EP0034957B1 - Vorrichtung zur automatischen Regulierung der Ausgangsleistung eines Sendermoduls für ein Übertragungssystem mit optischen Fasern - Google Patents

Vorrichtung zur automatischen Regulierung der Ausgangsleistung eines Sendermoduls für ein Übertragungssystem mit optischen Fasern Download PDF

Info

Publication number
EP0034957B1
EP0034957B1 EP81400111A EP81400111A EP0034957B1 EP 0034957 B1 EP0034957 B1 EP 0034957B1 EP 81400111 A EP81400111 A EP 81400111A EP 81400111 A EP81400111 A EP 81400111A EP 0034957 B1 EP0034957 B1 EP 0034957B1
Authority
EP
European Patent Office
Prior art keywords
circuit
output
laser diode
input
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP81400111A
Other languages
English (en)
French (fr)
Other versions
EP0034957A1 (de
Inventor
Jean-Paul Breton
Adalbert Maciaszek
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lignes Telegraphiques et Telephoniques LTT SA
Original Assignee
Lignes Telegraphiques et Telephoniques LTT SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lignes Telegraphiques et Telephoniques LTT SA filed Critical Lignes Telegraphiques et Telephoniques LTT SA
Publication of EP0034957A1 publication Critical patent/EP0034957A1/de
Application granted granted Critical
Publication of EP0034957B1 publication Critical patent/EP0034957B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/068Stabilisation of laser output parameters
    • H01S5/0683Stabilisation of laser output parameters by monitoring the optical output parameters
    • H01S5/06832Stabilising during amplitude modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/501Structural aspects
    • H04B10/503Laser transmitters
    • H04B10/504Laser transmitters using direct modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/564Power control
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/068Stabilisation of laser output parameters
    • H01S5/06804Stabilisation of laser output parameters by monitoring an external parameter, e.g. temperature

Definitions

  • the present invention relates generally to optical fiber transmission systems and relates more particularly to an automatic device for regulating the output power of the transmitter module for a simplified transmission system for a single fiber link.
  • a fiber optic transmission system consists of a transmitter module, a receiver module and a fiber arranged between these modules.
  • the transmitter module comprises a transmitter base consisting of a laser diode, a control photodiode and a laser-fiber coupling optic inserted in a connector plug for the connection of said base to the fiber optic cable, and a control electronics ensuring inter alia regulation of the optical power emitted.
  • the receiver module includes a detector base consisting of a photodetector, such as an avalanche photodiode, and a photodiode-fiber coupling optic inserted in a connector plug for connection of the base to the fiber cable. optics, and control electronics ensuring, among other things, an automatic gain regulation of the avalanche photodiode.
  • the current of the laser diode used in the transmitter module results from the superposition of its direct bias current and its modulation current; the light pulses are thus emitted in the fiber at the nominal optical power of the laser diode.
  • a circuit for regulating the direct current of the laser diode as a function of the temperature, connected between a temperature sensor and the laser diode, and comprising means for compensating for variations in the output power due to aging of the laser diode, as described in the article published in "RCA Technical Notes", No. 1005, April 9, 1975, pages 1-3, entitled: "Stabilization of cw injection lasers".
  • the object of the present invention is, on the one hand, to automatically regulate the nominal optical power emitted by the laser diode, while simultaneously ensuring regulation of the direct current and regulation of the modulation current of the laser diode, and, on the other hand, preventing user of the presence of a malfunction of a circuit of the transmitter module, and in particular of the aging of the laser diode, and also to suppress the modulation current in the laser diode if the frequency of the information to be transmitted is high.
  • the automatic power regulation device further comprises a threshold alarm triggering circuit connected in parallel to the output of the conversion means and comprising delay means connected between the second terminal of output of the first control circuit of the first current generator and one of the input terminals of a logic gate, the other input terminal of the gate being connected to the output of a voltage comparator means whose l input is connected to the output of the conversion means, and the output terminal of the door being connected to an alarm device.
  • a threshold alarm triggering circuit connected in parallel to the output of the conversion means and comprising delay means connected between the second terminal of output of the first control circuit of the first current generator and one of the input terminals of a logic gate, the other input terminal of the gate being connected to the output of a voltage comparator means whose l input is connected to the output of the conversion means, and the output terminal of the door being connected to an alarm device.
  • the transmitter module of a transmission system using a single optical fiber comprises an assembly 10 produced in the form of a housing in which are arranged a laser diode 11 whose optical power emitted is injected into the fiber (not shown), means for taking a portion of the optical power emitted by the laser diode and converting it into electrical power constituted for example by a photodiode 12 supplied with -12 volts, a fiber of coupling 13 between the laser diode and the photodiode 12, and a probe or sensor for the temperature of the housing 10 produced in the form of a current generator 14 supplied with - 12 volts.
  • the polarization resistance of the laser diode 11 is shown at R, having a predetermined fixed value and being connected in series between the laser diode and a supply voltage of -12 volts.
  • the device for automatically regulating the output power of the laser diode 11 in the transmitter module comprises a first circuit 15 for regulating the direct current of polarization of the laser diode connected between the temperature probe 14 and the laser diode 11, and a second circuit 16 for regulating the modulation current of the laser diode connected between the photodiode 12 and the laser diode 11.
  • the first circuit 15 for regulating the bias current of the laser diode 11 comprises in series a current-voltage converter 17, a low-pass filter 18 and a generator 19 of variable current as a function of the temperature of the housing 10 and at a high time constant with respect to the transmission rate.
  • the current-voltage converter 17 consists of an operational amplifier A 1 mounted in transimpedance, one input E 1 of which is connected to the temperature probe 14 and the other input of which E 2 is connected to ground.
  • an operational amplifier A 1 mounted in transimpedance, one input E 1 of which is connected to the temperature probe 14 and the other input of which E 2 is connected to ground.
  • Z there is shown in Z the feedback impedance connected between the output Si and the input E 1 of the operational amplifier A 1 ' a resistor R 1 being connected between the input E 1 and a supply voltage of + 12 volts.
  • the operational amplifier A supplies at output Si a voltage which is a function of the input current generated by the current generator 14.
  • the low-pass filter 18 consists of a single cell R 2 C 2 , the resistor R 2 being connected to the output S 1 of the operational amplifier A 1 and the capacitor C 2 being connected to ground.
  • the current generator 19 consists of a field effect transistor T whose gate G is connected to the output S 2 of the low-pass filter 18, whose drain D is connected to a supply voltage of + 12 volts, and whose source S is connected, via a resistor R 3 , to a current amplifier 20 of conventional structure.
  • the output S 3 of the current amplifier 20 is connected at B to the laser diode 11, that is to say in parallel on the bias resistor R.
  • the second modulation current regulation circuit 16 comprises in series an impedance adapter circuit 25, a voltage comparator circuit 26, a low-pass filter 27, a generator 28 of variable current as a function of the power of the laser diode 11, and a circuit forming a switch of the chopper type 29 controlled by the digital information to be transmitted.
  • the resistance of photodiode 12 is shown at R ′.
  • the impedance adapter circuit 25 consists of a transistor T 1 mounted as a follower emitter, the collector of this transistor being connected to a supply of -12 volts.
  • the voltage comparator circuit 26, the input R 4 of which is connected to the emitter of the transistor T 1 ' comprises an operational amplifier A 5 of which an input E s is connected to a reference voltage source V, corresponding to the power nominal optical emitted by the laser diode 11.
  • a diode D 1 ' whose cathode is connected to the emitter of transistor T 1' and a resistor R 5 are connected in series between terminal E4 and the other input E 6 of the operational amplifier A 5 .
  • a resistor R 6 is connected between the input E 6 of the amplifier A 5 and a supply of + 12 volts
  • a feedback resistor R 7 is connected between the output S 5 and the input E s of l amplifier A 5 .
  • the low-pass filter 27 consists of a single cell R 7 C 7 , the resistor R 7 being connected to the output S 5 of the operational amplifier A s and the capacitor C 7 being connected to ground.
  • the current generator 28 consists of a field effect transistor T 'whose gate G' is connected to the output S7 of the low-pass filter 27, whose drain D 'is connected to a supply of + 12 volts, and whose source S 'is connected, via a resistor R a , to the input E 9 of a current amplifier 30 of conventional structure.
  • R 9 shows a resistor connected between the input Eg of the current amplifier 30 and a +12 volt supply.
  • the circuit of the chopper type 29 consists of two transistors T 2 and T 3 supplied at -12 volts with their respective emitters connected together, the output S 9 of the current amplifier 30 being connected to a terminal common P of the transmitters.
  • the collector of transistor T 2 is directly connected to ground, while the collector of transistor T 3 is connected at B to the laser diode 11.
  • the two transistors T 2 and T 3 operate alternately and at low level.
  • this chopping circuit 29 can be produced in the form of a hybrid circuit, which significantly lowers the cost of production.
  • the circuit 16 for regulating the modulation current of the laser diode also includes a circuit 35 for controlling the current generator. 28 and a limitation circuit 36 sensitive to the frequency of the information to be transmitted.
  • the circuit 35 for controlling the current generator 28 comprises a monostable 37 supplied with +5 volts (of which the resistance r and the capacitor c have been shown, thus defining the time during which the monostable is in its stable state), having two complementary outputs Q and Q and an input terminal E of the digital information to be transmitted.
  • the output Q of the monostable 37 is connected, via a resistor R 10 , to the base of a transistor T 4 supplied with +12 volts and mounted as a common emitter, the collector of transistor T 4 being connected to the output S 7 of the low-pass filter 27.
  • the output Q of the monostable 37 is connected to one of the input terminals E 10 of an AND logic gate 38, while the input E of the monostable 37 is connected to one of the input terminals E 11 of an AND-NO logic gate 39.
  • the limiting circuit 36 sensitive to the frequency of the information to be transmitted consists of a first monostable 40 (with its resistance r and its capacitor c), of a second monostable 41 whose input E 12 is connected in parallel on the input E 10 of the AND gate 38, and a bistable circuit 42 having a data input D connected to ground, a clock input T connected to the output Q of the monostable 40 and a reset input to a (RAU) connected to the output Q of the monostable 41.
  • the input E 13 of the monostable 40 is connected in parallel to the input E 11 of the AND-NO logic gate 39, the other input terminal E, 4 of the latter connected to the output terminal S 10 of the logic gate ET 38.
  • the output Q of the bistable circuit 42 is connected to the other input terminal E 15 of the AND logic gate 38, while the output terminal S 11 of the AND-NOT logic gate 39 is connected to the input E 16 an inverter 46 whose output S 16 is connected, via a resistor R 11 , to the base of transistor T 3 .
  • the base of transistor T 2 is connected, via a resistor R 12 ' to the output S 11 of the AND-NOT logic gate 39.
  • the AND-NOT logic gate 39 and the inverter 46 constitute therefore a circuit for controlling the means forming a switch 29.
  • the transmitter module of the optical fiber transmission system which has just been described further comprises a circuit 50 for triggering an alarm with a threshold making it possible to warn the user mainly of the aging of the laser diode 11.
  • this alarm triggering circuit 50 comprises a voltage comparator circuit 51, a circuit 52 for shaping the signal generated by the comparator circuit 51, a delay circuit 53, a logic gate AND-NO 54, and an alarm device, such as for example an indicator 55.
  • the voltage comparator circuit 51 consists of an operational amplifier A 6 , an input E 20 of which is connected to a reference voltage source V 2 .
  • a diode D 2 and an integrator circuit comprising a capacitor C 15 and a resistor R 15 are connected in series between the input terminal E4 of the voltage comparator circuit 26 and the other input E 21 of the operational amplifier.
  • a 6 A resistor R 16 is connected between the input E 21 of the amplifier A 6 and a supply of +12 volts, and a feedback resistor R 17 is connected between the output S 20 and the input E 20 of l amplifier A 6 .
  • the shaping circuit 52 consists of a field effect transistor T 5 whose drain D s is connected to a + 12 volt supply, whose source S s is connected to a resistor R 18 connected to ground , and the gate G s of which is connected to a network comprising a diode D 3 connected to the output S 20 of the amplifier A s , a resistor R 19 in series, and a resistor R 20 connected to ground.
  • the AND-NON logic gate 54 has a first input terminal E 24 connected to the source S s of the field effect transistor T s , a second input terminal E 21 connected to the output of the delay circuit 53, and an output terminal S 24 to which are connected in series a resistor R 22 and the indicator 55 supplied with +5 volts.
  • the delay circuit 53 comprises a monostable 58 (with its resistance r and its capacitor c) whose input E 28 is connected to the input terminal E 10 of the logic gate ET 38, and whose output Q is connected to a first input terminal E 29 of an AND logic gate 59.
  • the other input terminal E 30 of this AND logic gate 59 is connected to the input E 28 of the monostable 58.
  • the current of the laser diode 11 results from the superposition of its bias current and its modulation current, so that the amplitude of the light pulses transmitted in the optical fiber depends on the optical power emitted by the laser diode.
  • this stabilization is obtained by regulating the modulation current of the laser diode.
  • the transfer characteristic of the laser diode (output power as a function of current) is modified, so that a regulation of the direct current of the laser diode in temperature function allows detection on the aging of the laser diode, identical in the range of operating temperatures.
  • the constant current generated by the polarization resistance R of the laser diode 11 may no longer be sufficient to allow suitable polarization of the laser diode, since the transfer characteristic of the diode changes as a function of temperature.
  • the desired bias current is obtained by adding to the current in the resistor R, a direct regulation current as a function of the temperature produced by the regulation circuit 15 in the following manner.
  • the current generator 14 delivers a current depending on the temperature which is converted into a voltage by the amplifier mounted in transimpedance 17.
  • the output signal is then presented, after passing through the low-pass filter 18, to the current generator 19 which supplies at its output S 3 a direct regulation current.
  • the sum of the current in the resistor R and the regulation current obtained gives the bias current sought by the laser diode 11.
  • the modulation current of the laser diode intended to stabilize the nominal optical power emitted by the laser diode, is regulated as follows.
  • the electrical signal generated by the photodiode 12 appears, the current of which is a function of the optical power emitted by the laser diode 11.
  • the signal is rectified by the diode D 1 ' then its level is compared by the amplifier A s to a reference level V, corresponding to the nominal output power of the laser diode 11.
  • the signal delivered to the output S s of the amplifier A s is presented, after passing through the low-pass filter 27, to the variable current generator 28 controlled by the circuit 35.
  • the input E of the circuit 35 for controlling the modulation current receives no digital information to be transmitted, and that a so-called positive logic is used, that is to say at a zero voltage corresponds to a level " 0 "and that a positive or negative voltage corresponds to a level” 1 ".
  • the outputs Q and (Q of the monostable 37 are respectively at the levels "0" and "1".
  • the transistor T is saturated and the voltage at the output S 7 of the filter passes -bas 27 is zero. Consequently, the current in the resistor R 8 is zero, and the current presented at the input of the current amplifier 30 corresponds to the current in the resistor Rg.
  • the output Q of the monostable 37 being at level "0”
  • the output S 10 of the logic gate AND 38 is at level "0”
  • the output S 11 of the logic gate AND-NO 39 is at level "1”
  • the output S 16 of the inverter 46 is at level "0”.
  • the transistor T 2 conducts while the transistor T 3 is blocked, which gives rise to no current at the output of the chopper circuit 29.
  • the input E of the circuit 35 for controlling the modulation current receives the digital information to be transmitted.
  • the outputs Q and Q of the monostable 37 are respectively at levels "1" and "0".
  • the transistor T 4 is blocked and the voltage at the output S 7 of the low-pass filter 27 varies according to the regulation at nominal power to be ensured determined at the output of the amplifier A s . Consequently, the current generator 28 supplies at its output S 9 a current intended to regulate the modulation current of the laser diode.
  • the transistors T 2 and T 3 operate alternatively, so that at the output of transistor T 3 a regulation of the modulation current of the laser diode is obtained.
  • the modulation current in the laser diode is suppressed when the frequency of the information to be transmitted is greater than a predetermined maximum frequency. This is achieved by the circuit 36 for limiting the frequency of the digital information to be transmitted.
  • the Q output of the monostable 40 supplies pulses and the Q output of the bistable circuit 42 is at level "1".
  • the output S 10 of the AND logic gate 38 is at level "1", so that the regulation of the modulation current of the laser diode can take place.
  • the signal is rectified by the diode D z , then its level is compared by the amplifier A 6 to a reference level V 2 corresponding to a multiple k less than 1 of the nominal output power of the laser diode 11.
  • the warning light 55 will therefore light up when the optical power emitted by the laser diode is less than the reference optical power equal to k. Rated power, thus warning the user of the aging of the laser diode.
  • the optical power emitted by the laser diode does not immediately stabilize at its nominal power, so that the indicator 55 lights up.
  • the delay circuit 53 provided in the alarm triggering device makes it possible precisely to avoid such an untimely indication of the alarm.
  • the output Q of the monostable 37 is at level "1”
  • the input E 30 of the logic gate ET 59 is also at level "1”.
  • the input E z5 of the AND-NO gate 54 is at a level "1".
  • the output S 24 of the AND-NON logic gate 54 is at level "0", corresponding to a zero voltage. Consequently, the alarm light 55 lights up, consequently indicating to the user that it is necessary to replace the laser diode soon.
  • the output S24 of the logic gate ET-NON 54 is at level "1", corresponding to a voltage of +5 volts, so that the alarm light 55 does not light up.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optics & Photonics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Optical Communication System (AREA)
  • Semiconductor Lasers (AREA)

Claims (5)

1. Vorrichtung zur automatischen Regelung der Ausgangsleistung in einem Sendermodul eines Informations-Übertragungssystems, das eine Glasfaser verwendet, wobei die Vorrichtung eine Einheit (10), in der eine Laserdiode (11), Mittel zur Entnahme (12) eines Teils der von der Laserdiode ausgesandten optischen Leistung und zur Umwandlung in elektrische Leistung, und eine Temperatur-Messsonde (14) enthalten sind, und einen ersten Kreis (15) zur Gleichstromregelung der Laserdiode in Abhängigkeit von der Temperatur aufweist, der zwischen die Temperatur-Messsonde (14) und die Laserdiode (11) geschaltet ist, dadurch gekennzeichnet, dass die Vorrichtung einen zweiten Kreis (16) zur Regelung des Modulationsstroms der Laserdiode aufweist, der zwischen die Umwandlungsmittel (12) und die Laserdiode (11) geschaltet ist und der aufweist:
- einen ersten Generator (28) für variablen Strom in Abhängigkeit von der Leistung der Laserdiode (11), und gesteuert von einem ersten Steuerkreis (35) mit einer Eingangsklemme (E) für die zu übertragenden Informationen, einer ersten Ausgangsklemme (S,), die mit dem Eingang des Generators verbunden ist, und einer zweiten Ausgangsklemme, die mit der ersten Eingangsklemme (Eio) eines logischen UND-Tors (38) verbunden ist,
- Mittel, die einen Unterbrecher (29) bilden und zwischen den Stromgenerator (28) und die Laserdiode (11) eingefügt sind und von einem zweiten Steuerkreis (39, 46) gesteuert werden, der zwischen die Ausgangsklemme (Sio) des logischen UND-Tors (38) und die einen Unterbrecher bildenden Mittel geschaltet ist, wobei die Eingangsklemme (E) des ersten Steuerkreises (35) mit dem zweiten Steuerkreis verbunden ist, und
- einen Begrenzungskreis (36), der für die Frequenzder zu übertragenden Informationen sensibel ist und von dem eine erste Eingangsklemme (E,3) mit der Eingangsklemme (E) des ersten Steuerkreises (35), eine zweite Eingangsklemme (E12) mit der zweiten Ausgangsklemme (E1o) des ersten Steuerkreises (35) und eine Ausgangsklemme mit der zweiten Eingangsklemme (E15) des logischen UND-Tors (38) verbunden ist.
2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass der frequenzsensible Begrenzungskreis (36)
- eine erste monostabile Kippstufe (40), deren Eingang mit der ersten Eingangsklemme des Begrenzungskreises verbunden ist,
- eine zweite monostabile Kippstufe (41), deren Eingang mit der zweiten Eingangsklemme des Begrenzungskreises verbunden ist, und
- einen bistabilen Kreis (42) aufweist, der zwischen die Ausgänge der ersten bzw. zweiten monostabilen Kippstufe geschaltet ist und von dem eine Ausgangsklemme mit der zweiten Eingangsklemme des logischen UND-Tors (38) verbunden ist.
3. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass der zweite Kreis (16) zur Regelung des Modulationsstroms der Laserdiode ausserdem in Reihe aufweist:
- Spannungsvergleichermittel (26), deren Eingang mit den Umwandlungsmitteln (12) verbunden ist, und
- ein erstes Tiefpassfilter (27), dessen Ausgang mit dem Stromgenerator (28) verbunden ist.
4. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass der erste Kreis (15) zur Regelung des Gleichstroms der Laserdiode in Reihe aufweist:
- einen Operationsverstärker (A,), der in Transimpedanz geschaltet ist und dessen Eingang mit der Temperatur-Messsonde (14) verbunden ist,
- ein zweites Tiefpassfilter (18), und
- einen zweiten Generator (19), dessen Strom in Abhängigkeit von der Temperatur der Einheit (10) variiert und der eine hohe Zeitkonstante gegenüber der Übertragungskadenz besitzt, wobei der Ausgang des zweiten Stromgenerators mit der Laserdiode (11) verbunden ist.
5. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass sie ausserdem einen Schwellenkreis (50) zur Alarmauslösung aufweist, der parallel an den Ausgang der Umwandlungsmittel (12) angeschlossen ist und der Verzögerungsmittel (53) aufweist, die zwischen der zweiten Ausgangsklemme des ersten Steuerkreises für den ersten Stromgenerator (28) und einer der Eingangsklemmen eines logischen Tors (54) eingefügt sind, während die andere Eingangsklemme des Tors mit dem Ausgang eines Spannungsvergleichermittels (51), dessen Eingang an den Ausgang der Umwandlungsmittel angeschlossen ist, und die Ausgangsklemme des Tors (54) mit einer Alarmvorrichtung (55) verbunden ist.
EP81400111A 1980-02-22 1981-01-27 Vorrichtung zur automatischen Regulierung der Ausgangsleistung eines Sendermoduls für ein Übertragungssystem mit optischen Fasern Expired EP0034957B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8003983 1980-02-22
FR8003983A FR2476945A1 (fr) 1980-02-22 1980-02-22 Dispositif de regulation automatique de puissance de sortie d'un module emetteur pour systeme de transmission sur fibre optique

Publications (2)

Publication Number Publication Date
EP0034957A1 EP0034957A1 (de) 1981-09-02
EP0034957B1 true EP0034957B1 (de) 1985-06-12

Family

ID=9238889

Family Applications (1)

Application Number Title Priority Date Filing Date
EP81400111A Expired EP0034957B1 (de) 1980-02-22 1981-01-27 Vorrichtung zur automatischen Regulierung der Ausgangsleistung eines Sendermoduls für ein Übertragungssystem mit optischen Fasern

Country Status (6)

Country Link
US (1) US4369525A (de)
EP (1) EP0034957B1 (de)
CA (1) CA1165400A (de)
DE (1) DE3170908D1 (de)
FR (1) FR2476945A1 (de)
HU (1) HU181275B (de)

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4592057A (en) * 1981-03-23 1986-05-27 International Business Machines Corporation Versatile digital controller for light emitting semiconductor devices
DE3203828A1 (de) * 1982-02-04 1983-08-11 Siemens AG, 1000 Berlin und 8000 München Verfahren zur reduzierung der pegeldynamik in einem optischen uebertragungssystems
NL8301484A (nl) * 1983-04-27 1984-11-16 Philips Nv Optische zender.
DE3317027C2 (de) * 1983-05-10 1985-03-21 Hewlett-Packard Gmbh, 7030 Boeblingen Schaltungsanordnung zur Umwandlung eines elektrischen Einganssignales in ein optisches Ausgangssignal
US4625315A (en) * 1984-08-27 1986-11-25 Minnesota Mining And Manufacturing Company Apparatus and circuitry for stabilizing laser diode output for analog modulation
JPS6190539A (ja) * 1984-10-09 1986-05-08 Olympus Optical Co Ltd 光出力安定化装置
JPS6190540A (ja) * 1984-10-09 1986-05-08 Olympus Optical Co Ltd 光出力安定化装置
US4985896A (en) * 1985-03-29 1991-01-15 Canon Kabushiki Kaisha Laser driving device
US4803384A (en) * 1985-10-22 1989-02-07 Fujitsu Limited Pulse amplifier suitable for use in the semiconductor laser driving device
EP0224185A3 (de) * 1985-11-19 1989-04-26 Kabushiki Kaisha Toshiba Ansteuerkreis für Laserdiode
DE3608930A1 (de) * 1986-03-18 1987-09-24 Standard Elektrik Lorenz Ag Verfahren zur regelung der optischen leistung eines lasers und schaltung zur ausuebung des verfahrens
US4724314A (en) * 1986-08-21 1988-02-09 Harbor Branch Oceanographic Institution Inc. Material characteristics measuring methods and devices
US4890288A (en) * 1986-08-27 1989-12-26 Canon Kabushiki Kaisha Light quantity control device
DE3706572A1 (de) * 1987-02-28 1988-09-08 Philips Patentverwaltung Regelung von laserdioden
US4789987A (en) * 1987-07-01 1988-12-06 Rockwell International Corporation Automatic modulation control apparatus
US4796996A (en) * 1987-08-14 1989-01-10 American Telephone And Telegraph Company, At&T Bell Laboratories Laser temperature modulation and detection method
US5046138A (en) * 1989-06-26 1991-09-03 General Instrument Corporation Self-aligning analog laser transmitter
US5379145A (en) * 1989-12-01 1995-01-03 Scientific-Atlanta, Inc. Laser transmitter for light wave (fiber optic) communication espectially of AM modulated CATV signals having means . . . against damage
US5003624A (en) * 1990-03-29 1991-03-26 Hughes Aircraft Company Automatic bias controller for electro-optic modulator
US5036189A (en) * 1990-04-03 1991-07-30 Raynet Corporation Thermal control for laser diode used in outside plant communications terminal
US5140603A (en) * 1990-05-02 1992-08-18 Scientific-Atlanta, Inc. Overmodulation protection for amplitude modulated laser diode
US5502298A (en) * 1992-12-21 1996-03-26 Ericsson Raynet Apparatus and method for controlling an extinction ratio of a laser diode over temperature
US5425040A (en) * 1994-04-26 1995-06-13 Unisys Corporation Switching regulator control for a laser diode
US5513029A (en) * 1994-06-16 1996-04-30 Northern Telecom Limited Method and apparatus for monitoring performance of optical transmission systems
JP2697639B2 (ja) * 1994-11-04 1998-01-14 日本電気株式会社 光変調装置
US5953690A (en) * 1996-07-01 1999-09-14 Pacific Fiberoptics, Inc. Intelligent fiberoptic receivers and method of operating and manufacturing the same
US5754577A (en) * 1996-07-23 1998-05-19 Broadband Communications Products, Inc. Compensation for variations in temperature and aging of laser diode by use of small signal, square-law portion of transfer function of diode detection circuit
JP2856247B2 (ja) * 1996-11-12 1999-02-10 日本電気株式会社 消光比劣化を防止するapc方式
US5894490A (en) * 1997-06-25 1999-04-13 Lucent Technologies Inc. Increasing the impedance of solid state light source subsystems
DE19948689A1 (de) 1999-09-30 2001-04-19 Infineon Technologies Ag Regelvorrichtung für Laserdioden
EP1233488A1 (de) * 2001-02-16 2002-08-21 Agilent Technologies, Inc. (a Delaware corporation) Lichtquelle
US6922421B2 (en) * 2003-01-10 2005-07-26 Agilent Technologies, Inc. Control and calibration of laser systems
US7215891B1 (en) 2003-06-06 2007-05-08 Jds Uniphase Corporation Integrated driving, receiving, controlling, and monitoring for optical transceivers
US7043997B2 (en) * 2003-07-09 2006-05-16 Cherry Corporation Seat for sensing a load
US7995816B2 (en) * 2007-09-24 2011-08-09 Baxter International Inc. Detecting access disconnect by pattern recognition
WO2015068048A1 (en) * 2013-11-11 2015-05-14 King Abdullah University Of Science And Technology High repetition rate thermometry system and method
CN105739031B (zh) * 2016-04-19 2017-11-03 武汉电信器件有限公司 基于cob贴装的激光二极管接口匹配装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5851435B2 (ja) * 1976-05-25 1983-11-16 富士通株式会社 発光素子の駆動方式
DE2737345C2 (de) * 1976-08-20 1991-07-25 Canon K.K., Tokio/Tokyo Halbleiterlaser-Vorrichtung mit einem Peltier-Element
DE2652608C3 (de) * 1976-11-19 1979-12-13 Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt Anordnung zur Regelung der Ausgangsleistung eines Halbleiterlasers
JPS54142987A (en) * 1978-04-28 1979-11-07 Hitachi Ltd Protecting method from overdrive of semiconductor laser
US4237427A (en) * 1978-06-16 1980-12-02 International Telephone And Telegraph Corporation Apparatus for stabilizing a laser
US4243952A (en) * 1978-10-30 1981-01-06 Rca Corporation Temperature compensated bias circuit for semiconductor lasers
JPS6053478B2 (ja) * 1978-11-08 1985-11-26 富士通株式会社 光出力安定化回路
US4307469A (en) * 1980-04-18 1981-12-22 Harris Corporation Injection laser diode digital transmitter having signal quality monitoring arrangement

Also Published As

Publication number Publication date
FR2476945A1 (fr) 1981-08-28
HU181275B (en) 1983-06-28
FR2476945B1 (de) 1983-10-28
DE3170908D1 (en) 1985-07-18
CA1165400A (en) 1984-04-10
US4369525A (en) 1983-01-18
EP0034957A1 (de) 1981-09-02

Similar Documents

Publication Publication Date Title
EP0034957B1 (de) Vorrichtung zur automatischen Regulierung der Ausgangsleistung eines Sendermoduls für ein Übertragungssystem mit optischen Fasern
EP0052536B1 (de) Sendermodul-Ausgangsleistungsstabilisierungsanordnung für ein Lichtwellenleiter-Übertragungssystem
CA2088459C (en) System for optically transmitting digital communications over an optical fiber with dispersion at the operating wavelength
EP0583186B1 (de) Vorrichtung zur Leistungsstabilisierung von Laserdioden
FR2512298A1 (fr) Systeme et methode de modulation de frequence optique
EP0034082B1 (de) Vorrichtung zur Alarmauslösung im Falle eines ungenügenden Übertragungspegels für den Empfängermodul eines Übertragungssystems mit optischen Fasern
FR2563663A1 (fr) Dispositif de commande d'un laser a semi-conducteurs
FR2756983A1 (fr) Amplificateur optique et procede et dispositif de controle de gain d'amplificateur optique
EP0004815A2 (de) Verfahren zum Übertragen elektrischer Signale mittels optischer Verbindung und Vorrichtung zur automatischen Verstärkungsregelung eines an der optischen Verbindung gekuppelten Empfangsweges
EP0073164A2 (de) Digitales Sende-Empfangssystem mit optischer Übertragung und mit veränderbarer Geschwindigkeit
EP0106728B1 (de) Verfahren und Vorrichtung zur Verstärkungsstabilisierung eines fotoempfindlichen Avalanche-Bauelements
FR2520174A1 (fr) Systeme de transmission de signaux numeriques sur fibre optique
EP1289177A1 (de) Vorrichtung zur Polarisationsdispersionskompensation in einem optischen Übertragungssystem
FR2675609A1 (fr) Dispositif de signalisation de la position d'un organe mobile.
FR2470488A1 (fr) Circuit de preamplificateur a boucle de reaction photosensible
EP1460390A2 (de) Lichtelektrischervorrichtung fur optischer Zahlerablesungsmodul
FR2513399A1 (fr) Emetteur pour systeme de transmission sur fibre optique comportant un dispositif de stabilisation de la puissance optique emise
EP0068970B1 (de) Stabilisierte Zweipunkt-Steuervorrichtung mit konstanter Periode, und elektrische Speisevorrichtung versehen mit solch einer Steuervorrichtung
FR2568431A1 (fr) Dispositif de controle du fonctionnement d'une liaison a fibre optique et recepteur comportant un tel dispositif
FR2490404A1 (fr) Procede et dispositif de stabilisation du gain d'une photodiode a avalanche
EP1173793B1 (de) Vorrichtung und verfahren zum regeln des steuersignals eines elektrooptischen modulators
FR2524230A1 (fr) Systeme de transmission d'informations sur une voie de service du type fibre optique
EP0289379B1 (de) Sensor für physische Grösse
EP0532400A1 (de) Diskriminator mit einer reduzierten Frequenzcharakteristik
JPH06244461A (ja) 電気/光変換装置

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): BE CH DE GB IT NL

17P Request for examination filed

Effective date: 19811218

ITF It: translation for a ep patent filed

Owner name: JACOBACCI & PERANI S.P.A.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): BE CH DE GB IT LI NL

REF Corresponds to:

Ref document number: 3170908

Country of ref document: DE

Date of ref document: 19850718

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19930104

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19930120

Year of fee payment: 13

ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19930131

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19930202

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19930217

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19940127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19940131

Ref country code: CH

Effective date: 19940131

Ref country code: BE

Effective date: 19940131

BERE Be: lapsed

Owner name: LIGNES TELEGRAPHIQUES ET TELEPHONIQUES LTT

Effective date: 19940131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19940801

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19940127

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19941001