EP0025980B1 - A static monolithic cylindrical honeycomb structure with large contact surface - Google Patents

A static monolithic cylindrical honeycomb structure with large contact surface Download PDF

Info

Publication number
EP0025980B1
EP0025980B1 EP80105595A EP80105595A EP0025980B1 EP 0025980 B1 EP0025980 B1 EP 0025980B1 EP 80105595 A EP80105595 A EP 80105595A EP 80105595 A EP80105595 A EP 80105595A EP 0025980 B1 EP0025980 B1 EP 0025980B1
Authority
EP
European Patent Office
Prior art keywords
walls
structure according
channels
flux
radial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP80105595A
Other languages
German (de)
French (fr)
Other versions
EP0025980A1 (en
Inventor
Jean Weber
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ceramiques et Composites SA
Original Assignee
Ceraver SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ceraver SA filed Critical Ceraver SA
Publication of EP0025980A1 publication Critical patent/EP0025980A1/en
Application granted granted Critical
Publication of EP0025980B1 publication Critical patent/EP0025980B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/04Constructions of heat-exchange apparatus characterised by the selection of particular materials of ceramic; of concrete; of natural stone
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0012Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the apparatus having an annular form
    • F28D9/0018Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the apparatus having an annular form without any annular circulation of the heat exchange media
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0081Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by a single plate-like element ; the conduits for one heat-exchange medium being integrated in one single plate-like element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F7/00Elements not covered by group F28F1/00, F28F3/00 or F28F5/00
    • F28F7/02Blocks traversed by passages for heat-exchange media
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/16Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation
    • F28D7/163Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation with conduit assemblies having a particular shape, e.g. square or annular; with assemblies of conduits having different geometrical features; with multiple groups of conduits connected in series or parallel and arranged inside common casing
    • F28D7/1669Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation with conduit assemblies having a particular shape, e.g. square or annular; with assemblies of conduits having different geometrical features; with multiple groups of conduits connected in series or parallel and arranged inside common casing the conduit assemblies having an annular shape; the conduits being assembled around a central distribution tube
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S165/00Heat exchange
    • Y10S165/355Heat exchange having separate flow passage for two distinct fluids
    • Y10S165/395Monolithic core having flow passages for two different fluids, e.g. one- piece ceramic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S165/00Heat exchange
    • Y10S165/905Materials of manufacture

Definitions

  • the present invention relates to a static monolithic honeycomb cylindrical structure with a large contact surface of ceramic material, comprising a plurality of parallel channels defined by walls of the radial type and walls of the circular type, in which the channels form two groups each traversed by a fluid, the channels of one of the two groups being nested between the channels of the other group at an angular offset; the cross section of said structure comprising an annular zone composed of parallel channels and a central channel allowing the admission and / or the evacuation of fluids by selective communications with one or the other of the two groups of channels, said channel being closed by a watertight cap. It applies more particularly to heat exchangers at high temperature (of the order of 1200 ° C.), but is also suitable for other applications, such as gas treatment by catalysis, material exchange by diffusion at through a wall.
  • Document FR-A-2417074 discloses a cylindrical honeycomb structure of this kind.
  • the channel groups are offset radially there and the channels have an elongated section extending almost over the entire width of the annular zone in the radial direction. Therefore the extrusion nozzle for the manufacture of these structures is relatively difficult to make and fragile, its radial cores being fixed only at one of their ends. Consequently, such cylindrical structures can only be produced with a relatively large diameter.
  • the object of the present invention is to remedy this drawback, and to provide a cylindrical honeycomb structure of ceramic material which is easy to manufacture, using an extrusion nozzle of robust structure, which has a large surface area. exchange per unit of volume, and which may be of small diameter while having a large number of channels.
  • the cylindrical structure according to the invention is characterized in that at each end an end piece closes off the annular zone, and that the circular type walls of the two groups of parallel channels are inscribed in several cylinders coaxial with said structure.
  • the end of the honeycomb structure 1 according to a known technique is of rectangular section and rectangular mesh.
  • the end face 2 is selectively closed, according to an alternation of parallel rows: a first flow is admitted (arrow 3) by the face 2 in parallel channels such as 4, and is discharged by the other face (not visible) , while a second flow is admitted (arrow 5) through lateral orifices 6 in parallel channels such as 7 (the ends of which are therefore closed), and discharged laterally in the vicinity of the other face: the heat exchange takes place made by walls such as 8 separating two adjacent sets of channels.
  • a structure is obtained by extrusion, then drying and heat treatment when it is made of ceramic material, and the selective sealing of its end faces is generally carried out by dipping in a slip.
  • the channels are defined by walls 10 of radial type and walls 11 of circular type, said channels defining assemblies with essentially radiating arrangement traversed by the same flow.
  • the general organization is cylindrical, as well as for the section, the cylindrical external surface allowing a drying and a heat treatment much more uniform and offering a mechanical rigidity much higher compared to the structures with rectangular section, that as for the arrangement of the channels traversed by the same flow, whose essentially radiating arrangement, alternating according to an angular offset, is clearly illustrated.
  • the structure 9 is produced according to a hollow cylinder whose annular section, forming the useful cellular part, consists of sets of parallel channels, and whose central housing 12 is a channel allowing the admission and / or the evacuation of one of the two flows, said channel being closed in the vicinity of one of its ends (not visible here, but subsequently shown in the sections of Figures 4 and 5) to distribute the flow in the cells of said structure.
  • the structure comprises an end piece 13 making it possible to close simultaneously by its circular face 14 all the channels opening onto the annular end face, while leaving free access through an orifice 15 to the central channel 12.
  • This end piece made of any waterproof material (metallic or ceramic) will, as the case may be, be fixed by metallization of the ceramic at high temperature, or by bonding, or by brazing with glasses, depending on the operating temperature ranges.
  • the central recess in the annular arrangement, whether or not it is used for the routing of a flow, makes it possible to reduce the stresses due to dimensional variations of the structure, during its preparation and / or its use.
  • a group of channels communicates with the central channel, the end fitting simultaneously closing said channels, while the other group of channels, associated with the second flow, has lateral orifices 16 of admission and / or evacuation of the associated flow.
  • FIGS. 3A and 3B illustrate a complete structure, in the form of a cartridge, with a partition wall 17 fixed on the external surface to separate the two flows, and having respectively lateral inlet and outlet orifices d 'A flow 16A opening directly against the plane of the annular end faces, and 16B formed at a certain distance from said faces, which slightly complicates the machining in the latter case, but above all makes it possible to significantly increase the stiffness of the ends of the structure.
  • the openings are generally obtained by conventional machining of the partitions by means of grinding wheels, cutters or by any other process (ultrasound, laser, etc.); machining will preferably be carried out on the raw extruded ceramic element, while on a precooked (biscuit) or even baked element, it will be preferable to use ultrasound or diamond discs, the structure provided with its openings being able to be of any type. way subjected to cooking giving it the desired mechanical strength.
  • FIG. 4 illustrates well the paths taken by the two flows passing through the structure 9B, and shows the tight plug 18 closing the central channel 12: the lower part of the section concerns the circulation of the flow admitted by the central channel, in channels successive parallels, while the upper part concerns the circulation of the other flow which is admitted and expelled laterally by the orifices 16B.
  • the circular cutting of the orifices shows schematically a machining of the walls by a circular grinding wheel, but it goes without saying that one can choose any other type of cutting.
  • FIGS. 5A and 5B illustrate variants constituting a filter, for example for purifying the gases emitted by diesel engines, variants according to which the partitioning between the two groups of channels is such that the evacuated flow is a filtered part of the flow admitted by the central channel 12, after passing through said partitioning: a material presenting the desired porosity as a function of the particular gas to be purified will naturally be used to produce the structure;
  • FIG. 5A it is a total flow filter, in which case the structure 9C has no lateral orifice
  • FIG. 5B it is a derivative flow filter, in which case the structure 9'C has a lateral opening 16B for the derived portion.
  • FIGS. 6A to 6C represent examples of variants for the walls of the radial type and of the circular type.
  • the walls 10A are. rectilinear and inscribed in radial planes, while the walls 11A are inscribed in cylinders coaxial with said structure.
  • Figure 6B the walls 10B are rectilinear and inscribed in parallel planes two by two, while the walls 11B are rectilinear between two adjacent walls 10B, defining contours in broken line.
  • Figure 6C the walls 10C are wavy, while the walls 11C are inscribed in coaxial cylinders, but staggered at each pair of walls 10C and connecting them to the tops of the corrugations.
  • each annular end face has a radial selective obturation, obturation which can be obtained by a set of radiating annular sectors: these sectors have been shown, with parts broken away, in FIGS. 6A, 6B, 6C, with the respective references 19A, 19B, 19C. If these sectors are wide enough, we can even, as shown in FIG.
  • a cut portion 20 opening onto other channels can be provided in their wide area by the flow admitted and discharged by the annular end faces; the walls 10D are here rectilinear, parallel for the cut portion, radial for the others, while the walls 11 D are circular.
  • Figure 8 There may be provided, Figure 8, a tip 21 at each end, whose circular flange 22 bears against the periphery of the annular end faces, or more precisely sectors 19D, and whose surface defines an interior chamber opening towards the outside by a narrower orifice 23.
  • FIG. 9 illustrates yet another example where the walls 10E and 11 E define for each channel a cell profile close to the square.
  • the relative spacing between the different walls will be chosen so as to be perfectly adapted to the stresses undergone under the effect of the differential pressure of the two flows.
  • the radial type walls are arranged so as to distribute, according to the aerodynamic criteria desired.
  • the surface offered to each of the two flows in particular, the spacing between said walls will be chosen according to the flow rates and speeds of each of the flows.
  • the annular design by its rigidity of shape, makes it possible to design cartridges longer than with any other architecture of given useful section; then, the cylindrical section allows incidentally to provide a rotation of the structure around its axis during the stages of manufacture, which greatly promotes the homogeneity of drying.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)
  • Filtering Materials (AREA)

Description

La présente invention concerne une structure cylindrique alvéolaire monolithique statique à grande surface de contact en matériau céramique, comportant une pluralité de canaux parallèles définis par des parois de type radial et des parois de type circulaire, dans laquelle les canaux forment deux groupes traversés chacun par un fluide, les canaux de l'un des deux groupes étant imbriqués entre les canaux de l'autre groupe selon un décalage angulaire ; la section droite de ladite structure comportant une zone annulairq composée de canaux parallèles et un canal central permettant l'admission et/ou l'évacuation des fluides par communications sélectives avec l'un ou l'autre des deux groupes de canaux, ledit canal étant obturé par un bouchon étanche. Elle s'applique plus particulièrement aux échangeurs de chaleur à température élevée (de l'ordre de 1 200 °C), mais convient aussi à d'autres applications, telles que les traitements de gaz par catalyse, les échanges de matière par diffusion à travers une paroi.The present invention relates to a static monolithic honeycomb cylindrical structure with a large contact surface of ceramic material, comprising a plurality of parallel channels defined by walls of the radial type and walls of the circular type, in which the channels form two groups each traversed by a fluid, the channels of one of the two groups being nested between the channels of the other group at an angular offset; the cross section of said structure comprising an annular zone composed of parallel channels and a central channel allowing the admission and / or the evacuation of fluids by selective communications with one or the other of the two groups of channels, said channel being closed by a watertight cap. It applies more particularly to heat exchangers at high temperature (of the order of 1200 ° C.), but is also suitable for other applications, such as gas treatment by catalysis, material exchange by diffusion at through a wall.

On connaît par le document FR-A-2417074 une structure cylindrique alvéolaire de ce genre. Les groupes de canaux y sont décalés radialement et les canaux ont une section allongée s'étendant presque sur toute la largeur de la zone annulaire en direction radiale. Donc la buse d'extrusion pour la fabrication de ces structures est relàtivement difficile à réaliser et fragile, ses noyaux radiaux n'étant fixés qu'à l'une de leurs extrémités. On ne peut, par conséquent, fabriquer de telles structures cylindriques qu'en un diamètre relativement grand.Document FR-A-2417074 discloses a cylindrical honeycomb structure of this kind. The channel groups are offset radially there and the channels have an elongated section extending almost over the entire width of the annular zone in the radial direction. Therefore the extrusion nozzle for the manufacture of these structures is relatively difficult to make and fragile, its radial cores being fixed only at one of their ends. Consequently, such cylindrical structures can only be produced with a relatively large diameter.

La présente invention a pour but de remédier à cet inconvénient, et de procurer une structure alvéolaire cylindrique en matériau céramique qui soit de fabrication- facile, à l'aide d'une buse d'extrusion de structure robuste, qui possède une grande surface d'échange par unité de volume, et qui puisse être de faible diamètre tout en présentant un grand nombre de canaux.The object of the present invention is to remedy this drawback, and to provide a cylindrical honeycomb structure of ceramic material which is easy to manufacture, using an extrusion nozzle of robust structure, which has a large surface area. exchange per unit of volume, and which may be of small diameter while having a large number of channels.

La structure cylindrique selon l'invention est caractérisée par le fait qu'à chaque extrémité un embout obture la zone annulaire, et que les parois de type circulaire des deux groupes de canaux parallèles sont inscrites dans plusieurs cylindres coaxiaux à ladite structure.The cylindrical structure according to the invention is characterized in that at each end an end piece closes off the annular zone, and that the circular type walls of the two groups of parallel channels are inscribed in several cylinders coaxial with said structure.

Les avantages de l'invention apparaîtront à la lumière de la description qui va suivre, donnée à titre illustratif mais nullement limitatif, en référence aux figures du dessin annexé, où :

  • la figure 1 est une vue partielle en perspective, avec arrachement, illustrant un type de structure alvéolaire de section rectangulaire, conformément à une technique connue,
  • la figure 2 est une vue partielle en perspective d'une structure alvéolaire conforme à l'invention, destinée à être traversée par deux flux distincts dont l'un est admis par un canal central,
  • les figures 3A et 3B illustrent chacune une cartouche complète, comportant une structure selon la figure 2,
  • la figure 4 est une coupe schématique de la cartouche illustrée en figure 3B, illustrant les trajets empruntés par les deux flux,
  • les figures 5A et 5B sont des coupes schématiques pour des variantes à un seul flux d'entrée, et deux flux de sortie dont l'un est une partie filtrée du flux d'entrée, la structure selon l'invention constituant alors un filtre, respectivement à flux total et à flux dérivé, par exemple pour l'épuration des gaz émis par des moteurs diesels,
  • les figures 6A, 6B, 6C illustrent en vue partielle arrachée et à échelle agrandie différentes variantes de réalisation des parois de la structure selon l'invention,
  • les figures 7 et 8 illustrent, respectivement en vue partielle arrachée et en perspective, une variante conforme à l'invention de structure pour laquelle l'un des deux flux est introduit et extrait par les faces d'extrémité,
  • la figure 9 illustre un maillage à cellules proches du carré, ce maillage convenant tout particulièrement à une structure traversée par un seul flux en vue d'une grande accumulation d'énergie thermique.
The advantages of the invention will appear in the light of the description which follows, given by way of illustration but in no way limiting, with reference to the figures of the appended drawing, where:
  • FIG. 1 is a partial perspective view, with cutaway, illustrating a type of honeycomb structure of rectangular section, in accordance with a known technique,
  • FIG. 2 is a partial perspective view of a honeycomb structure according to the invention, intended to be crossed by two separate flows, one of which is admitted by a central channel,
  • FIGS. 3A and 3B each illustrate a complete cartridge, comprising a structure according to FIG. 2,
  • FIG. 4 is a diagrammatic section of the cartridge illustrated in FIG. 3B, illustrating the paths taken by the two flows,
  • FIGS. 5A and 5B are schematic sections for variants with a single input flow, and two output flows, one of which is a filtered part of the input flow, the structure according to the invention then constituting a filter, total flow and derivative flow respectively, for example for the purification of gases emitted by diesel engines,
  • FIGS. 6A, 6B, 6C illustrate in cutaway view and on an enlarged scale different alternative embodiments of the walls of the structure according to the invention,
  • FIGS. 7 and 8 illustrate, respectively in partial cutaway view and in perspective, a variant in accordance with the invention of structure for which one of the two flows is introduced and extracted by the end faces,
  • FIG. 9 illustrates a mesh with cells close to the square, this mesh being particularly suitable for a structure crossed by a single flow with a view to a large accumulation of thermal energy.

Figure 1, l'extrémité de structure alvéolaire 1 conforme à une technique connue est de section rectangulaire et à maille rectangulaire. La face d'extrémité 2 est obturée sélectivement, selon une alternance de rangées parallèles : un premier flux est admis (flèche 3) par la face 2 dans des canaux parallèles tels que 4, et est évacué par l'autre face (non visible), tandis qu'un deuxième flux est admis (flèche 5) par des orifices latéraux 6 dans des canaux parallèles tels que 7 (dont les extrémités sont donc obturées), et évacué latéralement au voisinage de l'autre face : l'échange thermique se fait par les parois telles que 8 séparant deux ensembles adjacents de canaux. Une telle structure est obtenue par extrusion, puis séchage et traitement thermique lorsqu'elle est réalisée en matière céramique, et l'obturation sélective de ses faces d'extrémité est en général réalisée par trempage dans une barbotine.Figure 1, the end of the honeycomb structure 1 according to a known technique is of rectangular section and rectangular mesh. The end face 2 is selectively closed, according to an alternation of parallel rows: a first flow is admitted (arrow 3) by the face 2 in parallel channels such as 4, and is discharged by the other face (not visible) , while a second flow is admitted (arrow 5) through lateral orifices 6 in parallel channels such as 7 (the ends of which are therefore closed), and discharged laterally in the vicinity of the other face: the heat exchange takes place made by walls such as 8 separating two adjacent sets of channels. Such a structure is obtained by extrusion, then drying and heat treatment when it is made of ceramic material, and the selective sealing of its end faces is generally carried out by dipping in a slip.

On conçoit bien, outre les difficultés de réalisation lorsque les dimensions sont faibles, que les arêtes, et il y en a douze, soient des sources d'inconvénients aussi bien quant au traitement qui est nécessairement hétérogène, que quant à la rigidité mécanique de la structure.It is well understood, in addition to the difficulties of realization when the dimensions are small, that the edges, and there are twelve of them, are sources of drawbacks as well as for the treatment which is necessarily heterogeneous, as for the mechanical rigidity of the structure.

En figure 2, dans un exemple de structure 9 conforme à l'invention, les canaux sont définis par des parois 10 de type radial et des parois 11 de type circulaire, lesdits canaux définissant des ensembles à disposition essentiellement rayonnante traversés par un même flux. Ici, l'organisation générale est cylindrique, aussi bien quant à la section, la surface extérieure cylindrique permettant un séchage et un traitement thermique beaucoup plus uniforme et offrant une rigidité mécanique très supérieure par rapport aux structures à section rectangulaire, que quant à la disposition des canaux traversés par un même flux, dont la disposition essentiellement rayonnante, en alternance selon un décalage angulaire, est clairement illustrée.In FIG. 2, in an example of a structure 9 in accordance with the invention, the channels are defined by walls 10 of radial type and walls 11 of circular type, said channels defining assemblies with essentially radiating arrangement traversed by the same flow. Here, the general organization is cylindrical, as well as for the section, the cylindrical external surface allowing a drying and a heat treatment much more uniform and offering a mechanical rigidity much higher compared to the structures with rectangular section, that as for the arrangement of the channels traversed by the same flow, whose essentially radiating arrangement, alternating according to an angular offset, is clearly illustrated.

Selon une disposition particulièrement avantageuse, la structure 9 est réalisée selon un cylindre évidé dont la section annulaire, formant la partie alvéolaire utile, est constituée d'ensembles de canaux parallèles, et dont le logement central 12 est un canal permettant l'admission et/ou l'évacuation de l'un des deux flux, ledit canal étant obturé au voisinage d'une de ses extrémités (non visible ici, mais ultérieurement représenté sur les coupes des figures 4 et 5) pour répartir le flux dans les alvéoles de ladite structure. A chaque extrémité, la structure comporte un embout 13 permettant d'obturer simultanément par sa face circulaire 14 tous les canaux débouchant sur la face annulaire d'extrémité, tout en laissant un libre accès par un orifice 15 au canal central 12. Cet embout, réalisé en toute matière étanche (métallique ou céramique) sera selon le cas fixé par métallisation de la céramique à haute température, ou par collage, ou par brasure avec des verres, selon les gammes de températures de fonctionnement.According to a particularly advantageous arrangement, the structure 9 is produced according to a hollow cylinder whose annular section, forming the useful cellular part, consists of sets of parallel channels, and whose central housing 12 is a channel allowing the admission and / or the evacuation of one of the two flows, said channel being closed in the vicinity of one of its ends (not visible here, but subsequently shown in the sections of Figures 4 and 5) to distribute the flow in the cells of said structure. At each end, the structure comprises an end piece 13 making it possible to close simultaneously by its circular face 14 all the channels opening onto the annular end face, while leaving free access through an orifice 15 to the central channel 12. This end piece, made of any waterproof material (metallic or ceramic) will, as the case may be, be fixed by metallization of the ceramic at high temperature, or by bonding, or by brazing with glasses, depending on the operating temperature ranges.

Il faut insister quelque peu sur l'utilisation d'un tel canal central, dont la communication avec un ensemble de canaux n'est pas toujours nécessaire, car cette utilisation est tout à fait remarquable : en effet, on n'avait utilisé jusqu'alors un canal central que comme passage de moyeu dans le cas de roues alvéolaires en céramique formant des échangeurs rotatifs, des régénérateurs par exemple. Or ici, le rôle du canal est infiniment plus actif, puisqu'il permet d'introduire et extraire l'un des flux, avec l'avantage non négligeable de pouvoir obturer en totalité les faces d'extrémité.It is necessary to insist somewhat on the use of such a central channel, the communication of which with a set of channels is not always necessary, because this use is quite remarkable: indeed, we had not used until then a central channel as a hub passage in the case of cellular honeycomb wheels forming rotary exchangers, regenerators for example. However here, the role of the channel is infinitely more active, since it makes it possible to introduce and extract one of the flows, with the non-negligible advantage of being able to completely seal the end faces.

En outre, l'évidement central, dans la disposition annulaire, qu'il serve ou non à l'acheminement d'un flux, permet de réduire les contraintes dues aux variations dimensionnelles de la structure, au cours de son élaboration et/ou de son utilisation.In addition, the central recess, in the annular arrangement, whether or not it is used for the routing of a flow, makes it possible to reduce the stresses due to dimensional variations of the structure, during its preparation and / or its use.

Ici donc, sur la figure 2, un groupe de canaux communique avec le canal central, l'embout d'extrémité obturant simultanément lesdits canaux, tandis que l'autre groupe de canaux, associé au deuxième flux, présente des orifices latéraux 16 d'admission et/ou d'évacuation du flux associé.Here therefore, in FIG. 2, a group of channels communicates with the central channel, the end fitting simultaneously closing said channels, while the other group of channels, associated with the second flow, has lateral orifices 16 of admission and / or evacuation of the associated flow.

Les figures 3A et 3B illustrent une structure complète, se présentant sous la forme d'une cartouche, avec une paroi de séparation 17 fixée sur la surface extérieure pour séparer les deux flux, et présentant respectivement des orifices latéraux d'entrée et de sortie d'un flux 16A débouchant directement contre le plan des faces annulaires d'extrémité, et 16B ménagés à une certaine distance desdites faces, ce qui complique un peu l'usinage dans ce dernier cas, mais permet surtout d'accroître notablement la rigidité des extrémités de la structure. Les ouvertures sont d'une façon générale obtenues par usinage classique des cloisons au moyen de meules, fraises ou par tout autre procédé (ultra-sons, laser, etc...) ; l'usinage sera de préférence pratiqué sur l'élément céramique extrudé cru, tandis que sur un élément précuit (biscuit) ou même cuit, on préférera utiliser des ultra-sons ou des disques diamantés, la structure munie de ses ouvertures pouvant être de toute façon soumise à une cuisson lui conférant la résistance mécanique désirée.FIGS. 3A and 3B illustrate a complete structure, in the form of a cartridge, with a partition wall 17 fixed on the external surface to separate the two flows, and having respectively lateral inlet and outlet orifices d 'A flow 16A opening directly against the plane of the annular end faces, and 16B formed at a certain distance from said faces, which slightly complicates the machining in the latter case, but above all makes it possible to significantly increase the stiffness of the ends of the structure. The openings are generally obtained by conventional machining of the partitions by means of grinding wheels, cutters or by any other process (ultrasound, laser, etc.); machining will preferably be carried out on the raw extruded ceramic element, while on a precooked (biscuit) or even baked element, it will be preferable to use ultrasound or diamond discs, the structure provided with its openings being able to be of any type. way subjected to cooking giving it the desired mechanical strength.

La figure 4 illustre bien les trajets qu'empruntent les deux flux traversant la structure 9B, et montre le bouchon étanche 18 obturant le canal central 12 : la partie inférieure de la coupe concerne la circulation du flux admis par le canal central, dans des canaux parallèles successifs, tandis que la partie supérieure concerne la circulation de l'autre flux qui est admis et expulsé latéralement par les orifices 16B. La découpe circulaire des orifices schématise un usinage des parois par une meule de type circulaire, mais il va de soi que l'on peut choisir tout autre type de découpe.FIG. 4 illustrates well the paths taken by the two flows passing through the structure 9B, and shows the tight plug 18 closing the central channel 12: the lower part of the section concerns the circulation of the flow admitted by the central channel, in channels successive parallels, while the upper part concerns the circulation of the other flow which is admitted and expelled laterally by the orifices 16B. The circular cutting of the orifices shows schematically a machining of the walls by a circular grinding wheel, but it goes without saying that one can choose any other type of cutting.

Les figures 5A et 5B illustrent des variantes constituant un filtre, par exemple pour épuration des gaz émis par des moteurs diesels, variantes selon lesquelles le cloisonnement entre les deux groupes de canaux est tel que le flux évacué est une partie filtrée du flux admis par le canal central 12, après traversée dudit cloisonnement : on utilisera naturellement pour réaliser la structure une matière présentant la porosité désirée en fonction du gaz particulier à épurer ; figure 5A, il s'agit d'un filtre à flux total, auquel cas la structure 9C ne présente aucun orifice latéral, tandis que figure 5B, il s'agit d'un filtre à flux dérivé, auquel cas la structure 9'C présente un orifice latéral 16B pour la portion dérivée.FIGS. 5A and 5B illustrate variants constituting a filter, for example for purifying the gases emitted by diesel engines, variants according to which the partitioning between the two groups of channels is such that the evacuated flow is a filtered part of the flow admitted by the central channel 12, after passing through said partitioning: a material presenting the desired porosity as a function of the particular gas to be purified will naturally be used to produce the structure; FIG. 5A, it is a total flow filter, in which case the structure 9C has no lateral orifice, while FIG. 5B, it is a derivative flow filter, in which case the structure 9'C has a lateral opening 16B for the derived portion.

Les figures 6A à 6C représentent des exemples de variantes pour les parois de type radial et de type circulaire. Figure 6A, les parois 10A sont . rectilignes et inscrites dans des plans radiaux, tandis que les parois 11A sont inscrites dans des cylindres coaxiaux à ladite structure. Figure 6B, les parois 10B sont rectilignes et inscrites dans des plans parallèles deux à deux, tandis que les parois 11 B sont rectilignes entre deux parois 10B adjacentes, définissant des contours en ligne brisée. Figure 6C, les parois 10C sont ondulées, tandis que les parois 11C sont inscrites dans des cylindres coaxiaux, mais disposées en quinconce à chaque couple de parois 10C et se raccordant à celles-ci aux sommets des ondulations.FIGS. 6A to 6C represent examples of variants for the walls of the radial type and of the circular type. Figure 6A, the walls 10A are. rectilinear and inscribed in radial planes, while the walls 11A are inscribed in cylinders coaxial with said structure. Figure 6B, the walls 10B are rectilinear and inscribed in parallel planes two by two, while the walls 11B are rectilinear between two adjacent walls 10B, defining contours in broken line. Figure 6C, the walls 10C are wavy, while the walls 11C are inscribed in coaxial cylinders, but staggered at each pair of walls 10C and connecting them to the tops of the corrugations.

On a vu précédemment que l'on peut obturer simultanément les canaux aux faces annulaires d'extrémité, avec un embout d'extrémité laissant passer un flux par le canal central. Il peut s'avérer intéressant dans certains cas d'introduire et extraire ce flux par les faces annulaires : dans ce cas, chaque face annulaire d'extrémité présente une obturation sélective radiale, obturation qui peut être obtenue par un ensemble de secteurs annulaires rayonnants : ces secteurs ont été représentés, avec arrachement, aux figures 6A, 6B, 6C, avec les références respectives 19A, 19B, 19C. Si ces secteurs sont suffisamment larges, on peut même, ainsi que cela a été représenté en figure 7, mettre à profit ces parties larges pour augmenter la surface utile inter-flux : à cet effet, on peut prévoir en leur zone large une portion découpée 20 ouvrant sur d'autres canaux concernés par le flux admis et évacué par les faces annulaires d'extrémité ; les parois 10D sont ici rectilignes, parallèles pour la portion découpée, radiales pour les autres, tandis que les parois 11 D sont circulaires. On peut prévoir, figure 8, un embout 21 à chaque extrémité, dont le rebord circulaire 22 s'appuie contre la périphérie des faces annulaires d'extrémité, ou plus exactement des secteurs 19D, et dont la surface définit une chambre intérieure débouchant vers l'extérieur par un orifice plus étroit 23.We have previously seen that the channels can be closed simultaneously with the annular end faces, with an end nozzle allowing a flow to pass through the central channel. It may prove to be advantageous in certain cases to introduce and extract this flow by the annular faces: in this case, each annular end face has a radial selective obturation, obturation which can be obtained by a set of radiating annular sectors: these sectors have been shown, with parts broken away, in FIGS. 6A, 6B, 6C, with the respective references 19A, 19B, 19C. If these sectors are wide enough, we can even, as shown in FIG. 7, take advantage of these wide parts to increase the useful inter-flow surface: for this purpose, a cut portion 20 opening onto other channels can be provided in their wide area by the flow admitted and discharged by the annular end faces; the walls 10D are here rectilinear, parallel for the cut portion, radial for the others, while the walls 11 D are circular. There may be provided, Figure 8, a tip 21 at each end, whose circular flange 22 bears against the periphery of the annular end faces, or more precisely sectors 19D, and whose surface defines an interior chamber opening towards the outside by a narrower orifice 23.

La figure 9 illustre encore un autre exemple où les parois 10E et 11 E définissent pour chaque canal un profil d'alvéole proche du carré.FIG. 9 illustrates yet another example where the walls 10E and 11 E define for each channel a cell profile close to the square.

Il va de soi que l'écartement relatif entre les différentes parois sera choisi de façon à être parfaitement adapté aux contraintes subies sous l'effet de la pression différentielle des deux flux. Les parois de type radial sont disposées de façon à répartir, selon les critères aérodynamiques désirés. la surface offerte à chacun des deux flux : en particulier, l'écartement entre lesdites parois sera choisi en fonction des débits et des vitesses de chacun des flux.It goes without saying that the relative spacing between the different walls will be chosen so as to be perfectly adapted to the stresses undergone under the effect of the differential pressure of the two flows. The radial type walls are arranged so as to distribute, according to the aerodynamic criteria desired. the surface offered to each of the two flows: in particular, the spacing between said walls will be chosen according to the flow rates and speeds of each of the flows.

On signalera deux avantages supplémentaires procurés par la structure de l'invention : d'abord, la conception annulaire, par sa rigidité de forme, permet de concevoir des cartouches plus longues qu'avec n'importe quelle autre architecture de section utile donnée ; ensuite, la section cylindrique permet accessoirement de prévoir une rotation de la structure autour de son axe lors des étapes de la fabrication, ce qui favorise grandement l'homogénéité du séchage.Two additional advantages will be indicated by the structure of the invention: first, the annular design, by its rigidity of shape, makes it possible to design cartridges longer than with any other architecture of given useful section; then, the cylindrical section allows incidentally to provide a rotation of the structure around its axis during the stages of manufacture, which greatly promotes the homogeneity of drying.

Claims (16)

1. A static monolithic ceramical cylindrical honeycomb structure with large contact surface comprising a plurality of parallel channels defined by walls of the radial type (10) and walls of the circular type (11), in which the channels constitute two groups, each traversed by a fluid, the channels of one of the groups being fitted between the channels of the other group according to an angular shift, the section of the structure comprising an annular zone composed of parallel channels, and a central channel (12), which is obturated by a plug (18) and which permits the admission and/or evacuation of the fluids via selective communications with one or the other of the two groups of channels, characterized in that at each end an end piece (13) obturates the annular zone, and that the walls of circular type (11) of the two groups of parallel channels are inscribed into several cylinders coaxial to said structure.
2. A structure according to claim 1, characterized in that a group of channels presents lateral openings (16, fig. 2) for admission and/or evacuation of the associated flux.
3. A structure according to claim 2, characterized in that the lateral openings open directly against the plane of the end piece (13, fig. 3A).
4. A structure according to claim 2, characterized in that the lateral openings (16B, fig. 4) are situated at a certain distance of the end piece. (13, fig. 3B).
5. A structure according to one of the claims 2 to 4, characterized in that the partitioning between the two groups of channels is such that the flux evacuated by the associated lateral openings (16B) is a filtered part of the flux admitted by the central channel (12), after having traversed said partitioning (fig. 5B).
6. A structure according to claim 1, characterized in that one of the two flux is admitted and evacuated by the central channel, whereas the group of channels associated to the other flux presents lateral openings (16B) for admission and evacuation of said flux (fig. 4).
7. A structure according to claim 6, characterized in that the selective obturation is obtained by a group of radiating annular sectors (19A, 19B, 19C).
8. A structure according to claim 7, characterized in that the annular sectors present in their large zone a cut out portion (20, fig. 7) opening on other channels concerned by the flux which is admitted and evacuated by the annular end faces.
9. A structure according to one of the claims 6 to 8, characterized in that it comprises at each end an end piece (21, fig. 8) the circular rim (22) of which leans on the periphery of the annular end faces, and the surface of which defines an inner chamber opening to the outside via a smaller opening (23).
10. A structure according to one of the preceding claims, characterized in that the walls of radial type of the parallel channels are rectilinear (10A, fig. 6A).
11. A structure according to claim 10, characterized in that the radial walls form radial planes.
12. A structure according to claim 10, characterized in that the walls form planes which are parallel in pairs (10B, fig. 6B).
13. A structure according to one of the claims 1 to 9, characterized in that the radial walls of the parallel channels are corrugated (10C, fig. 6C).
14. A structure according to one of the claims 1 to 13, characterized in that the circular walls (11 B, fig. 6B) of the parallel channels are rectilinear between two adjacent radial walls (10B) and define contours in broken lines.
15. A structure according to the preceding claims, characterized in that the circular walls (11C, fig. 6C) are arranged in a staggered position at each couple of radial walls (10C).
16. A structure according to the claims 13 and 15, characterized in that the circular walls are joined to the radial corrugated walls at the crests of the corrugations.
EP80105595A 1979-09-25 1980-09-18 A static monolithic cylindrical honeycomb structure with large contact surface Expired EP0025980B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR7923767 1979-09-25
FR7923767A FR2465985A1 (en) 1979-09-25 1979-09-25 MONOLITHIC ALVEOLAR STRUCTURE WITH A HIGH CONTACT SURFACE

Publications (2)

Publication Number Publication Date
EP0025980A1 EP0025980A1 (en) 1981-04-01
EP0025980B1 true EP0025980B1 (en) 1983-04-20

Family

ID=9229969

Family Applications (1)

Application Number Title Priority Date Filing Date
EP80105595A Expired EP0025980B1 (en) 1979-09-25 1980-09-18 A static monolithic cylindrical honeycomb structure with large contact surface

Country Status (7)

Country Link
US (1) US4343354A (en)
EP (1) EP0025980B1 (en)
JP (1) JPS57493A (en)
AU (1) AU540038B2 (en)
CA (1) CA1137074A (en)
DE (1) DE3062832D1 (en)
FR (1) FR2465985A1 (en)

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56133598A (en) * 1980-03-24 1981-10-19 Ngk Insulators Ltd Heat transfer type ceramic heat exchanger and its manufacture
DE3047701A1 (en) * 1980-12-18 1982-07-15 Magnetfabrik Bonn Gmbh Vorm. Gewerkschaft Windhorst, 5300 Bonn METHOD FOR PRODUCING ANISOTROPAL PERMANENT MAGNETS AND TUBULAR PERMANENT MAGNETS PRODUCED THEREFORE
FI67446C (en) * 1982-10-18 1985-03-11 Orpocon Oy REGENERATING MATERIAL EXPLORATION
FR2549215B1 (en) * 1983-07-11 1988-06-24 Produits Refractaires MOLDED HEAT EXCHANGERS IN REFRACTORY MATERIAL
DE3864672D1 (en) * 1988-01-15 1991-10-10 Ws Waermeprozesstechnik Gmbh INDUSTRIAL BURNER WITH RECUPERATIVE AIR PREHEATING, IN PARTICULAR FOR HEATING OVEN AREAS OF INDUSTRIAL OVENS.
EP0693957B1 (en) * 1993-02-17 1998-01-21 China Petro-Chemical Corporation A multiple stage suspended reactive stripping process and apparatus
CN1080914A (en) * 1993-02-17 1994-01-19 中国石油化工总公司 A kind of 2, the manufacture method of 2-two (4-hydroxy phenyl) propane
US5567567A (en) * 1993-11-05 1996-10-22 Kao Corporation Method for producing encapsulated toner for heat-and-pressure fixing and encapsulated toner obtained thereby
EP0672957B1 (en) * 1994-03-09 2001-01-03 Kao Corporation Encapsulated toner for heat-and-pressure fixing
US5851714A (en) * 1996-04-02 1998-12-22 Canon Kabushiki Kaisha Toner for developing electrostatic image and fixing method
DE60037564T2 (en) 1999-10-26 2008-12-11 Canon K.K. Dry toner, process for its preparation, image-forming process
NO310945B1 (en) * 1999-12-23 2001-09-17 Framo Dev As Device for heat exchanger construction, and use thereof
FR2825456B1 (en) * 2001-05-29 2006-07-14 Valeo Thermique Moteur Sa HEAT EXCHANGER WITH EXTENDED HOUSING, ESPECIALLY FOR A MOTOR VEHICLE
US7422910B2 (en) * 2003-10-27 2008-09-09 Velocys Manifold designs, and flow control in multichannel microchannel devices
US7641865B2 (en) * 2005-04-08 2010-01-05 Velocys Flow control through plural, parallel connecting channels to/from a manifold
GB0507729D0 (en) * 2005-04-16 2005-05-25 Vent Axia Group Ltd A heat exchanger and heat exchanger assembly
JP2007198706A (en) * 2006-01-30 2007-08-09 National Institute Of Advanced Industrial & Technology Internal heating type heat exchange structure having intersecting passage directions
US20070246106A1 (en) 2006-04-25 2007-10-25 Velocys Inc. Flow Distribution Channels To Control Flow in Process Channels
US9683474B2 (en) 2013-08-30 2017-06-20 Dürr Systems Inc. Block channel geometries and arrangements of thermal oxidizers
ES2564197B1 (en) * 2014-09-17 2016-10-10 Soler & Palau Research, S.L. Multi duct tube for heat exchanger
EP3204708B1 (en) * 2014-10-07 2020-11-25 Unison Industries, LLC Multi-branch furcating flow heat exchanger
US11892245B2 (en) 2014-10-07 2024-02-06 General Electric Company Heat exchanger including furcating unit cells
CN107208985B (en) * 2014-12-18 2019-07-26 迈科电气设备厂有限公司 Heat exchanger and air technique equipment with heat exchanger
US10088250B2 (en) 2016-01-12 2018-10-02 Hamilton Sundstrand Corporation Heat exchangers
DE102017100460A1 (en) * 2017-01-11 2018-07-12 Hanon Systems Device for heat transfer in a refrigerant circuit
CN110006274A (en) * 2018-01-04 2019-07-12 日本碍子株式会社 Heat-exchanging part and heat exchanger
WO2019135312A1 (en) * 2018-01-05 2019-07-11 日本碍子株式会社 Heat exchange member, heat exchanger, and heat exchanger having purification means
IT201800010006A1 (en) * 2018-11-02 2020-05-02 Sumitomo Riko Co Ltd INTERNAL HEAT EXCHANGER
CN112191049B (en) * 2020-09-30 2021-05-04 山东贝斯特节能技术有限公司 Energy-saving and environment-friendly treatment system for high-temperature flue gas
FR3119670B1 (en) * 2021-02-09 2023-03-17 Safran Heat exchanger and its manufacturing method
US11920874B2 (en) * 2021-02-09 2024-03-05 Ngk Insulators, Ltd. Heat exchange member, heat exchanger and heat conductive member
EP4070957A1 (en) * 2021-04-09 2022-10-12 Hamilton Sundstrand Corporation Heat exchangers
NL2030307B1 (en) * 2021-12-27 2023-07-03 Stichting Het Nederlands Kanker Inst Antoni Van Leeuwenhoek Ziekenhuis Heat and moisture exchanger

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB135549A (en) * 1900-01-01
FR985078A (en) * 1949-02-18 1951-07-13 Sarl Heurtey Et Cie safety partition heat exchanger
US2706109A (en) * 1950-03-11 1955-04-12 Jarvis C Marble Heat transfer elements of ceramic material
US3548932A (en) * 1969-07-08 1970-12-22 Milton Menkus Heat exchanger
CA983474A (en) * 1972-09-21 1976-02-10 Gordon J. Faris Clearance monitoring probe for rotary regenerative heat exchanger
GB1371808A (en) * 1972-11-20 1974-10-30 Penny R N Rotary regenerative heat exchanger
GB1371809A (en) * 1973-01-01 1974-10-30 Penny R N Rotary regenerative heat exchanger
FR2296832A1 (en) * 1975-01-06 1976-07-30 Commissariat Energie Atomique HIGH TEMPERATURE HEAT EXCHANGER
US4041592A (en) * 1976-02-24 1977-08-16 Corning Glass Works Manufacture of multiple flow path body
US4041591A (en) * 1976-02-24 1977-08-16 Corning Glass Works Method of fabricating a multiple flow path body
CH613512A5 (en) * 1976-07-30 1979-09-28 Sulzer Ag
DE2707290C3 (en) * 1977-02-19 1979-09-20 Kernforschungsanlage Juelich Gmbh, 5170 Juelich Recuperative heat exchanger made of ceramic material
DE2805817C3 (en) * 1978-02-11 1982-03-18 Kernforschungsanlage Jülich GmbH, 5170 Jülich Recuperative heat exchanger made of ceramic material
JPS54119156A (en) * 1978-03-07 1979-09-14 Nippon Enviro Kogyo Heat exchanger
FR2442122A1 (en) * 1978-11-23 1980-06-20 Saint Gobain Cutter for trimming plastic coatings or film supported by rigid sheet - esp. for mfr. of multilayer windscreens resistant to peripheral delamination

Also Published As

Publication number Publication date
JPS57493A (en) 1982-01-05
AU540038B2 (en) 1984-11-01
FR2465985A1 (en) 1981-03-27
CA1137074A (en) 1982-12-07
DE3062832D1 (en) 1983-05-26
US4343354A (en) 1982-08-10
JPH02635B2 (en) 1990-01-08
EP0025980A1 (en) 1981-04-01
AU6268880A (en) 1981-04-09

Similar Documents

Publication Publication Date Title
EP0025980B1 (en) A static monolithic cylindrical honeycomb structure with large contact surface
EP2611514B1 (en) Filter with automatic declogging
EP1201420B1 (en) Sound absorbing panel particularly for aircraft engine
EP1373690B1 (en) Filtering body for filtering particles contained in an internal combustion engine exhaust gases
EP0816639B1 (en) Manifold for cooling gas in a turbomachinery seal gap control
CA2721215C (en) Turbine nozzle box for a turbomachine
FR2609308A1 (en) DEVICE FOR THE CATALYTIC PURIFICATION OF THE EXHAUST GASES OF MOTORS OF VEHICLES
FR3103517A1 (en) Exhaust gas heater with metal foam heating element
FR3095671A1 (en) Integration of a fan floating damper in a crankcase
EP2663389B1 (en) Novel shape of filtering elements
FR2699963A1 (en) Close combustion gas generator.
CH433194A (en) Continuous automatic cleaning multicellular mechanical filtration device for liquids under pressure
EP3635229A1 (en) Acoustic panel and associated propulsion unit
EP2075415B1 (en) Lightened annular stator structure for aircraft turboshaft engine
BE1008992A3 (en) Hollow brick refractory parallel.
FR2647198A1 (en) Plate pipe heat exchanger
EP0081405B1 (en) Annular air-cooled abradable-blade tip-sealing shroud for a gas turbine or a compressor
WO2020008156A1 (en) Part for a turbomachine centrifugal breather having a filtering mesh
EP1091791B1 (en) Filtering element for use in a filtering device
EP0025743B1 (en) Method of making alveolar modules
EP0208600B1 (en) Assembly of stamped out parts for producing pulse combustion
FR2902024A1 (en) Automatically unblocked filter, consists of sieve-containing flat, radially compartmented filter elements with longitudinal channel sections forming distribution channels for unblocking medium
EP4295019A1 (en) Rotor for a turbomachine centrifugal breather
FR2905918A1 (en) "PYROTECHNIC GENERATOR WITH TWO COMBUSTION CHAMBERS SEPARATED BY A TUYERE"
FR2505669A1 (en) IMPROVED FILTERING COLUMN FOR THE FILTRATION OF HEAVY FUEL AT HIGH TEMPERATURE PRESSURE

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): BE DE FR GB IT NL SE

17P Request for examination filed

Effective date: 19810916

ITF It: translation for a ep patent filed
GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): BE DE FR GB IT NL SE

REF Corresponds to:

Ref document number: 3062832

Country of ref document: DE

Date of ref document: 19830526

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19840930

Year of fee payment: 5

Ref country code: BE

Payment date: 19840930

Year of fee payment: 5

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732

NLS Nl: assignments of ep-patents

Owner name: CERAMIQUES ET COMPOSITES TE COURBEVOIE, FRANKRIJK.

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19870930

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19890919

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19890930

BERE Be: lapsed

Owner name: CERAVER S.A.

Effective date: 19890930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19900401

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19921102

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19921128

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19930918

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19930918

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19940601

EUG Se: european patent has lapsed

Ref document number: 80105595.5

Effective date: 19900521

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19960930

Year of fee payment: 17

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19970930

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT