EP0027243B1 - Verfahren und Apparat zur Erfüllung von Heiz- und Kühlforderungen und demgemässe Steuerung - Google Patents

Verfahren und Apparat zur Erfüllung von Heiz- und Kühlforderungen und demgemässe Steuerung Download PDF

Info

Publication number
EP0027243B1
EP0027243B1 EP80106074A EP80106074A EP0027243B1 EP 0027243 B1 EP0027243 B1 EP 0027243B1 EP 80106074 A EP80106074 A EP 80106074A EP 80106074 A EP80106074 A EP 80106074A EP 0027243 B1 EP0027243 B1 EP 0027243B1
Authority
EP
European Patent Office
Prior art keywords
heating
circuit
cooling
refrigerant
vapor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP80106074A
Other languages
English (en)
French (fr)
Other versions
EP0027243A1 (de
Inventor
Robert D. Conine
Gary S. Leonard
Thomas M. Zinsmeyer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Carrier Corp
Original Assignee
Carrier Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US06/082,837 external-priority patent/US4262488A/en
Priority claimed from US06/087,290 external-priority patent/US4309876A/en
Application filed by Carrier Corp filed Critical Carrier Corp
Publication of EP0027243A1 publication Critical patent/EP0027243A1/de
Application granted granted Critical
Publication of EP0027243B1 publication Critical patent/EP0027243B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B7/00Compression machines, plants or systems, with cascade operation, i.e. with two or more circuits, the heat from the condenser of one circuit being absorbed by the evaporator of the next circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/022Compressor control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B29/00Combined heating and refrigeration systems, e.g. operating alternately or simultaneously
    • F25B29/003Combined heating and refrigeration systems, e.g. operating alternately or simultaneously of the compression type system

Definitions

  • This invention relates generally to refrigeration, and more specifically to refrigeration methods and apparatus for simultaneously satisfying heating and cooling demands.
  • Refrigeration apparatus or machines are frequently employed to cool a fluid such as water which is circulated through various rooms or enclosures of a building to cool these areas. Often, the refrigerant of such machines rejects a relatively large amount of heat at the condenser of the machine. This rejected heat is commonly dissipated to the atmosphere, either directly or via a cooling fluid that circulates between the condenser and cooling tower. Over a period of time, the rejected heat represents a substantial loss of energy, and much attention has been recently directed to reclaiming or recovering this heat to satisfy a heating load or demand.
  • One general approach to reclaiming this heat is to employ a booster compressor to draw and further compress a portion of the refrigerant vapor passing through the condenser of the refrigeration machine. This further compressed vapor is then passed through a separate, heat reclaiming condenser.
  • a heat transfer fluid is circulated through the heat reclaiming condenser in heat transfer relation with the refrigerant passing therethrough. Heat is transferred from the refrigerant to the heat transfer fluid, heating the fluid and condensing the refrigerant.
  • the liquid heat transfer fluid may then be used to satisfy a present heating load or the fluid may be stored for- later use, and the condensed refrigerant is returned to the refrigeration circuit for further use therein.
  • the capacities of the heating and cooling circuits are substantially independent of each other.
  • the capacity of the cooling circuit may be anywhere between its minimum and maximum values when excessive vapor temperatures are approached in the heating circuit.
  • the specific manner for preventing excessive vapor temperatures in the heating circuit will vary in accordance with the actual capacity of the cooling circuit when these excessive temperatures are approached.
  • the heating load on refrigeration . machines of the general type described above will not remain constant, but rather will vary with changes in various factors such as ambient temperature. If the heating load falls below a certain value, it may be preferred to terminate heating action of the heating circuit of the refrigeration machine and satisfy the heating load in some other manner. With many refrigeration machines having both heating and cooling circuits, it is necessary to maintain a continuous flow of refrigerant vapor through the heating circuit, however, even when the heating action thereof is terminated, to prevent the heating circuit from overheating.
  • the vapor supplied thereto is at normal supply pressure for that circuit - that is, substantially at the pressure of the condenser of the refrigeration unit - then a relatively large vapor mass flow through the heating circuit is needed to maintain satisfactory temperatures therein, and the booster compressor uses a relatively large quantity of power to compress this vapor while no useful work is being accomplished.
  • apparatus for satisfying heating and cooling demands comprising a cooling circuit for satisfying the cooling demand and comprising a compressor separating the cooling circuit into a high pressure side and a low pressure side, a heating circuit for satisfying the heating demand and including a booster compressor for drawing and compressing refrigerant vapor from the high pressure side of the cooling circuit, a heat reclaiming condensor and a return for returning refrigerant from the heating circuit to the high pressure side of the cooling circuit, characterized by a temperature sensor (Th.S.) for sensing the temperature of vapor discharged from the booster compressor, a first valve for regulating the flow of vapor to the booster compressor, a first control, responsive to the temperature sensor (Th.S.), for modulating the first valve to reduce the vapor flow rate through the heating circuit to a minimum, thereby terminating the heating action when the temperature of the vapor discharged from the booster compressor exceeds a preset temperature, a vent line for transmitting refrigerant from the heating circuit to the low pressure side of the cooling circuit
  • apparatus for satisfying heating and cooling demands comprising a cooling circuit for satisfying the cooling demand and comprising a compressor separating the cooling circuit into a high pressure side and a low pressure side, a heating circuit for satisfying the heating demand and including a booster compressor for drawing and compressing refrigerant vapor from the high pressure side of the cooling circuit, a heat reclaiming condensor and a return for returning refrigerant from the heating circuit to the high pressure side of the cooling circuit, characterized by a temperature sensor for sensing the temperature of a heat transfer fluid leaving the heat reclaiming condenser of the heating circuit, a first valve for regulating the flow of vapor to the booster compressor, a first control, responsive to the temperature sensor for modulating the first valve to maintain a minimum flow of refrigerant through the heating circuit when the heating demand decreases below a predetermined level, a vent line for transmitting refrigerant from the heating circuit to the low pressure side of the cooling circuit, a second valve for regulating the flow of refrig
  • apparatus for satisfying heating and cooling demands comprising a cooling circuit for satisfying the cooling demand and comprising a compressor separating the cooling circuit into a high pressure side and a low pressure side, a heating circuit for satisfying the heating demand and including a booster compressor for drawing and compressing refrigerant vapor from the high pressure side of the cooling circuit, a heat reclaiming condensor and a return for returning refrigerant from the heating circuit to the high pressure side of the cooling circuit, characterized by a temperature sensor for sensing the temperature of a heat transfer fluid leaving the heat reclaiming condenser of the heating circuit, a first valve for regulating the flow of vapor to the booster compressor, a vent line for transmitting refrigerant from the heating circuit to the low pressure side of the cooling circuit, a second valve for regulating the flow of refrigerant through the vent line, a control responsive to the temperature sensor for opening the second valve to substantially equalize the pressure within the heating circuit when the heating demand on the heating circuit decreases below a pre
  • a method of controlling the operation of a booster type heat reclaiming refrigeration machine comprising a cooling. circuit which includes a compressor separating the cooling circuit into a low pressure side and a high pressure side for satisfying a cooling load, and a heating circuit for satisfying a heating load, including the steps of passing refrigerant vapor from the high pressure side of the cooling circuit through the heating circuit, compressing refrigerant vapor passing through the heating circuit and transferring heat from the refrigerant passing through the heating circuit to a first heat transfer fluid for satisfying the heating load, characterized by the steps of reducing the vapor flow rate through the heating circuit to a minimum thereby terminating the heating action, and venting vapor from the heating circuit to the low pressure side of the cooling circuit to lower the pressure in the heating circuit, when the temperature of the refrigerant passing through the heating circuit exceeds a preset temperature.
  • a method for controlling the operation of a booster type heat reclaiming refrigeration machine comprising a cooling circuit which includes a compressor separating the cooling circuit into a low pressure side and a high pressure side for satisfying a heating load, including the steps of passing refrigerant vapor from the high pressure side of the cooling circuit through the heating circuit, compressing refrigerant vapor passing through the heating circuit, and transferring heat from the refrigerant passing through the heating circuit to a first heat transfer fluid for satisfying the heating load, characterized by the steps of monitoring the heating load on the heating circuit, maintaining a minimum flow of refrigerant through the heating circuit when the heating load decreases below a predetermined level, and substantially equalizing the pressure between the heating circuit and the low pressure side of the cooling circuit by placing the heating circuit in fluid communication with the low pressure side of the cooling circuit and simultaneously decreasing the pressure of the refrigerant vapor passing through the heating circuit, when the load on the heating circuit falls below the predetermined level.
  • a control system for a booster type heat reclaiming refrigeration machine having a cooling circuit for satisfying a cooling demand and heating circuit for satisfying a heating demand, the cooling circuit having a primary compressor for drawing vapor from a low pressure side of the cooling circuit, for compressing the vapor, and for discharging the vapor into a high pressure side of the cooling circuit, the heating circuit having a booster compressor for drawing and further compressing vapor from the high pressure side of the cooling circuit a heat reclaiming condensor and having a return for returning refrigerant from the heating circuit to the high pressure side cooling circuit, said control system being characterized by a first valve for regulating the flow of refrigerant to the booster compressor, a first control for positioning the first valve, a drive for driving the primary compressor, a vent line for venting refrigerant from the heating circuit to the low pressure side of the cooling circuit, a second valve for regulating the flow of refrigerant through the vent line, a second control for opening the vent line valve,
  • the present invention is thus directed to a booster type reclaiming refrigeration system, to methods of operating such a system, and to a control system for use with such a refrigeration system.
  • the present invention provides an advance over the prior art in that the present invention provides a valve means for regulating the flow of refrigerant vapor to a booster compressor in a booster type heat reclaiming refrigeration machine, and provides venting means for terminating the heating action of the refrigeration machine by opening a vent line which interconnects the heat reclaiming condensor of the refrigeration machine with the low pressure side of the cooling circuit of the refrigeration machine.
  • valve means and the venting means are controlled either in response to sensed temperature of vapor discharged from the booster compressor of the refrigeration machine or in response to sensed temperature of a heat transfer fluid leaving the heat reclaiming condensor of the refrigeration machine.
  • Machine 10 includes, generally, cooling circuit 12 and heating circuit 14.
  • Cooling circuit 12 includes primary compressor such as first stage 16 of two stage compressor 18, primary condenser 20, primary expansion means 22, and evaporator 24.
  • Heating circuit 14 includes booster compressor means such as second stage 26 of compressor 18, heat reclaiming condenser 30, and auxiliary expansion means such as orifice 32.
  • Inlet guide vanes 34 are provided to control the refrigerant flow through first stage 16 of compressor 18 and, thus, through cooling circuit 12.
  • Positioning means (not shown) are provided to move guide vanes 34 between minimum and maximum flow positions.
  • Valve 38 is utilized to regulate the refrigerant flow through second stage 26 of compressor 18 and, hence, through heating circuit 14.
  • Positioning means such as reversible electric motor 40 is provided for moving valve 38 between minimum and maximum flow positions.
  • Vent line 42 connects heating circuit 14 with a low pressure region such as evaporator 24, vent line valve 44 regulates refrigerant flow through the vent line, and positioning means such as electrically actuated solenoid 46 moves the vent line valve between open and closed positions.
  • Drive means such as electric motor 50 is employed to simultaneously drive first and second stages 16 and 26 of compressor 18.
  • FIG. 2 An electric control circuit for motors 40 and 50 and solenoid 46 is shown in Figure 2.
  • the Figure includes numerical reference 1-16 at the left thereof to indicate various lines in the Figure.
  • Solenoid 46 is shown in line 8 of Figure 2 while motors 40 and 50 are shown, respectively, in lines 13 and 16 of the Figure.
  • Solenoid 46 is connected to a first source of electrical energy represented by line L-1 and L-2 in Figure 2.
  • Figure 2 shows motors 40 and 50 connected, respectively, to second and third electrical energy sources, with lines L-3 and L-4 representing the second source and lines L-5 and L-6 representing the third source of electrical energy.
  • lines L-3 and L-4 representing the second source
  • lines L-5 and L-6 representing the third source of electrical energy.
  • One suitable set of sources for example, provides approximately a 115 volt alternating current between lines L-1 and L-2, about a 28 volt alternating current between lines L-3 and L-4, approximately a 460 volt alternating current between lines L-5 and L-6, with each of the above currents having a frequency of about 60 hertz.
  • the circuit shown in Figure 2 includes numerous relay coils and relay contacts controlled thereby, and attention is directed to the right-hand side of Figure 2 where adjacent to each line having a relay coil there are identified the lines containing relay contacts controlled by that coil. Also, the symbol “K” designates the relay coil while the symbol “CR” designates the contacts controlled thereby. For example, coil K3 in line 1 controls contacts CR3 in lines 1 and 3, and timer relay coil KT1 in line 11 controls contacts CRT1 in line 12. As is customary in the art, the relay contacts shown in Figure 2 are illustrated in their inactive or de-energized position. Further, it should be understood that the controls for refrigeration machine 10 include a variety of switches and other devices not shown in Figure 2. For example, the controls include a water pump switch and a plurality of indicator lights. The addition of these devices is well within the purview of those skilled in the art, and they have been omitted from Figure 2 for the sake of clarity.
  • Program Timer T2 is schematically shown in line 5 of Figure 2.
  • Program Timers are well known in the art and are used to produce a sequence of events.
  • Program Timer PT of machine 10 controls switches PT-1, PT-2, PT-3, and PT-4 located, respectively, in lines 5, 6, 4, and 1 of Figure 2, and the Program Timer runs these switches through an ordered series of steps. If the Program Timer is de-energized at some point in its sequence, when re-energized the timer will restart at the point in its sequence where it was de-energized. Furthermore, as is well known in the art, the Program Timer will run for a period of time between each step in its sequence, and each time period may be individually adjusted.
  • switches PT-1 and PT-2 are in the positions shown in full lines in Figure 2, switch PT-3 is open, and switch PT-4 is closed.
  • thermostatic switch Th.S. in line 9 of Figure 2 is closed and, hence, relay coil K1 in line 9 is energized.
  • contacts CR1 in line 4 are closed and contacts CR1 in line 10 are open.
  • timer relay KT1 (discussed in greater detail below) in line 11 is de-energized; and with relay KT1 de-energized, contacts CRT1 in line 12 are closed.
  • contacts CRT1 are closed, relay coil K2 in line 12 is energized.
  • contacts CR2 in line 13 are closed, and contacts CR2 in lines 8 and 14 are open.
  • start switch St.S. in line 2 of Figure 2 is manually closed.
  • current passes through closed switch PT-4 in line 1 and through start switch St.S., energizing relay coils K3 and KT2 in lines 1 and 2 respectively.
  • Coil KT2 is a delay timer relay which closes contacts CRT2 in line 7 after a short time delay such as one minute, and coil KT2 maintains these contacts closed thereafter so long as the coil is energized.
  • the energization of coil K3 closes contacts CR3 in lines 1 and 3. Closed contacts CR3 in line 1 are in parallel with start switch St.S. and thus provides a holding current for relay coils K3 and KT2, allowing release of the start switch.
  • switch PT-1 moves to the position shown in broken lines in Figure 2. This provides a holding current for Program Timer PT via line 5 and normally closed contacts CR4 and CRT3 therein.
  • switch PT-2 moves to the position shown in broken lines in Figure 2, energizing oil pump relay coil o.p. which then starts an oil pump (not shown) for compressor motor 50.
  • Program Timer PT opens switch PT-4 and then the Program Timer closes switch PT-3 to start compressor motor 50.
  • switch PT-4 open, the process of starting compressor motor 50 will continue only if safety switch Saf.S. in line 2 of Figure 2 is closed.
  • Safety switch Saf.S. schematically-represents a plurality of safety switches which prevent or terminate operation of compressor motor 50 upon the development of undesirable conditions such as low oil pressure in the compressor motor. Additional safety devices are well known in the art and may be easily used with machine 10 by those skilled in the art.
  • safety switch Saf.S. If all of the parameters sensed by safety switch Saf.S. are within acceptable ranges, the safety switch is closed. Current passes through safety switch Saf.S., through closed contacts CR1 in line 4, through closed contacts CR3 in line 3, and through switch PT-3, energizing relay coil K4 in line 3. When relay coil K4 is energized, relay contacts CR4 in lines 3 and 16 close and contacts CR4 in line 5 open. Contacts CR4 in line 3 are in parallel with switch PT-3 and provide a holding current for relay coil K4, allowing switch PT-3 to open. Contacts CR4 in line 5 are in series with Program Timer PT; and when these contacts open, the program timer is de-energized.
  • Contacts CR4 in line 16 are in series with compressor motor 50; and when these contacts close, the compressor motor is activated.
  • a motor starter (not shown) may be activated in response to the energization of coil K4 and employed to facilitate starting compressor motor 50.
  • compressor motor 50 is started, refrigeration machine 10 is put into operation, and Program Timer PT is de-energized.
  • safety switch Saf.S is open when switch PT-3 closes, then coil K4 is not energized and motor 50 is not started until the safety switch closes.
  • safety switch Saf.S. opens while motor 50 is operating, coil K4 is de-energized, contacts CR4 in line 16 open, and motor 50 is deactivated until the safety switch recloses.
  • first stage 16 of compressor 18 discharges hot, compressed refrigerant vapor into primary condenser 20 via line 52.
  • Refrigerant passes through primary condenser 20, rejects heat to an external heat exchange medium such as water circulating through heat exchange coil 54 located therein and condenses.
  • the condensed refrigerant flows through primary expansion means 22, reducing the temperature and pressure of the refrigerant.
  • the expanded refrigerant enters and passes through evaporator 24 and absorbs heat from an external heat transfer medium such as water passing through heat exchange coil 56 which is positioned within the evaporator.
  • the heat transfer medium is thus cooled and the refrigerant is evaporated.
  • the cooled heat transfer medium may then be used to satisfy a cooling load, and the evaporated refrigerant is drawn from evaporator 24 in line 58 leading back to first stage 16 of compressor 18.
  • first stage 16 and primary expansion means 22 separate cooling circuit 12 into high pressure side 60 and low pressure side 62, and booster inlet line 64 is provided for transmitting refrigerant vapor from the high pressure side of the cooling circuit to second stage 26 of compressor 18.
  • inlet line 64 is connected to condenser 20 and transmits a portion of the refrigerant vapor passing through the condenser to second stage 26 of compressor 18.
  • line 64 could be directly connected to discharge line 52.
  • Second stage 26 of compressor 18 further compresses the vapor transmitted thereto, further raising the temperature and pressure of the vapor. This further compressed vapor is discharged into line 66, leading to heat reclaiming condenser 30.
  • the refirgerant vapor enters and passes through heat reclaiming condenser 30 in heat transfer relation with a heat transfer fluid such as water passing through heat exchange coil 70 disposed within the heat reclaiming condenser. Heat is transferred from the refrigerant vapor to the fluid passing through coil 70, heating the fluid and condensing the refrigerant. The heated heat transfer fluid may then be employed to satisfy a heating load.
  • Refrigerant condensed in heat reclaiming condenser 30 passes therefrom back to cooling circuit 12 via return means including auxiliary expansion means 32 and refrigerant lines 72 and 74.
  • condensed refrigerant from heat reclaiming condenser 30 flows through orifice 32 via line 72, reducing the pressure and temperature of the refrigerant.
  • Refrigerant line 74 transmits refrigerant from orifice 32 back to cooling circuit 12, specifically primary expansion device 22 thereof, for further use in the cooling circuit.
  • Guide vanes 34 may be controlled in response to any one or more of a number of factors indicative of changes in the load on cooling circuit 12 to vary the capacity thereof. For example, guide vanes 34 may be controlled in response to the temperature of the fluid leaving heat exchanger 56 of evaporator 24. As the cooling load increases or decreases, guide vanes 34 move between their minimum and maximum flow positions to increase or decrease, respectively, the refrigerant flow rate through cooling circuit 12. Similarly, valve 38 may be governed in response to any one or more of a number of factors indicating changes in the load on heating circuit 14 to vary the capacity thereof. For example, valve 38 may be controlled in response to the temperature of the fluid discharged from heat exchanger 70 of heat reclaiming condenser 30.
  • switches 76 and 78 may be mechanical devices, or these switches may be solid state electronic elements.
  • valve 38 As the heating load on machine 10 decreases, the refrigerant flow rate through heating circuit 14 also decreases. Moreover, as the flow rate through booster compressor 26 decreases, the temperature of the vapor discharged therefrom tends to increase. As discussed above, if the refrigerant flow rate through booster compressor 26 is very low, the temperature of the vapor discharged therefrom may approach a level where the refrigerant may chemically breakdown into components that may damage the structure of machine 10. In light of this, machine 10 is uniquely designed to terminate the heating action of heating circuit 14, thus reducing temperatures therein, when the temperature of the vapor discharged from booster compressor 26 exceeds a preset value.
  • the above-mentioned heat terminating means includes thermostatic switch Th.S. and vent line 42.
  • Thermostatic switch Th.S. is positioned in heat transfer relation with refrigerant vapor discharged from second stage 26 of compressor 18, for example the thermostatic switch may be secured to line 66.
  • Thermostatic switch Th.S. is electrically located in line 9 of Figure 2, in series with relay coil K1 and, as previously mentioned, the thermostatic switch is normally closed.
  • thermostatic switch Th.S. opens.
  • relay coil K1 When this occurs, referring to Figure 2, relay coil K1 is de-energized, opening contacts CR1 in line 4 and closing contacts CR1 in line 10 which are associated with Timer Relay KT1 in line 11.
  • Timer Relay KT1 is a delay off, solid state timer that is electronically locked into an energized state when contacts CR1 in line 10 close, and the timer relay remains energized so long as contacts CR1 in line 10 remains closed and for a predetermined length of time after these contacts open.
  • timer relay KT1 in line 11 When timer relay KT1 in line 11 is activated, contacts CRT1 in line 12 open, deactivating relay coil K2. This, in turn, opens contacts CR2 in line 13 and closes contacts CR2 in lines 8 and 14.
  • vent line valve 44 opens vent line valve 44, allowing fluid flow through vent line 42. Heating circuit 14 is thus brought into communication with low pressure side 62 of cooling circuit 12. Specifically, a first end of vent line 42 is connected to line 72 and a second end of the vent line is connected to evaporator 24. Alternatively, as will be apparent to those skilled in the art, the first end of vent line 42 could be connected to heat reclaiming condenser 30 or to discharge line 66, and the second end of the vent line could be connected to inlet line 58.
  • thermostatic switch Th.S. closes, re-energizing coil K1 and, thus, opening contacts CR1 in line 10 of Figure 2.
  • Timer relay KT1 in line 11 remains energized until it runs for a preset length of time. This time delay enables the heating load which will be placed on circuit 14 when the circuit is reactivated to increase, insuring at least moderate vapor flow through the heating circuit when heating is reactivated.
  • timer KT1 automatically deactives, contacts CRT1 in line 12 close, and coil K2 is energized.
  • Vent line valve 44 is thus closed via action of solenoid 46 and contacts CR2 in line 8, and control of motor 40 is returned to switches 76 and 78 due to the closing of contacts CR2 in line 13 and the opening of contacts CR2 in line 14.
  • the most desired, complete response of machine 10 to the vapor temperature in heating circuit 14 approaching excessive levels depends upon operating conditions of cooling circuit 12. More particularly, if the load on cooling circuit 12 is relatively high when action of heating circuit 14 is terminated because vapor temperatures therein are approaching axcessive values, then preferably operation of the cooling circuit is continued unaffected by the action of the heating circuit. In contrast, if the load on cooling circuit 12 is relatively low as action of heating circuit 14 is terminated, then preferably operation of cooling circuit 12. is simultaneously terminated.
  • cooling circuit 12 It is desirable to terminate action of cooling circuit 12 under these latter conditions because otherwise all of the heat rejected by the refrigerant passing through the cooling circuit would be rejected via primary condenser 20, and it is preferred to temporarily terminate action of the cooling circuit until a later time when this heat can be recovered via heat reclaiming condenser 30.
  • sensing means for sensing the cooling load or demand on machine 10.
  • the sensing means includes guide vane switch G.V.S. for sensing the position of guide vanes 34.
  • Guide vane switch G.V.S. is open when the load on cooling circuit 12 is below a predetermined value, closes when guide vanes 34 reach a position indicating that the load on circuit 12 equals the predetermined value, and remains closed as long as the load on the cooling circuit is at or above the predetermined value.
  • guide vane switch G.V.S. is electrically located in line 3 thereof. If guide vane switch G.V.S. is closed when thermostatic switch Th.S.
  • cooling circuit 12 continues to operate because, despite the opening of contacts CR1 in line 4, current is still conducted through relay coil K4 via guide vane switch G.V.S. in line 3. Since coil K4 remains energized, contacts CR4 in line 16 remain closed and compressor motor 50 remains connected to the source of electrical energy. Thus, machine 10 changes from a "heating and cooling" mode of operation to a "cooling only” mode of operation.
  • Timer KT3 maintains compressor motor 50 and refrigeration machine 10 inactive for a predetermined length of time to prevent motor 50 and machine 10 from cycling on and off at an undesirably high frequency. Delaying the restart of machine 10 also increases the heating and cooling loads placed thereon when the machine is restarted. In this manner, machine 10 and specifically motor 50 will operate at a higher, more efficient capacity when restarted.
  • timer KT3 deactives contacts CRT3 in line 5 close, energizing Program Timer PT, and the program timer continues with its control sequence. Specifically, Program Timer PT moves switch PT-1 to the position shown in full line in Figure 2.
  • timer relay KT3 in line 7 is an "interval timer" and, once it deactivates, must be disconnected from the source of electrical energy before it can be reactivated. Thus, timer KT3 does not immediately restart after automatically deactivating despite the fact that at the time the timer deactivates, switch PT-2 is in the position shown in full line and the timer is connected to the electrical energy source.
  • switch PT-4 moves in the open position to insure that compressor motor 50 is not restarted unless safety switch Saf.S.
  • switch PT-3 is closed, and then switch PT-3 is closed.
  • the dwell time for timer KT3 is greater than the swell time for timer KT1 in line 11.
  • switch PT-3 is closed as a consequence of timer KT3 deactivating, contacts CR1 in line 4 are closed, and the closing of switch PT-3 starts compressor motor 50 as explained above.
  • valves 38 and 44 may be positioned by means other than electric motor 40 and electric solenoid 46 respectively.
  • hydraulic or pneumatic devices may be employed to position valves 38 and 44.
  • the temperature of vapor discharged from booster compressor 26 may be sensed by means other than a thermostatic switch, for example a thermo-sensitive bulb may be used.
  • the heating action of circuit 14 may be terminated in a number of ways other than as specifically described herein. For example, in a machine employing separate drive means to drive primary and booster compressors 16 and 26, the heating action of circuit 14 may be terminated by deactivating the booster compressor drive means.
  • Machine 10 effectively terminates heating action of heating circuit 14 when the temperature of vapor therein approaches an undesirable value, preventing this vapor temperature from actually reaching undesirable values.
  • second stage 26 of compressor 18 since second stage 26 of compressor 18 is directly coupled to first stage 16 thereof, second stage 26 operates whenever first stage 16 operates irrespective of whether heating action of circuit 14 is terminated. If refrigerant flow through second stage 26 wwere to be eliminated when heating action of heating circuit 14 has been extinguished, undesirably high temperatures might be reached in the heating circuit and in second stage 26 of compressor 18.
  • Second stage 26 would use a substantial amount of power in further compressing the vapor passing therethrough while producing no useful work.
  • the minimum flow of vapor were supplied to second stage 26 from a relatively low pressure source, the required weight flow of vapor could be reduced producing a concomitant reduction in the wasted power consumption. Further reductions in the power consumption of second stage 26 may be achieved when the heating action of circuit 14 is terminated by decreasing the pressure at the discharge side of this stage, minimizing the lift requirements thereof.
  • FIG. 3 there is illustrated a modified refrigeration machine 10 which, in accordance with a second aspect of the present invention, is uniquely designed to terminate heating action of circuit 14 when the heating load thereon falls below a predetermined level and, simultaneously, lower the pressure differential across circuit 14 and supply vapor to booster compressor 26 thereof at a much lower than normal supply pressure.
  • valves 38 and 44 are controlled by positioning means 82 and 84 respectively, which preferably are electrically actuated solenoids connected to lines L-7 and L-8.
  • Temperature sensor 96 senses the temperature of the heat transfer fluid leaving heat reclaiming condenser 30, and when the sensed temperature falls below a predetermined value, indicating that the load on heating circuit 14 has fallen below a preset level, the sensor generates a signal. This signal is transmitted to switch 80 via line 98, closing the switch. This, in turn, actuates positioning means 82 and 84 to close substantially valve 38 and to open valve 44 respectively.
  • valve 38 When valve 38 is placed in its substantially closed position, it will permit a minimum flow of refrigerant through conduit 64 to the suction side of booster compressor 26. With valve 44 open, a by-pass flow path is established through line 42 about restriction means 22 and 32.
  • Heat reclaiming condenser 30 is thus directly placed in communication with evaporator 24 whereby the pressure within condenser 30 is lowered to substantially that of evaporator 24.
  • the pressure which booster compressor 26 must exceed to generate flow is thereby substantially reduced.
  • the pressure of the vapor delivered through line 64 to the suction side of booster compressor 26 is substantially reduced, thereby minimizing the required weight flow of refrigerant for maintaining the temperature of the booster compressor below the preferred maximum level.
  • the discharge side of the booster compressor 26 at substantially the pressure of condenser 30 and significantly reducing the pressure of the refrigerant vapor flowing through the suction side of the booster compressor, the lift requirements thereof are minimized while the weight flow of the refrigerant required to maintain the temperature of the booster compressor below the desired operating point is reduced, substantially decreasing the consumption of wasted power when the heating load on the refrigeration system has been terminated.
  • the pressure differential across booster compressor 26 has been substantially equalized, with the pressure being reduced to approximately the lowest level within the refrigeration machine 10.
  • valve 38 may be entirely closed upon the opening of valve 44.
  • a line 86 having a check valve 88 will communicate line 58 with line 64 downstream of valve 38.
  • check valve 88 When valve 38 entirely closes, the pressure in the line downstream thereof will be substantially reduced thereby causing check valve 88 to open to permit refrigerant flow from line 58 to the inlet side of booster compressor 26.
  • booster compressor 26 With the opening of check valve 88, booster compressor 26 will receive the necessary refrigerant flow for maintaining the booster compressor at a safe opening temperature.
  • the flow of refrigerant through line 86 at substantially the suction pressure of first compressor stage 16 will provide the requisite low pressure refrigerant vapor to the inlet of booster compressor 26. Further, as the temperature of the vapor delivered through conduit 86 is at generally the lowest level within refrigeration machine 10, the operating temperature of booster compressor 26 will be significantly reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Other Air-Conditioning Systems (AREA)

Claims (12)

1. Vorrichtung (10) zum Befriedigen eines Wärme- und eines Kältebedarfs mit einem zum Befriedigen des Kältebedarfs dienenden Kühlkreislauf (12), der einen Verdichter (16) besitzt, der den Kühlkreislauf (12) in eine Hochdruckseite (60) und eine Niederdruckseite (62) teilt, ferner mit einem zum Befriedigen des Wärmebedarfs dienenden Heizkreislauf (14), der einen Zusatzverdichter (26) enthält, der dazu dient Kältemitteldampf von der Hochdruckseite (60) des Kühlkreislaufes (12) abzuziehen und zu verdichten, ferner einen Wärmerückgewinnungskondensator und eine Rückleitung (72, 74, 32) zum Zurückführen von Kältemittel von dem Heizkreislauf (14) zu der Hochdruckseite des Kühlkreislaufes (12), gekennzeichnet durch einen Temperatursensor (Th.S.) zum Messen der Temperatur des von dem Zusatzverdichter (26) abgegebenen Dampfes, ein erstes Ventil (38) zur Steuerung des dem Zusatzverdichter (26) zugeführten Dampfstroms, ein erstes Stellglied (40), das unter Steuerung durch den Temperatursensor (Th.S.) das erste Ventil (38) derart steuert, daß der Dampfstrom in dem Heizkreislauf (14) auf ein Minimum herabgesetzt und dadurch die Heizwirkung unterbrochen wird, wenn die Temperatur des von dem Zusatzverdichter (26) abgegebenen Dampfes eine voreingestellte Temperatur überschreitet, eine Druckentlastungsleitung (42) zum Zuführen von Kältemittel von dem Heizkreislauf (14) zu der Niederdruckseite (62) des Kühlkreislaufs (12), ein zweites Ventil (44) zur Steuerung des Kältemittelstroms in der Druckentlastungsleitung (42) und ein zweites Stellglied (46), das unter Steuerung durch den Temperatursensor (Th.S.) das zweite Ventil (44) öffnet, wenn die Temperatur des von dem Zusatzverdichter (26) abgegebenen Dampes die voreingestellte Temperatur überschreitet.
2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß das erste Stellglied (40) ein umsteuerbarer Elektromotor zum Verstellen der ersten Ventils (38) zwischen einer Mindeststrom- und einer Höchststromstellung ist und daß der Temperatursensor (Th.S) einen Thermostatschalter enthält, der dazu dient, den umsteuerbaren Elektromotor derart an eine Quelle elektrischer Energie anzuschließen, daß er das erste Ventil (38) zu der Mindeststromstellung hin bewegt, wenn die Temperatur des von dem Zusatzverdichter (26) abgegebenen Dampfes die voreingestellte Temperatur überschreitet.
3. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß ein Sensor (G.V.S.) zum Messen des von dem Kühlkreislauf (12) zu befriedigenden Bedarfs vorgesehen ist und daß ein Ausschaltglied (CR4) die Kühlwirkung des Kühlkreislaufes (12) beendet, wenn der von dem Sensor (G.V.S.) gemessene Kältebedarf niedriger ist als ein vorherbestimmter Wert und wenn die von dem Temperatursensor (Th.S.) gemessene Temperatur des von dem Zusatzverdichter (26) abgegebenen Dampfes höher ist als die voreingestellte Temperatur.
4. Vorrichtung nach Anspruch 3, dadurch gekennzeichnet, daß für den Verdichter (16) das Kühlkreislaufes (12) ein Verdichterantrieb (50) mit einem Elektromotor vorgesehen ist, daß der Temperatursensor (Th.S.) einen Thermostatschalter besitzt, daß der Kältebedarfssensor (G.V.S.) einen Endpunktschalter zum Erfassen der Stellung einer Leitschaufel (34) des Verdichters (16) des Kühlkreislaufes (12) besitzt und daß das Ausschaltglied (CR4) einen elektrischen Kontakt besitzt, der mit dem Thermostatschalter (Th.S.)m dem Endpunktschalter (G.V.S.) und dem Elektromotor (50) elektrisch verbunden ist und dazu dient, den Motor (50) von einer Quelle elektrischer Energie (L-2, L-2) abzuschalten, wenn die Temperatur des von dem Zusatzverdichter (26) abgegebenen Dampfes höher ist als die voreingestellte Temperatur und der von dem Kühlkreislauf (12) zu befriedigende Kältebedarf niedriger ist als der vorherbestimmte Wert.
5. Vorrichtung (10) zum Befriedigen eines Wärmeund eines Kältebedarfs mit einem zum Befriedigen des Kältebedarfs dienenden Kühlkreislauf (12), der einen Verdichter (16) besitzt, der den Kühlkreislauf (12) in eine Hochdruckseite (60) und eine Niederdruckseite (62) teilt, ferner mit einem zum Befriedigen des Wärmebedarfs dienenden Heizkreislauf (14), der einen Zusatzverdichter (26) enthält, der dazu dient, Kältemitteldampf von der Hochdruckseite (60) des Kühlkreislaufes (12) abzuziehen und zu verdichten, ferner einen Wärmerückgewinnungskondensator und eine Rückleitung (74, 32) zum Zurückführen von Kältemittel von dem Heizkreislauf (14) zu der Hochdruckseite des Kühlkreislaufes (12), gekennzeichnet durch einen Temperatursensor (96) zum Messen der Temperatur eines den Wärmerückgewinnungskondensator (30) des Heizkreislaufes (14) verlassenden Wärmeträgers, ein erstes Ventil (38) zur Steuerung des dem Zusatzverdichter (26) zugeführten Dampfstroms, ein erstes Stellglied (82), das unter Steuerung durch den Temperatursensor (96) das erste Ventil (38) derart steuert, daß ein minimaler Kältemittelstrom in dem Heizkreislauf (14) aufrechterhalten wird, wenn der Wärmebedarf unter einen vorherbestimmten Wert sinkt, eine Druckentlastungsleitungs (42) zum Zuführen von Kältemittel von dem Heizkreislauf (14) zu der Niederdruckseite (62) des Kühlkreislaufs (12), ein zweites Ventil (44) zur Steuerung des Kältemittelstroms in der Druckentlastungsleitung (42) und ein zweites Stellglied (84), das unter Steuerung durch den Temperatursensor (96) das zweite Ventil (44) gleichzeitig damit öffnet, um den Druck in dem Heizkreislauf (14) im wesentlichen auszugleichen, wenn der von dem Heizkreislauf (14) zu befriedigende Wärmebedarf unter einen vorherbestimmten Wert sinkt.
6. Vorrichtung (10) zum Befriedigen eines Wärmeund eines Kältebedarfs mit einem zum Befriedigen des Kältebedarfs dienenden Kühlkreislauf (12), der einen Verdichter (16) besitzt, der den Kühlkreislauf (12) in eine Hochdruckseite (60) und eine Niederdruckseite (62) teilt, ferner mit einem zum Befriedigen des Wärmebedarfs dienenden Heizkreislauf (14), der einen Zusatzverdichter (26) enthält, der dazu dient, Kältemitteldampf von der Hochdruckseite (60) des Kühlkreislaufes (12) abzuziehen und zu verdichten, ferner einen Wärmerückgewinnungskondensator und eine Rückleitung (74, 32) zum Zurückführen von Kältemittel von dem Heizkreislauf (14) zu der Hochdruckseite des Kühlkreislaufes (12), gekennzeichnet durch einen Temperatursensor (96) zum Messen der Temperatur eines den Wärmerückgewinnungskondensator (30) des Heizkreislaufes (14) verlassenden Wärmeträgers, ein erstes Ventil (38) zur Steuerung des dem Zusatzverdichter (26) zugeführten Dampfstroms, eine Druckentlastungsleitung (42) zum Zuführen von Kältemittel von dem Heizkreislauf (14) zu der Niederdruckseite (62) des Kühlkreislaufs (12), ein zweites Ventil (44) zur Steuerung des Kältemittelstroms in der Druckentlastungsleitung (42), ein Stellglied (84), das unter Steuerung durch den Temperatursensor (96) das zweite Ventil (44) öffnet, um den Druck in dem Heizkreislauf (14) im wesentlichen auszugleichen, wenn der von dem Heizkreislauf (14) zu befriedigende Wärmebedarf unter einen vorherbestimmten Wert sinkt, ein weiteres Stellglied (82), das ebenfalls unter Steuerung durch den Temperatursensor (96) das erste Ventil (38) schließt, wenn das zweite Ventil (44) geöffnet wird, weil der von dem Heizkreislauf (14) zu befriedigende Wärmebedarf unter den vorherbestimmten Wert sinkt, un einen Kältemittelstromregler (86, 88), der stromabwärts von dem ersten Ventil (38) zwischen der Niederdruckseite (62) des Kühlkreislaufes (12) und dem Zusatzverdichter (26) angeordnet ist und dazu dient, einen gewählten Wert des dem Zusatzverdichter (26) zugeführten Kältemittelstroms aufrechtzuerhalten, wenn das erste Ventil (38) geschlossen ist, weil der von dem Heizkreislauf (14) zu befriedigende Wärmebedarf unter den vorherbestimmten Wert sinkt.
7. Verfahren zur Steuerung einer mit Nachverdichtung arbeitenden, wärmerückgewinnenden Kältemaschine (10) mit einem Kühlkreislauf (12), der einen Verdrichter (16) enthält, der den Kühlkreislauf (12) in eine Niederdruckseite (62) und eine Hochdruckseite (60) zum Befriedigen eines Kältebedarfs teilt, und mit einem Heizkreislauf (14) zum Befriedigen eines Wärmebedarfs, wobei in dem Verfahren Kältemitteldampf von der Hochdruckseite (60) des Kühlkreislaufes (12) durch den Heizkreislauf (14) geführt wird, durch den Heizkreislauf (14) tretender Kältemitteldampf verdichtet und Wärme von den durch den Heizkreislauf (14) tretenden Kältemittel auf einen ersten Wärmeträger zum Befriedigen des Wärmebedarfs übertragen wird, dadurch gekennzeichnet, daß der durch den Heizkreislauf (14) tretende Dampfstrom auf eine Minimum herabgesetzt, dadurch die Heizwirkung unterbrochen wird und Dampf von dem Heizkreislauf (14) zu der Niederdruckseite (62) des Kühlkreislaufes (12) abgezogen und dadurch der Druck in dem Heizkreislauf (14) herabgesetzt wird, wenn die Temperatur des durch den Heizkreislauf (14) tretenden Kältemittels eine vorherbestimmte Temperatur überschreitet.
8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, daß der durch den Heizkreislauf (14) tretende Dampfstrom vergrößert wird, wenn die Temperatur des hindurchtretenden Kältemittels unter die voreingestellte Temperatur sinkt und daß diese Maßnahme der Vergrößerung des Stroms für einen vorherbestimmten Zeitraum verzögert wird.
9. Verfahren nach Anspruch 7, dadurch gekennzeichnet, daß durch den Kühlkreislauf (12) tretender Kältemitteldampf verdichtet und das Verdichten des durch den Heizkreislauf (14) und den Kühlkreislauf (12) tretenden Kältemitteldampfes beendet wird, wenn sowohl die Temperatur des durch den Heizkreislauf (14) tretenden Kältemittels die voreingestellte Temperatur überschreitet als auch die Kühlleistung des Kühlkreislaufes (12) niedriger ist als ein vorherbestimmter Wert.
10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, daß das Verdichten des durch den Heizkreislauf (14) und den Kühlkreislauf (12) tretenden Kältemitteldampfes wiederaufgenommen wird, wenn nach dem Unterbrechen dieser Verdichtungsmaßnahmen eine vorherbestimmte Zeit verstrichen ist.
11. Verfahren zur Steuerung einer mit Nachverdichtung arbeitenden, wärmerückgewinnenden Kältemaschine (10) mit einem Kühlkreislauf (12), der einen Verdichter (16) enthält, der den kühlkreislauf (12) in eine Niederdruckseite (62) und eine Hochdruckseite (60) zum Befriedigen eines Kältebedarfs teilt, und mit einem Heizkreislauf (14) zum Befriedigen eines Wärmebedarfs, wobei in dem Verfahren Kältemitteldampf von der Hochdruckseite (60) des Kühlkreislaufes (12) durch den Heizkreislauf (14) geführt wird, durch den Heizkreislauf (14) tretender Kältemitteldampf verdichtet und Wärme von dem durch den Heizkreislauf (14) tretenden Kältemittel auf einen ersten Wärmeträger zum Befriedigen des Wärmebedarfs übertragen wird, dadurch gekennzeichnet, daß die Heizleistung des Heizkreislaufes (14) überwacht wird, daß ein Mindeststrom des Kältemittels durch den Heizkreislauf (14) geführt wird, wenn die Heizleistung unter einen vorherbestimmten Wert sinkt, und daß eine Leitungsverbindung zwischen dem Heizkreislauf (14) und der Niederdruckseite (62) des Kühlkreislaufes (12) hergestellt und dadurch der Druck zwischen dem Heizkreislauf (14) und der Niederdruckseite (62) des Kühlkreislaufes (12) im wesentlichen ausgeglichen und gleichzeitig der Druck des durch den Heizkreislauf (14) tretenden Kältemitteldampfes vermindert wird, wenn die Heizleistung des Heizkreislaufes (14) unter den vorherbestimmten Wert sinkt.
12. Steuerungssystem für eine mit Nachverdichtung arbeitende, wärmerückgewinnende Kältemaschine (10) mit einem Kühlkreislauf (12) zum Befriedigen eines Kältebedarfs und einem Heizkreislauf (14) zum Befriedigen eines Wärmebedarfs, wobei der Kühlkreislauf (12) einen Primärverdichter (16) besitzt, der dazu dient, Dampf von einer Niederdruckseite (62) des Kühlkreislaufes (12) abzuziehen, zu verdichten und an eine Hochdruckseite (60) des Kühlkreislaufes (12) abzugeben, und der Heizkreislauf (14) einen Zusatzverdichter (26) besitzt, der Dampf von der Hochdruckseite (60) des Kühlkreislaufes (12) abzieht und nachverdichtet, ferner einen Wärmerückgewinnungskondensator und eine Rückleitung (32, 72, 74) zum Zurückführen von Kältemottel von dem Heizkreislauf (14) zu der Hochdruckseite des Kühlkreislaufes (12), wobei das Steuerungssystem gekennzeichnet ist durch ein erstes Ventil (38) zur Steuerung des dem Zusatzverdichter (26) zugeführten Kältemittelstroms, ein erstes Stellglied (40) zum Einstellen des ersten Ventils (38), einen Antrieb (50) für den Primärverdichter (16), eine Druckentlastungsleitung (42) zum Abziehen von Kältemittel von dem Heizkreislauf (14) zu der Niederdruckseite (62) des Kühlkreislaufes (12), ein zweites Ventil (44) zur Steuerung des durch die Druckentlastungsleitung tretenden Kältemittelstroms, ein zweites Stellglied (46) zum Öffnen des Ventils (44) in der Druckentlastungsleitung, einen Temperatursensor (Th.S.) zum Messen der Temperatur des von dem Zusatzverdichter (26) abgegebenen Dampfes, einen Kältebedarfssensor (G.V.S.) zum Messen des von dem Kühlkreislauf (12) zu befriedigenden Kältebedarfs, einen Ventilsteuerungsregler (K1, K2, CR1, CR2), der das erste Stellglied (40) und das zweite Stellglied (46) mit dem Temperatursensor (Th.S.) verbindet und dazu dient, diese Stellglieder (40, 46) derart zu betätigen, daß das erste Ventil (38) im Sinne einer Verminderung des durch den Zusatzverdichter (26) tretenden Dampfstroms betätigt und das zweite Ventil (44) geöffnet wird, wenn die Temperatur des von dem Zusatzverdichter (26) abgegebenen Dampfes hüher ist als eine voreingestellte Temperatur, und einen Antriebssteuerungsregler (K1, K4, CR1, CR4), der den Temperatursensor (Th.S.) und den Kältebedarssensor (G.V.S.) mit dem Antrieb (50) verbindet und diesen ausschaltet, wenn die Temperatur des von dem Zusatzverdichter (26) abgegebenen Dampfes höher ist als die voreingestellte Temperatur und der Kältebedarf niedriger ist als ein vorherbestimmter Wert.
EP80106074A 1979-10-09 1980-10-07 Verfahren und Apparat zur Erfüllung von Heiz- und Kühlforderungen und demgemässe Steuerung Expired EP0027243B1 (de)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US82837 1979-10-09
US06/082,837 US4262488A (en) 1979-10-09 1979-10-09 System and method for controlling the discharge temperature of a high pressure stage of a multi-stage centrifugal compression refrigeration unit
US06/087,290 US4309876A (en) 1979-10-22 1979-10-22 Method and apparatus for satisfying heating and cooling demands and control therefor
US87290 2002-02-28

Publications (2)

Publication Number Publication Date
EP0027243A1 EP0027243A1 (de) 1981-04-22
EP0027243B1 true EP0027243B1 (de) 1984-12-19

Family

ID=26767913

Family Applications (1)

Application Number Title Priority Date Filing Date
EP80106074A Expired EP0027243B1 (de) 1979-10-09 1980-10-07 Verfahren und Apparat zur Erfüllung von Heiz- und Kühlforderungen und demgemässe Steuerung

Country Status (10)

Country Link
EP (1) EP0027243B1 (de)
KR (1) KR850001189B1 (de)
AR (2) AR230337A1 (de)
AU (1) AU534831B2 (de)
BR (1) BR8006410A (de)
CA (1) CA1129219A (de)
DE (1) DE3069841D1 (de)
ES (2) ES8202630A1 (de)
MX (1) MX153274A (de)
NZ (1) NZ195117A (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6170263B1 (en) * 1999-05-13 2001-01-09 General Electric Co. Method and apparatus for converting low grade heat to cooling load in an integrated gasification system

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2888809A (en) * 1955-01-27 1959-06-02 Carrier Corp Gas compression apparatus
US3011322A (en) * 1958-08-12 1961-12-05 Dresser Operations Inc Stabilization of refrigeration centrifugal compressor
US3522711A (en) * 1968-07-16 1970-08-04 American Standard Inc Capacity controller for liquid chiller
US3665724A (en) * 1970-07-13 1972-05-30 Carrier Corp Heating and cooling refrigeration apparatus
US3635041A (en) * 1970-07-13 1972-01-18 Carrier Corp Heating and cooling refrigeration apparatus
US3700914A (en) * 1970-11-20 1972-10-24 Tappan Co The Control apparatus for air conditioning and like systems
JPS5223402B2 (de) * 1973-10-12 1977-06-24
GB2003264B (en) * 1977-08-29 1982-10-06 Carrier Corp Dual economized refrigeration system
US4201061A (en) * 1978-03-22 1980-05-06 Carrier Corporation Automatic chilled water setpoint temperature control

Also Published As

Publication number Publication date
KR830004578A (ko) 1983-07-13
EP0027243A1 (de) 1981-04-22
ES495715A0 (es) 1982-02-01
AU6307380A (en) 1981-04-16
CA1129219A (en) 1982-08-10
AR230881A1 (es) 1984-07-31
AR230337A1 (es) 1984-03-01
MX153274A (es) 1986-09-08
DE3069841D1 (en) 1985-01-31
ES8300406A1 (es) 1982-10-16
NZ195117A (en) 1984-05-31
KR850001189B1 (ko) 1985-08-19
ES505488A0 (es) 1982-10-16
ES8202630A1 (es) 1982-02-01
AU534831B2 (en) 1984-02-16
BR8006410A (pt) 1981-05-12

Similar Documents

Publication Publication Date Title
US4538422A (en) Method and control system for limiting compressor capacity in a refrigeration system upon a recycle start
US4535607A (en) Method and control system for limiting the load placed on a refrigeration system upon a recycle start
US4646530A (en) Automatic anti-surge control for dual centrifugal compressor system
US4514989A (en) Method and control system for protecting an electric motor driven compressor in a refrigeration system
KR900001895B1 (ko) 냉동시스템의 작동 제어시스템과 그 제어방법
US3170304A (en) Refrigeration system control
US3695054A (en) Control circuit for an air conditioning system
KR900005977B1 (ko) 냉동시스템의 작동방법 및 냉동시스템의 제어시스템
CA2048251A1 (en) Method of compressor current control for variable speed heat pumps
US3377816A (en) Compressor control arrangement
JPS60171343A (ja) 空調システム用の温度・圧力作動容量制御装置
US4309876A (en) Method and apparatus for satisfying heating and cooling demands and control therefor
EP0027243B1 (de) Verfahren und Apparat zur Erfüllung von Heiz- und Kühlforderungen und demgemässe Steuerung
US4840220A (en) Heat pump with electrically heated heat accumulator
US3273352A (en) Refrigeration system defrost control
US3289429A (en) Controls for refrigeration systems having air cooled condensers
JPS6155021B2 (de)
US3792592A (en) Cold weather starting control means for refrigerating systems
US4534181A (en) Cooling system
US3563048A (en) Automatic control for an air conditioning system
US3170305A (en) Refrigeration system defrost control
US4254631A (en) Method and apparatus for satisfying heating and cooling demands and control therefor
JP2000097479A (ja) 空気調和機
US4254632A (en) Method and apparatus for satisfying heating and cooling demands and control therefor
EP0026400B1 (de) Verfahren und Apparat zum Erfüllen des Wärme- und Kältebedarfs

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): DE FR GB IT

17P Request for examination filed

Effective date: 19810619

ITF It: translation for a ep patent filed

Owner name: ING. C. GREGORJ S.P.A.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): DE FR GB IT

REF Corresponds to:

Ref document number: 3069841

Country of ref document: DE

Date of ref document: 19850131

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19910927

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19911007

Year of fee payment: 12

ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19911031

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19921007

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19921007

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19930630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19930701

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST