EP0031078B1 - Fine denier synthetic fibres and filaments and dry spinning process for their production - Google Patents

Fine denier synthetic fibres and filaments and dry spinning process for their production Download PDF

Info

Publication number
EP0031078B1
EP0031078B1 EP80107777A EP80107777A EP0031078B1 EP 0031078 B1 EP0031078 B1 EP 0031078B1 EP 80107777 A EP80107777 A EP 80107777A EP 80107777 A EP80107777 A EP 80107777A EP 0031078 B1 EP0031078 B1 EP 0031078B1
Authority
EP
European Patent Office
Prior art keywords
spinning
filaments
dtex
dmf
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP80107777A
Other languages
German (de)
French (fr)
Other versions
EP0031078B2 (en
EP0031078A3 (en
EP0031078A2 (en
Inventor
Ulrich Dr. Reinehr
Toni Herbertz
Hermann Josef Jungverdorben
Joachim Dross
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bayer AG
Original Assignee
Bayer AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=6089296&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0031078(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Bayer AG filed Critical Bayer AG
Priority to AT80107777T priority Critical patent/ATE20909T1/en
Publication of EP0031078A2 publication Critical patent/EP0031078A2/en
Publication of EP0031078A3 publication Critical patent/EP0031078A3/en
Application granted granted Critical
Publication of EP0031078B1 publication Critical patent/EP0031078B1/en
Publication of EP0031078B2 publication Critical patent/EP0031078B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/08Melt spinning methods
    • D01D5/098Melt spinning methods with simultaneous stretching
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/04Dry spinning methods
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/02Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F6/18Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds from polymers of unsaturated nitriles, e.g. polyacrylonitrile, polyvinylidene cyanide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2973Particular cross section
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2973Particular cross section
    • Y10T428/2978Surface characteristic

Definitions

  • Such fine-titer fibers which generally have a final fiber titer between 0.4-0.8 dtex, have compared to conventional synthetic fibers, e.g. Acrylic fibers, which are in the titre range from 1.3 dtex, have a number of advantages such as: high gloss, appealing chandelier, elegance in the fabric, soft feel, high flexibility and pliability as well as high fiber strength, due to the high number of fine fibers in the yarn cross-section.
  • the object of the present invention was to produce fine-titer acrylic fibers by a dry spinning process.
  • the spinning solution in the spinning shaft must be subjected to a high degree of warpage.
  • the warping (V) during spinning is defined as the ratio of the take-off speed to the ejection speed
  • the present invention therefore relates to a process for the production of synthetic fibers and threads from spinning solutions with a solids content of 25 to 35% of thread-forming acrylonitrile polymers with at least 85% by weight of acrylonitrile units in polar organic solvents after a dry spinning process at a spinning shaft temperature of preferably between 30 ° C.
  • the process according to the invention is in principle a dry spinning process which can be carried out with the same equipment as a process by which coarser titers are spun. So can for example, with the usual spinnerets with hole diameters of about 0.15 to 0.8 mm, preferably 0.2 to 0.4 mm, and in usual spinning shafts. With average K values of the polymers of about 80, the spinning solutions thus have viscosities of about 20 to 100 falling ball seconds at 80 ° C. (for the falling ball method, see K. Jost, Rheologica Acta (1958) Vol. 1, No. 2-3, page 303).
  • the viscosity stability of the spinning solution is important so that the high warpage, which is preferably 30 to 500 but can also be higher, can be exerted by the process according to the invention.
  • a viscosity-stable spinning solution can be prepared by keeping the solution at a certain minimum temperature for a certain time before spinning.
  • the spinning solution should not have a temperature of above 150 ° C, the spinning shaft temperature should not exceed 200 ° C and the spinning air temperature at most about 400 ° C should be.
  • a non-dumbbell-shaped cross-sectional shape of the fine-titer fibers is always obtained by the process according to the invention if the spinning conditions are chosen to be as mild as possible and the work is carried out with high delays.
  • the spinning solution for example, is cooled to temperatures of about 20 ° C. to about 100 ° C. after the viscosity-stabilizing thermal treatment and before spinning, at the same time the spinning shaft temperature is set to a value between about 30 ° C. and preferably below the boiling point of the solvent used and with Spinning air worked up to about 300 ° C.
  • the fiber cross section also has an intermediate shape, e.g. a bean or kidney shape.
  • the spinning solution had a viscosity of 30 ball falling seconds measured at 80 ° C. This value remained unchanged after 1, 3 and 5 hours.
  • the spinning solution was then cooled to 35 ° C. and dry spun from a 720 hole nozzle with nozzle hole diameters of 0.2 mm.
  • the shaft temperature was 50 ° C, the air temperature 200 ° C and the air volume 40 m 3 / h.
  • the take-off speed was 400 m / min.
  • the dwell time of the threads in the spinning shaft was 0.87 seconds. 19.8 ccm / min were conveyed from the spinning pump.
  • the total spin titer was 144 dtex and the residual solvent content of DMF in the spun material was 9.9% by weight, based on polymer solids.
  • the DMF evaporation rate is then calculated to be 0.305
  • the single spin titer was 0.2 dtex.
  • the warpage V was 457.
  • the threads were wetted with oil-containing preparation at the shaft exit, wound on bobbins, folded into a cable, stretched 1: 3.6 times in boiling water and aftertreated in the usual way to give fibers with a final titre of 0.07 dtex.
  • the fiber capillaries were embedded in methyl methacrylate and cross-cut.
  • the light microscopic images produced in the differential interference contrast method showed that the sample cross sections are completely uniform and round.
  • the mean thread diameter was determined with the fiber measuring eyepiece.
  • the fibers had an extremely high gloss. When examined in a scanning electron microscope, the fibers showed smooth surfaces with longitudinal stripes. The striations were completely parallel to the fiber axis and, unlike those with conventional acrylic fibers, were not interrupted.
  • An acrylonitrile copolymer with the chemical composition of Example 1 was, as described there, dissolved in DMF, filtered and the spinning solution was cooled to 40 ° C. in front of the nozzle. Then, dry spinning was carried out from a 720-hole nozzle with a nozzle hole diameter of 0.2 mm.
  • the shaft temperature was 50 ° C
  • the withdrawal speed was 250 m / min and the dwell time of the threads in the spinning shaft was 1.39 seconds. 52.8 ccm / min were conveyed from the spinning pump.
  • the total spin titer was 648 dtex.
  • the residual solvent content in the spun material was 10.8%.
  • the DMF evaporation rate was 0.856
  • the single spin titer was 0.9 dtex.
  • the delay was 107.
  • the threads were again wetted with oil-containing preparation, wound on spools, folded into a cable, stretched 1: 3.6 times in boiling water and aftertreated in the usual way to give fibers with a final titer of 0.3 dtex.
  • the fiber cross sections were again completely uniform and circular.
  • the fibers also had a very high gloss again and showed a smooth surface in the scanning electron microscope with striations that were longitudinally striped parallel to the fiber axis.
  • An acrylonitrile copolymer with the chemical composition from Example 1 was dissolved in DMF as described there.
  • the spinning solution was then filtered, cooled to 90 ° C. and dry-spun from a 720-hole nozzle with a nozzle hole diameter of 0.2 mm.
  • the shaft temperature was 150 ° C, the air temperature 200 ° C and the air volume 40 m 3 / h.
  • the take-off speed was 180 m / min. It was spun on a shorter-sized spinning shaft, so that a residence time of 1.66 sec. revealed.
  • the spinning pump became 82.8 ccm / min. promoted.
  • the total spin titer was 1304 dtex.
  • the residual solvent content in the spinning material was 13.5%.
  • the DMF evaporation rate was 1.225
  • the single spin titer was 1.8 dtex.
  • the warpage was 48.
  • the threads were post-treated with 1: 4, 0-fold stretching to fibers with a final titer of 0.6 dtex.
  • the fibers had a round to slightly bean-shaped cross-sectional profile. Her shine was again extraordinarily high. In the scanning electron microscope, striations and striations running on the surface parallel to the fiber axis were again observed, which showed no interruptions.
  • the single spin titer was 1.81 dtex.
  • the warping was 80.
  • the threads were again wetted with oil-containing preparation, collected on bobbins, folded into a cable, stretched 1: 4.0 times in boiling water and post-treated into fibers in the usual way.
  • the final fiber titer was 0.56 dtex.
  • the fibers show the typical dumbbell shape.
  • part of the batch from Example 5a was cooled to 40 ° C. in front of the nozzle and dry-spun from a 1050-hole nozzle with a nozzle hole diameter of 0.25 mm.
  • the shaft temperature was 190 ° C, the air temperature 380 ° C and the air volume 40 m 3 / h.
  • the take-off speed was 250 m / min and the dwell time of the threads in the spinning shaft was 2.11 seconds. 161 ccm / min were conveyed from the spinning pump.
  • the total spin titer was 1891 dtex.
  • the residual solvent content in the spinning material was 8.8%.
  • the DMF evaporation rate was 1.727
  • the single spin titer was 1.80 dtex.
  • the warpage was 80.
  • the threads were post-treated as described in Example 5a.
  • the final fiber titer was 0.58 dtex.
  • the fibers in turn show the typical dumbbell shape.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Artificial Filaments (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)

Abstract

Dry-spun synthetic fibers and filaments having an individual as-spun denier of 3 dtex are obtained by dry spinning a viscosity-stable spinning solution with a draft of at least 20.

Description

Es ist bekannt, nach dem Trockenspinnverfahren aus Spinnlösungen mit 25 bis 35 % Feststoffgehalt an fadenbildenden Acryinitrilpolymerisaten mit mindestens 85 Gew.-% Acrylnitrileinheiten in polaren organischen Lösungsmitteln Acrylfasern herzustellen, wobei Schachttemperaturen von 150 bis 220 °C und Spinnlufttemperaturen von 200 bis 400 °C üblich sind vgl. beispielsweise DE-A-25 02 195.It is known to use the dry spinning process to produce acrylic fibers from spinning solutions with a solids content of 25 to 35% of thread-forming acrylonitrile polymers with at least 85 wt are cf. for example DE-A-25 02 195.

In jüngster Zeit werden in der Chemiefaserindustrie verstärkt Antrengungen unternommen, Synthesefasern mit besonders feinen Titern herzustellen. Derartige feintitrige Fasern, die in der Regel einen Faserendtiter zwischen 0,4 - 0,8 dtex aufweisen, besitzen gegenüber herkömmlichen Synthesefasern, z.B. Acrylfasern, die im Titerbereich ab 1,3 dtex liegen, eine Reihe von Vorteilen wie: hoher Glanz, ansprechender Lüster, Eleganz im Flächengebilde, weicher Griff, hohe Flexibilität und Schmiegsamkeit sowie hohe Faserfestigkeit, bedingt durch die hohe Anzahl feiner Fasern im Garnquerschnitt.Recently, efforts have been made in the man-made fiber industry to produce synthetic fibers with particularly fine titers. Such fine-titer fibers, which generally have a final fiber titer between 0.4-0.8 dtex, have compared to conventional synthetic fibers, e.g. Acrylic fibers, which are in the titre range from 1.3 dtex, have a number of advantages such as: high gloss, appealing chandelier, elegance in the fabric, soft feel, high flexibility and pliability as well as high fiber strength, due to the high number of fine fibers in the yarn cross-section.

M. Okamato hat in Chemiefasern/Textilindustrie (1979), Heft 1, Seiten 30 - 34 und Heft 3, Seiten 175 - 178, alle bisher literaturbekannten Verfahren zusammengefaßt. Wie man dieser Übersicht entnehmen kann, lassen sich feinsttitrige Synthesefasern hauptsächlich durch apparative Änderungen im Spinnprozeß, wie z.B. durch Flash-und Blasspinnen durch Scher-, Koagulations-, Schlag- oder Zentrifugalkraftmethoden herstellen. Bei den konventionellen Spinnmethoden hat nur das Verspinnen von miteinander unverträglichen Polymermischungen zu Polymerblendfasern mit Matrix/Fibrillen-Struktur Bedeutung erlangt. Durch Entfernung der Polymermatrix erhält man feinsttitrige Fibrillenfasern, die hauptsächlich als Syntheseoberleder Verwendung finden.M. Okamato has summarized in Chemiefaser / Textilindustrie (1979), volume 1, pages 30 - 34 and volume 3, pages 175 - 178, all processes known to date. As can be seen from this overview, fine-titer synthetic fibers can mainly be changed by apparatus in the spinning process, e.g. by flash and blow spinning by shear, coagulation, impact or centrifugal force methods. With conventional spinning methods, only the spinning of mutually incompatible polymer mixtures to polymer blend fibers with a matrix / fibril structure has gained importance. Removal of the polymer matrix results in fine titre fibril fibers, which are mainly used as synthetic upper leather.

Der vorliegenden Erfindung lag die Aufgabe zugrunde, nach einem Trockenspinnverfahren feinsttitrige Acrylfasern herzustellen.The object of the present invention was to produce fine-titer acrylic fibers by a dry spinning process.

Um zu sehr feintitrigen Fasern nach einem solchen Verfahren zu gelangen, muß die Spinnlösung im Spinnschacht einem hohen Verzug ausgesetzt werden. Der Verzug (V) beim Spinnen ist definiert als Verhältnis von Abzugsgeschwindigkeit zur Ausspritzgeschwindigkeit

Figure imgb0001
In order to achieve very fine titre fibers using such a process, the spinning solution in the spinning shaft must be subjected to a high degree of warpage. The warping (V) during spinning is defined as the ratio of the take-off speed to the ejection speed
Figure imgb0001

Die Ausspritzgeschwindigkeit (S) ergibt sich zu

Figure imgb0002

  • F = Fördermenge in ccm/Min.
  • Z = Anzahl der Düsenlöcher
  • d2 = Düsenlochdurchmesser in cm
The ejection speed (S) results in
Figure imgb0002
  • F = flow rate in ccm / min.
  • Z = number of nozzle holes
  • d 2 = nozzle hole diameter in cm

Beim herkömmlichen Trockenspinnverfahren von beispielsweise Acrylfäden wird auf die Spinnlösungen ein Verzug von etwa dem 10- bis 20-fachen ausgeübt. Versucht man derartige Spinnlösungen unter den angewandten üblichen Spinnbedingungen höher zu verziehen. so treten Fadenabrisse auf, bis schließlich das Spinnbild im Düsenbereich zusammenbricht. Somit ist der Erhalt feinsttitriger Fäden und Fasern durch einfache Erhöhung des Verzugs bei einem Trockenspinnverfahren nicht möglich.In the conventional dry spinning process of, for example, acrylic threads, the spinning solutions are warped by about 10 to 20 times. Attempts to warp such spinning solutions higher under the usual spinning conditions used. thread breaks occur until the spinning pattern in the nozzle area finally breaks down. It is therefore not possible to obtain fine-titer threads and fibers by simply increasing the warpage in a dry spinning process.

Es wurde nun überraschend gefunden, daß man auch bei einem Trockenspinnverfahren die zur Erzeugung von feinen und feinsten Titern erforderlichen hohen Verzüge dennoch ausüben kann, wenn man zum einen viskositätsstabile Spinnlösungen verspinnt und zum anderen milde thermische Bedingungen im Spinnschacht wählt, die eine langsamere Verdampfung des Spinnlösungsmittels bedingen, als in einem-herkömmlichen Trockenspinnprozeß üblich.It has now surprisingly been found that even with a dry spinning process, the high delays required to produce fine and finest titers can still be exerted if, on the one hand, spinning viscosity-stable spinning solutions and, on the other hand, choose mild thermal conditions in the spinning shaft which slow down the evaporation of the spinning solvent condition than usual in a conventional dry spinning process.

Die vorliegende Erfindung betrifft daher ein Verfahren zur Herstellung von Synthesefasern und -fäden aus Spinnlösungen mit 25 bis 35 % Feststoffgehalt an fadenbildenden Acrylnitrilpolymerisaten mit mindestens 85 Gew.-% Acrylnitrileinheiten in polaren organischen lösungsmitteln nach einem Trockenspinnprozeß bei einer Spinnschachttemperatur von vorzugsweise zwischen 30 ° C und einem Wert unterhalb des Siedepunktes des verwendeten Spinnlösungsmittels und einer Spinnlufttemperatur von höchstens 300 ° C und unter Weiterbehandlung des Spinngutes in an sich bekannter Weise zu fertigen Fasern oder Fäden, das dadurch gekennzeichnet ist, daß thermisch vorbehandelte Spinnlösungen verwendet werden, deren Viskosität sich während der Abspinnzeit um maximal 5 % ändert, daß die Spinnlösung mit einem Verzug von mindestens 20 versponnen wird und daß beim Verspinnen Fäden mit Spinneinzeltitern von 3 dtex und darunter erzeugt werden.The present invention therefore relates to a process for the production of synthetic fibers and threads from spinning solutions with a solids content of 25 to 35% of thread-forming acrylonitrile polymers with at least 85% by weight of acrylonitrile units in polar organic solvents after a dry spinning process at a spinning shaft temperature of preferably between 30 ° C. and a value below the boiling point of the spinning solvent used and a spinning air temperature of at most 300 ° C and further processing of the spinning material in a manner known per se to produce fibers or threads, which is characterized in that thermally pretreated spinning solutions are used, the viscosity of which changes during the spinning time changes by a maximum of 5% that the spinning solution is spun with a delay of at least 20 and that spinning produces threads with individual spinning titers of 3 dtex and below.

Das erfindungsgemäße Verfahren ist im Prinzip ein Trockenspinnverfahren, das mit derselben apparativen Ausstattung durchgeführt werden kann, wie ein Verfahren, nach dem gröbere Titer gesponnen werden. So kann z.B. mit den üblichen Spinndüsen mit Lochdurchmessern von ca. 0,15 bis 0,8 mm, vorzugsweise 0,2 bis 0,4 mm, und in üblichen Spinnschächten gearbeitet werden. Bei mittleren K-Werten der Polymerisate von etwa 80 haben die Spinnlösungen damit Viskositäten von etwa 20 bis 100 Kugelfallsekunden bei 80°C (zur Kugelfallmethode s. K. Jost, Rheologica Acta (1958) Bd. 1, Nr. 2-3, Seite 303).The process according to the invention is in principle a dry spinning process which can be carried out with the same equipment as a process by which coarser titers are spun. So can for example, with the usual spinnerets with hole diameters of about 0.15 to 0.8 mm, preferably 0.2 to 0.4 mm, and in usual spinning shafts. With average K values of the polymers of about 80, the spinning solutions thus have viscosities of about 20 to 100 falling ball seconds at 80 ° C. (for the falling ball method, see K. Jost, Rheologica Acta (1958) Vol. 1, No. 2-3, page 303).

Die Viskositätsstabilität der Spinnlösung ist wichtig, damit nach dem erfindungsgemäßen Verfahren der hohe Verzug, der vorzugsweise 30 bis 500 beträgt, jedoch auch noch darüber liegen kann, ausgeübt werden kann. Bevorzugt sind Spinnlösungen, deren Viskosität (gemessen in Kugelfallsekunden) sich während der Abspinnzeit, d.h. üblicherweise über Stunden hinweg maximal um weniger als 1 %, am besten aber überhaupt nicht ändert. Solche Lösungen haben sich als besonders hoch verzugsfähig erwiesen, während Spinnlösungen, deren Viskosität nicht konstant ist, bei hohen Verzügen verstärkt zu Fadenabrissen neigen (vgl. Beispiel 2). Eine viskositätsstabile Spinnlösung läßt sich herstellen, indem die Lösung vor dem Verspinnen für eine gewisse Zeit auf einer gewissen Mindesttemperatur gehalten wird.The viscosity stability of the spinning solution is important so that the high warpage, which is preferably 30 to 500 but can also be higher, can be exerted by the process according to the invention. Preferred are spinning solutions whose viscosity (measured in falling ball seconds) changes during the spinning time, i.e. usually less than 1% over hours, but ideally not at all. Such solutions have proven to be particularly highly warpable, while spinning solutions, the viscosity of which is not constant, are more prone to thread breaks at high warpage (see Example 2). A viscosity-stable spinning solution can be prepared by keeping the solution at a certain minimum temperature for a certain time before spinning.

Es ist offensichtlich, daß die Zubereitung einer solchen viskositätsstabilen Lösung von der Natur des verwendeten Polymerisats und der des ausgewählten Lösungsmittels abhängig ist. Als Spinnlösungsmittel kommen die bekannten polaren organischen Lösungsmittel in Betracht, insbesondere Dimethylacetamid, Dimethylsulfoxid, Ethylencarbonat, N-Methylpyrrolidon, bevorzugt jedoch Dimethylformamid. Im Falle von Polymerisaten aus 100 % Acrylnitril und bei üblichen K-Werten von z.B. 80 beträgt die obengenannte thermische Vorbehandlung bei Verwendung von Dimethylformamid (DMF) als Lösungsmittel mindestens etwa 4 Minuten bei mindestens etwa 140°C. Acrylnitrilpolymerisate mit einem Gehalt an Comonomeren, wie sie in dieser Technik üblich sind, können bei etwas niedrigeren Temperaturen von ca. 125-130°C für die erforderliche Zeitdauer vorbehandelt werden, um die gewünschte Viskositätsstabilität der Lösung zu erzielen. Je nach Wahl des Polymerisats und des Lösungsmittels sind einige Vorversuche zur Ermittlung der optimalen Bedingungen für die thermische Vorbehandlung zur Erzielung der Viskositätsstabilität empfehlenswert, wenn nicht erforderlich.It is obvious that the preparation of such a viscosity-stable solution depends on the nature of the polymer used and that of the solvent selected. The known polar organic solvents are suitable as spinning solvents, in particular dimethylacetamide, dimethyl sulfoxide, ethylene carbonate, N-methylpyrrolidone, but preferably dimethylformamide. In the case of polymers made from 100% acrylonitrile and with usual K values of e.g. 80, the above-mentioned thermal pretreatment when using dimethylformamide (DMF) as solvent is at least about 4 minutes at at least about 140 ° C. Acrylonitrile polymers containing comonomers, as are common in this technology, can be pretreated at somewhat lower temperatures of approx. 125-130 ° C for the required period of time in order to achieve the desired viscosity stability of the solution. Depending on the choice of polymer and solvent, some preliminary tests to determine the optimal conditions for thermal pretreatment to achieve viscosity stability are recommended, if not necessary.

Die oben erwähnte Abhängigkeit der Verfahrensprodukte von den nachstehend erläuterten Randbedingungen versteht sich wie folgt: Es hat sich gezeigt, daß nach dem erfindungsgemäßen Verfähren völlig überraschend nicht nur die beim Trockenspinnen üblicherweise erhaltenen hantelförmigen Faserquerschnitte erhalten werden können, sondern auch kreisrunde, runde und bohnen- bis nierenförmige, je nachdem, wie die thermischen Bedingungen im Spinnschacht gewählt werden.The above-mentioned dependency of the process products on the boundary conditions explained below is understood as follows: It has been shown that, following the process according to the invention, it is completely surprising that not only the dumbbell-shaped fiber cross sections usually obtained in dry spinning can be obtained, but also circular, round and bean-bis kidney-shaped, depending on how the thermal conditions in the spinning shaft are selected.

Was die thermischen Bedingungen im Spinnschacht anbetrifft, so lassen sich hierzu, wie für den Fachmann offenkundig, nur sehr schwierig absolute Angaben machen, da diese thermischen Bedingungen z.B. von den physikalischen Daten des gewählten Spinnlösungsmittels abhängig sind.As far as the thermal conditions in the spinning shaft are concerned, it is very difficult to provide absolute information about this, as is obvious to the person skilled in the art, since these thermal conditions e.g. depend on the physical data of the chosen spinning solvent.

Wird beispielsweise Dimethylformamid als Lösungsmittel verwendet, so kann zu diesen thermischen Bedingungen im Spinnschacht ganz allgemein gesagt werden, daß die Spinnlösung eine Temperatur von nicht über 150°C haben sollte, die Spinnschachttemperatur 200°C nicht übersteigen sollte und die Spinnlufttemperatur höchstens etwa 400° C betragen sollte.If, for example, dimethylformamide is used as a solvent, it can be said in general about these thermal conditions in the spinning shaft that the spinning solution should not have a temperature of above 150 ° C, the spinning shaft temperature should not exceed 200 ° C and the spinning air temperature at most about 400 ° C should be.

Bei niedrigen Spinnlösungstemperaturen lassen sich extrem hohe Verzüge erreichen und somit sehr feine Titer spinnen. Ganz allgemein kann hierzu wieder gesagt werden, daß, je niedriger die Spinnlösungstemperatur ist, um so höher der Verzug gewählt werden kann. Niedrige Spinnlösungstemperaturen setzen jedoch viskositätsstabile Spinnlösungen voraus, da nur so eine Kältegelierung der Spinnlösung verhindert werden kann. So konnte beispielsweise aus einer viskositätsstabilen Acrylspinnlösung von 35°C mit einem Verzug von 457 ein Einzelspinntiter von 0,2 dtex erhalten werden, was nach einer 3,6-fachen Verstreckung zu Fäden vom Endtiter 0,07 dtex führte (Beispiel 1).At low spinning solution temperatures, extremely high warpage can be achieved and thus very fine titers can be spun. In general, it can be said again that the lower the spinning solution temperature, the higher the delay can be selected. However, low spinning solution temperatures require viscosity-stable spinning solutions, since this is the only way to prevent cold spinning of the spinning solution. For example, a single spin titer of 0.2 dtex could be obtained from a viscosity-stable acrylic spinning solution of 35 ° C. with a delay of 457, which after 3.6 times stretching resulted in threads with a final titer of 0.07 dtex (Example 1).

Was für die Spinnlösungstemperatur festgestellt wurde, gilt im gleichen Maße für die Schacht- und Lufttemperatur beim erfindungsgemäßen Trockenspinnen fein(st)titriger Fasern. Niedrige Temperaturen erlauben das Spinnen mit hohen Verzügen infolge schwacher Lösungsmittelausdampfung (z.B. DMF) im Spinnschacht und somit die Herstellung extrem feiner Titer. Mit steigendem Spinntiter ab ca. 1 dtex sollten jedoch, wegen des erhöhten Polymer-Durchsatzes die Spinntemperaturen angehoben werden, um Verklebungen und Fadenabrisse zu vermeiden.What was found for the spinning solution temperature applies equally to the shaft and air temperature in the dry spinning of fine (st) titer fibers according to the invention. Low temperatures allow spinning with high warpage due to weak solvent evaporation (e.g. DMF) in the spinning shaft and thus the production of extremely fine titers. With increasing spinning titer from approx. 1 dtex, however, the spinning temperatures should be increased due to the increased polymer throughput in order to avoid sticking and thread breaks.

Im speziellen wird nach dem erfindungsgemäßen Verfahren immer dann eine nicht hantelförmige Querschnittsform der feintitrigen Fasern erhalten, wenn man die Spinnbedingungen möglichst milde wählt, und mit hohen Verzügen arbeitet. Hierzu wird beispielsweise die Spinnlösung nach der viskositätsstabilisierenden thermischen Behandlung und vor dem Verspinnen auf Temperaturen von etwa 20°C bis etwa 100°C gekühlt, gleichzeitig die Spinnschachttemperatur auf einen Wert zwischen etwa 30°C und vorzugsweise unterhalb des Siedepunktes des verwendeten Lösungsmittels eingestellt und mit Spinnluft bis etwa 300°C gearbeitet. Mit anderen Worten wird dafür Sorge getragen, daß das Lösungsmittel aus dem aus der Düse austretenden Lösungsstrom nicht schlagartig oder zumindest verhältnismäßig rasch zur Ausdampfung gebracht wird, sondern ganz allmählich und möglichst gleichmäßig über die gesamte Schachtlänge. Dadurch ergeben sich die für trockengesponnene Fäden und Fasern völlig ungewöhnlichen kreisrunden bis runden Querschnittsformen. Verlagert man dagegen die thermischen Spinnbedingungen in die zuvor genannten oberen Bereiche, d,h. verspinnt man z.B. eine Acrylnitrilpolymerisat/DMF-Spinnlösung, die eine Temperatur von etwa 90-150°C hat, bei Schachttemperaturen von z.B. 150-200°C und Lufttemperaturen von 300°C und mehr, so verdampft das Lösungsmittel zügiger, was zur Folge hat, daß der Verzug nicht so hoch gewählt werden kann wie im vorigen Fall, so daß die Faserquerschnitte die bekannte Hantelform zeigen. Werden die Spinnbedingungen auf Werte eingestellt, die sich im wesentlichen zwischen den zuvor aufgezeigten befinden, so weist auch der Faserquerschnitt eine Zwischenform auf, z.B. eine Bohnen- oder Nierenform.In particular, a non-dumbbell-shaped cross-sectional shape of the fine-titer fibers is always obtained by the process according to the invention if the spinning conditions are chosen to be as mild as possible and the work is carried out with high delays. For this purpose, the spinning solution, for example, is cooled to temperatures of about 20 ° C. to about 100 ° C. after the viscosity-stabilizing thermal treatment and before spinning, at the same time the spinning shaft temperature is set to a value between about 30 ° C. and preferably below the boiling point of the solvent used and with Spinning air worked up to about 300 ° C. In other words, care is taken to ensure that the solvent from the solution stream emerging from the nozzle is not suddenly or at least relatively quickly evaporated, but rather very gradually and as uniformly as possible over the entire length of the shaft. This results in circular to round cross-sectional shapes that are completely unusual for dry-spun threads and fibers. On the other hand, if the thermal spinning conditions are shifted to the above-mentioned upper ranges, i.e. one spins e.g. an acrylonitrile polymer / DMF spinning solution which has a temperature of about 90-150 ° C, at shaft temperatures of e.g. 150-200 ° C and air temperatures of 300 ° C and more, the solvent evaporates more quickly, with the result that the delay can not be chosen as high as in the previous case, so that the fiber cross-sections show the well-known dumbbell shape. If the spinning conditions are set to values that are essentially between those shown above, the fiber cross section also has an intermediate shape, e.g. a bean or kidney shape.

Bei alledem ist selbstverständlich darauf zu achten, daß die Fäden am Schachtausgang genügend verfestigt sind.In all of this, it is of course important to ensure that the threads at the shaft exit are sufficiently solidified.

Diese Erläuterungen zeigen, daß es nach dem erfindungsgemäßen Verfahren möglich ist, die Feinheit und die Querschnittsform der erhaltenen Fäden zu variieren. Eine solche Festlegung des Faserquerschnitts kann für den einen oder anderen Einsatzzweck für die Fasern erwünscht sein.These explanations show that it is possible according to the method according to the invention to vary the fineness and the cross-sectional shape of the threads obtained. Such a definition of the fiber cross section may be desirable for one or the other application of the fibers.

Als geeignete Größen zur Beschreibung der entstandenen Querschnittsform haben sich die DMF-Verdampfungsgeschwindigkeit pro Kapillare in (mg/Sek.) in Verbindung mit der Verweilzeit der Fäden im Spinnschacht erwiesen. Wie aus zahlreichen Spinnversuchen hervorging, darf die DMF-Verdampfungsgeschwindigkeit bei einer Sekunde Verweilzeit im Spinnschacht den Wert von

Figure imgb0003

  • nicht überschreiten, wenn noch nicht-hantelförmige Querschnittsformen erhalten werden sollen. Bei längeren Verweilzeiten im Spinnschacht, beispielsweise 2 Sekunden, muß die Verdampfungsgeschwindigkeit geringer und bei kürzeren Verweilzeiten entsprechend höher sein.
The DMF evaporation rate per capillary in (mg / sec) in connection with the dwell time of the threads in the spinning shaft have proven to be suitable variables for describing the cross-sectional shape formed. As emerged from numerous spinning tests, the DMF evaporation rate with a residence time of one second in the spinning shaft may be the value of
Figure imgb0003
  • do not exceed if non-dumbbell-shaped cross-sectional shapes are to be obtained. With longer dwell times in the spinning shaft, for example 2 seconds, the evaporation rate must be lower and with shorter dwell times correspondingly higher.

Abb. 1 zeigt die Kurve, die man erhält, wenn man die DMF-Verdampfungsgeschwindigkeit in

Figure imgb0004

  • als Ordinate gegen die Verweilzeit (in Sekunden) im Spinnschacht als Abszisse aufträgt. Sie ist annäherod eine Hyperbel, welche das Gebiet in hantel- und nichthantelförmige Faserquerschnittsstrukturen aufteilt. Unter nichthantelförmigen Faserquerschnittsprofilen werden dabei sowohl bohnen- als auch nierenförmige und runde Querschnittsformen sowie Übergänge zwischen den einzelnen profilen verstanden. Wie aus Abb. 1 hervorgeht, stellen die Werte der Ordinate in Form der DMF-Verdampfungsgeschwindigkeit ein Maß für die thermischen Spinnbedingungen wie Schacht-, Luft- und Spinnlösungstemperatur dar, während die Werte der Abszisse in Form der Verweilzeit der Fäden im Spinnschacht ein Maß für die mechanischen Spinnbedingungen, wie Abzugsgeschwindigkeit und Schachtlänge, bedeuten. Jeder punkt auf der Kurve der Abb. 1 stellt eine bestimmte DMF-Menge dar, wobei der DMF-Gehalt im Faden je nach Titer unterschiedlich sein kann. Das heißt mit anderen Worten, der Verlauf der Kurve ist vom Spinntiter unabhängig. Dem Kurvenverlauf ist fernar zu entnehmen, daß jeweils eine bestimmte DMF-Menge verdampft werden muß, um die Querschnittsstruktur zu ändern. Diese ist bei niedrigen Verweilzeiten bedeutend größer als bei längeren Verweilzeiten im Spinnschacht. Andererseits werden unterhalb einer bestimmten Verdampfungsgeschwindigkeit unabhängig von der Verweilzeit nie hantelförmige Querschnitte erreicht.
Fig. 1 shows the curve obtained when the DMF evaporation rate in
Figure imgb0004
  • plots as ordinate against the dwell time (in seconds) in the spinning shaft as the abscissa. It is almost a hyperbola, which divides the area into dumbbell and non-dumbbell-shaped fiber cross-sectional structures. Non-dumbbell-shaped fiber cross-sectional profiles mean bean-shaped as well as kidney-shaped and round cross-sectional shapes as well as transitions between the individual profiles. As can be seen in Fig. 1, the values of the ordinate in the form of the DMF evaporation rate represent a measure of the thermal spinning conditions such as shaft, air and spinning solution temperature, while the values of the abscissa in the form of the residence time of the threads in the spinning shaft are a measure of the mechanical spinning conditions, such as take-off speed and shaft length, mean. Each point on the curve in Fig. 1 represents a certain amount of DMF, whereby the DMF content in the thread can vary depending on the titer. In other words, the course of the curve is independent of the spin titer. The curve shows that a certain amount of DMF must be evaporated in order to change the cross-sectional structure. This is significantly greater with low dwell times than with longer dwell times in the spinning shaft. On the other hand, dumbbell-shaped cross sections are never reached below a certain evaporation rate, regardless of the residence time.

Die DMF-Verdampfungsgeschwindigkeit pro Kapillare in (mg/Sek.) läßt sich aus der Differenz zwischen durchgesetzter Spinnlösungsmittelmenge pro Kapillare (mg/Sek.) und Restlösungsmittelmenge pro Kapillare (mg/Sek.) ermitteln. Dies soll an einer Modellberechnung für das Beispiel 1 gezeigt werden. Hierbei gilt:

  • Durchgesetze Menge an Polymerfeststoff in (g/min):
    Figure imgb0005
    Figure imgb0006
The DMF evaporation rate per capillary in (mg / sec) can be determined from the difference between the amount of spinning solvent per capillary (mg / sec) and the residual solvent amount per capillary (mg / sec). This should be shown on a model calculation for example 1. The following applies:
  • Enforced amount of polymer solid in (g / min):
    Figure imgb0005
    Figure imgb0006

Durchgesetzte Menge an Spinnlösungsmittel (g/min):

Figure imgb0007
Figure imgb0008
Amount of spinning solvent (g / min):
Figure imgb0007
Figure imgb0008

Restlösungsmittelmenge im Spinngut (g/min):

  • Nach dem Spinnprozeß wurden 9,9 % an Restlösungsmittel DMF bezogen auf Feststoff gefunden.
  • Es gilt:
  • 5,76 g = 100 %
  • x = 9,9 %
  • x = 0,570 g DMF verbleiben im Spinngut.
Residual amount of solvent in the spinning material (g / min):
  • After the spinning process, 9.9% of residual solvent DMF, based on solids, was found.
  • The following applies:
  • 5.76 g = 100%
  • x = 9.9%
  • x = 0.570 g DMF remain in the spinning material.

DMF-Verdampfungsgeschwindigkeit (g/min) = 13,765 - 0,570

Figure imgb0009
DMF evaporation rate (g / min) = 13.765-0.570
Figure imgb0009

DMF-Verdampfungsgeschwindigkeit pro Kapillare (mg/sek) =

Figure imgb0010
DMF evaporation rate per capillary (mg / sec)
Figure imgb0010

Bei der Durchführung des erfindungsgemäßen Verfahrens wurde in der Regel mit DMF-Spinnlösungen mit einem Gehalt von 29,5 Gew.-% Polymerisat gearbeitet. Bei höheren Konzentrationen ist wie aus Beispiel 6 hervorgeht eine niedrigere Verdampfungsgeschwindigkeit R, nötig, um nicht hantelförmige Querschnitte zu erhalten. Die Werte folgen der empirischen Formel:

Figure imgb0011
wobei

  • C1 DMF = die eingesetzte Konzentration an Spinnlösungsmittel,
  • C2 DMF = 70,5 Gew.-% DMF und
  • R2 = die DMF-Verdampfungsgeschwindigkeit
    Figure imgb0012
  • bedeuten. Den Wert für R2 kann man direkt aus der Kurve der Abb. 1 für die entsprechende Verweilzeit im Spinnschacht (in Sek.) entnehmen. Dabei errechnet sich die Verweilzeit (in Sekunden) der Fäden im Spinnschacht aus der Beziehung
    Figure imgb0013
  • Für Beispiel 6 errechnet sich demnach die DMF-Verdampfungsgeschwindigkeit R1 für eine von 70,5 Gew.-% DMF verschiedene Spinnlösungskonzentration, bei der eine Änderung der Querschnittsform eintritt, wie folgt:
    Figure imgb0014
    Figure imgb0015
  • Neben der veränderten Faserquerschnittsform feintitriger Fasern, die nach dem erfindungsgemäßen Verfahren hergestellt worden sind, weisen derartige Fasern mit nicht hantelförmigen Querschnittsprofilen noch einen außerordentlich hohen Glanz auf. Dies führt zu einer hohen Eleganz im Flächengebilde von Gebrauchsartikeln. Wie oberflächenmorphologische Untersuchungen mit dem Rasterelektronenmikroskop zeigen, besitzen die erfindungsgemäßen feintitrigen Fasern im Gegensatz zu herkömmlich trocken gesponnenen Acrylfasern keine borkige, fibrillierte Oberfläche mit Riefen begrenzter Länge unter wechselndem Winkel zur Faserachse. Die feintitrigen Fasern besitzen glatte Oberflächen und parallel zur Faserachse verlaufende Riefen und Streifungen, die nicht unterbrochen sind, so daß das Licht gerichtet reflektiert wird.
  • Solche Acrylfasern und -fäden sind ein weiterer Gegenstand der Erfindung, bevorzugt mit runden bis bohnenförmigen Querschnitten.
  • Infolge der größeren Garnfeinheit (Nm 100/1) zeigen feintitrige Fasern, z.B. bei Interlockware, aus 3-Zylindergarnen einen sehr weichen Griff gegenüber herkömmlicher Acrylware aus 1,6 dtex Fasern. Dies ist besonders für hautnah getragene Artikel von hohem Gebrauchswert.
  • Im Falle der Nachbehandlung von feintitrigem Spinngut hat es sich als äußerst günstig erwiesen, das Spinngut vor dem Streckprozeß durch Hindurchleiten durch Wannen mit warmer Waschflüssigkeit, vorzugsweise Wasser, auf ca. 79-80°C aufzuwärmen, um eine gleichmäßigere Verstreckung zu erzielen. Das feintitrige Spinngut läßt sich auf übliche Weise durch Waschen-Strecken-Präparieren-Trocknen-Kräuseln-Schneiden zu fertigen Acrylfasern nachbehandeln. Wegen der großen Titerfeinheit der Fäden, besonders bei Spinntiter kleiner 1 dtex, ist es ferner vorteilhaft, die Verstreckung in Stufen vorzunehmen.
  • Mit dem erfindungsgemäßen Verfahren ist es erstmals möglich, Fasern mit extrem feinen Endtitern von z.B. 0,1 dtex auch in größerem Tonnen-Maßstab herzustellen.
  • Die Titerbestimmung nach der gravimetrischen Methode ist bei feinen Titern ( < 0,5 dtex) sehr ungenau. Die Titerbestimmung erfolgte deshalb nach der mikroskopischen Methode durch Ermittlung des Fadendurchmessers "d" mit dem Okularmikrometer nach DIN 53 811 gemäß der Formel:
    Figure imgb0016
  • Literatur: Chemiefasern (1975), Heft 7. Seite 593.
  • Die folgenden Beispiele dienen der näheren Erläuterung der Erfindung. Teil- und Prozentangaben beziehen sich, wenn nicht anders vermerkt, auf das Gewicht.
When carrying out the process according to the invention, DMF spinning solutions with a polymer content of 29.5% by weight were generally used. At higher concentrations, as can be seen from example 6, a lower evaporation rate R is necessary in order to obtain non-dumbbell-shaped cross sections. The values follow the empirical formula:
Figure imgb0011
in which
  • C 1 DMF = the concentration of spinning solvent used,
  • C 2 DMF = 70.5% by weight DMF and
  • R 2 = the DMF evaporation rate
    Figure imgb0012
  • mean. The value for R 2 can be taken directly from the curve in Fig. 1 for the corresponding dwell time in the spinning shaft (in seconds). The residence time (in seconds) of the threads in the spinning shaft is calculated from the relationship
    Figure imgb0013
  • For example 6, the DMF evaporation rate R 1 for a spinning solution concentration other than 70.5% by weight DMF, at which the cross-sectional shape changes, is calculated as follows:
    Figure imgb0014
    Figure imgb0015
  • In addition to the changed fiber cross-sectional shape of fine-titer fibers which have been produced by the process according to the invention, such fibers with non-dumbbell-shaped cross-sectional profiles still have an extraordinarily high gloss. This leads to a high degree of elegance in the fabric of consumer goods. As shown by surface morphological studies with a scanning electron microscope, the fine-titer fibers according to the invention, in contrast to conventionally dry-spun acrylic fibers, have no barky, fibrillated surface with grooves of limited length at varying angles to the fiber axis. The fine-titer fibers have smooth surfaces and grooves and striations that run parallel to the fiber axis and are not interrupted, so that the light is reflected in a directed manner.
  • Such acrylic fibers and threads are a further subject of the invention, preferably with round to bean-shaped cross sections.
  • As a result of the greater yarn count (Nm 100/1), fine-titer fibers, for example in interlock fabrics, made from 3-cylinder yarns have a very soft feel compared to conventional acrylic fabrics made from 1.6 dtex fibers. This is particularly useful for articles worn close to the skin and of high utility value.
  • In the case of the aftertreatment of fine-tinned spinning material, it has proven to be extremely advantageous to warm the spinning material to about 79-80 ° C. prior to the stretching process by passing it through troughs with warm washing liquid, preferably water, in order to achieve a more uniform stretching. The fine titre spun material can be post-treated in the usual way by washing-stretching-preparing-drying-crimping-cutting to give finished acrylic fibers. Because of the large titer fineness of the threads, especially in the case of spinning titer smaller than 1 dtex, it is also advantageous to carry out the drawing in stages.
  • With the method according to the invention, it is possible for the first time to produce fibers with extremely fine end titles of, for example, 0.1 dtex, even on a larger ton scale.
  • The titer determination according to the gravimetric method is very imprecise for fine titers (<0.5 dtex). The titer was therefore determined by the microscopic method by determining the thread diameter "d" with the eyepiece micrometer according to DIN 53 811 according to the formula:
    Figure imgb0016
  • Literature: Chemical fibers (1975), No. 7, page 593.
  • The following examples serve to explain the invention in more detail. Unless otherwise noted, parts and percentages relate to weight.

Beispiel 1example 1

70,5 kg Dimethylformamid (DMF) wurden mit 29,5 kg eines Acryinitrilcopolymerisates aus 93,6 % Acrylnitril, 5,7 % Acrylsäuremethylester und 0,7 % Natriummethallylsulfonat vom K-Wert 81 unter Rühren vermischt und in einem 60 cm langen, doppelwandigen Rohr von 8 cm innerem Durchmesser mit Dampf von 3,2 bar Druck erhitzt. Die Temperatur der Lösung, welche eine Feststoffkonzentration von 29,5 Gew.-% aufwies, betrug am Rohrausgang 135°C. Im Rohr befanden sich mehrere Mischkämme.zur Homogenisierung der Spinnlösung. Die Spinnlösung wurde nach Verlassen der Aufheizvorrichtung filtriert und dem Spinnschacht zugeführt. Die Verweilzeit von der Aufheizvorrichtung bis zur Spinndüse betrug 8 Min. Die Spinnlösung besaß eine Viskosität von 30 Kugelfallsekunden gemessen bei 80°C. Dieser Wert blieb bei Messungen nach 1, 3 und 5 Stunden unverändert. Die Spinnlösung wurde anschließend auf 35°C abgekühlt und aus einer 720 Lochdüse mit Düsenlochdurchmessern von 0,2 mm trockenversponnen. Die Schachttemperatur betrug 50°C, die Lufttemperatur 200°C und die Luftmenge 40 m3/h. Die Abzugsgeschwindigkeit war 400 m/min. Die Verweilzeit de Fäden im Spinnschacht betrug 0,87 Sekunden. Aus der Spinnpumpe wurden 19,8 ccm/min gefördert. Der Gesamtspinntiter betrug 144 dtex und der Restlösungsmittelgehalt des Spinngutes an DMF lag bei 9,9 Gew.-% bezogen auf Polymerfeststoff. Die DMF-Verdampfungsgeschwindigkeit berechnet sich hiernach zu 0,305

Figure imgb0017
70.5 kg of dimethylformamide (DMF) were mixed with 29.5 kg of an acrylonitrile copolymer composed of 93.6% acrylonitrile, 5.7% methyl acrylate and 0.7% sodium methallylsulfonate with a K value of 81 and stirred in a 60 cm long, double-walled Tube of 8 cm inner diameter heated with steam of 3.2 bar pressure. The temperature of the solution, which had a solids concentration of 29.5% by weight, was 135 ° C. at the tube outlet. There were several mixing combs in the tube to homogenize the spinning solution. The spinning solution was filtered after leaving the heating device and fed to the spinning shaft. The residence time from the heating device to the spinneret was 8 minutes. The spinning solution had a viscosity of 30 ball falling seconds measured at 80 ° C. This value remained unchanged after 1, 3 and 5 hours. The spinning solution was then cooled to 35 ° C. and dry spun from a 720 hole nozzle with nozzle hole diameters of 0.2 mm. The shaft temperature was 50 ° C, the air temperature 200 ° C and the air volume 40 m 3 / h. The take-off speed was 400 m / min. The dwell time of the threads in the spinning shaft was 0.87 seconds. 19.8 ccm / min were conveyed from the spinning pump. The total spin titer was 144 dtex and the residual solvent content of DMF in the spun material was 9.9% by weight, based on polymer solids. The DMF evaporation rate is then calculated to be 0.305
Figure imgb0017

Der Einzelspinntiter lag bei 0,2 dtex. Der Verzug V betrug 457. Die Fäden wurden am Schachtausgang mit ölhaltiger Präparation benetzt, auf Spulen aufgewickelt, zu einem Kabel gefacht, in kochendem Wasser 1:3,6- fach verstreckt und auf übliche Weise zu Fasern vom Einzelendtiter 0,07 dtex nachbehandelt.The single spin titer was 0.2 dtex. The warpage V was 457. The threads were wetted with oil-containing preparation at the shaft exit, wound on bobbins, folded into a cable, stretched 1: 3.6 times in boiling water and aftertreated in the usual way to give fibers with a final titre of 0.07 dtex.

Zur mikroskopischen Beurteilung der Querschnittsgeometrie wurden die Faserkapillaren in Methacrylsäuremethylester eingebettet und quergeschnitten. Die im differentiellen Interferenzkontrastverfahren hergestellten lichtmikroskopischen Aufnahmen zeigten, daß die Probenquerschnitte vollkommen gleichmäßig und rund sind. Der Titerwert wurde aus dem Fadendurchmesser d = 2,8 pm mit der vorgegebenen Dichte = 1,17 g/cm3 errechnet. Der mittlere Fadendurchmesser wurde mit dem Fasermeßokular bestimmt. Die Fasern besaßen einen außerordentlich hohen Glanz. Bei Untersuchungen im Rasterelektronenmikroskop zeigten die Fasern glatte Oberflächen mit längsgestreiften Riefen. Die Streifungen wiesen einen vollkommen parallelen Verlauf zur Faserachse auf und waren im Gegensatz zu denen bei herkömmlichen Acrylfasern nicht unterbrochen.For the microscopic assessment of the cross-sectional geometry, the fiber capillaries were embedded in methyl methacrylate and cross-cut. The light microscopic images produced in the differential interference contrast method showed that the sample cross sections are completely uniform and round. The titer value was calculated from the thread diameter d = 2.8 pm with the specified density = 1.17 g / cm 3 . The mean thread diameter was determined with the fiber measuring eyepiece. The fibers had an extremely high gloss. When examined in a scanning electron microscope, the fibers showed smooth surfaces with longitudinal stripes. The striations were completely parallel to the fiber axis and, unlike those with conventional acrylic fibers, were not interrupted.

Beispiel 2 (Vergleich)Example 2 (comparison)

Ein Teil des Ansatzes aus Beispiel 1 wurde in der Aufheizvorrichtung bei 80°C anstatt bei 135°C gelöst und die Viskosität der Spinnlösung nach der Filtration bei 80°C bestimmt. Die Spinnlösung hatte eine Viskosität von 76 Kugelfallsekunden. Bei Reproduktionsmessungen betrug die Viskosität nach 1 Stde. 72, nach 3 Stdn. 67 und nach 5 Stdn. 64 Kugelfallsekunden. Die Spinnlösung wies somit eine abnehmende Viskosität auf. Die Spinnlösung wurde nach der Filtration wieder auf 35° C abgekühlt und aus einer 720-Lochdüse, wie in Beispiel 1 beschrieben, zu Fäden trockenversponnen. Es traten wiederholt Fadenabrisse im Düsenbereich auf. Wie lichtmikroskopische Querschnittsaufnahmen zeigten, lagen auch zahlreiche Titerschwankungen vor.Part of the batch from Example 1 was dissolved in the heating device at 80 ° C. instead of 135 ° C. and the viscosity of the spinning solution after filtration was determined at 80 ° C. The spinning solution had a viscosity of 76 ball falling seconds. In reproduction measurements, the viscosity was 72 seconds after 1 hour, 67 after 3 hours and 64 seconds after 5 hours. The spinning solution thus had a decreasing viscosity. After the filtration, the spinning solution was cooled again to 35 ° C. and dry-spun into threads from a 720-hole nozzle, as described in Example 1. Thread breaks repeatedly occurred in the nozzle area. As light microscopic cross-sectional images showed, there were also numerous titre fluctuations.

Beispiel 3Example 3

Ein Acryinitrilcopolymerisat, mit der chemischen Zusammensetzung von Beispiel 1, wurde, wie dort beschrieben, in DMF gelöst, filtriert und die Spinnlösung vor der Düse auf 40°C abgekühlt. Dann wurde aus einer 720-Lochdüse mit Düsenlochdurchmesser von 0,2 mm trockenversponnen. Die Schachttemperatur betrug 50° C, die Lufttemperatur 200°C und die Luftmenge 40 m3/h. Die Abzugsgeschwihdigkeit war 250 m/min und die Verweilzeit der Fäden im Spinnschacht betrug 1,39 Sekunden. Aus der Spinnpumpe wurden 52,8 ccm/ min gefördert. Der Gesamtspinntiter war 648 dtex. Der Restlösungsmittelgehalt im Spinngut betrug 10,8 %. Die DMF-Verdampfungsgeschwindigkeit lag bei 0,856

Figure imgb0018
An acrylonitrile copolymer with the chemical composition of Example 1 was, as described there, dissolved in DMF, filtered and the spinning solution was cooled to 40 ° C. in front of the nozzle. Then, dry spinning was carried out from a 720-hole nozzle with a nozzle hole diameter of 0.2 mm. The shaft temperature was 50 ° C, the air temperature 200 ° C and the air volume 40 m 3 / h. The withdrawal speed was 250 m / min and the dwell time of the threads in the spinning shaft was 1.39 seconds. 52.8 ccm / min were conveyed from the spinning pump. The total spin titer was 648 dtex. The residual solvent content in the spun material was 10.8%. The DMF evaporation rate was 0.856
Figure imgb0018

Der Einzelspinntiter lag vei 0,9 dtex.The single spin titer was 0.9 dtex.

Der Verzug betrug 107. Die Fäden wurden am Schachtausgang wiederum mit ölhaltiger Präparation benetzt, auf Spulen aufgewickelt, zu einem Kabel gefacht, in kochendem Wasser 1:3.6-fach verstreckt und auf übliche Weise zu Fasern vom Endtiter 0,3 dtex nachbehandelt. Die Faserquerschnitte waren wiederum vollkommen gleichmäßig und kreisrund. Die Fasern besaßen ebenfalls wieder einen sehr hohen Glanz und zeigten im Rasterelektronenmikroskop eine glatte Oberfläche mit parallel zur Faserachse längsgestreiften Riefen.The delay was 107. At the shaft exit, the threads were again wetted with oil-containing preparation, wound on spools, folded into a cable, stretched 1: 3.6 times in boiling water and aftertreated in the usual way to give fibers with a final titer of 0.3 dtex. The fiber cross sections were again completely uniform and circular. The fibers also had a very high gloss again and showed a smooth surface in the scanning electron microscope with striations that were longitudinally striped parallel to the fiber axis.

Beispiel 4Example 4

Ein Acrylnitrilcopolymerisat mit der chemischen Zusammensetzung aus Beispiel 1 wurde wie dort beschrieben in DMF gelöst. Die Spinnlösung wurde anschließend filtriert, auf 90°C abgekühlt und aus einer 720-Lochdüse mit Düsenlochdurchmesser von 0,2 mm trockenversponnen. Die Schachttemperatur betrug 150°C, die Lufttemperatur 200° C und die Luftmenge 40 m3 /h. Die Abzugsgeschwindigkeit war 180 m/min. Es wurde an einem kürzer dimensionierten Spinnschacht gesponnen, so daß sich eine Verweilzeit von 1,66 sek. ergab. Aus der Spinnpumpe wurden 82,8 ccm/min. gefördert. Der Gesamtspinntiter war 1304 dtex. Der Restlösungsmittelgehalt im Spinngut lag bei 13,5 %. Die DMF-Verdampfungsgeschwindigkeit betrug 1,225

Figure imgb0019
An acrylonitrile copolymer with the chemical composition from Example 1 was dissolved in DMF as described there. The spinning solution was then filtered, cooled to 90 ° C. and dry-spun from a 720-hole nozzle with a nozzle hole diameter of 0.2 mm. The shaft temperature was 150 ° C, the air temperature 200 ° C and the air volume 40 m 3 / h. The take-off speed was 180 m / min. It was spun on a shorter-sized spinning shaft, so that a residence time of 1.66 sec. revealed. The spinning pump became 82.8 ccm / min. promoted. The total spin titer was 1304 dtex. The residual solvent content in the spinning material was 13.5%. The DMF evaporation rate was 1.225
Figure imgb0019

Der Einzelspinntiter lag bei 1,8 dtex. Der Verzug betrug 48. Die Fäden wurden unter 1:4;0-facher Verstreckung zu Fasern vom Endtiter 0,6 dtex nachbehandelt. Die Fasern besaßen ein rundes bis schwach bohnenförmiges Querschnittsprofil. Ihr Glanz war wiederum außerordentlich hoch. Im Rasterelektronenmikroskop konnten wieder an der Oberfläche parallel zur Faserachse verlaufende Riefen und Streifungen beobachtet werden, die keine Unterbrechungen aufwiesen.The single spin titer was 1.8 dtex. The warpage was 48. The threads were post-treated with 1: 4, 0-fold stretching to fibers with a final titer of 0.6 dtex. The fibers had a round to slightly bean-shaped cross-sectional profile. Her shine was again extraordinarily high. In the scanning electron microscope, striations and striations running on the surface parallel to the fiber axis were again observed, which showed no interruptions.

In der folgenden Tabelle wird durch Spinnversuche die Abhängigkeit der Querschnittsform von der DMF-Verdampfungsgeschwindigkeit in

Figure imgb0020

  • demonstriert. Mit steigendem Spinntiter müssen die Energieverhältnisse im Spinnschacht angehoben werden, da mit steigendem Lösungsdurchsatz mehr Spinnlösungsmittel verdampfen muß, um eine Fadenverfestigung zu erhalten. Das Spinngut wurde jeweils 1:3,6-fach in kochendem Wasser verstreckt und wie üblich nachbehandelt. Die Einzelspinn- und Einzelendtiter wurden wiederum nach der lichtmikroskopischen Methode ermittelt und die Querschnittsformen anhand lichtmikroskopischer Aufnahmen nach dem differentiellen Interferenzkontrastverfahren bestimmt. Die unterschiedlichen Verweilzeiten im Spinnschacht wurden neben unterschiedlichen Abzugsgeschwindigkeiten auch durch andere Schachtlängen erzielt. Wie man der Tabelle entnehmen kann, entstehen von der Hantelform abweichende Querschnittsformen vornehmlich bei Spinntitern kleiner 3 dtex. Wie die Beispiele 12 und 17 zeigen, lassen sich jedoch auch bei Spinntitern ab 3,0 dtex und feiner hantelförmige Faserquerschnitte herstellen, wenn man nur die DMF-Verdampfungsgeschwindigkeit in
    Figure imgb0021
  • hoch genug wählt. Man hat daher mit dieser Meßgröße, wie bereits erwähnt, einen geeigneten Parameter in der Hand, die Querschnittsform festzulegen.
    Figure imgb0022
    Figure imgb0023
The following table shows the dependence of the cross-sectional shape on the DMF evaporation rate in
Figure imgb0020
  • demonstrated. With increasing spinning titer, the energy ratios in the spinning shaft have to be increased, since with increasing solution throughput, more spinning solvent has to evaporate in order to achieve thread strengthening. The spinning material was stretched 1: 3.6 times in boiling water and post-treated as usual. The single-spin and single-end titers were again determined using the light microscopic method and the cross-sectional shapes were determined using light microscopic images using the differential interference contrast method. The different dwell times in the spinning shaft were achieved in addition to different take-off speeds by other shaft lengths. As can be seen in the table, cross-sectional shapes deviating from the dumbbell shape arise primarily with spin titers less than 3 dtex. As examples 12 and 17 show, however, even with spinning titers from 3.0 dtex and finer dumbbell-shaped fiber cross sections, only the DMF evaporation rate in
    Figure imgb0021
  • chooses high enough. Therefore, as already mentioned, this measured variable has a suitable parameter in hand to determine the cross-sectional shape.
    Figure imgb0022
    Figure imgb0023

Beispiel 5Example 5

a) Ein Acrylnitrilcopolymerisat mit der chemischen Zusammensetzung von Beispiel 1 wurde wie dort beschrieben in DMF gelöst, filtriert und die Spinnlösung vor der Düse auf 112°C gehalten. Dann wurde aus einer 1050-Lochdüse mit Düsenlochdurchmesser von 0,25 mm trockenversponnen. Die Schachttemperatur betrug 150°C, die Lufttemperatur 260°C und die Luftmenge 40 m3/h. Die Abzugsgeschwindigkeit war 300 m/min und die Verweilzeit der Fäden im Spinnschacht betrug 1,76 Sekunden. Aus der Spinnpumpe wurden 193,2 ccm/ min gefördert. Der Gesamtspinntiter war 1903 dtex. Der Restlösungsmittelgehalt im Spinngut betrug 8,3 %. Die DMF-Verdampfungsgeschwindigkeit lag bei 2,090

Figure imgb0024
a) An acrylonitrile copolymer with the chemical composition of Example 1 was dissolved in DMF as described there, filtered and the spinning solution was kept at 112 ° C. in front of the nozzle. Then, dry spinning was carried out from a 1050 hole nozzle with a hole diameter of 0.25 mm. The shaft temperature was 150 ° C, the air temperature 260 ° C and the air volume 40 m 3 / h. The take-off speed was 300 m / min and the dwell time of the threads in the spinning shaft was 1.76 seconds. 193.2 ccm / min were conveyed from the spinning pump. The total spin titer was 1903 dtex. The residual solvent content in the spun material was 8.3%. The DMF evaporation rate was 2.090
Figure imgb0024

Der Einzelspinntiter lag bei 1,81 dtex.The single spin titer was 1.81 dtex.

Der Verzug betrug 80. Die Fäden wurden am Schachtausgang wiederum mit ölhaltiger Präparation benetzt, auf Spulen gesammelt, zu einem Kabel gefacht, in kochendem Wasser 1:4,0-fach verstreckt und auf übliche Weise zu Fasern nachbehandelt. Der Faserendtiter lag bei 0,56 dtex. Die Fasern zeigen die typische Hantelform.The warping was 80. At the shaft exit, the threads were again wetted with oil-containing preparation, collected on bobbins, folded into a cable, stretched 1: 4.0 times in boiling water and post-treated into fibers in the usual way. The final fiber titer was 0.56 dtex. The fibers show the typical dumbbell shape.

b) Ein Teil des Ansatzes aus Beispiel 5a wurde nach dem Löse- und Filtrationsvorgang vor der Düse auf 40°C ,abgekühlt und aus einer 1050-Lochdüse mit Düsenlochdurchmesser von 0,25 mm trockenversponnen. Die Schachttemperatur betrug 190°C, die Lufttemperatur 380°C und die Luftmenge 40 m3/h. Die Abzugsgeschwindigkeit war 250 m/min und die Verweilzeit der Fäden im Spinnschacht betrug 2,11 Sekunden. Aus der Spinnpumpe wurden 161 ccm/min gefördert. Der Gesamtspinntiter war 1891 dtex. Der Restlösungsmittelgehalt im Spinngut war 8,8 %. Die DMF-Verdampfungsgeschwindigkeit lag bei 1,727

Figure imgb0025
b) After the dissolving and filtration process, part of the batch from Example 5a was cooled to 40 ° C. in front of the nozzle and dry-spun from a 1050-hole nozzle with a nozzle hole diameter of 0.25 mm. The shaft temperature was 190 ° C, the air temperature 380 ° C and the air volume 40 m 3 / h. The take-off speed was 250 m / min and the dwell time of the threads in the spinning shaft was 2.11 seconds. 161 ccm / min were conveyed from the spinning pump. The total spin titer was 1891 dtex. The residual solvent content in the spinning material was 8.8%. The DMF evaporation rate was 1.727
Figure imgb0025

Der Einzelspinntiter lag bei 1,80 dtex. Der Verzug war 80. Die Fäden wurden wie in Beispiel 5a beschrieben nachbehandelt. Der Faserendtiter lag bei 0,58 dtex. Die Fasern zeigen wiederum die typische Hantelform.The single spin titer was 1.80 dtex. The warpage was 80. The threads were post-treated as described in Example 5a. The final fiber titer was 0.58 dtex. The fibers in turn show the typical dumbbell shape.

  • c) Ein Teil des Ansatzes aus Beispiel 5 wurde in der Aufheizvorrichtung bei 80° C anstatt bei 135°C gelöst, filtriert und die Spinnlösung vor der Düse wieder auf 112°C gehalten. Dann wurde wie in Beispiel 5a beschrieben versponnen. Die Fäden ließen sich nicht anlegen. Es kam ständig zu Abrissen unterhalb der Düse.c) Part of the batch from Example 5 was dissolved in the heating device at 80 ° C. instead of 135 ° C., filtered and the spinning solution in front of the nozzle was again kept at 112 ° C. Then spinning was carried out as described in Example 5a. The threads could not be put on. There were constant tears below the nozzle.
  • d) Ein weiterer Teil des Ansatzes wurde in der Aufheizvorrichtung bei 80°C anstatt bei 135°C gelöst, filtriert und die Spinnlösung auf 40°C abgekühlt. Die Lösung hatte bei 50°C eine Viskosität von 235 Kugelfallsekunden. Bei 40°C stieg die Viskosität auf 356 Kugelfallsekunden an, und die Lösung wurde trübe. Beim Versuch, eine derartige Lösung wie in Beispiel 5a beschrieben zu verspinnen, konnten keine Fäden erhalten werden. Es kam ständig zu Abrissen unterhalb der Düse.d) Another part of the batch was dissolved in the heating device at 80 ° C. instead of 135 ° C., filtered and the spinning solution was cooled to 40 ° C. The solution had a viscosity of 235 ball falling seconds at 50 ° C. At 40 ° C the viscosity increased to 356 falling ball seconds and the solution became cloudy. When trying to spin such a solution as described in Example 5a, no threads could be obtained. There were constant tears below the nozzle.
Beispiel 6Example 6

35 kg eines Acrylnitrilcopolymerisates mit der chemischen Zusammensetzung aus Beispiel 1 wurden wie dort beschrieben in 65 kg DMF gelöst. Die Spinnlösung wurde anschließend filtriert, auf 35°C abgekühlt und aus einer 360-Lochdüse mit Düsenlochdurchmesser von 0,3 mm trockenversponnen. Die Schachttemperatur betrug 50° C, die Lufttemperatur 200°C und die Luftmenge 40 m3/h. Die Abzugsgeschwtndigkeit war 300 m/min. Die Verweilzeit im Spinnschacht betrug 1,16 Sekunden. Aus der Spinnpumpe wurden 126,8 ccm/ min gefördert Der Gesamttiter war 1391 dtex. Der Restlösungsmittelgehalt im Spinngut lag bei 35,5 %. Die DMF-Verdampfungsgeschwindigkeit betrug 2,902

Figure imgb0026
35 kg of an acrylonitrile copolymer with the chemical composition from Example 1 were dissolved in 65 kg of DMF as described there. The spinning solution was then filtered, cooled to 35 ° C. and dry-spun from a 360-hole nozzle with a nozzle hole diameter of 0.3 mm. The shaft temperature was 50 ° C, the air temperature 200 ° C and the air volume 40 m 3 / h. The withdrawal speed was 300 m / min. The dwell time in the spinning shaft was 1.16 seconds. 126.8 ccm / min were conveyed from the spinning pump. The total titer was 1391 dtex. The residual solvent content in the spinning material was 35.5%. The DMF evaporation rate was 2.902
Figure imgb0026

Der Einzelspinntiter lag bei 3,86 dtex. Der Verzug betrug 60. Die Fäden wurden unter 1:4,0-facher Verstreckung zu Fasern vom Endtiter 1,2 dtex nachbehandelt. Die Fasern besitzen ein hantelförmiges Querschnittsprofil. Während bei 70,5 %iger Spinnlösungskonzentration der Übergang der Querschnittsform von runder zur Hantelform bei 1,16 Sek. Verweilzeit im Spinnschacht nach Abb. 1 erst bei einer Verdampfungsgeschwindigkeit von 3,05

Figure imgb0027

  • zu erwarten ist, erfolgt somit der Übergang der Querschnittsform von rund nach hantelförmig bei einer 65 %igen Spinnlösungskonzentration gemäß
    Figure imgb0028
    bereits viel früher.
The single spin titer was 3.86 dtex. The warpage was 60. The threads were post-treated with 1: 4.0 times stretching to fibers with a final titer of 1.2 dtex. The fibers have a dumbbell-shaped cross-sectional profile. At 70.5% concentration of the spinning solution, the transition of the cross-sectional shape from round to dumbbell shape with a dwell time of 1.16 seconds in the spinning shaft according to Fig. 1 only at an evaporation rate of 3.05
Figure imgb0027
  • is expected, the cross-sectional shape changes from round to dumbbell-shaped at a 65% concentration of spinning solution
    Figure imgb0028
    much earlier.

Claims (5)

1. Process for the production of acrylic fires and filaments from spinning solutions having a solids content of 25 to 35% of filament-forming acrylonitrile polymers containing at least 85% by weight of acrylonitrile units in polar organic solvents by a dry-spinning process at a spinning chamber temperature of preferably between 30° C and a value below the boiling point of the spinning solvent used and a spinning air temperature of at most 300°C and with further treatment of the spinning material in a manner known per se to form finished fibres or filaments, characterised in that thermally pre-treated spinning solutions are used, the viscosity of which changes by at most 5% during the spinning time, in that the spinning solution is spun with a draft or at least 20 and in that filaments having individual spinning titres of 3 dtex and below are produced during spinning.
2. Process according to Claim 1, characterised in that dimethylformamide is used as the spinning solvent.
3. Process according to Claim 1, characterised in that the spinning solution is spun with a draft of 30-500.
4. Acrylic fibres and filaments of acrylonitrile polymers containing at least 85% by weight of acrylonitrile units, characterised in that they are smooth in the longitudinal direction, in that their surface has longitudinal striae and furrows parallel to the fibre axis and in that they have an individual spinning titre of at most 3 dtex.
5. Filaments and fibres according to Claim 4, characterised in that they have round to bean-shaped cross- sections.
EP80107777A 1979-12-21 1980-12-10 Fine denier synthetic fibres and filaments and dry spinning process for their production Expired - Lifetime EP0031078B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT80107777T ATE20909T1 (en) 1979-12-21 1980-12-10 FINE DENSE SYNTHETIC FIBERS AND THREADS AND DRY SPINNING PROCESSES FOR THEIR MANUFACTURE.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE2951803 1979-12-21
DE19792951803 DE2951803A1 (en) 1979-12-21 1979-12-21 FINE-TITRED SYNTHESIS FIBERS AND FEATHERS AND DRY SPIDER PROCESSES FOR THEIR PRODUCTION

Publications (4)

Publication Number Publication Date
EP0031078A2 EP0031078A2 (en) 1981-07-01
EP0031078A3 EP0031078A3 (en) 1983-05-25
EP0031078B1 true EP0031078B1 (en) 1986-07-23
EP0031078B2 EP0031078B2 (en) 1992-06-03

Family

ID=6089296

Family Applications (1)

Application Number Title Priority Date Filing Date
EP80107777A Expired - Lifetime EP0031078B2 (en) 1979-12-21 1980-12-10 Fine denier synthetic fibres and filaments and dry spinning process for their production

Country Status (6)

Country Link
US (2) US4400339A (en)
EP (1) EP0031078B2 (en)
JP (1) JPS56101909A (en)
AT (1) ATE20909T1 (en)
DE (2) DE2951803A1 (en)
IE (1) IE52101B1 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3225267A1 (en) * 1982-07-06 1984-01-12 Bayer Ag, 5090 Leverkusen MANUFACTURE OF LOW-SOLVENT POLYACRYLNITRILE SPIDER THREADS
DE3225266A1 (en) * 1982-07-06 1984-01-12 Bayer Ag, 5090 Leverkusen CONTINUOUS DRY SPINNING PROCESS FOR ACRYLNITRILE THREADS AND FIBERS
JPS616160A (en) * 1984-06-19 1986-01-11 東レ株式会社 Fiber reinforced hydraulic substance
DE3424343A1 (en) * 1984-07-03 1986-01-16 Bayer Ag, 5090 Leverkusen PROCESS AND DEVICE FOR DRY SPINNING
BR9006842A (en) * 1989-06-28 1991-08-06 Michelin Rech Tech ARAMID MONOFILAMENT, PROCESS TO GET AT LEAST ONE ARAMID MONOFILAMENT, ASSEMBLY AND ARTICLE
JPH0842995A (en) * 1994-07-29 1996-02-16 Yamaha Corp Bowstring for archery
US5715804A (en) * 1994-07-29 1998-02-10 Yamaha Corporation Hybrid bow string formed from strands of polyethylene resin and polyparabenzamide/polybenzobisoxazole resin
KR100445769B1 (en) * 1995-11-30 2004-10-15 킴벌리-클라크 월드와이드, 인크. Superfine Microfiber Nonwoven Web
DE19829164A1 (en) 1998-06-30 2000-03-30 Bayer Faser Gmbh Elastane threads and process for their manufacture
US7175903B1 (en) * 2000-11-17 2007-02-13 Pliant Corporation Heat sealable polyvinyl chloride films
CN109629027B (en) * 2017-10-09 2021-10-22 中国石油化工股份有限公司 Production method of dry acrylic fiber 1.33dtex staple fiber
US11180867B2 (en) 2019-03-20 2021-11-23 University Of Kentucky Research Foundation Continuous wet-spinning process for the fabrication of PEDOT:PSS fibers with high electrical conductivity, thermal conductivity and Young's modulus

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE364509A (en) * 1928-10-29
US1950026A (en) * 1929-07-02 1934-03-06 Celanese Corp Manufacture of artificial filaments or threads
US2072100A (en) * 1929-11-27 1937-03-02 Celanese Corp Spinning of artificial filaments
BE514101A (en) * 1951-10-09
US3097415A (en) * 1959-02-20 1963-07-16 Acrylonitrile fiber and process for
NL253933A (en) * 1959-07-18
US3531368A (en) * 1966-01-07 1970-09-29 Toray Industries Synthetic filaments and the like
JPS4711254U (en) * 1971-03-03 1972-10-11
SE403141B (en) * 1973-02-05 1978-07-31 American Cyanamid Co MELT SPINNING PROCEDURE FOR MAKING AN ACRYLIC NITRIL POLYMER FIBER
JPS539301A (en) * 1976-07-12 1978-01-27 Mitsubishi Rayon Co Production of leather like sheet structre
DE2657144C2 (en) * 1976-12-16 1982-12-02 Bayer Ag, 5090 Leverkusen Process for making hydrophilic fibers
DE2658916A1 (en) * 1976-12-24 1978-07-06 Bayer Ag POLYACRYLNITRILE FILAMENT YARN
JPS5394625A (en) * 1977-01-20 1978-08-18 Asahi Chem Ind Co Ltd Production of acrylic fiber
JPS53147818A (en) * 1977-05-26 1978-12-22 Asahi Chem Ind Co Ltd Production of acrylic fiber
JPS602405B2 (en) * 1977-09-22 1985-01-21 三菱レイヨン株式会社 Manufacturing method for acrylonitrile-based continuous filament yarn mixed with different fineness single yarns
US4205039A (en) * 1977-11-17 1980-05-27 American Cyanamid Company Process for melt-spinning acrylonitrile polymer fiber
US4219523A (en) * 1978-08-30 1980-08-26 American Cyanamid Company Melt-spinning acrylonitrile polymer fiber from low molecular weight polymers
JPS56377A (en) * 1979-06-15 1981-01-06 Teijin Ltd Production of suede like raised fabric

Also Published As

Publication number Publication date
US4400339A (en) 1983-08-23
DE3071670D1 (en) 1986-08-28
EP0031078B2 (en) 1992-06-03
IE52101B1 (en) 1987-06-24
DE2951803A1 (en) 1981-07-02
JPH0128125B2 (en) 1989-06-01
ATE20909T1 (en) 1986-08-15
JPS56101909A (en) 1981-08-14
US4497868A (en) 1985-02-05
DE2951803C2 (en) 1989-03-16
IE802680L (en) 1981-06-21
EP0031078A3 (en) 1983-05-25
EP0031078A2 (en) 1981-07-01

Similar Documents

Publication Publication Date Title
DE69723582T2 (en) REGENERATED CELLULOSE FIBERS AND METHOD FOR THEIR PRODUCTION
EP0494852B1 (en) Process for the production of cellulosic articles
DE2948298C2 (en)
EP0044534B1 (en) High-modulus polyacryl nitrile filaments and fibres, and process for manufacturing them
DE69025789T2 (en) Polyvinyl alcohol fiber and process for its manufacture
EP0031078B1 (en) Fine denier synthetic fibres and filaments and dry spinning process for their production
WO2001011123A1 (en) High-strength polyester threads and method for producing the same
DE2931439C2 (en)
DE69613609T2 (en) Highly oriented undrawn polyester fibers and process for their manufacture
DE69721791T2 (en) USE OF LINEAR SYNTHETIC POLYMERS TO IMPROVE THE PROPERTIES OF CELLULOSIC MOLDED BODIES PRODUCED BY THE TERTIARY AMINOXIDE PROCESS
EP0019870B1 (en) Filaments and fibres of acrylonitrile copolymer blends, and process for manufacturing them
EP0918894B1 (en) Method for producing cellulose fibres
EP0051189B1 (en) Method for producing of dry-spun polyacrylonitrile filaments and fibres with a shaped cross-section
EP0987353B1 (en) Polyester fibres and filaments and process for their production
DE3881508T2 (en) Multilayer acrylic composite threads and process for producing the same.
DE3036683C2 (en) Process for melt spinning synthetic polymers
DE2736302C3 (en) Process for the production of polypyrrolidone threads
DE1660652B2 (en) Process for the production of three-dimensionally crimped polyester hollow filaments
DE19937728A1 (en) HMLS threads made of polyester and spin stretching process for their production
DE2657144A1 (en) METHOD OF MANUFACTURING HYDROPHILIC FIBERS
DE1669547A1 (en) Process for spinning viscose yon threads
DE3225779C2 (en)
EP0029949A1 (en) A dry-spinning process for the making of stable cross-section hygroscopic core-sheath fibres and filaments
DE1760989A1 (en) Improved Polypivalolactone Fibers and Processes for Making Them
EP0013764A1 (en) Hydrophilic polycarbonate fibres having a high second order transition point and process for manufacturing them

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19801210

AK Designated contracting states

Designated state(s): AT BE DE FR GB IT

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Designated state(s): AT BE DE FR GB IT

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE DE FR GB IT

REF Corresponds to:

Ref document number: 20909

Country of ref document: AT

Date of ref document: 19860815

Kind code of ref document: T

ITF It: translation for a ep patent filed
REF Corresponds to:

Ref document number: 3071670

Country of ref document: DE

Date of ref document: 19860828

ET Fr: translation filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19861202

Year of fee payment: 7

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: HOECHST AKTIENGESELLSCHAFT, FRANKFURT

Effective date: 19870422

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19871210

ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19911128

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19911129

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19911231

Year of fee payment: 12

PUAH Patent maintained in amended form

Free format text: ORIGINAL CODE: 0009272

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT MAINTAINED AS AMENDED

27A Patent maintained in amended form

Effective date: 19920603

AK Designated contracting states

Kind code of ref document: B2

Designated state(s): AT BE DE FR GB IT

ITF It: translation for a ep patent filed
ET3 Fr: translation filed ** decision concerning opposition
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19921210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19921231

BERE Be: lapsed

Owner name: BAYER A.G.

Effective date: 19921231

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19921210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19930831

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19961112

Year of fee payment: 17

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980901

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO