAL UNDERSTANDING AT LEAST CELLULOSE, HEMICELLULOSIS AND ASH, IN WHICH THE CELLULOSTIC MATERIAL IS SUBMITTED TO THE PRE-CULTURE OF THE CURSION CHEMICALS, WHICH MUST BE RECOVERED, AND IN WHICH A NET FRACTION AND A SOLID FIBER FRACTION ARE PRODUCED, THE SOLID FIBER FRACTION SUBMITTED TO ENZYMATIC LIQUIDATION
EP2075347B1 (en) * 2006-10-26 2016-03-16 Kawasaki Jukogyo Kabushiki Kaisha Method and system for hydrolytic saccharification of a cellulosic biomass
US7815741B2 (en) * 2006-11-03 2010-10-19 Olson David A Reactor pump for catalyzed hydrolytic splitting of cellulose
US7815876B2 (en) 2006-11-03 2010-10-19 Olson David A Reactor pump for catalyzed hydrolytic splitting of cellulose
US20080184709A1 (en) * 2007-02-07 2008-08-07 Rowell Dean W Turbine power generation using lignin-based fuel
WO2008131229A1 (en) * 2007-04-19 2008-10-30 Mascoma Corporation Combined thermochemical pretreatment and refining of lignocellulosic biomass
US20080277082A1 (en) * 2007-05-07 2008-11-13 Andritz Inc. High pressure compressor and steam explosion pulping method
WO2009018469A1 (en) * 2007-07-31 2009-02-05 Hoffman Richard B System and method of preparing pre-treated biorefinery feedstock from raw and recycled waste cellulosic biomass
US7385081B1 (en) 2007-11-14 2008-06-10 Bp Corporation North America Inc. Terephthalic acid composition and process for the production thereof
US8057639B2 (en) 2008-02-28 2011-11-15 Andritz Inc. System and method for preextraction of hemicellulose through using a continuous prehydrolysis and steam explosion pretreatment process
US8546560B2 (en) * 2008-07-16 2013-10-01 Renmatix, Inc. Solvo-thermal hydrolysis of cellulose
EP3778717A1 (en) * 2008-07-16 2021-02-17 Renmatix Inc. Nano-catalytic-solvo-thermal technology platform bio-refineries
CA2638160C (en) * 2008-07-24 2015-02-17 Sunopta Bioprocess Inc. Method and apparatus for conveying a cellulosic feedstock
CA2638152C (en) * 2008-07-24 2013-07-16 Sunopta Bioprocess Inc. Method and apparatus for treating a cellulosic feedstock
US8915644B2 (en) 2008-07-24 2014-12-23 Abengoa Bioenergy New Technologies, Llc. Method and apparatus for conveying a cellulosic feedstock
US9127325B2 (en) 2008-07-24 2015-09-08 Abengoa Bioenergy New Technologies, Llc. Method and apparatus for treating a cellulosic feedstock
CA2638157C (en) * 2008-07-24 2013-05-28 Sunopta Bioprocess Inc. Method and apparatus for conveying a cellulosic feedstock
CA2638150C (en) * 2008-07-24 2012-03-27 Sunopta Bioprocess Inc. Method and apparatus for conveying a cellulosic feedstock
CA2650913C (en) * 2009-01-23 2013-10-15 Sunopta Bioprocess Inc. Method and apparatus for conveying a cellulosic feedstock
CA2650919C (en) * 2009-01-23 2014-04-22 Sunopta Bioprocess Inc. Method and apparatus for conveying a cellulosic feedstock
CA2638159C (en) * 2008-07-24 2012-09-11 Sunopta Bioprocess Inc. Method and apparatus for treating a cellulosic feedstock
US20100044210A1 (en) * 2008-08-20 2010-02-25 The Board Of Regents Of The University Of Texas System METHOD OF DIGESTING CELLULOSE TO GLUCOSE USING SALTS AND MICROWAVE (muWAVE) ENERGY
US8667706B2 (en) * 2008-08-25 2014-03-11 David N. Smith Rotary biomass dryer
US8328947B2 (en) * 2008-08-29 2012-12-11 Iogen Energy Corporation Method for low water hydrolysis or pretreatment of polysaccharides in a lignocellulosic feedstock
US20110218365A1 (en) * 2008-09-05 2011-09-08 Cobalt Technologies, Inc. Engineered light-emitting reporter genes and methods of use
UA96288C2 (en) * 2008-10-14 2011-10-25 Анатолій Львович Мистецький Method for production of fiber semi-finished product made of cellulose-containing materials and line for its realization
JP5759384B2 (en) * 2009-01-13 2015-08-05 バイオガソル・エピエス Method and apparatus for feeding substances into a process reactor
EP2403954B1 (en) * 2009-03-03 2015-04-22 POET Research, Inc. Method for fermentation of biomass for the production of ethanol
EP2446044A4 (en) * 2009-06-26 2013-04-10 Cobalt Technologies Inc Integrated system and process for bioproduct production
CA2673134A1 (en) * 2009-07-17 2011-01-17 Murray J. Burke Method and apparatus for the heat treatment of a cellulosic feedstock upstream of hydrolysis
CA2755981C (en) 2009-08-24 2015-11-03 Abengoa Bioenergy New Technologies, Inc. Method for producing ethanol and co-products from cellulosic biomass
US8597431B2 (en) * 2009-10-05 2013-12-03 Andritz (Usa) Inc. Biomass pretreatment
CA2776717C (en) * 2009-10-13 2017-02-28 Purdue Research Foundation Process for preparing enriched glucan biomass materials
CN105525043B (en) 2010-01-19 2021-03-19 瑞恩麦特克斯股份有限公司 Production of fermentable sugars and lignin from biomass using supercritical fluids
CA2795501C (en) 2010-03-19 2019-02-26 Poet Research, Inc. System for the treatment of biomass
WO2011116320A1 (en) 2010-03-19 2011-09-22 Poet Research, Inc. System for treatment of biomass to facilitate the production of ethanol
AU2011249143B2 (en) 2010-05-07 2017-08-24 Solray Holdings Limited System and process for equalization of pressure of a process flow stream across a valve
WO2011139164A1 (en) 2010-05-07 2011-11-10 Solray Energy Limited System and process for production of biofuels
CA2810969A1 (en) * 2010-09-29 2012-04-05 Beta Renewables S.P.A. Pre-treated biomass having enhanced enzyme accessibility
IT1402202B1 (en) * 2010-09-29 2013-08-28 Chemtex Italia S R L Ora Chemtex Italia S P A IMPROVED PROCEDURE TO RECOVER SUGAR FROM A LIGNOCELLULOSIC BIOMASS PRETREATMENT FLOW
IT1402200B1 (en) * 2010-09-29 2013-08-28 Chemtex Italia S R L Ora Chemtex Italia S P A IMPROVED PROCEDURE TO RECOVER SUGAR FROM A LIGNOCELLULOSIC BIOMASS PRETREATMENT FLOW
WO2012049530A1 (en) 2010-10-12 2012-04-19 Артер Текнолоджи Лимитед Method for utilizing the waste from palm oil production by processing it into lignocellulose powder to be further used for liquid and solid fuel production
CA2824993C (en) 2011-01-18 2019-07-23 Poet Research, Inc. Systems and methods for hydrolysis of biomass
RU2602068C2 (en) 2011-05-04 2016-11-10 Ренмэтикс, Инк. Producing lignin from lignocellulose biomass
US8801859B2 (en) 2011-05-04 2014-08-12 Renmatix, Inc. Self-cleaning apparatus and method for thick slurry pressure control
WO2012151521A2 (en) 2011-05-04 2012-11-08 Renmatix, Inc. Multistage cellulose hydrolysis and quench with or without acid
SG194702A1 (en) 2011-05-04 2013-12-30 Renmatix Inc Cellulose hydrolysis with ph adjustment
CN103842524A (en) 2011-07-07 2014-06-04 波特研究公司 Systems and methods for acid recycle
CN103906876A (en) * 2011-09-20 2014-07-02 艾欧基能源公司 Method for heating a feedstock
US8759498B2 (en) 2011-12-30 2014-06-24 Renmatix, Inc. Compositions comprising lignin
US9359650B2 (en) * 2013-12-20 2016-06-07 Wisconsin Alumni Research Foundation Biomass pre-treatment for co-production of high-concentration C5- and C6-carbohydrates and their derivatives
CA2943717A1 (en) * 2014-04-22 2015-10-29 Renmatix, Inc. Method for mixed biomass hydrolysis
SE538725C2 (en) * 2014-06-26 2016-11-01 Valmet Oy Steam separation unit and hydrolysis process system comprising a steam separation unit
CA2962611A1 (en) 2014-09-26 2016-03-31 Renmatix, Inc. Adhesive compositions comprising type-ii cellulose
PT3241907T (en) 2016-05-03 2019-04-15 Versalis Spa Process for producing a bio-product
CN106222314B (en) * 2016-08-31 2020-04-03 中国科学院广州能源研究所 Method for hydrolyzing biomass in two steps by using carbon-based solid acid catalyst
WO2019067526A1 (en) 2017-09-26 2019-04-04 Poet Research, Inc. Systems and methods for processing lignocellulosic biomass
CN207828156U (en) * 2017-12-06 2018-09-07 易高环保能源研究院有限公司 The device refined sugar using lignocellulose raw material continuous hydrolysis
US11174443B2 (en) * 2017-12-12 2021-11-16 University Of Louisville Research Foundation, Inc. Torrefied biomass briquettes and related methods

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1677406A (en) * 1925-07-03 1928-07-17 M M Cory Process for the saccharification of cellulose-bearing material
US4025356A (en) * 1974-01-16 1977-05-24 Anstalt Gemass Method for continuous hydrolysis of pentose containing material and apparatus for implementing the method
WO1979000119A1 (en) * 1977-08-31 1979-03-22 Thermoform Ag Process allowing the delignification and the transformation into sugar of lignocellulose vegetal materials by using organic solvents

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH575011A5 (en) * 1973-05-04 1976-04-30 Sulzer Ag

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1677406A (en) * 1925-07-03 1928-07-17 M M Cory Process for the saccharification of cellulose-bearing material
US4025356A (en) * 1974-01-16 1977-05-24 Anstalt Gemass Method for continuous hydrolysis of pentose containing material and apparatus for implementing the method
WO1979000119A1 (en) * 1977-08-31 1979-03-22 Thermoform Ag Process allowing the delignification and the transformation into sugar of lignocellulose vegetal materials by using organic solvents

Also Published As

Publication number Publication date
WO1981002428A1 (en) 1981-09-03
FI810523L (en) 1981-08-24
NZ196322A (en) 1983-12-16
ATE8275T1 (en) 1984-07-15
DE3164501D1 (en) 1984-08-09
ES8201627A1 (en) 1981-12-16
EP0035679A1 (en) 1981-09-16
US4427453A (en) 1984-01-24
BR8107083A (en) 1982-01-05
ES499625A0 (en) 1981-12-16
JPS57500091A (en) 1982-01-21

Similar Documents

Publication Publication Date Title
EP0035679B1 (en) Process and apparatus for continuous hydrolysis of cellulosic plant materials for obtaining sugars
DE2714995C3 (en) Production of cellulosic) material with improved digestibility for ruminants
EP0098490B1 (en) Process and apparatus for the preparation of cellulose, simple sugars and soluble lignine from vegetable biomasse
CA1100266A (en) Organosolv delignification and saccharification process for lignocellulosic plant materials
DE2944789A1 (en) CONTINUOUS PROCESS FOR SUGGIFYING CELLULOSE MATERIALS
EP2177280B1 (en) Method and device for discontinuous hydrolysis of organic substrates
DE3428661C2 (en)
DE1264233B (en) Process for the production of pulp from wood
WO2003046227A1 (en) Method for separating xylose from lignocelluloses rich in xylan, in particular wood
SE538262C2 (en) Arrangements for feeding and washing lignocellulosic material and two-stage analysis system comprising the arrangement
DE1810032A1 (en) Process and device for hydrolysis
US11851721B2 (en) Device for continuously producing sugar by hydrolyzation using lignocellulosic raw material
DE3225074A1 (en) Process and device for separating hemicellulose and lignin from cellulose in lignocellulosic plant materials, for obtaining cellulose, optionally sugars and optionally soluble lignin
WO1979000119A1 (en) Process allowing the delignification and the transformation into sugar of lignocellulose vegetal materials by using organic solvents
DE1285285B (en) Process for the pre-hydrolysis of wood chips
DE2449635A1 (en) PROCESS FOR THE RECOVERY OF FERMENTABLE SYRUP POWDER AND ALPHA-CELLULOSE FROM XEROPHYTES
WO2005123967A1 (en) Extraction of constituents from sugar beet chips
DE69816478T2 (en) METHOD FOR PRODUCING CELLULAR
DE19730486C2 (en) Process for the treatment of biomass containing lignocellulose
EP0237520B1 (en) Process for the production of ethanol from raw materials containing sugar, and installation for carrying out the process
DE10145338C1 (en) Process for the separation of hemicelluloses from hemicellulose-containing biomass
DE2906977A1 (en) Aq. sugar soln. recovery from plant material - using extractor with internal screw and temp. control in presence of suitable enzymes
EP0346836A3 (en) Process and apparatus for the continuous production of 2-furaldehyde, cellulose and lignine from lignocellulosic materials
AT336992B (en) PROCESS AND DEVICE FOR PRODUCING FIBER MATERIAL FROM PLANT RAW MATERIALS
DE19945466B4 (en) Device and method for the digestion of wood-based materials

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT CH DE GB LI SE

17P Request for examination filed

Effective date: 19820305

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RBV Designated contracting states (corrected)

Designated state(s): AT CH DE GB LI SE

AK Designated contracting states

Designated state(s): AT CH DE GB LI SE

REF Corresponds to:

Ref document number: 8275

Country of ref document: AT

Date of ref document: 19840715

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3164501

Country of ref document: DE

Date of ref document: 19840809

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19850222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19850228

Ref country code: CH

Effective date: 19850228

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19850305

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19850308

Year of fee payment: 5

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
GBPC Gb: european patent ceased through non-payment of renewal fee
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19860221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19871103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19881118

EUG Se: european patent has lapsed

Ref document number: 81101260.8

Effective date: 19860129