EP0023263A1 - Transistor converter circuit - Google Patents

Transistor converter circuit Download PDF

Info

Publication number
EP0023263A1
EP0023263A1 EP80103465A EP80103465A EP0023263A1 EP 0023263 A1 EP0023263 A1 EP 0023263A1 EP 80103465 A EP80103465 A EP 80103465A EP 80103465 A EP80103465 A EP 80103465A EP 0023263 A1 EP0023263 A1 EP 0023263A1
Authority
EP
European Patent Office
Prior art keywords
transistor
capacitor
voltage
winding
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP80103465A
Other languages
German (de)
French (fr)
Other versions
EP0023263B1 (en
Inventor
Peter Kreutzer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to AT80103465T priority Critical patent/ATE2246T1/en
Publication of EP0023263A1 publication Critical patent/EP0023263A1/en
Application granted granted Critical
Publication of EP0023263B1 publication Critical patent/EP0023263B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/26Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc
    • H05B41/28Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters
    • H05B41/282Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices
    • H05B41/2821Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices by means of a single-switch converter or a parallel push-pull converter in the final stage

Definitions

  • the invention relates to a transistor inverter circuit which is intended, for example, to supply alternating current to fluorescent lamps from a direct current network.
  • the invention relates in particular to such a circuit in which on the one hand the output voltage is sinusoidal in good approximation but on the other hand the transistors have only low switching losses.
  • the circuit used most often for static inverters, which are fed from a low-voltage DC voltage source, is the so-called push-pull circuit of transistors in connection with a transformer.
  • the bridge or half-bridge circuit is often used for higher supply voltages, for example above 150 volts, since they allow the use of transistors with a lower breakdown voltage.
  • the transistors are usually driven with the aid of a back Coupling or control winding of the transformer mentioned, which normally provides an AC voltage of about 2 to 4 volts. With the help of a resistor in the base circuit, the size of the base current of the transistors is set according to the load current.
  • the losses in the transistors are made up of the losses in the switching operation (collector-emitter residual voltage ⁇ collector current) and the switching losses. In contrast, the tax losses are negligible.
  • the switching losses become particularly critical if the voltage form of the alternating voltage generated is not rectangular and / or the operating frequency is high, in particular higher than 500 Hz. Since the losses and thus the heating of the transistors are proportional to the collector current, the power which is conducted via the inverter naturally also has a major influence on these losses.
  • the ideal voltage form for modulating transistors operated as switches is the rectangular form, which guarantees the fastest switching with the least losses.
  • a rectangular control voltage is only available if the output voltage of the inverter is also rectangular.
  • a sinusoidal shape is desired for this output voltage in many cases.
  • the switching losses in particular with increasing frequency, can become impermissibly high, which, in addition to poor electrical efficiency, leads to excessive heating of the transistors, which leads to difficult cooling problems of the components and at the same time endangers operational safety.
  • DE-OS 23 11 833 discloses a constant current source designed as an inverter, which is intended to deliver a constant output current in the order of 100 to 400 gA for electrostatic applications with an output voltage of 4 to 6.8 kV. It is a push-pull inverter circuit with a load transformer, the primary winding of which has a center tap which is connected directly to one pole of the DC voltage source. One of the end connections of the primary winding is connected to the collector of one of two transistors, the emitters of which are connected together and connected to the other pole of the DC voltage source via an emitter resistor. The two end connections of a control winding are connected to the bases of the two transistors.
  • a center tap of this control winding is connected to one terminal of a capacitor, the other terminal of which is connected to the connection point between the emitter resistor and the DC voltage source.
  • the charging circuit for the capacitor contains a Z-diode circuit connected to the DC voltage source with a subsequent voltage divider. Due to the negative feedback effect of the emitter resistor, the almost constant output current results as a function of the voltage impressed on this emitter resistor by the voltage applied to the capacitor and the AC control voltage. This regulating function presupposes that the base-emitter voltage of both transistors always remains below the saturation voltage. That means the two transistors of the push-pull circuit are driven into their normal working range. In view of the low currents that occur, this is readily possible.
  • the transistors of a transistor inverter must be operated as switches, which are switched back and forth as quickly as possible between their blocking state and their degree of saturation.
  • the terminal voltage of the capacitor as DC control voltage is not used to accelerate a switching process of the transistors, but rather to specify their operating point and thus the level of the output current.
  • the fact that the control DC voltage is obtained from the DC voltage of the DC voltage source in the prior art causes losses, in particular at the resistors.
  • each transistor contains two parallel control circuits, one of which has the series connection of a control winding with a capacitor.
  • the capacitor is connected via a diode to a choke in the DC circuit, which serves as a charging current source with its voltage drop. This is to achieve a corresponding qerin q e modulation of the transistors due to the voltage drop at the choke becoming smaller as the battery voltage increases.
  • a Reaeluna assumes that the transistors do not operate in saturation mode, but have an operating point in the normal operating range of the characteristic. Because of the losses in the transistors that occur, such a circuit can only be used for low powers.
  • an inverter in which the transistors operating in push-pull operation, each of which is assigned a separate control winding, have a control circuit having this control winding in series with a capacitor.
  • the capacitor is charged to a reverse polarity for the associated transistor.
  • the capacitor The series circuit comprising a resistor and a diode is connected in parallel, so that the capacitor can only be charged to a voltage which essentially corresponds to the forward voltage of the diode. As a result, the switching losses of the transistors cannot be reduced.
  • the object of the invention is to provide a transistor inverter circuit which is also suitable for higher powers and which has low losses with an output voltage which is as sinusoidal as possible.
  • the primary winding of the load transformer can be connected to the DC voltage source via a choke, and that the charging circuit is a closed circuit formed by the rectifier diode, the capacitor and at least part of the control winding.
  • the choke provided according to the invention forms a resonant circuit with the current-reversing capacitor, which causes the voltage at the input of the inverter to periodically drop to zero, so that this voltage is a pulsating DC voltage.
  • the control AC voltage is also zero, so that the transistors in the voltage-free state are switched quickly and with little loss, and both transistors can be controlled by the DC control voltage for a short time. Since the voltage on the primary winding is zero, the simultaneous turning on of both transistors at this moment is completely uncritical.
  • a transformer 11 comprises a primary winding 11a and a secondary winding 11b.
  • the primary winding 11a has a center tap 11c which is connected via a choke 2 to the positive pole of a DC voltage source 1.
  • a capacitor 12 is connected in parallel with the primary winding 11a of the transformer 11.
  • One end of the primary winding 11a is connected to the collector of a transistor 4, the other end of the primary winding 11a to the collector of a transistor 5.
  • the emitters of both transistors are connected together and connected to the negative pole of the DC voltage source 1.
  • a capacitor 13 as part of a filter circuit is connected in parallel to the DC voltage source 1.
  • a control winding 6 of the transformer 11 has two ends 6a and 6b and three taps 6c, 6d and 6e.
  • the An tap 6d is connected to a connection of a capacitor 9.
  • the other connection of the capacitor 9 is connected via a resistor 10 to the connection point of the two emitters of the transistors 4 and 5.
  • the base of the transistor 4 is connected to the tap 6c, the base of the transistor 5 to the tap 6e of the control winding 6.
  • a start-up resistor 3 connects the base of transistor 4 to its collector.
  • Two diodes 7 and 8 are connected with their anode to the connection point between the capacitor 9 and the resistor 10.
  • the cathode of the diode 7 is connected to one end, the cathode of the diode 8 to the other end of the control winding 6.
  • a load 15, which can be a fluorescent lamp, is connected to the secondary winding 11b of the transformer 11.
  • the DC voltage source 1 is switched on with the aid of a switch (not shown), then a current of a few mA initially flows through the starting resistor 3 to the base of the transistor 4 and via the control winding 6 to the base of the transistor 5.
  • the inverter begins to oscillate with identical transistor properties.
  • the two halves of the primary winding 11a of the transformer 11 are alternately connected to the DC voltage source 1 via the choke 2 and one of the transistors 4 and 5, respectively.
  • the frequency of these vibrations is primarily determined by the resonance circuit formed by the choke 2 and the capacitor 12. Sinusoidal voltages are induced both in the secondary winding 11b and in the control winding 6.
  • the voltage controlling the transistor 4 of the winding 6c-6d of the control winding 6 and the voltage controlling the transistor 5 of the winding 6e-6d of the control winding 6 are opposite phase.
  • the capacitor 9 is charged via the two diodes 7, 8 to an essentially constant voltage which is negative at the end of the capacitor facing the resistor 10 and positive at the other end. This DC voltage at the capacitor 9 is superimposed on the control voltages for the transistors 4 and 5 supplied by the control winding.
  • both transistors 4 and 5 can be temporarily conductive at the same time. However, since the voltage at the primary winding 11a is also zero at this time, no current can flow through the series connection of both transistors.
  • the transistor 4 is controlled into the saturation state within a very short time, during which Transistor 5 is blocked. For this, very small potential differences at the taps 6c and 6e are sufficient. If the potential at the tap 6c increases, then the potential at the connection point of the two emitters of the transistors 4 and 5 also increases. In connection with the decrease in the potential at the tap 6e, this leads to the base-emitter path of the Transistor 5 is biased in the reverse direction.
  • control direct current from the capacitor 9 commutates from the base-emitter path of the transistor 4 to that of the transistor 5.
  • the charging voltage of the capacitor 9 and the size of the resistor 10 can thus be chosen so that the direct current from the capacitor 9 is sufficient to control the transistors into saturation.
  • the control alternating current superimposed on this direct current then primarily only causes the commutation of the current between the two control circuits.
  • the circuit described relates to the use of npn transistors.
  • the control direct voltage must have the opposite polarity.
  • the circuit according to the invention brings a particularly large gain to an inverter in which the transformer is designed as a stray field transformer and the frequency is approximately 20 k H z, a fluorescent lamp being connected as the load 15.
  • the reversing current capacitor 12 serves for reactive current compensation and at the same time as an oscillating capacitor in connection with the choke 2, as a result of which an inverse current can be kept away from the transistors.
  • the transistors operate at the switching moment with the steep current flank of a square-wave current and are therefore practically loss-free, as a result of which a high electrical efficiency is achieved, which is of great importance, for example, in vehicle lighting and in emergency power systems in connection with fluorescent lamps fed from a battery.
  • 2a shows the course of the base current of one of the two transistors over time. It can be seen that a sinusoidal current crest is placed on an essentially rectangular base current.
  • 2b shows the course of the sum of the base currents of the two transistors measured at the resistor 10. It can be seen particularly well from this illustration that the direct current from the capacitor 9 is without interruption in the region of the zero crossing of the changes voltage commutated from one transistor to the other. The ratio of the direct control current to the alternating control current can also be clearly seen from FIG. 2b. It should be noted that the scales of the ordinate in FIGS. 2a and 2b on which the current is plotted are different. 2c shows the associated collector current Ic, the course of which shows the desired steep switching edges.
  • the voltage Uc across the capacitor 12 is shown in Fig. 2d. In good approximation, it has the desired sinusoidal shape.
  • the voltage of the DC voltage source 1 was 110 volts.
  • the capacitor 13 was 1 üF, the capacitor 12 8200 pf.
  • the value of resistor 10 was 68 ohms, that of capacitor 9 1gF.
  • the value of the starting resistance 3 was 27 kOhm.
  • Choke 2 was a ferrite choke with 350 turns.
  • a voltage of approximately 8 volts resulted between the ends of the control winding 6.
  • a fluorescent lamp with 40 watts or two lamps with 20 watts each could be connected to the secondary winding 11b.
  • the type MJE 13005 from Motorola Inc. was used as transistors.
  • FIG. 3 shows a transistor inverter circuit according to the invention in the form of a half-bridge circuit.
  • the primary winding of a transformer 111a is connected in series with a choke 102, a capacitor 112 and a transistor 105 to the DC voltage source 101.
  • a filter capacitor 113 is located parallel to the DC voltage source 101.
  • the emitter of a transistor 104 is connected to the collector of the transistor 105.
  • the collector of transistor 104 is connected to the connection point between capacitor 112 and choke 102.
  • the transformer 111 has two control windings 161 and 162. Each of the control windings contains three winding parts and connections a to d.
  • the terminal d of the control winding 162 is connected to the anode of a diode 142, the cathode of which is connected to the negative pole of the DC voltage source 101 closed is.
  • the terminal c of the control winding 162 is connected to one end of a capacitor 109, the other end of which is connected via a resistor 110 to the connection between the emitter of the transistor 105 and the negative pole of the DC voltage source 101.
  • the base of transistor 105 is connected to terminal b of control winding 162.
  • the connection point between the resistor 110 and the capacitor 109 is connected to the anode of a diode 107, the cathode of which is connected to the terminal a of the control winding 162.
  • terminal d of the control winding 161 is connected via a diode 141 to the connection point between the emitter of the transistor 104 and the collector of the transistor 105.
  • Terminal c is connected to one end of a capacitor 109 ', the other end of which is connected to the emitter of transistor 104 via a resistor 110'.
  • the base of transistor 104 is connected to terminal b of control winding 161.
  • a diode 107 ' connects the connection point between the capacitor 109' and the resistor 110 'to the terminal a of the control winding 161.
  • the basic mode of operation of such a half-bridge circuit is that during one half cycle the primary winding 111a is connected to the DC voltage source 101 through the transistor 105 via the inductor 102 and the capacitor 112, the capacitor 112 being charged.
  • Transistor 104 is off during this half cycle.
  • transistor 105 is blocked, while transistor 104 short-circuits capacitor 112 via primary winding 111a of transformer 111, the capacitor being able to discharge again. Since the emitters of the two transistors 104 and 105 are not connected in this type of circuit, a separate capacitor 109 and 109 'is added to each transistor need a separate charging circuit.
  • the polarity of the diodes 107 and 107 ' must be selected such that the capacitor 109 or 109' is charged positively at its end facing the control winding and negatively at the other end.
  • the polarity is reversed.
  • the capacitor 109 is charged during the half-wave of the AC output voltage of the transformer 111, during which the potential at the end d of the control winding 162 is positive compared to the potential at the end a. During this half-wave, a current also flows in the circuit containing the capacitor 109, the diode 142 and the resistor 110 and the winding part between the connections c and d. If the polarity of the voltage reverses, then the diodes 107 and 142 are blocked, while the voltage on the capacitor 109 in conjunction with the control voltage of the control winding 162 turns on the transistor 105. The operation of the control circuit for transistor 104 is corresponding.
  • the diodes 142 and 141 are required to maintain the capacitor DC current during the Take over blocking time of the respective transistors 105 and 104. Without the diodes 142 and 141, the transistors 105 and 104 could not be blocked.
  • the inductor 2 of the circuit of FIG. 2 can also be connected between the negative pole of the DC voltage source 1 and the connection point between the emitters of the transistors 4, 5 and the resistor 10 be arranged.
  • the inductor 102 can also be located elsewhere in the circuit.

Landscapes

  • Inverter Devices (AREA)
  • Dc-Dc Converters (AREA)

Abstract

1. Transistor inverted converter circuit comprising a transformer (11; 111) having a primary winding (11a; 111a) which can be connected to a d.c. voltage source (1; 101) in series with the emitter-collector path of a transistor (4, 5; 105), a secondary winding (11b; 111b) to which a load (15; 115) can be connected, and a control winding (6, 162) which ist connected by one terminal to the base of the transistor (4, 5; 105) and which is connected by another terminal to the emitter of the transistor (4, 5; 105) by way of a diode means (base-emitter path of 5 or 4; diode 142), and which is provided between the two terminals with a tapping (6d; c) which is connected to a terminal of a biasing capacitor (9, 109), the other terminal of which is connected by way of a resistor (10; 110) to the emitter of the transistor (4, 5; 105), further comprising a commutating capacitor (12; 112) which is part of an oscillator circuit determining the frequency of the converter circuit, and a charging circuit having a diode (7, 8; 107) for charging the biasing capacitor (9, 109) to a d.c. control voltage which is of a polarity for conduction by the transistor (4, 5; 105), characterised in that the primary winding of the transformer (11, 111) is connected to the d.c. voltage input by way of a choke (2; 102), that the charging circuit is a closed circuit which is formed by the diode (7, 8; 107) serving as rectifier means, the biasing capacitor (9, 109) and at least a part (6a-6d, 6b-d; a-c) of the control winding (6; 162), and that the resistor (10; 111) which is connected to the biasing capacitor (9; 109) is only part of the control circuit (Figure 1; Figure 3).

Description

Die Erfindung betrifft eine Transistorwechselrichterschaltung die beispielsweise dazu gedacht ist, Leucltstofflampen aus einem Gleichstromnetz mit Wechselstrom zu versorgen. Die Erfindung betrifft insbesondere eine solche Schaltung, bei der einerseits die Ausgangsspannung in guter Annäherung sinusförmig ist, andererseits aber die Transistoren nur geringe Schaltverluste aufweisen.The invention relates to a transistor inverter circuit which is intended, for example, to supply alternating current to fluorescent lamps from a direct current network. The invention relates in particular to such a circuit in which on the one hand the output voltage is sinusoidal in good approximation but on the other hand the transistors have only low switching losses.

Die bisher zumeist verwendete Schaltung für statische Wechselrichter, die aus einer Niedervolt-Gleichspannungsquelle gespeist werden, ist die sogenannte Gegentaktschaltung von Transistoren in Verbindung mit einem Transformator. Für höhere Speisespannungen, zum Beispiel oberhalb 150 Volt, wird vielfach die Brücken- oder die Halbbrückenschaltung verwendet, da sie den Einsatz von Transistoren niedrigerer Durchbruchspannung erlauben. Die Aussteuerung der Transistoren erfolgt üblicherweise mit Hilfe einer Rückkopplungs- oder Steuerwicklung des erwähnten Transformators, welche normalerweise eine Wechselspannung von etwa 2 bis 4 Volt liefert. Mit Hilfe eines Widerstands im Basiskreis wird dabei die Größe des Basisstroms der Transistoren entsprechend dem Laststrom eingestellt.The circuit used most often for static inverters, which are fed from a low-voltage DC voltage source, is the so-called push-pull circuit of transistors in connection with a transformer. The bridge or half-bridge circuit is often used for higher supply voltages, for example above 150 volts, since they allow the use of transistors with a lower breakdown voltage. The transistors are usually driven with the aid of a back Coupling or control winding of the transformer mentioned, which normally provides an AC voltage of about 2 to 4 volts. With the help of a resistor in the base circuit, the size of the base current of the transistors is set according to the load current.

Die Verluste in den Transistoren setzen sich aus den Verlusten im Durchschaltbetrieb (Kollektor-Emitter-Restspannunq· Kollektorstrom) und den Umschaltverlusten zusammen. Demgegenüber sind die Steuerverluste vernachlässigbar. Besonders kritisch werden die Umschaltverluste, wenn die Spannungsform der erzeugten Wechselspannung nicht rechteckig ist und/oder die Betriebsfrequenz hoch liegt, insbesondere höher als 500 Hz liegt. Da die Verluste und somit die Erwärmung der Transistoren proportional dem Kollektorstrom ist, beeinflußt natürlich auch die Leistung, welche über den Wechselrichter geführt wird, in starkem Maße diese Verluste.The losses in the transistors are made up of the losses in the switching operation (collector-emitter residual voltage · collector current) and the switching losses. In contrast, the tax losses are negligible. The switching losses become particularly critical if the voltage form of the alternating voltage generated is not rectangular and / or the operating frequency is high, in particular higher than 500 Hz. Since the losses and thus the heating of the transistors are proportional to the collector current, the power which is conducted via the inverter naturally also has a major influence on these losses.

Die ideale Spannungsform zur Aussteuerung von als Schalter betriebenen Transistoren ist die Rechteckform, die die schnellste und mit den geringsten Verlusten behaftete Umschaltung gewährleistet. Wenn jedoch die Aussteuerung der Transistoren mit Hilfe einer Rückkopplungswicklung erfolgt, dann steht eine rechteckförmige Steuerspannung nur zur Verfügung, wenn auch die Ausgangsspannung des Wechselrichters rechteckförmig ist. Für diese Ausgangsspannung ist jedoch in vielen Fällen eine Sinusform erwünscht. Beim Betrieb mit einer nicht rechteckförmigen Steuerspannung können die Umschaltverluste, insbesondere mit zunehmender Frequenz unzulässig hoch werden, wodurch neben einem schlechten elektrischen Wirkungsgrad eine starke Erwärmung der Transistoren eintritt, was zu schwierigen Kühlproblemen der Bauteile führt und gleichzeitig die Betriebssicherheit gefährdet. In der Praxis hilft man sich vielfach durch eine Überbemessung der Bauteile, was entsprechend teuer ist und zu großen Geräten führt.The ideal voltage form for modulating transistors operated as switches is the rectangular form, which guarantees the fastest switching with the least losses. However, if the transistors are driven with the aid of a feedback winding, then a rectangular control voltage is only available if the output voltage of the inverter is also rectangular. However, a sinusoidal shape is desired for this output voltage in many cases. When operating with a non-rectangular control voltage, the switching losses, in particular with increasing frequency, can become impermissibly high, which, in addition to poor electrical efficiency, leads to excessive heating of the transistors, which leads to difficult cooling problems of the components and at the same time endangers operational safety. In practice, one often helps one another by over-dimensioning the components, which is correspondingly expensive and leads to large devices.

Aus der amerikanischen Patentschrift 4,127,797 ist eine Lösung dieser Probleme bekannt, die in der Verwendung eines zusätzlichen Transformators besteht, der eine Steuerung des Transistors abhängig vom Ausgangsstrom statt von der Ausgangsspannung zuläßt. Der für diese Lösung erforderliche Mehraufwand an Bauteilen ist jedoch erheblich.A solution to these problems is known from US Pat. No. 4,127,797, which consists in the use of an additional transformer which allows the transistor to be controlled depending on the output current instead of the output voltage. However, the additional components required for this solution is considerable.

Die DE-OS 23 11 833 offenbart eine als Wechselrichter ausgebildete Konstantstromquelle, die für elektrostatische Anwendungen bei einer Ausgangsspannung von 4 bis 6,8 kV einen konstanten Ausgangsstrom in der Größenordnung von 100 bis 400 gA liefern soll. Es handelt sich um eine Gegentaktwechselrichterschaltung mit einem Lasttransformator, dessen Primärwicklung eine Mittelanzapfung aufweist, die direkt mit dem einen Pol der Gleichspannungsquelle verbunden ist. Je einer der Endanschlüsse der Primärwicklung ist mit dem Kollektor eines von zwei Transistoren verbunden, deren Emitter zusammengeschlossen und über einen Emitterwiderstand mit dem anderen Pol der Gleichspannungsquelle verbunden sind. Die beiden Endanschlüsse einer Steuerwicklung sind mit den Basen der beiden Transistoren verbunden. Eine Mittelanzapfung dieser Steuerwicklung ist mit einem Anschluß eines Kondensators verbunden, dessen anderer Anschluß mit dem Verbindungspunkt zwischen dem Emitterwiderstand und der Gleichspannungsquelle verbunden ist. Der Aufladekreis für den Kondensator enthält eine an die Gleichspannungsquelle angeschlossene Z-Diodenschaltung mit nachfolgendem Spannungsteiler. Aufgrund der gegenkoppelnden Wirkung des Emitterwiderstands ergibt sich der nahezu konstante Ausgangsstrom als Funktion der diesem Emitterwiderstand von der an dem Kondensator anliegenden Spannung und der Steuerwechselspannung eingeprägten Spannung. Diese regelnde Funktion setzt voraus, daß die Basis-Emitterspannung beider Transistoren stets unterhalb der Sättigungsspannung bleibt. Das heißt die beiden Transistoren der Gegentaktschaltung werden in ihren normalen Arbeitsbereich ausgesteuert. Dies ist in Anbetracht der auftretenden geringen Ströme ohne weiteres möglich. Bei höheren Strömen müssen jedoch die Transistoren eines Transistorwechselrichters als Schalter betrieben werden, die möglichst schnell zwischen ihrem Sperrzustand und ihrem Sättigungsgrad hin- und hergeschaltet werden. Die Klemmenspannung des Kondensators als Steuergleichspannung dient bei der Entgegenhaltung nicht dazu, einen Schaltvorgang der Transistoren zu beschleunigen, sondern dazu, deren Arbeitspunkt und damit die Höhe des Ausgangsstroms vorzugeben. Die Tatsache, daß beim Stand der Technik die Steuergleichspannung aus der Gleichspannung der Gleichspannungsquelle gewonnen wird, bedingt Verluste, insbesondere an den Widerständen.DE-OS 23 11 833 discloses a constant current source designed as an inverter, which is intended to deliver a constant output current in the order of 100 to 400 gA for electrostatic applications with an output voltage of 4 to 6.8 kV. It is a push-pull inverter circuit with a load transformer, the primary winding of which has a center tap which is connected directly to one pole of the DC voltage source. One of the end connections of the primary winding is connected to the collector of one of two transistors, the emitters of which are connected together and connected to the other pole of the DC voltage source via an emitter resistor. The two end connections of a control winding are connected to the bases of the two transistors. A center tap of this control winding is connected to one terminal of a capacitor, the other terminal of which is connected to the connection point between the emitter resistor and the DC voltage source. The charging circuit for the capacitor contains a Z-diode circuit connected to the DC voltage source with a subsequent voltage divider. Due to the negative feedback effect of the emitter resistor, the almost constant output current results as a function of the voltage impressed on this emitter resistor by the voltage applied to the capacitor and the AC control voltage. This regulating function presupposes that the base-emitter voltage of both transistors always remains below the saturation voltage. That means the two transistors of the push-pull circuit are driven into their normal working range. In view of the low currents that occur, this is readily possible. At higher currents However, the transistors of a transistor inverter must be operated as switches, which are switched back and forth as quickly as possible between their blocking state and their degree of saturation. In the citation, the terminal voltage of the capacitor as DC control voltage is not used to accelerate a switching process of the transistors, but rather to specify their operating point and thus the level of the output current. The fact that the control DC voltage is obtained from the DC voltage of the DC voltage source in the prior art causes losses, in particular at the resistors.

Aus der DE-OS 22 25 073 ist ein Wechselrichter bekannt, bei dem die Basissteuerung der Transistoren von Schwankungen der Speisegleichspannung unabhängig sein soll. Zu diesem Zweck enthält jeder Transistor zwei parallele Steuerkreise, von denen jeweils einer die Reihenschaltung einer Steuerwicklung mit einem Kondensator aufweist. Der Kondensator ist über eine Diode an eine im Gleichstromkreis liegende Drossel angeschlossen, die mit ihrem Spannungsabfall als Ladestromquelle dient. Hierdurch soll durch den bei steigender Batteriespannung kleiner werdenden Spannungsabfall an der Drossel eine entsprechend qerinqe Aussteuerung der Transistoren erreicht werden. Eine solche Reaeluna setzt voraus, daß die Transistoren nicht im Sättigungs- .betrieb arbeiten, sondern einen Arbeitspunkt in normalen Betriebsbereich der Kennlinie besitzen. Wegen der hierbei auftretenden Verluste in den Transistoren ist eine solche Schaltung nur für kleine Leistungen einsetzbar.From DE-OS 22 25 073 an inverter is known in which the basic control of the transistors is to be independent of fluctuations in the DC supply voltage. For this purpose, each transistor contains two parallel control circuits, one of which has the series connection of a control winding with a capacitor. The capacitor is connected via a diode to a choke in the DC circuit, which serves as a charging current source with its voltage drop. This is to achieve a corresponding qerin q e modulation of the transistors due to the voltage drop at the choke becoming smaller as the battery voltage increases. Such a Reaeluna assumes that the transistors do not operate in saturation mode, but have an operating point in the normal operating range of the characteristic. Because of the losses in the transistors that occur, such a circuit can only be used for low powers.

Aus der DE-AS 20 18 152 ist ein Wechselrichter bekannt, bei dem die im Gegentaktbetrieb arbeitenden Transistoren, denen jeweils eine gesonderte Steuerwicklung zugeordnet ist, einen diese Steuerwicklung in Reihe mit einem Kondensator aufweisenden Steuerkreis besitzen. Der Kondensator wird hierbei auf eine für den zugehörigen Transistor in Sperrichtung gepolte Spannung aufgeladen. Dem Kondensator parallel geschaltet ist die Reihenschaltung aus einem Widerstand und einer Diode, so daß sich der Kondensator nur auf eine im wesentlichen der Durchlaßspannung der Diode entsprechende Spannung aufladen kann. Hierdurch kann eine Verringerung der Schaltverluste der Transistoren nicht erzielt werden.From DE-AS 20 18 152 an inverter is known in which the transistors operating in push-pull operation, each of which is assigned a separate control winding, have a control circuit having this control winding in series with a capacitor. The capacitor is charged to a reverse polarity for the associated transistor. The capacitor The series circuit comprising a resistor and a diode is connected in parallel, so that the capacitor can only be charged to a voltage which essentially corresponds to the forward voltage of the diode. As a result, the switching losses of the transistors cannot be reduced.

Aufgabe der Erfindung ist es, eine Transistorwechselrichterschaltung zu schaffen, die auch für höhere Leistungen geeignet ist und bei möglichst sinusförmiger Ausgangsspannung geringe Verluste aufweist.The object of the invention is to provide a transistor inverter circuit which is also suitable for higher powers and which has low losses with an output voltage which is as sinusoidal as possible.

Diese Aufgabe wird erfindungsgemäß dadurch gelöst, daß die Primärwicklung des Lasttransformators über eine Drossel an die Gleichspannungsquelle anschaltbar ist, und daß der Aufladekreis ein von der Gleichrichterdiode,dem Kondensator und wenigstens einem Teil der Steuerwicklung gebildeter geschlossener Stromkreis ist.This object is achieved in that the primary winding of the load transformer can be connected to the DC voltage source via a choke, and that the charging circuit is a closed circuit formed by the rectifier diode, the capacitor and at least part of the control winding.

Die erfindungsgemäß vorgesehene Drossel bildet mit dem Stromwendekondensator einen Resonanzkreis der bewirkt, daß die Spannung am Eingang des Wechselrichters periodisch auf Null geht, daß es sich bei dieser Spannung also um eine pulsierende Gleichspannung.handelt. In demselben Moment zu dem diese pulsierende Gleichspannung Null ist, ist auch die Steuerwechselspannung Null, so daß die Transistoren im spannungsfreien Zustand schnell und verlustarm geschaltet werden, wobei kurzzeitig beide Transistoren von der Steuergleichspannung durchgesteuert werden können. Da die Spannung an der Primärwicklung Null ist, ist das gleichzeitige Durchsteuern beider Transistoren in diesem Moment völlig unkritisch.The choke provided according to the invention forms a resonant circuit with the current-reversing capacitor, which causes the voltage at the input of the inverter to periodically drop to zero, so that this voltage is a pulsating DC voltage. At the same moment that this pulsating DC voltage is zero, the control AC voltage is also zero, so that the transistors in the voltage-free state are switched quickly and with little loss, and both transistors can be controlled by the DC control voltage for a short time. Since the voltage on the primary winding is zero, the simultaneous turning on of both transistors at this moment is completely uncritical.

Die Erfindung wird durch zwei Ausführungsbeispiele anhand der beiliegenden Zeichnungen näher erläutert. Es zeigen:

  • Fig. 1 eine Transistorwechselrichterschaltung gemäß der Erfindung in Form einer Gegentaktschaltung,
  • Fig. 2 Signalverläufe in der Schaltung von Fig. 1, nämlich
  • Fig. 2a den Basisstrom eines der Transistoren,
  • Fig. 2b die Summe der Basisströme beider Transistoren,
  • Fig. 2c den Kollektorstrom eines der Transistoren und
  • Fig. 2d die Spannung an der Primärwicklung des Transformators,
  • Fig. 3 eine Transistorwechselrichterschaltung gemäß der Erfindung in Form einer Halbbrückenschaltung.
The invention is illustrated by two exemplary embodiments with reference to the accompanying drawings. Show it:
  • Fig. 1 g is a transistor inverter circuit of the invention in the form of a Gegentaktschaltun,
  • Fig. 2 waveforms in the circuit of Fig. 1, namely
  • 2a the base current of one of the transistors,
  • 2b the sum of the base currents of both transistors,
  • Fig. 2c the collector current of one of the transistors and
  • 2d the voltage on the primary winding of the transformer,
  • Fig. 3 shows a transistor inverter circuit according to the invention in the form of a half-bridge circuit.

Fig. 1 zeigt eine erfindungsgemäße Transistorwechselrichterschaltung in Form einer Gegentaktschaltung. Ein Transformator 11 umfaßt eine Primärwicklung 11a und eine Sekundärwicklung 11b. Die Primärwicklung 11a besitzt eine Mittelanzapfung 11c, die über eine Drossel 2 an den positiven Pol einer Gleichspannungsquelle 1 angeschlossen ist. Parallel zur Primärwicklung 11a des Transformators 11 ist ein Kondensator 12 geschaltet. Ein Ende der Primärwicklung 11a ist mit dem Kollektor eines Transistors 4, das andere Ende der Primärwicklung 11a mit dem Kollektor eines Transistors 5 verbunden. Die Emitter beider Transistoren sind zusammengeschlossen und mit dem negativen Pol der Gleichspannungsquelle 1 verbunden. Parallel zur Gleichspannungsquelle 1 liegt ein Kondensator 13 als Teil einer Siebschaltung. Eine Steuerwicklung 6 des Transformators 11 besitzt zwei Enden 6a bzw. 6b sowie drei Anzapfungen 6c, 6d bzw. 6e. Die Anzapfung 6d ist mit einem Anschluß eines Kondensators 9 verbunden. Der andere Anschluß des Kondensators 9 ist über einen Widerstand 10 mit dem Verbindungspunkt der beiden Emitter der Transistoren 4 und 5 verbunden. Die Basis des Transistors 4 ist mit der Anzapfung 6c, die Basis des Transistors 5 mit der Anzapfung 6e der Steuerwicklung 6 verbunden. Ein Anschwingwiderstand 3 verbindet die Basis des Transistors 4 mit dessen Kollektor. Zwei Dioden 7 und 8 sind mit ihrer Anode an den Verbindungspunkt zwischen dem Kondensator 9 und dem Widerstand 10 angeschlossen. Die Kathode der Diode 7 ist mit dem einen Ende, die Kathode der Diode 8 mit dem anderen Ende der Steuerwicklung 6 verbunden. An die Sekundärwicklung 11b des Transformators 11 ist eine Last 15 angeschlossen, bei der es sich um eine Leuchtstofflampe handeln kann.1 shows a transistor inverter circuit according to the invention in the form of a push-pull circuit. A transformer 11 comprises a primary winding 11a and a secondary winding 11b. The primary winding 11a has a center tap 11c which is connected via a choke 2 to the positive pole of a DC voltage source 1. A capacitor 12 is connected in parallel with the primary winding 11a of the transformer 11. One end of the primary winding 11a is connected to the collector of a transistor 4, the other end of the primary winding 11a to the collector of a transistor 5. The emitters of both transistors are connected together and connected to the negative pole of the DC voltage source 1. A capacitor 13 as part of a filter circuit is connected in parallel to the DC voltage source 1. A control winding 6 of the transformer 11 has two ends 6a and 6b and three taps 6c, 6d and 6e. The An tap 6d is connected to a connection of a capacitor 9. The other connection of the capacitor 9 is connected via a resistor 10 to the connection point of the two emitters of the transistors 4 and 5. The base of the transistor 4 is connected to the tap 6c, the base of the transistor 5 to the tap 6e of the control winding 6. A start-up resistor 3 connects the base of transistor 4 to its collector. Two diodes 7 and 8 are connected with their anode to the connection point between the capacitor 9 and the resistor 10. The cathode of the diode 7 is connected to one end, the cathode of the diode 8 to the other end of the control winding 6. A load 15, which can be a fluorescent lamp, is connected to the secondary winding 11b of the transformer 11.

Wird die Gleichspannungsquelle 1 mit Hilfe eines nicht dargestellten Schalters eingeschaltet, dann fließt zunächst ein Strom von wenigen mA über den Anschwingwiderstand 3 zur Basis des Transistors 4 und über die Steuerwicklung 6 zur Basis des Transistors 5. Infolge der hierdurch bedingten unterschiedlichen Ansteuerung und der zwangsläufig nicht identischen Transistoreigenschaften beginnt der Wechselrichter zu schwingen. Hierbei werden abwechselnd die beiden Hälften der Primärwicklung 11a des Transformators 11 über die Drossel 2 und jeweils einen der Transistoren 4 bzw. 5 mit der Gleichspannungsquelle 1 verbunden. Die Frequenz dieser Schwingungen wird in erster Linie von dem aus der Drossel 2 und dem Kondensator 12 gebildeten Resonanzkreis bestimmt. Sowohl in der Sekundärwicklung 11b als auch in der Steuerwicklung 6 werden sinusförmige Spannungen induziert. Die den Transistor 4 steuernde Spannung der Wicklung 6c-6d der Steuerwickluna 6 und die den Transistor 5 steuernde Spannung der Wicklung 6e-6d der Steuerwicklung 6 sind gegenphasig. Der Kondensator 9 wird über die beiden Dioden 7, 8 auf eine im wesentlichen konstante Spannung aufgeladen, die an dem dem Widerstand 10 zugewandten Ende des Kondensators negativ und am anderen Ende positiv ist. Diese Gleichspannung am Kondensator 9 überlagert sich den von der Steuerwicklung gelieferten Steuerspannungen für die Transistoren 4 bzw. 5, Während des Nulldurchgangs der Steuerwechselspannung können beide Transistoren 4 und 5 vorübergehend gleichzeitig leitend sein. Da zu dieser Zeit aber auch die Spannung an der Primärwicklung 11a Null ist, kann kein Strom durch die Reihenschaltung beider Transistoren fließen. Wird nach einem solchen Spannungsnulldurchgang beispielsweise das Potential an der Anzapfung 6c positiv gegenüber dem an der Anzapfung 6d, und das Potential an der Anzapfung 6e negativ gegenüber dem der Anzapfung 6d, dann wird der Transistor 4 innerhalb sehr kurzer Zeit in den Sättigungszustand gesteuert, während der Transistor 5 gesperrt wird. Hierfür reichen bereits sehr geringe Potentialunterschiede an den Anzapfungen 6c bzw. 6e aus. Erhöht sich nämlich das Potential an der Anzapfung 6c, dann erhöht sich damit auch das Potential am Verbindungspunkt beider Emitter der Transistoren 4 und 5. In Verbindung mit der Abnahme des Potentials an der Anzapfung 6e führt dies dazu, daß die Basis-Emitter-Strecke des Transistors 5 in Sperrichtung vorgespannt wird. Nach dem nächsten Nulldurchgang der Steuerwechselspannung kehren sich die Verhältnisse um, daß heißt der Steuergleichstrom aus dem Kondensator 9 kommutiert von der Basis-Emitter-Strecke des Transistors 4 auf die des Transistors 5. Die Ladespannung des Kondensators 9 und die Größe des Widerstands 10 können so gewählt werden, daß bereits der Gleichstrom aus dem Kondensator 9 ausreicht, die Transistoren in die Sättigung zu steuern. Der diesen Gleichstrom überlagerte Steuerwechselstrom bewirkt dann in erster Linie nur noch die Kommutierung des Stroms zwischen den beiden Steuerkreisen.If the DC voltage source 1 is switched on with the aid of a switch (not shown), then a current of a few mA initially flows through the starting resistor 3 to the base of the transistor 4 and via the control winding 6 to the base of the transistor 5. As a result of the different actuation caused by this and not necessarily The inverter begins to oscillate with identical transistor properties. The two halves of the primary winding 11a of the transformer 11 are alternately connected to the DC voltage source 1 via the choke 2 and one of the transistors 4 and 5, respectively. The frequency of these vibrations is primarily determined by the resonance circuit formed by the choke 2 and the capacitor 12. Sinusoidal voltages are induced both in the secondary winding 11b and in the control winding 6. The voltage controlling the transistor 4 of the winding 6c-6d of the control winding 6 and the voltage controlling the transistor 5 of the winding 6e-6d of the control winding 6 are opposite phase. The capacitor 9 is charged via the two diodes 7, 8 to an essentially constant voltage which is negative at the end of the capacitor facing the resistor 10 and positive at the other end. This DC voltage at the capacitor 9 is superimposed on the control voltages for the transistors 4 and 5 supplied by the control winding. During the zero crossing of the control AC voltage, both transistors 4 and 5 can be temporarily conductive at the same time. However, since the voltage at the primary winding 11a is also zero at this time, no current can flow through the series connection of both transistors. If, for example, after such a voltage zero crossing, the potential at the tap 6c is positive compared to that at the tap 6d, and the potential at the tap 6e becomes negative compared to that of the tap 6d, the transistor 4 is controlled into the saturation state within a very short time, during which Transistor 5 is blocked. For this, very small potential differences at the taps 6c and 6e are sufficient. If the potential at the tap 6c increases, then the potential at the connection point of the two emitters of the transistors 4 and 5 also increases. In connection with the decrease in the potential at the tap 6e, this leads to the base-emitter path of the Transistor 5 is biased in the reverse direction. After the next zero crossing of the control AC voltage, the situation is reversed, that is to say the control direct current from the capacitor 9 commutates from the base-emitter path of the transistor 4 to that of the transistor 5. The charging voltage of the capacitor 9 and the size of the resistor 10 can thus be chosen so that the direct current from the capacitor 9 is sufficient to control the transistors into saturation. The control alternating current superimposed on this direct current then primarily only causes the commutation of the current between the two control circuits.

Auf diese Weise wird sichergestellt, daß trotz einer sinusförmigen Steuerspannung ein Basisstrom für die Transistoren 4 und 5 auftritt, der zumindest in den wesentlichen Bereichen sehr steile Flanken besitzt und kurze Schaltzeiten der Transistoren gewährleistet.In this way it is ensured that, despite a sinusoidal control voltage, a base current occurs for the transistors 4 and 5, which has very steep edges at least in the essential areas and ensures short switching times of the transistors.

Die beschriebene Schaltung bezieht sich auf die Verwendung von npn-Transistoren. Bei einer Anordnung mit pnp-Transistoren muß die Steuergleichspannung umgekehrte Polarität aufweisen.The circuit described relates to the use of npn transistors. In the case of an arrangement with pnp transistors, the control direct voltage must have the opposite polarity.

Einen besonders großen Gewinn bringt die erfindungsgemäße Schaltung bei einem Wechselrichter, bei dem der Transformator als Streufeldtransformator ausgebildet ist und die Frequenz etwa 20 kHz beträgt, wobei als Last 15 eine Leuchtstofflampe angeschlossen ist. Dabei dient der Stromwendekondensator 12 der Blindstromkompensation und zugleich als Schwingkondensator in Verbindung mit der Drossel 2, wodurch ein Inversstrom von den Transistoren ferngehalten werden kann. Die Transistoren arbeiten bei diesem Betrieb im Schaltmoment mit der steilen Stromflanke eines Rechteckstromes und damit praktisch verlustfrei, wodurch ein hoher elektrischer Wirkungsgrad erzielt wird, was zum Beispiel bei Fahrzeugbeleuchtungen und in Notstromeinrichtungen in Verbindung mit aus einer Batterie gespeisten Leuchtstofflampen von großer Bedeutung ist.The circuit according to the invention brings a particularly large gain to an inverter in which the transformer is designed as a stray field transformer and the frequency is approximately 20 k H z, a fluorescent lamp being connected as the load 15. The reversing current capacitor 12 serves for reactive current compensation and at the same time as an oscillating capacitor in connection with the choke 2, as a result of which an inverse current can be kept away from the transistors. In this operation, the transistors operate at the switching moment with the steep current flank of a square-wave current and are therefore practically loss-free, as a result of which a high electrical efficiency is achieved, which is of great importance, for example, in vehicle lighting and in emergency power systems in connection with fluorescent lamps fed from a battery.

Fig. 2a stellt den Verlauf des Basisstroms eines der beiden Transistoren über der Zeit dar. Man erkennt, daß einem im wesentlichen rechteckförmigen Grundstrom eine sinusförmige Stromkuppe aufgesetzt ist. Fig. 2b stellt den am Widerstand 10 gemessenen Verlauf der Summe der Basisströme beider Transistoren dar. Aus dieser Darstellung ist besonders gut zu erkennen, daß der Gleichstrom aus dem Kondensator 9 ohne Unterbrechung im Bereich des Nulldurchgangs der Wechselspannung von einem Transistor auf den anderen kommutiert. Aus Fig. 2b ist außerdem das Verhältnis des Steuergleichstroms zum Steuerwechselstrom deutlich erkennbar. Man beachte, daß die Maßstäbe der Ordinate in den Fig. 2a und 2b, auf der der Strom aufgetragen ist, unterschiedlich sind. Fig. 2c zeigt den zugehörigen Kollektorstrom Ic, dessen Verlauf die erwünschten steilen Schaltflanken erkennen läßt. Die Spannung Uc am Kondensator 12 ist in Fig. 2d dargestellt. Sie besitzt in guter Annäherung den erwünschten sinusförmigen Verlauf. Bei einem praktischen Ausführungsbeispiel der Erfindung gemäß Fig. 1 betrug die Spannung der Gleichspannungsquelle 1 110 Volt. Der Kondensator 13 betrug 1 üF, der Kondensator 12 8200 pf. Der Wert des Widerstands 10 war 68 Ohm, der des Kondensators 9 1gF. Der Wert des Anschwingwiderstands 3 war 27 kOhm. Die Drossel 2 war eine Ferritdrossel mit 350 Windungen. Zwischen den Enden der Steuerwicklung 6 ergab sich eine Spannung von etwa 8 Volt. An die Sekundärwicklung 11b konnte eine Leuchtstofflampe mit 40 Watt oder zwei Lampen mit je 20 Watt angeschlossen werden. Als Transistoren wurde der Typ MJE 13005 der Firma Motorola Inc. verwendet.2a shows the course of the base current of one of the two transistors over time. It can be seen that a sinusoidal current crest is placed on an essentially rectangular base current. 2b shows the course of the sum of the base currents of the two transistors measured at the resistor 10. It can be seen particularly well from this illustration that the direct current from the capacitor 9 is without interruption in the region of the zero crossing of the changes voltage commutated from one transistor to the other. The ratio of the direct control current to the alternating control current can also be clearly seen from FIG. 2b. It should be noted that the scales of the ordinate in FIGS. 2a and 2b on which the current is plotted are different. 2c shows the associated collector current Ic, the course of which shows the desired steep switching edges. The voltage Uc across the capacitor 12 is shown in Fig. 2d. In good approximation, it has the desired sinusoidal shape. In a practical embodiment of the invention shown in FIG. 1, the voltage of the DC voltage source 1 was 110 volts. The capacitor 13 was 1 üF, the capacitor 12 8200 pf. The value of resistor 10 was 68 ohms, that of capacitor 9 1gF. The value of the starting resistance 3 was 27 kOhm. Choke 2 was a ferrite choke with 350 turns. A voltage of approximately 8 volts resulted between the ends of the control winding 6. A fluorescent lamp with 40 watts or two lamps with 20 watts each could be connected to the secondary winding 11b. The type MJE 13005 from Motorola Inc. was used as transistors.

Fig. 3 zeigt eine erfindungsgemäße Transistorwechselrichterschaltung in Form einer Halbbrückenschaltung. Die Primärwicklung eines Transformators 111a ist in Reihe mit einer Drossel 102, einem Kondensator 112 und einem Transistor 105 an die Gleichspannungsquelle 101 angeschlossen. Parallel zur Gleichspannungsquelle 101 liegt ein Siebkondensator 113. Der Emitter eines Transistors 104 ist mit dem Kollektor des Transistors 105 verbunden. Der Kollektor des Transistors 104 ist mit dem Verbindungspunkt zwischen dem Kondensator 112 und der Drossel 102 verbunden. Der Transformator 111 besitzt zwei Steuerwicklungen 161 und 162. Jede der Steuerwicklungen enthält drei Wicklungsteile und Anschlüsse a bis d. Der Anschluß d der Steuerwicklung 162 ist mit der Anode einer Diode 142 verbunden, deren Kathode an den Minuspol der Gleichspannungsquelle 101 angeschlossen ist. Der Anschluß c der Steuerwicklung 162 ist mit einem Ende eines Kondensators 109 verbunden, dessen anderes Ende über einen Widerstand 110 mit der Verbindung zwischen dem Emitter des Transistors 105 und dem Minuspol der Gleichspannungsquelle 101 verbunden ist. Die Basis des Transistors 105 ist mit dem Anschluß b der Steuerwicklung 162 verbunden. Der Verbindungspunkt zwischen dem Widerstand 110 und dem Kondensator 109 ist mit der Anode einer Diode 107 verbunden, deren Kathode an den Anschluß a der Steuerwicklung 162 angeschlossen ist. In gleicher Weise ist der Anschluß d der Steuerwicklung 161 über eine Diode 141 mit dem Verbindungspunkt zwischen dem Emitter des Transistors 104 und dem Kollektor des Transistors 105 verbunden. Der Anschluß c ist mit dem einen Ende eines Kondensators 109' verbunden, dessen anderes Ende über einen Widerstand 110' an den Emitter des Transistors 104 angeschlossen ist. Die Basis des Transistors 104 ist mit dem Anschluß b der Steuerwicklung 161 verbunden. Eine Diode 107' verbindet den Verbindungspunkt zwischen dem Kondensator 109' und dem Widerstand 110' mit dem Anschluß a der Steuerwicklung 161.3 shows a transistor inverter circuit according to the invention in the form of a half-bridge circuit. The primary winding of a transformer 111a is connected in series with a choke 102, a capacitor 112 and a transistor 105 to the DC voltage source 101. A filter capacitor 113 is located parallel to the DC voltage source 101. The emitter of a transistor 104 is connected to the collector of the transistor 105. The collector of transistor 104 is connected to the connection point between capacitor 112 and choke 102. The transformer 111 has two control windings 161 and 162. Each of the control windings contains three winding parts and connections a to d. The terminal d of the control winding 162 is connected to the anode of a diode 142, the cathode of which is connected to the negative pole of the DC voltage source 101 closed is. The terminal c of the control winding 162 is connected to one end of a capacitor 109, the other end of which is connected via a resistor 110 to the connection between the emitter of the transistor 105 and the negative pole of the DC voltage source 101. The base of transistor 105 is connected to terminal b of control winding 162. The connection point between the resistor 110 and the capacitor 109 is connected to the anode of a diode 107, the cathode of which is connected to the terminal a of the control winding 162. In the same way, the terminal d of the control winding 161 is connected via a diode 141 to the connection point between the emitter of the transistor 104 and the collector of the transistor 105. Terminal c is connected to one end of a capacitor 109 ', the other end of which is connected to the emitter of transistor 104 via a resistor 110'. The base of transistor 104 is connected to terminal b of control winding 161. A diode 107 'connects the connection point between the capacitor 109' and the resistor 110 'to the terminal a of the control winding 161.

Die grundsätzliche, an sich bekannte Wirkungsweise einer solchen Halbbrückenschaltung besteht darin, daß während des einen Halbzyklus die Primärwicklung 111a durch den Transistor 105 über die Drossel 102 und den Kondensator 112 an die Gleichspannungsquelle 101 angeschlossen wird, wobei sich der Kondensator 112 auflädt. Während dieses Halbzyklus ist der Transistor 104 gesperrt. Während des nachfolgenden Halbzyklus wird der Transistor 105 gesperrt, während der Transistor 104 den Kondensator 112 über die Primärwicklung 111a des Transformators 111 kurzschließt, wobei sich der Kondensator wieder entladen kann. Da bei dieser Schaltungsart die Emitter der beiden Transistoren 104 und 105 nicht verbunden sind, wird für jeden Transistor ein gesonderter Kondensator 109 bzw. 109' mit zugehörigem gesonderten Aufladekreis benötigt. Die Wirkungsweise bezüglich der Ansteuerung ist bei der Ausführungsform nach Fig. 3 für die beiden Transistoren im Prinzip genauso wie für die Transistoren der Fig. 1. Der Unterschied besteht darin, daß der vom Kondensator 109 bzw. 109' gelieferte Gleichstrom hier nicht von einem Transistor auf den anderen, sondern vom Transistor 105 auf die Diode 142 bzw. vom Transistor 104 auf die Diode 141 korlmutiert. Durch die Widerstände 110 bzw. 110' werden die Basisströme für die Transistoren 105 bzw. 104 eingestellt. Auch bei dieser Ausführungsform wird die zur Aufladung der Kondensatoren 109 bzw. 109' erforderliche Spannung über Dioden 107 bzw. 107' aus der Steuerwicklung gewonnen. Die Polarität der Dioden 107 bzw. 107' muß im Fall der dargestellten npn-Transistoren so gewählt sein, daß der Kondensator 109 bzw. 109' an seinem der Steuerwicklung zugewandten Ende positiv und am anderen Ende negativ aufgeladen wird. Bei Verwendung von pnp-Transistoren ist die Polarität umgekehrt.The basic mode of operation of such a half-bridge circuit, which is known per se, is that during one half cycle the primary winding 111a is connected to the DC voltage source 101 through the transistor 105 via the inductor 102 and the capacitor 112, the capacitor 112 being charged. Transistor 104 is off during this half cycle. During the subsequent half cycle, transistor 105 is blocked, while transistor 104 short-circuits capacitor 112 via primary winding 111a of transformer 111, the capacitor being able to discharge again. Since the emitters of the two transistors 104 and 105 are not connected in this type of circuit, a separate capacitor 109 and 109 'is added to each transistor need a separate charging circuit. The mode of operation with respect to the control in the embodiment according to FIG. 3 is in principle the same for the two transistors as for the transistors in FIG. 1. The difference is that the direct current supplied by the capacitor 109 or 109 'is not from a transistor here l mutated kor to the other, but by the transistor 105 to the diode 142 and the transistor 104 to the diode 141st The base currents for the transistors 105 and 104 are set by the resistors 110 and 110 ', respectively. In this embodiment too, the voltage required to charge the capacitors 109 and 109 'is obtained from the control winding via diodes 107 and 107'. In the case of the npn transistors shown, the polarity of the diodes 107 and 107 'must be selected such that the capacitor 109 or 109' is charged positively at its end facing the control winding and negatively at the other end. When using pnp transistors, the polarity is reversed.

Der Kondensator 109 wird während der Halbwelle der Ausgangswechselspannung des Transformators 111 aufgeladen, während derer das Potential am Ende d der Steuerwicklung 162 positiv gegenüber dem Potential am Ende a ist. Während dieser Halbwelle fließt außerdem ein Strom in dem den Kondensator 109, die Diode 142 und den Widerstand 110 sowie den Wicklungsteil zwischen den Anschlüssen c und d enthaltenden Stromkreis. Kehrt sich die Polarität der Spannung um, dann werden die Dioden 107 und 142 gesperrt, während die Spannung am Kondensator 109 in Verbindung mit der Steuerspannung der Steuerwicklung 162 den Transistor 105 durchsteuert. Die Wirkungsweise des Steuerkreises für den Transistor 104 ist entsprechend. Es sei nocheinmal betont, daß die Dioden 142 bzw. 141.erforderlich sind, um den Kondensatorgleichstrom während der Sperrzeit der jeweiligen Transistoren 105 bzw. 104 zu übernehmen. Ohne die Dioden 142 bzw. 141 könnten die Transistoren 105 bzw. 104 nicht gesperrt werden.The capacitor 109 is charged during the half-wave of the AC output voltage of the transformer 111, during which the potential at the end d of the control winding 162 is positive compared to the potential at the end a. During this half-wave, a current also flows in the circuit containing the capacitor 109, the diode 142 and the resistor 110 and the winding part between the connections c and d. If the polarity of the voltage reverses, then the diodes 107 and 142 are blocked, while the voltage on the capacitor 109 in conjunction with the control voltage of the control winding 162 turns on the transistor 105. The operation of the control circuit for transistor 104 is corresponding. It should be emphasized again that the diodes 142 and 141 are required to maintain the capacitor DC current during the Take over blocking time of the respective transistors 105 and 104. Without the diodes 142 and 141, the transistors 105 and 104 could not be blocked.

Die Erfindung wurde vorstehend anhand von zwei Ausführungsbeispielen erläutert. Sie ist jedoch nicht auf diese speziellen Ausführungsbeispiele beschränkt. Vielmehr sind für Fachleute zahlreiche Änderunqen möglich, ohne den Rahmen der Erfindung zu verlassen. Beispielsweise kann die Drossel 2 der Schaltung von Fig. 2 statt in der Verbindung zwischen der Mittelanzapfung 11c des Transformators 11 und dem Pluspol der Gleichspannungsquelle 1 auch zwischen dem Minuspol der Gleichspannungsquelle 1 und dem Verbindungspunkt zwischen den Emittern der Transistoren 4, 5 und dem Widerstand 10 angeordnet sein. Entsprechend kann auch bei der Ausführungsform nach Fig. 3 die Drossel 102 an anderer Stelle des Stromkreises liegen.The invention was explained above using two exemplary embodiments. However, it is not restricted to these special exemplary embodiments. Rather, numerous changes are possible for experts without departing from the scope of the invention. For example, instead of in the connection between the center tap 11c of the transformer 11 and the positive pole of the DC voltage source 1, the inductor 2 of the circuit of FIG. 2 can also be connected between the negative pole of the DC voltage source 1 and the connection point between the emitters of the transistors 4, 5 and the resistor 10 be arranged. Correspondingly, in the embodiment according to FIG. 3, the inductor 102 can also be located elsewhere in the circuit.

Claims (5)

1. Transistorwechselrichterschaltung, umfassend einen Transformator (11, 111) mit einer Primärwicklung (11a, 111a), die in Reihenschaltung mit der Emitter-Kollektorstrecke eines Transistors (4, 5, 105) an eine Gleichspannungsquelle (1, 101) anschließbar ist, mit einer Sekundärwicklung (11b, 111b), an die eine Last (15, 115) anschließbar ist, und mit einer Steuerwicklung (6, 162), die mit einem Anschluß (6e, b) an die Basis des Transistors (5, 105) angeschlossen ist, die mit einem anderen Anschluß (6c, d) über eine Diode (Basis-Emitterstrecke von 4, 142) an den Emitter des Transistors (5, 105) angeschlossen ist, und die zwischen beiden Anschlüssen eine Anzapfung (6d, c) aufweist, welche mit einem Anschluß eines Kondensators (9, 109) verbunden ist, dessen anderer Anschluß über einen Widerstand (10, 110) an den Emitter des Transistors (5, 105) angeschlossen ist, umfassend ferner einen Stromwendekondensator (12, 112) und einen Aufladekreis mit einer Gleichrichterdiode (7, 107) zur Aufladung des Kondensators (12, 112) auf eine für den Transistor (5, 105) in Durchlaßrichtunq gepolte Steuergleichspannung, dadurch gekennzeichnet , daß die Primärwicklung (11a, 111a) des Lasttransformators (11, 111) über eine Drossel (2, 102) an die Gleichspannungsquelle (1, 101) anschaltbar ist, und daß der Aufladekreis ein von der Gleichrichterdiode (7, 107) dem Kondensator (9, 109) und wenigstens einem Teil der Steuerwicklung (6d-6b, b-d) gebildeter geschlossener Stromkreis ist.1. transistor inverter circuit comprising a transformer (11, 111) with a primary winding (11a, 111a) which can be connected in series with the emitter-collector path of a transistor (4, 5, 105) to a DC voltage source (1, 101) a secondary winding (11b, 111b) to which a load (15, 115) can be connected, and with a control winding (6, 162) connected to the base of the transistor (5, 105) with a connection (6e, b) which is connected to another terminal (6c, d) via a diode (base-emitter path of 4, 142) to the emitter of the transistor (5, 105), and which has a tap (6d, c) between the two terminals which is connected to one terminal of a capacitor (9, 109), the other terminal of which is connected via a resistor (10, 110) to the emitter of the transistor (5, 105), further comprising a current reversing capacitor (12, 112) and one Charging circuit with a rectifier diode (7, 107) for charging g of the capacitor (12, 112) to one for the transistor (5, 105) in pass-through Tunq polarized control DC voltage, characterized in that the primary winding (11a, 111a) of the load transformer (11, 111) can be connected to the DC voltage source (1, 101) via a choke (2, 102), and that the charging circuit is connected to the rectifier diode ( 7, 107) the capacitor (9, 109) and at least part of the control winding (6d-6b, bd) is a closed circuit. 2. Transistorwechselrichterschaltung nach Anspruch 1, dadurch gekennzeichnet , daß es sich um eine Gegentaktschaltung handelt, bei der die Primärwicklung (11a) des Lasttransformators (11) einen an einen Pol der Gleichspannungsquelle (1) angeschlossenen Mittelabgriff (6d) aufweist und die beiden Enden (6a, 6b) der Primärwicklung abwechselnd über einen ersten und einen zweiten Transistor (4, 5) an den anderen Pol der Gleichspannungsquelle (1) anschaltbar sind, und daß die den anderen Anschluß (6c) der Steuerwicklung (6) mit dem Emitter des ersten Transistors (4) verbindende Diode die Basis-Emitterstrecke des zweiten Transistors (5) ist.2. Transistor inverter circuit according to claim 1, characterized in that it is a push-pull circuit in which the primary winding (11a) of the load transformer (11) has a center tap (6d) connected to one pole of the DC voltage source (1) and the two ends ( 6a, 6b) of the primary winding can be connected alternately via a first and a second transistor (4, 5) to the other pole of the DC voltage source (1), and that the other terminal (6c) of the control winding (6) with the emitter of the first Diode connecting transistor (4) is the base-emitter path of the second transistor (5). 3. Wechselrichterschaltung nach Anspruch 2, dadurch gekennzeichnet , daß dem Kondensator (9) zwei Aufladekreise zugeordnet sind, die jeweils den Kondensator (9), eine jeweilige Gleichrichterdiode (7, 8) und einen jeweiligen Teil (d-b bzw. a-d) der Steuerwicklung (6) umfassen.3. Inverter circuit according to claim 2, characterized in that the capacitor (9) are assigned two charging circuits, each of the capacitor (9), a respective rectifier diode (7, 8) and a respective part (db or ad) of the control winding ( 6) include. 4. Wechselrichterschaltung nach Anspruch 1, dadurch gekennzeichnet , daß es sich um eine Halbbrückenschaltung handelt, bei der die Primärwicklung (111a) des Lasttransformators (111) abwechselnd über einen ersten Transistor (105), die Drossel (102) und den Stromwendekondensator (112) an die Gleichspannungsquelle (101) anschaltbar bzw. durch einen zweiten Transistor (104) und den Stromwendekondensator (112) überbrückbar ist, wobei dem zweiten Transistor (104) ein gesonderter Stromkreis mit einer gesonderten Steuerwicklung (161), einem gesonderten Kondensator (109') als Steuergleichspannungsquelle und einem gesonderten Aufladekreis (a-c, 107') für diesen zugeordnet ist.4. Inverter circuit according to claim 1, characterized in that it is a half-bridge circuit in which the primary winding (111a) of the load transformer (111) alternately via a first transistor (105), the choke (102) and the current reversing capacitor (112) can be connected to the DC voltage source (101) or by a second transistor (104) and the current reversing capacitor (112), the second transistor (104) having a separate circuit with a separate control winding (161), a separate capacitor (109 ') as a control DC voltage source and a separate charging circuit ( ac, 107 ') is assigned for this. 5. Wechselrichterschaltung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet , daß der mit der Basis des ersten bzw. des zweiten Transistors (4, 5; 105, 104) verbundene Anschluß (6c, 6e; b) der Steuerwicklung (6; 162, 161) ein Abgriff der Steuerwicklung ist, und daß die Gleichrichterdiode (7, 8; 107, 107') mit dem diesem Abgriff nächstgelegenen Ende (6a, 6b; a) der Steuerwicklung verbunden ist.5. Inverter circuit according to one of the preceding claims, characterized in that the connection (6c, 6e; b) of the control winding (6; 162, 161) connected to the base of the first and the second transistor (4, 5; 105, 104) ) is a tap of the control winding, and that the rectifier diode (7, 8; 107, 107 ') is connected to the end (6a, 6b; a) of the control winding closest to this tap.
EP80103465A 1979-07-10 1980-06-20 Transistor converter circuit Expired EP0023263B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT80103465T ATE2246T1 (en) 1979-07-10 1980-06-20 TRANSISTOR INVERTER CIRCUIT.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE2927837 1979-07-10
DE2927837A DE2927837C2 (en) 1979-07-10 1979-07-10 Transistor inverter circuit

Publications (2)

Publication Number Publication Date
EP0023263A1 true EP0023263A1 (en) 1981-02-04
EP0023263B1 EP0023263B1 (en) 1983-01-12

Family

ID=6075341

Family Applications (1)

Application Number Title Priority Date Filing Date
EP80103465A Expired EP0023263B1 (en) 1979-07-10 1980-06-20 Transistor converter circuit

Country Status (3)

Country Link
EP (1) EP0023263B1 (en)
AT (1) ATE2246T1 (en)
DE (1) DE2927837C2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT407461B (en) * 1996-04-24 2001-03-26 Kurz Martin CONTROL FOR DISCHARGE LAMP

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3519414C2 (en) * 1985-05-30 1993-10-14 Kreutzer Otto Transistor inverter circuit

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH497077A (en) * 1968-10-17 1970-09-30 Siemens Ag Self-controlled transistor inverter with stray field transformer and two transistors operated alternately in reverse and forward direction
US3593109A (en) * 1969-11-25 1971-07-13 Gen Electric Transistor inverter with saturable winding and series capacitor for forced switching
DE2516912A1 (en) * 1975-04-17 1976-10-28 Otto Kreutzer Controllable frequency convertor with SC switch - has invertor with stray field transformer whose primary winding is connected to capacitor
US4016479A (en) * 1975-03-28 1977-04-05 International Business Machines Corporation High frequency power converter drive circuit

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1233841A (en) * 1969-04-24 1971-06-03
BE788914A (en) * 1971-09-17 1973-03-15 Philips Nv DIRECT CURRENT-ALTERNATIVE CURRENT CONVERTER
US3775702A (en) * 1972-03-16 1973-11-27 North Electric Co Transistor inverter circuit for supplying constant current output

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH497077A (en) * 1968-10-17 1970-09-30 Siemens Ag Self-controlled transistor inverter with stray field transformer and two transistors operated alternately in reverse and forward direction
US3593109A (en) * 1969-11-25 1971-07-13 Gen Electric Transistor inverter with saturable winding and series capacitor for forced switching
US4016479A (en) * 1975-03-28 1977-04-05 International Business Machines Corporation High frequency power converter drive circuit
DE2516912A1 (en) * 1975-04-17 1976-10-28 Otto Kreutzer Controllable frequency convertor with SC switch - has invertor with stray field transformer whose primary winding is connected to capacitor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT407461B (en) * 1996-04-24 2001-03-26 Kurz Martin CONTROL FOR DISCHARGE LAMP

Also Published As

Publication number Publication date
EP0023263B1 (en) 1983-01-12
DE2927837A1 (en) 1981-01-15
DE2927837C2 (en) 1982-09-16
ATE2246T1 (en) 1983-01-15

Similar Documents

Publication Publication Date Title
EP0113451B1 (en) Inverter with a load circuit comprising a series resonant circuit and a discharge lamp
DE3903520C2 (en)
DE2036866C2 (en) DC / DC converter circuit arrangement
DE3407067A1 (en) CONTROL CIRCUIT FOR GAS DISCHARGE LAMPS
EP0382110A2 (en) Output control circuit for reversers, and high-frequency power supply for the DC supply of a welding station
EP0758815A2 (en) Voltage converter
DE3538494A1 (en) Electrical circuit arrangement, which is supplied from a DC voltage source, for supplying a load two-pole network with a direct current which is impressed but can be interrupted or a block-form alternating current which is impressed but can be interrupted, with adjustable limiting of the voltages on the load two-pole network and on the electronic one-way switches which are used
DE1064608B (en) Control device with a transistor serving as an on and off element
EP0123085B1 (en) Electronically switched power supply with transformer choke
EP0057910B1 (en) Circuit for the regulated supply to a user
DE3222994C2 (en)
DE3317619A1 (en) IMPROVED POWER SUPPLY FOR A LOW VOLTAGE LOAD
EP0023263B1 (en) Transistor converter circuit
EP0121917A1 (en) Electronic device for driving fluorescent lamps
EP0130411B1 (en) Electronic switching power supply
WO1998043266A1 (en) Electromagnetic control device
DE3248017C2 (en) Ballast for controlling the brightness of gas discharge lamps
DE3519414C2 (en) Transistor inverter circuit
EP0320605B1 (en) Electronic switching power supply with an inductance dc-dc converter
EP2140735B1 (en) Circuit configuration for starting and operating at least one discharge lamp
DE2303553A1 (en) ELECTRONIC SWITCHING DEVICE
DE3327704C1 (en) Ballast for gas-discharge lamps having electrodes which can be heated
DE102020119598A1 (en) Circuit arrangement with an active rectifier circuit and its application in a synchronous machine
EP0433599A1 (en) AC-DC converter
DE3109750A1 (en) Circuit arrangement for an invertor for supplying an AC load with an alternating voltage, especially a sinusoidal AC voltage

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT CH FR GB IT NL

17P Request for examination filed

Effective date: 19801219

ITF It: translation for a ep patent filed

Owner name: DE DOMINICIS & MAYER S.R.L.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): AT CH FR GB IT LI NL

REF Corresponds to:

Ref document number: 2246

Country of ref document: AT

Date of ref document: 19830115

Kind code of ref document: T

ET Fr: translation filed
ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19940519

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19940630

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19950612

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19950614

Year of fee payment: 16

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19950620

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19950622

Year of fee payment: 16

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19960101

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19950620

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19960101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19960620

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19960630

Ref country code: CH

Effective date: 19960630

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19970228

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT