EP0025373A1 - Verfahren zum Leiten oder Führen eines Flugkörpers und mit Mitteln zur Durchführung dieses Verfahrens ausgerüsteter Flugkörper - Google Patents

Verfahren zum Leiten oder Führen eines Flugkörpers und mit Mitteln zur Durchführung dieses Verfahrens ausgerüsteter Flugkörper Download PDF

Info

Publication number
EP0025373A1
EP0025373A1 EP80401169A EP80401169A EP0025373A1 EP 0025373 A1 EP0025373 A1 EP 0025373A1 EP 80401169 A EP80401169 A EP 80401169A EP 80401169 A EP80401169 A EP 80401169A EP 0025373 A1 EP0025373 A1 EP 0025373A1
Authority
EP
European Patent Office
Prior art keywords
missile
angle
roll
fra
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP80401169A
Other languages
English (en)
French (fr)
Inventor
Pierre Metz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thomson-Brandt SA
Original Assignee
Thomson-Brandt SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thomson-Brandt SA filed Critical Thomson-Brandt SA
Publication of EP0025373A1 publication Critical patent/EP0025373A1/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B10/00Means for influencing, e.g. improving, the aerodynamic properties of projectiles or missiles; Arrangements on projectiles or missiles for stabilising, steering, range-reducing, range-increasing or fall-retarding
    • F42B10/60Steering arrangements
    • F42B10/66Steering by varying intensity or direction of thrust
    • F42B10/661Steering by varying intensity or direction of thrust using several transversally acting rocket motors, each motor containing an individual propellant charge, e.g. solid charge
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41GWEAPON SIGHTS; AIMING
    • F41G7/00Direction control systems for self-propelled missiles
    • F41G7/20Direction control systems for self-propelled missiles based on continuous observation of target position
    • F41G7/22Homing guidance systems

Definitions

  • the invention relates to a method for piloting and guiding a missile, more particularly a missile with side nozzle.
  • a type of missile consists of a propellant with two charges of powder uniformly distributed on either side of the center of gravity of the machine, burning simultaneously and whose gases are ejected through a single nozzle, whose axis passes substantially through this center of gravity.
  • the invention also relates to missiles equipped with means for implementing this method.
  • a first problem lies in the piloting of these missiles or missiles. To resolve it, recourse is most often made, in known methods, to the use of servo-governors or of jet deflection systems cooperating in all cases with aerodynamic wings.
  • a second problem is at the level of the guidance proper, that is to say of the control of the piloting to an interception law.
  • a seeker placed in the nose of the i iissile which aims to detect the target, to track it angularly and to develop a measure which will serve as an order for piloting.
  • this measurement is the rotation of the missile-target line of sight carried out by means of this seeker.
  • a so-called "collision" law for example "proportional navigation” is used to intercept the target.
  • Attitude control of the missile therefore requires the implementation of piloting of the servo-rudder or jet deflection type already stated previously.
  • the object of the present invention is to overcome these drawbacks and relates to a method and means of piloting on the one hand, of guiding on the other hand. These two functions are harmonized as follows: piloting is ensured by the action of the thrust of the lateral nozzle propellant, located at the center of gravity of the missile and oriented properly by a control of the roll of the speed vector.
  • the control of the roll control means is governed according to various parameters: in particular, on the one hand, a roll reference (provided by the gyroscope for example) for the compensation of gravity when a pre-guiding phase is used ( before the seeker has acquired the target); on the other hand, the rotation of the line of sight for the control of the roll angle relative to the measurement of the rotation vector of this line of sight developed by the seeker as soon as the latter has acquired the target.
  • a roll reference provided by the gyroscope for example
  • the rotation of the line of sight for the control of the roll angle relative to the measurement of the rotation vector of this line of sight developed by the seeker as soon as the latter has acquired the target.
  • a single servo system transforms the measurement of these parameters into control signals applied to the roll control means which, as will be explained later, will control the orientation of the thrust of the machine.
  • the invention relates more precisely to a method of piloting and guiding a missile of the type comprising in particular: on the one hand, a thruster with double loading symmetrical with respect to the center of gravity, burning symmetrically with respect to the axis of a lateral nozzle whose axis passes through this center of gravity and makes an angle (a) with the axis of the missile; on the other hand means for controlling the roll; finally, a seeker this method being characterized in that the actuation of these roll control means by a servo system, causes, with respect to a reference trihedron linked to the space, a preferred orientation of the thrust P due to the combustion gas therefore of the force F opposite to this thrust; the value of this force F linked to the propellant combustion law cooperating with this preferred direction to determine the trajectory of the missile.
  • FIG. 1 shows a missile 1 comprising a body 11 equipped with an inclined lateral nozzle 2.
  • the two loads 3 and 4 of solid propellant (powder block) are symmetrical on either side of the center of gravity M of the machine, center of gravity located on the axis of the nozzle 2.
  • the combustion of the solid propellant takes place on a parallel front from the nozzle, towards the front of the machine for loading 4 and towards the 'rear for loading 3.
  • This missile body 11 is associated with roll control means of the craft. In the example described, it is a tail unit 6 whose fins 7 are wedged at a determined angle, which can rotate freely around the axis AB of the machine.
  • the connection between the body 1 and the tail unit 6 is provided by a torque motor 10 comprising a rotor R and a stator S.
  • a seeker of known type (not shown in the figure) .
  • This process consists in using the anti-roll torque of a rotary tail applied to the roll control of the missile body.
  • Such a system is therefore essentially constituted by the rotating tail, concentric with the body whose attitude is to be controlled.
  • Other roll control systems such as empennages with orientable wings can also be implemented.
  • roll control means cooperate with the propellant proper, constituted by two loads of powder symmetrical with respect to the center of gravity and the nozzle whose axis passes through this center of gravity, to orient according to a reference trihedron linked to space the component F whose value is linked to the combustion law of the solid propellant opposite to the thrust, making an angle (a) with the axis AB of the machine.
  • This force F is broken down into two components, one F located on the axis AB and the other F perpendicular to this axis.
  • the angle (a) is preferably chosen to be between 20 ° and 90 °.
  • the F x component is then used as an engine and the F component is used to make the missile evolve, for example to compensate for the effects of gravity, this in particular during the piloting phase thus ensuring the lift of the missile. If the angle (a) chosen is equal to 90 ° the component F is zero but the piloting and guiding method according to the invention remains valid. Without additional wing, the roll control means allow the machine to be controlled.
  • the first corresponds to the piloting during the pre-steering phase (the seeker has not yet acquired the target) and the second corresponds to the piloting during the guidance phase proper (after acquisition of the target by the 'seeker).
  • the pre-guidance phase Before the acquisition of the target by the seeker, the pre-guidance phase, if used, requires taking into account an inertial reference.
  • the gyroscopic router of the seeker is used for this (in particular of the optro type pic).
  • the direction of the gyroscope router 30, before firing is oriented at a negative angle S o (relative to the horizontal). This angle varies after firing as a function of time to take a value for example equal to S. The difference ⁇ is then equal at each instant as a function of time to a given value ⁇ t .
  • the axis of the gyro top a'b ' made at the time of the firing with the firing axis a'b "an angle G o .
  • the axis AB of missile 1 makes at all times an angle G with the gyroscopic axis a'b '.
  • Pilot control can be obtained in accordance with the invention in two different ways but which both use, only the roll control means as defined above.
  • the first solution consists in controlling in roll the speed of rotation of this speed in second turn as a function of time (t) so as to accelerate this speed over a half turn and decelerate it during the other half turn as shown in Figure 4 which shows the evolution.
  • Another variant consists in balancing the roll from right to left by an angle between 0 and 90 °, possibly asymmetrically, such that the average component F z is proportional to (S - S o ) and such that the component F z makes an angle with the vertical (b) which leads to the existence of a horizontal component F H (figure 5) to bring the angle G to be equal to zero.
  • the control system responsible for controlling the torque motor ensuring the control of the roll control means of the machine acting directly on the direction of the force F and its components F x and F z delivers to this motor couples signals such that the module ⁇ of the rotation vector remains between two values ⁇ mini and ⁇ maxi (figure 6) for values of the angle ⁇ varying from ⁇ 1 to ⁇ 2 , In the example described ⁇ 1 is chosen close to zero and ⁇ 2 close to 90 ° without these values are limiting.
  • the force F is in the plane defined by the straight line MC and the vector V.
  • Such guidance control ultimately tends to cause the machine to evolve on a trajectory in the form of a converging spiral.
  • FIG. 8 represents, by way of nonlimiting example, the trajectory of a ground-to-ground missile. We can distinguish in the mission of such a machine three successive phases.
  • the first preliminary phase or cannon phase makes it possible to give the machine an initial speed V mo, for example 300 m / sec along an angle of site b allowing the machine to be placed on a ballistic trajectory.
  • V mo for example 300 m / sec along an angle of site b
  • the distance X traveled in km is shown on the abscissa and the altitude H of the craft in meters is shown on the ordinate.
  • the craft during the preliminary phase from I to II travels, in the example described, approximately 10 km and reaches its maximum altitude Hm before ending up at the altitude of 1000 meters, altitude from which the propellant is put fire.
  • the control of the rolling means acting according to the invention on the direction of the component F z of lift allows the machine to remain at altitude below 1000 meters, more precisely below the clouds during the pre-steering phase.
  • missiles or missiles to which the methods and means for implementing this method in accordance with the invention are applicable are of various types. These may include all types of weapons intended to pursue a target whether fixed or mobile.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Aiming, Guidance, Guns With A Light Source, Armor, Camouflage, And Targets (AREA)
EP80401169A 1979-08-17 1980-08-08 Verfahren zum Leiten oder Führen eines Flugkörpers und mit Mitteln zur Durchführung dieses Verfahrens ausgerüsteter Flugkörper Withdrawn EP0025373A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR7920891 1979-08-17
FR7920891A FR2463909B1 (fr) 1979-08-17 1979-08-17 Procede de pilotage et de guidage d'un missile, et missile equipe de moyens de mise en oeuvre de ce procede

Publications (1)

Publication Number Publication Date
EP0025373A1 true EP0025373A1 (de) 1981-03-18

Family

ID=9228920

Family Applications (1)

Application Number Title Priority Date Filing Date
EP80401169A Withdrawn EP0025373A1 (de) 1979-08-17 1980-08-08 Verfahren zum Leiten oder Führen eines Flugkörpers und mit Mitteln zur Durchführung dieses Verfahrens ausgerüsteter Flugkörper

Country Status (2)

Country Link
EP (1) EP0025373A1 (de)
FR (1) FR2463909B1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4520972A (en) * 1981-06-05 1985-06-04 Dynamit Nobel Aktiengesellschaft Spin-stabilized training missile
US4568040A (en) * 1981-12-09 1986-02-04 Thomson-Brandt Terminal guidance method and a guided missile operating according to this method
EP0208160A1 (de) * 1985-06-13 1987-01-14 DIEHL GMBH & CO. Impulstriebwerk

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE461750B (sv) * 1987-03-20 1990-03-19 Lars Johan Schleimann Jensen Foerfarande foer styrning av ett flygande objekt, saasom en projektil, mot ett maal och projektil foer foerfarandets genomfoerande
RU2021577C1 (ru) * 1992-06-30 1994-10-15 Машиностроительное Конструкторское Бюро "Факел" Способ управления снарядом

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR62406E (fr) * 1952-10-25 1955-06-14 Viseur universel sur avion (ou navire) pour la dérivométrie, l'atterrissage de précision, la conduite du pilotage, du bombardement en piqué par bombes ou fusées, du tir sur but au sol ou but aérien et du torpillage
FR2049166A1 (de) * 1969-06-06 1971-03-26 Bofors Ab
US3599899A (en) * 1969-06-20 1971-08-17 Thiokol Chemical Corp Rocket control
FR2165135A5 (de) * 1971-12-20 1973-08-03 Serat
US4003531A (en) * 1975-05-06 1977-01-18 The United States Of America As Represented By The Secretary Of The Army Reverse flow reaction control system
FR2321723A1 (fr) * 1975-07-29 1977-03-18 Thomson Brandt Systeme de controle d'attitude et engin equipe d'un tel systeme
FR2386802A1 (fr) * 1977-04-08 1978-11-03 Thomson Brandt Dispositif de pilotage pour projectile du genre missile, et projectile equipe de ce dispositif

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR62406E (fr) * 1952-10-25 1955-06-14 Viseur universel sur avion (ou navire) pour la dérivométrie, l'atterrissage de précision, la conduite du pilotage, du bombardement en piqué par bombes ou fusées, du tir sur but au sol ou but aérien et du torpillage
FR2049166A1 (de) * 1969-06-06 1971-03-26 Bofors Ab
US3599899A (en) * 1969-06-20 1971-08-17 Thiokol Chemical Corp Rocket control
FR2165135A5 (de) * 1971-12-20 1973-08-03 Serat
US4003531A (en) * 1975-05-06 1977-01-18 The United States Of America As Represented By The Secretary Of The Army Reverse flow reaction control system
FR2321723A1 (fr) * 1975-07-29 1977-03-18 Thomson Brandt Systeme de controle d'attitude et engin equipe d'un tel systeme
FR2386802A1 (fr) * 1977-04-08 1978-11-03 Thomson Brandt Dispositif de pilotage pour projectile du genre missile, et projectile equipe de ce dispositif

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4520972A (en) * 1981-06-05 1985-06-04 Dynamit Nobel Aktiengesellschaft Spin-stabilized training missile
US4568040A (en) * 1981-12-09 1986-02-04 Thomson-Brandt Terminal guidance method and a guided missile operating according to this method
EP0208160A1 (de) * 1985-06-13 1987-01-14 DIEHL GMBH & CO. Impulstriebwerk

Also Published As

Publication number Publication date
FR2463909B1 (fr) 1985-10-25
FR2463909A1 (fr) 1981-02-27

Similar Documents

Publication Publication Date Title
EP0081421B1 (de) Verfahren zur Endphasenlenkung und dieses Verfahren verwendender Lenkflugkörper
EP0028966B1 (de) Verfahren zur Endphasenlenkung und -führung von Flugkörpern
EP3150957A1 (de) Artillerieprojektil mit einer gesteuerten phase
CA2015121A1 (fr) Procede de mise a poste d'un satellite de telecommunications geostationnaire
FR2768500A1 (fr) Procede de guidage autonome d'un projectile d'artillerie stabilise par rotation et projectile d'artillerie guide de facon autonome pour la mise en oeuvre du procede
FR2719659A1 (fr) Procédé et dispositif de correction de la trajectoire de projectiles.
EP0033283A2 (de) Vereinfachtes Selbststeuerungssystem für Flugkörper, wie z.B. Granaten und Raketen
EP1480000B1 (de) Verfahren zur Lenkung der Flugbahn eines drehenden Geschosses
EP0025373A1 (de) Verfahren zum Leiten oder Führen eines Flugkörpers und mit Mitteln zur Durchführung dieses Verfahrens ausgerüsteter Flugkörper
FR2695992A1 (fr) Sous munition à effet dirigé.
EP0985900B1 (de) Verfahren und Vorrichtung zum Lenken eines Flugkörpers, insbesondere einer Kampfrakete, auf ein Ziel
FR2859782A1 (fr) Systemes d'armes
EP0062563B1 (de) Verfahren zum Steuern der Seitwärtsbeschleunigung eines Flugkörpers und entsprechendes Waffensystem
EP1291600B1 (de) Verfahren zur Lenkung eines Gerätes, insbesondere einer Munition
EP2518433B1 (de) Verfahren zur automatischen Steuerung eines Zielsuchkopfes, der auf einem Fluggerät montiert ist, insbesondere auf einem Marschflugkörper
EP0420760B1 (de) Selbstlenkungssystem und -verfahren einer getriebenen ballistischen Luftfahrzeuggeschosses gegen ein Ziel
EP0794404B1 (de) Verfahren und Vorrichtung zum Leiten eines Flugkörpers zu einem Ziel
FR2504703A1 (fr) Systeme d'asservissement d'un projectile a une reference axiale pour supprimer l'effet du vent
FR2698440A1 (fr) Procédé pour envoyer un projectile sur un objectif et projectile à trajectoire balistique atmosphérique.
EP1266825B1 (de) Verfahren zum Trennen eines selbstangetriebenen Flugkörper von seinem Träger
FR2667390A1 (fr) Procede et dispositif pour imprimer une trajectoire inflechie lateralement a un projectile lance a partir d'un engin aerien.
FR2496293A1 (fr) Procede et dispositif pour produire des signaux de commande formes a partir d'ordres de guidage pour des organes de manoeuvre de missiles animes d'un mouvement de roulis
FR2657690A1 (fr) Dispositif de mesure d'attitude en roulis et/ou en tangage d'un projectile.
WO2007115998A1 (fr) Dispositif de controle de mise a feu de la charge d'une roquette et procede de lancement d'une roquette equipe d'un tel dispositif
EP0577450A1 (de) Munition mit Zielerfassungsvorrichtung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE CH DE GB IT LU NL SE

17P Request for examination filed

Effective date: 19810803

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19830810

RIN1 Information on inventor provided before grant (corrected)

Inventor name: METZ, PIERRE