EP0022869B1 - Process for producing graphite-containing aluminum alloy - Google Patents

Process for producing graphite-containing aluminum alloy Download PDF

Info

Publication number
EP0022869B1
EP0022869B1 EP79900934A EP79900934A EP0022869B1 EP 0022869 B1 EP0022869 B1 EP 0022869B1 EP 79900934 A EP79900934 A EP 79900934A EP 79900934 A EP79900934 A EP 79900934A EP 0022869 B1 EP0022869 B1 EP 0022869B1
Authority
EP
European Patent Office
Prior art keywords
graphite particles
melt
aluminium
alloy
graphite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP79900934A
Other languages
German (de)
French (fr)
Other versions
EP0022869A4 (en
EP0022869A1 (en
Inventor
Katsuhiro Komuro
Masateru Suwa
Koh Soeno
Masato Ohsawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Showa Denko Materials Co ltd
Original Assignee
Hitachi Chemical Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Hitachi Ltd filed Critical Hitachi Chemical Co Ltd
Publication of EP0022869A4 publication Critical patent/EP0022869A4/en
Publication of EP0022869A1 publication Critical patent/EP0022869A1/en
Application granted granted Critical
Publication of EP0022869B1 publication Critical patent/EP0022869B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/0084Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ carbon or graphite as the main non-metallic constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • C22C1/026Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/10Alloys containing non-metals
    • C22C1/1036Alloys containing non-metals starting from a melt
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12486Laterally noncoextensive components [e.g., embedded, etc.]

Definitions

  • the present invention relates to a process for the preparation of aluminum alloys containing graphite, which comprises adding and dispersing particles of raw natural graphite, not covered with a metal, in a casting of aluminum or an alloy of this type. latest.
  • metal alloys containing a solid lubricant have been used. This method is used to compensate for a loss of lubrication by providing a self-lubricating action of the solid lubricant when a film of a lubricating oil is destroyed.
  • graphite is very suitable as a solid lubricant. Consequently, numerous alloys containing graphite particles have been proposed and manufactured to date. However, most of these metal alloys containing graphite particles are prepared according to a spray metallurgy, so that the resulting sintering products do not have sufficient mechanical properties.
  • a method has therefore been proposed according to which a mixed powder of graphite particles coated with nickel and a halide is incorporated into a casting of an AI-Si hypereutectic alloy and vortices are formed in the casting by an agitator for uniformly dispersing the graphite particles, and another method in which graphite particles coated with a metal and suspended in a carrier gas are blown in a cast of an aluminum alloy, method described in the publication JP- B-45-13224.
  • a metallic coating can be formed on the surfaces of the graphite particles by chemical plating or the like.
  • this process involves complicated stages, the installations for treating waste water and the like pose major problems and consequently the cost prices of these products are unfavorably increased.
  • the process using the mixed powder requires considerable time for this mixing, and it is very difficult to choose a suitable particle size to mix the graphite particles to be dispersed in the casting. If a carrier gas is used, the graphite particles which can be used are limited to very fine particles, and a long time is required to determine the dispersion of a predetermined amount of the graphite particles.
  • the object of the present invention is to propose a process for the preparation of aluminum alloys containing graphite, according to which graphite particles of 2 to 30% by weight are thrown and dispersed in a very short time in aluminum castings or alloys of the latter, with adequate efficiency of use.
  • Another object of the invention is to propose a process for the preparation of aluminum alloys containing graphite, which uses graphite particles not covered with a metal so that it is possible to use crude graphite particles for reduce manufacturing costs.
  • Another object of the invention is to propose a process for the preparation of aluminum alloys containing graphite, according to which the casting structure is made fine and the graphite particles are not likely to float on the surface of the casting.
  • One of the characteristics of the invention resides in a process for the preparation of aluminum alloys containing graphite, which comprises the following steps: incorporation, for example by throwing away from 1.5 to 20%, by weight, of at least one additive metal chosen from the group: titanium (Ti), chromium (Cr), zirconium (Zr), nickel (Ni), vanadium (V), cobalt (Co), manganese (Mn) and niobium (Nb), in a casting aluminum or an alloy thereof, after introduction of said metal, launch and dispersion of 2 to 30%, by weight, of particles of raw natural graphite without metallic coating inside the casting and after that, solidification of casting aluminum or aluminum alloy containing these graphite particles.
  • Another characteristic of the invention lies in the stage of solidification of the casting under a pressure of 400 to 1000 kg / cm 2 to make the sintered structure very fine and to suppress the flotation of the graphite particles.
  • an aluminum casting alloy in which the graphite particles are substantially and uniformly dispersed throughout the structure of the refined ingot, the metallic coating on the surface of the graphite particles is removed and the buoyancy of the latter is reduced.
  • the resulting aluminum alloy containing the graphite particles is melted again, these particles do not float on the surface of the casting.
  • the drawing is a simple figure showing the relationship between the dispersed amount of the graphite particles and the particle size thereof when additive metals are incorporated into a casting of aluminum alloy by varying the amount of these additive metals.
  • an aluminum alloy in which graphite particles are thrown and dispersed contains at least one of the following elements: tin (Sn), copper (Cu), lead (Pb) and silicon (Si).
  • tin (Sn), copper (Cu), lead (Pb) and silicon (Si) The reason for using such alloys is to further improve the usability of these, when graphite particles are dispersed in alloys of AI-Sn, AI-Cu, AI-Pb and AI-Si , alloys widely used so far in bearings or the like.
  • At least one element chosen from the group: Ti, Cr, Zr, V, Nb, Ni, Co, Mn and P is incorporated into said casting. These elements were chosen on the basis of experimental results.
  • graphite particles are incorporated in an amount varying by weight, from 2 to 30%, the highest lubrication effect can be obtained when the product is used under dry friction. It is difficult to obtain a sufficient lubricating effect with an incorporation of less than 2% by weight of the graphite particles. While, when the graphite particles are used in an amount greater than 30% by weight, the mechanics also decrease.
  • the graphite particles are incorporated in the range of 2 to 30% by weight, it is desirable that at least one of the elements: Ti, Cr, Zr, Ni, V, Co, Mn or Nb is first incorporated in the casting in an amount varying, by weight, from 1.5 to 20%. If such elements are incorporated in a total amount greater than 20% by weight, although the effect of preventing the flotation of graphite can be achieved, there is a risk of seeing some unexpected defects appear if the resulting molded alloy is used for a bearing or a piston.
  • the resulting aluminum alloys containing the graphite are suitable as metallic elements to be used at low load and at high speed.
  • the resulting aluminum alloys are suitable as metallic elements to be used under conditions of friction by lubricant, because the parts containing graphite are effective in providing an oil sink.
  • the graphite can also advantageously be incorporated in an amount of 15 to 20% by weight.
  • the temperature of the casting into which the graphite particles are thrown is between a value greater than 50 ° C relative to the liquidus and approximately 900 ° C.
  • the temperature is not maintained above this level 50 ° C higher than the liquid, the fluidity of the casting degrades and faults such as blowing are likely to form.
  • the liquid is approximately at 570 ° C with an AI-Si alloy containing 12%, by weight, of Si, at 700 ° C with an Ai-Si alloy containing 20%, by weight of Si, at 640 ° C with an alloy AI-Sn containing 10%, by weight, of Sn and at 650 ° C. with an AI-Cu alloy containing 4%, by weight, of Cu. It is recommended to add Cu, Mg, Ni, Zn, Mn or Pb, and similar alloying elements in small amounts to these two element-matrix systems to strengthen the matrix.
  • the liquidus temperature changes according to the quantity of elements added to suppress the buoyancy of the graphite particles and if these graphite particles are added adequately to prevent them from floating, the temperature changes only by ⁇ 200 ° C.
  • the casting immediately before the incorporation of the graphite particles, is maintained either at rest or agitated. When the casting is kept at rest, it must be stirred after incorporating the graphite particles. In any case, once the graphite particles are incorporated, they are suspended in the eddies of the casting, produced by stirring, so as to facilitate their dispersion.
  • This operation is very important because, otherwise, one cannot obtain a molded ingot in which the graphite particles are uniformly dispersed.
  • a pressure of 400 to 1000 kg / cm 2 is desirable to achieve solidification. If this pressure is less than 400 kg / cm 2 , you cannot extract enough gas. If, on the contrary, it is greater than 1000 kg / cm 2 , such a high pressure requires too large a device, thereby increasing the costs of this apparatus.
  • the latter In the aluminum alloy containing graphite, the latter generally acts as a solid lubricant and greatly contributes to improving the abrasion resistance. This action is influenced by the size of the graphite particles used.
  • the mean diameter of the graphite particles is desirable for the mean diameter of the graphite particles to be used to be 50 ⁇ m.
  • the degree of dispersion of the graphite particles is influenced by the speed of agitation of the casting. For example, an aluminum alloy containing, by weight, 12% of Si and 3% of Cr is melted and maintained at a temperature of 700 ° C in a graphite crucible of 90 mm in diameter. The casting is then stirred using paddles at different speeds, and powder is added. natural graphite of 60 to 80 meshes in the casting, in an amount equal to 9%, by weight, then the dispersion of the graphite particles is observed.
  • pulverized natural graphite 177 to 250 ⁇ m in size is added to the casting, in an amount of 9% by weight.
  • One of the following elements is incorporated into the casting: Ti, Cr, Zr, V, Ni, Co, Mn and Nb, and the quantity of such an incorporated additive element is changed to determine the quantity of the necessary additive element to disperse up to 30% by weight of graphite particles without causing them to float.
  • the measured results are shown in Table 1. It can be seen there that if the casting contains one of these elements in an amount of 1 to 20%, by weight, the graphite particles can be incorporated between 2 and 30% in weight. In this process, solidification under pressure takes place at 600 kg / cm 2 .
  • the aluminum casting containing the graphite is then solidified under a pressure of 600 kg / cm 2 and an aluminum alloy containing graphite is thus produced.
  • An AI-Cu-Zr alloy containing, by weight, 50% Cu and 3% Zr is melted in a graphite crucible with an internal diameter of 90 mm inside diameter and the resulting casting is maintained at a temperature of 750 ° C.
  • a pallet-shaped element is introduced into the crucible with which the AI-Cu-Zr alloy will be rotated and stirred at 100 revolutions / minute to form vortices in the casting.
  • region 1 represents a flotation region of graphite and region II a dispersion region of graphite. It will be seen there that the quantity of dispersed graphite changes according to the quantity of the additive element added and that the graphite is likely to float on the surface of the casting according to its particle size.
  • An AI-Si alloy containing, by weight, 12% of Si is melted in a graphite crucible with an inside diameter of 90 mm, and 0.1, 0.5, 1.0, 2 are added to this flow, respectively. , 0, 3.0 and 4.0%, by weight, of phosphorus. Then, the flows are maintained at a temperature of 700 ° C.
  • Graphite particles from 177 to 250 ⁇ m in size are added to the casting, at a rate of 2% by weight, in order to determine the quantitative limit of the dispersed graphite particles as a function of each casting.
  • the quantitative limit of the graphite particles dispersed is determined by an identical process with an AI-Si alloy containing, by weight, 20% of Si, an AI-Sn alloy containing, by weight, 5% of Sn and an AI-Cu alloy. containing, by weight, 4% Cu.
  • Table 2 On the latter, it can be seen that the limit quantity of the dispersed graphite particles is influenced by the quantity of phosphorus but not by the matrix.
  • an amount greater than 30%, by weight, of graphite particles, 3.0 to 4.0%, by weight, of phosphorus can be added.

Abstract

A process for producing graphite-containing aluminum alloy by introducing graphite particles into a molten aluminum. Graphite particles are prevented from floating on the molten aluminum upon being introduced thereinto, by adding titanium, chromium, zirconium, nickel, vanadium, cobalt, manganese, niobium, or phosphorus to the molten aluminum to disperse therein prior to the introduction of graphite particles. The alloy is suited for use as dry frictional members of bearings or the like.

Description

Domaine techniqueTechnical area

La présente invention concerne un procédé de préparation d'alliages en aluminium contenant du graphite, qui comprend l'addition et la dispersion de particules de graphite naturel brut, non recouvertes d'un métal, dans une coulée d'aluminium ou en alliage de ce dernier.The present invention relates to a process for the preparation of aluminum alloys containing graphite, which comprises adding and dispersing particles of raw natural graphite, not covered with a metal, in a casting of aluminum or an alloy of this type. latest.

Technique antérieurePrior art

Dans de nombreux éléments structuraux de contact par glissement, utilisés dans des moteurs à combustion interne, tels que paliers, engrenages, pistons, cylindres, curseurs et analogues, on a utilisé, d'ordinaire, des alliages métalliques contenant un lubrifiant solide. Cette méthode est utilisée pour compenser une perte de lubrification en fournissant une action auto-lubrifiante du lubrifiant solide quand une pellicule d'une huile lubrifiante est détruite. On sait que le graphite convient très bien comme lubrifiant solide. En conséquence de nombreux alliages contenant des particules de graphite ont été, jusqu'à ce jour, proposés et fabriqués. Cependant, la plupart de ces alliages métalliques contenant des particules de graphite est préparée selon une métallurgie de pulvérisation, de sorte que les produits de frittage résultant ne présentent pas de propriétés mécaniques suffisantes.In many structural sliding contact elements used in internal combustion engines, such as bearings, gears, pistons, cylinders, sliders and the like, metal alloys containing a solid lubricant have been used. This method is used to compensate for a loss of lubrication by providing a self-lubricating action of the solid lubricant when a film of a lubricating oil is destroyed. We know that graphite is very suitable as a solid lubricant. Consequently, numerous alloys containing graphite particles have been proposed and manufactured to date. However, most of these metal alloys containing graphite particles are prepared according to a spray metallurgy, so that the resulting sintering products do not have sufficient mechanical properties.

Dans le cas de produits de grandes dimensions, les frais de fabrication sont beaucoup plus élevés que dans le cas de produits coulés ou forgés. Aussi, il a été fait un sérieux effort pour développer une technique de coulée capable de disperser uniformément des particules de graphite dans des alliages métalliques sans avoir besoin de faire flotter ces particules de graphite.In the case of large products, the manufacturing costs are much higher than in the case of cast or forged products. Also, a serious effort has been made to develop a casting technique capable of uniformly dispersing graphite particles in metal alloys without the need to float these graphite particles.

Ptus particulièrement, les procédés suivants ont été récemment proposés comme technique de dispersion des particules de graphite dans une coulée d'alliage en aluminium (solubilité du graphite inférieure, en poids, à 0,01 %) avec lequel le graphite est incompatible en métallurgie, sans avoir recours à la flottaison des particules de graphite.More particularly, the following methods have recently been proposed as a technique for dispersing graphite particles in an aluminum alloy casting (lower graphite solubility, by weight, at 0.01%) with which graphite is incompatible in metallurgy, without resorting to the flotation of graphite particles.

Il a donc été proposé une méthode selon laquelle une poudre mélangée de particules de graphite enduite de nickel et d'un halogénure est incorporée dans une coulée d'un alliage hypereutectique AI-Si et des tourbillons sont formés dans la coulée par un agitateur pour y disperser uniformément les particules de graphite, et une autre méthode selon laquelle des particules de graphite recouvertes d'un métal et mises en suspension dans un gaz porteur sont soufflées dans une coulée d'un alliage d'aluminium, méthode décrite dans la publication JP-B-45-13224.A method has therefore been proposed according to which a mixed powder of graphite particles coated with nickel and a halide is incorporated into a casting of an AI-Si hypereutectic alloy and vortices are formed in the casting by an agitator for uniformly dispersing the graphite particles, and another method in which graphite particles coated with a metal and suspended in a carrier gas are blown in a cast of an aluminum alloy, method described in the publication JP- B-45-13224.

Cependant, ces méthodes comportent les problèmes et défauts décrits ci-dessous. Dans chacune de ces méthodes, il est indispensable que les surfaces des particules de graphite à disperser soient recouvertes d'un métal.However, these methods have the problems and shortcomings described below. In each of these methods, it is essential that the surfaces of the graphite particles to be dispersed are covered with a metal.

Un revêtement métallique peut être formé sur les surfaces des particules de graphite par placage chimique ou analogues. Cependant, ce procédé comporte des étapes compliquées, les installations de traitement des eaux résiduelles et analogues posent de gros problèmes et par conséquent les prix de revient de ces produits en sont défavorablement accrus.A metallic coating can be formed on the surfaces of the graphite particles by chemical plating or the like. However, this process involves complicated stages, the installations for treating waste water and the like pose major problems and consequently the cost prices of these products are unfavorably increased.

En outre, comme les surfaces des particules de graphite enduites de métal sont à l'état oxydé, même si ces particules sont jetées et dispersées dans une coulée, elles risquent de remonter à la surface de la coulée en raison de la faible mouillabilité avec celle-ci et il est impossible de disperser les particules de graphite de façon uniforme dans la coulée. Il a donc été proposé d'améliorer cette mouillabilité en traitant les particules de graphite dans une atmosphère d'hydrogène.In addition, since the surfaces of the graphite particles coated with metal are in the oxidized state, even if these particles are thrown and dispersed in a casting, they are likely to rise to the surface of the casting due to the low wettability with that -this and it is impossible to disperse the graphite particles uniformly in the casting. It has therefore been proposed to improve this wettability by treating the graphite particles in a hydrogen atmosphere.

Cependant, dans ce cas, de nombreuses soufflures se forment par décharge d'hydrogène à partir du coeur des particules de graphite et on ne peut pratiquement pas obtenir de produits valables.However, in this case, many blisters are formed by hydrogen discharge from the core of the graphite particles and it is practically impossible to obtain valid products.

Il est nécessaire d'incorporer une quantité variant de 4 à 30 %, en poids, de graphite dans l'aluminium ou son alliage pour obtenir un effet lubrifiant suffisant du graphite dans un frottement à sec. L'utilisation de particules de graphite enduites d'un métal n'est pas appropriée pour jeter et disperser une aussi grande quantité de particules de graphite dans une fusion de courte durée avec un haut rendement.It is necessary to incorporate a quantity varying from 4 to 30%, by weight, of graphite in aluminum or its alloy in order to obtain a sufficient lubricating effect of graphite in dry friction. The use of graphite particles coated with a metal is not suitable for throwing and dispersing such a large amount of graphite particles in a short-lived fusion with high yield.

De plus, quand on souhaite jeter et disperser une grande quantité de particules de graphite enduites de métal dans la fusion à un instant précis, la chaleur nécessaire pour fondre le métal est prise à partir de la fusion comme matrice, et la température de cette dernière s'abaisse rapidement jusqu'à réduire la fluidité de la fusion, et les particules de graphite enduites du métal ajouté risquent de flotter à la surface de la fusion. Les particules de graphite enduites de métal qui flottent à la surface de la coulée ne peuvent plus être redispersées dans cette coulée en raison de l'oxydation superficielle. En conséquence, si l'on souhaite disperser une grande quantité de particules de graphite dans la coulée, il est nécessaire de jeter et disperser ces particules petit à petit et en quantité croissantes, ce qui nécessite une durée assez longue pour disperser la quantité prédéterminée de graphite.In addition, when it is desired to throw and disperse a large quantity of graphite particles coated with metal in the fusion at a precise instant, the heat necessary to melt the metal is taken from the fusion as matrix, and the temperature of the latter. lowers rapidly to reduce the smoothness of the melt, and graphite particles coated with the added metal may float on the surface of the melt. The metal coated graphite particles floating on the surface of the casting can no longer be redispersed in this casting due to surface oxidation. Consequently, if it is desired to disperse a large quantity of graphite particles in the casting, it is necessary to discard and disperse these particles little by little and in increasing quantity, which requires a sufficiently long time to disperse the predetermined quantity of graphite.

Quand une longue durée est ainsi exigée pour effectuer la dispersion des particules de graphite jetées et dispersées dans la coulée, le graphite Initial granulaire commence à flotter à la surface de la coulée et par conséquent, le rendement d'utilisation de ce graphite se détériore grandement.When a long time is thus required to effect the dispersion of the graphite particles thrown and dispersed in the casting, the initial granular graphite begins to float on the surface of the casting and consequently, the efficiency of use of this graphite deteriorates greatly. .

Le procédé qui utilise la poudre mélangée nécessite un temps considérable pour ce mélange, et il est très difficile de choisir une granulométrie adéquate pour mélanger les particules de graphite à disperser dans la coulée. Si l'on utilise un gaz porteur, les particules de graphite qui peuvent être utilisées sont limitées à de très fines particules, et une longue durée est nécessaire pour déterminer la dispersion d'une quantité prédéterminée des particules de graphite.The process using the mixed powder requires considerable time for this mixing, and it is very difficult to choose a suitable particle size to mix the graphite particles to be dispersed in the casting. If a carrier gas is used, the graphite particles which can be used are limited to very fine particles, and a long time is required to determine the dispersion of a predetermined amount of the graphite particles.

Compte tenu de ce qui précède, il a été souhaité de développer un procédé de préparation d'alliages d'aluminium contenant du graphite, qui utiliserait des particules de graphite non revêtues d'un métal.In view of the above, it was desired to develop a process for the preparation of aluminum alloys containing graphite, which would use graphite particles not coated with a metal.

Exposé de l'inventionStatement of the invention

La présente invention a pour but de proposer un procédé de préparation d'alliages en aluminium contenant du graphite, selon lequel on jette et disperse en un temps très court des particules de graphite de 2 à 30 % en poids dans des coulées d'aluminium ou d'alliages de ce dernier, avec une efficacité d'utilisation adéquate.The object of the present invention is to propose a process for the preparation of aluminum alloys containing graphite, according to which graphite particles of 2 to 30% by weight are thrown and dispersed in a very short time in aluminum castings or alloys of the latter, with adequate efficiency of use.

L'invention a aussi pour but de proposer un procédé de préparation d'alliages en aluminium contenant du graphite, qui utilise des particules de graphite non recouvertes d'un métal de sorte qu'il soit possible d'employer des particules de graphite brut pour réduire les frais de fabrication.Another object of the invention is to propose a process for the preparation of aluminum alloys containing graphite, which uses graphite particles not covered with a metal so that it is possible to use crude graphite particles for reduce manufacturing costs.

L'invention a encore pour but de proposer un procédé de préparation d'alliages en aluminium contenant du graphite, selon lequel la structure de coulée est rendue fine et les particules de graphite ne risquent pas de flotter à la surface de la coulée. Une des caractéristiques de l'invention réside dans un procédé de préparation d'alliages en aluminium contenant du graphite, qui comporte les étapes suivantes : incorporation, par exemple en jetant de 1,5 à 20 %, en poids, d'au moins un métal additif choisi dans le groupe : titane (Ti), chrome (Cr), zirconium (Zr), nickel (Ni), vanadium (V), cobalt (Co), manganèse (Mn) et niobium (Nb), dans une coulée d'aluminium ou d'alliage de ce dernier, après introduction dudit métal, lancement et dispersion de 2 à 30 %, en poids, de particules de graphite naturel brut sans revêtement métallique à l'intérieur de la coulée et après cela, solidification de la coulée d'aluminium ou d'alliage d'aluminium contenant ces particules de graphite.Another object of the invention is to propose a process for the preparation of aluminum alloys containing graphite, according to which the casting structure is made fine and the graphite particles are not likely to float on the surface of the casting. One of the characteristics of the invention resides in a process for the preparation of aluminum alloys containing graphite, which comprises the following steps: incorporation, for example by throwing away from 1.5 to 20%, by weight, of at least one additive metal chosen from the group: titanium (Ti), chromium (Cr), zirconium (Zr), nickel (Ni), vanadium (V), cobalt (Co), manganese (Mn) and niobium (Nb), in a casting aluminum or an alloy thereof, after introduction of said metal, launch and dispersion of 2 to 30%, by weight, of particles of raw natural graphite without metallic coating inside the casting and after that, solidification of casting aluminum or aluminum alloy containing these graphite particles.

A la place du métal additif cité ci-dessus, comme agent protecteur de la flottaison du graphite, il est possible d'empêcher au maximum, c'est-à-dire de réduire, la flottaison des particules de graphite en ajoutant 0,1 à 4 %, en poids, de phosphore (P).Instead of the additive metal mentioned above, as a protective agent for the flotation of graphite, it is possible to prevent as much as possible, that is to say to reduce, the flotation of graphite particles by adding 0.1 4%, by weight, of phosphorus (P).

Une autre caractéristique de l'invention réside dans le stade de solidification de la coulée sous une pression de 400 à 1 000 kg/cm2 pour rendre la structure frittée très fine et supprimer la flottaison des particules de graphite.Another characteristic of the invention lies in the stage of solidification of the casting under a pressure of 400 to 1000 kg / cm 2 to make the sintered structure very fine and to suppress the flotation of the graphite particles.

Selon l'invention, il est possible de préparer un alliage de coulée d'aluminium dans lequel les particules de graphite sont sensiblement et uniformément dispersées dans toute la structure du lingot affiné, le revêtement métallique sur la surface des particules de graphite est éliminé et la flottaison de ces dernières est réduite. De plus, même si l'alliage d'aluminium résultant contenant les particules de graphite est à nouveau fondu, ces particules ne flottent pas à la surface de la coulée.According to the invention, it is possible to prepare an aluminum casting alloy in which the graphite particles are substantially and uniformly dispersed throughout the structure of the refined ingot, the metallic coating on the surface of the graphite particles is removed and the buoyancy of the latter is reduced. In addition, even if the resulting aluminum alloy containing the graphite particles is melted again, these particles do not float on the surface of the casting.

Brève description du dessinBrief description of the drawing

Le dessin est une simple figure montrant la relation entre la quantité dispersée des particules de graphite et la granulométrie de celui-ci quand des métaux additifs sont incorporés dans une coulée d'alliage d'aluminium en faisant varier la quantité de ces métaux additifs.The drawing is a simple figure showing the relationship between the dispersed amount of the graphite particles and the particle size thereof when additive metals are incorporated into a casting of aluminum alloy by varying the amount of these additive metals.

Meilleure manière de réaliser l'inventionBest way to realize the invention

On va expliquer ci-dessous, en détail, la meilleure manière de réaliser l'invention.We will explain below, in detail, the best way to carry out the invention.

Il est souhaitable qu'un alliage d'aluminium dans lequel sont jetées et dispersées des particules de graphite contienne au moins un élément suivant : étain (Sn), cuivre (Cu), plomb (Pb) et silicium (Si). La raison d'utiliser de tels alliages est d'améliorer encore plus la valeur d'utilisation de ceux-ci, quand des particules de graphite sont dispersées dans des alliages de AI-Sn, AI-Cu, AI-Pb et AI-Si, alliages largement utilisés jusqu'à présent dans des paliers ou analogues.It is desirable that an aluminum alloy in which graphite particles are thrown and dispersed contains at least one of the following elements: tin (Sn), copper (Cu), lead (Pb) and silicon (Si). The reason for using such alloys is to further improve the usability of these, when graphite particles are dispersed in alloys of AI-Sn, AI-Cu, AI-Pb and AI-Si , alloys widely used so far in bearings or the like.

Avant de jeter les particules de graphite naturel brut dans la coulée d'aluminium ou d'alliage de ce dernier, un élément au moins, choisi dans le groupe : Ti, Cr, Zr, V, Nb, Ni, Co, Mn et P est incorporé dans ladite coulée. Ces éléments ont été choisis sur la base de résultats expérimentaux.Before throwing the particles of raw natural graphite in the casting of aluminum or its alloy, at least one element, chosen from the group: Ti, Cr, Zr, V, Nb, Ni, Co, Mn and P is incorporated into said casting. These elements were chosen on the basis of experimental results.

En plus de ces 9 éléments, des essais ont été réalisés sur 11 autres éléments, à savoir : baryum (Ba), béryllium (Be), cérium (Ce), fer (Fe), césium (Cs), potassium (K), neptunium (Np), calcium (Ca), tungstène (W), hafnium (Hf) et antimoine (Sb), mais on a trouvé que tous ces 11 éléments sont inefficaces pour supprimer la flottaison des particules de graphite. Les éléments testés sont ordinairement connus comme des éléments formant des carbures, et seuls les 9 éléments cités en premier peuvent empêcher la flottaison des particules de graphite. Dans le cas de ces éléments, quand on examine les textures de produits résultants au microscope électronique (x 1 000), on ne trouve aucune couche de carbure entre les particules de graphite et l'alliage en aluminium.In addition to these 9 elements, tests were carried out on 11 other elements, namely: barium (Ba), beryllium (Be), cerium (Ce), iron (Fe), cesium (Cs), potassium (K), neptunium (Np), calcium (Ca), tungsten (W), hafnium (Hf) and antimony (Sb), but all 11 have been found to be ineffective in suppressing the buoyancy of graphite particles. The elements tested are usually known as carbide-forming elements, and only the 9 elements mentioned first can prevent the floating of the graphite particles. In the case of these elements, when we examine the textures of the resulting products under the electron microscope (x 1000), there is no layer of carbide between the graphite particles and the aluminum alloy.

Si des particules de graphite sont incorporées en une quantité variant en poids, de 2 à 30 %, on peut obtenir l'effet de lubrification le plus élevé quand le produit est utilisé sous frottement à sec. Il est difficile d'obtenir un effet lubrifiant suffisant avec une incorporation inférieure à 2 % en poids des particules de graphite. Tandis que, lorsque les particules de graphite sont utilisées dans une quantité supérieure à 30 % en poids, la mécanique diminue aussi.If graphite particles are incorporated in an amount varying by weight, from 2 to 30%, the highest lubrication effect can be obtained when the product is used under dry friction. It is difficult to obtain a sufficient lubricating effect with an incorporation of less than 2% by weight of the graphite particles. While, when the graphite particles are used in an amount greater than 30% by weight, the mechanics also decrease.

Si les particules de graphite sont incorporées dans l'intervalle de 2 à 30 % en poids, il est souhaitable qu'au moins un des éléments: Ti, Cr, Zr, Ni, V, Co, Mn ou Nb soit d'abord incorporé dans la coulée en une quantité variant, en poids, de 1,5 à 20 %. Si de tels éléments sont incorporés dans une quantité totale supérieure à 20% en poids, bien que l'effet d'empêcher la flottaison du graphite puisse être atteint, il existe un risque de voir apparaître certains défauts inattendus si l'alliage moulé résultant est utilisé pour un palier ou un piston.If the graphite particles are incorporated in the range of 2 to 30% by weight, it is desirable that at least one of the elements: Ti, Cr, Zr, Ni, V, Co, Mn or Nb is first incorporated in the casting in an amount varying, by weight, from 1.5 to 20%. If such elements are incorporated in a total amount greater than 20% by weight, although the effect of preventing the flotation of graphite can be achieved, there is a risk of seeing some unexpected defects appear if the resulting molded alloy is used for a bearing or a piston.

Aussi, il n'est pas recommandé d'incorporer la quantité totale de tels éléments dans l'intervalle supérieur à 20 % en poids.Also, it is not recommended to incorporate the total amount of such elements in the range greater than 20% by weight.

A la place de ces éléments, on peut incorporer dans la coulée 0,1 à 4 %, en poids, de phosphore (P) pour obtenir un effet identique.Instead of these elements, 0.1 to 4% by weight of phosphorus (P) can be incorporated into the casting to obtain an identical effect.

Si le graphite est incorporé dans une quantité de 20 à 30 %, en poids, les alliages résultants d'aluminium contenant le graphite conviennent comme éléments métalliques à utiliser en faible charge et à grande vitesse.If the graphite is incorporated in an amount of 20 to 30% by weight, the resulting aluminum alloys containing the graphite are suitable as metallic elements to be used at low load and at high speed.

Si le graphite est incorporé en une quantité de 2 à 15 %, en poids, particulièrement entre 3 et 5 %, les alliages résultants d'aluminium conviennent comme éléments métalliques à utiliser dans des conditions de frottement par lubrifiant, parce que les parties contenant du graphite sont efficaces pour fournir un réurvoir d'huile.If the graphite is incorporated in an amount of 2 to 15% by weight, particularly between 3 and 5%, the resulting aluminum alloys are suitable as metallic elements to be used under conditions of friction by lubricant, because the parts containing graphite are effective in providing an oil sink.

Le graphite peut encore être avantageusement incorporé à raison de 15 à 20 % en poids.The graphite can also advantageously be incorporated in an amount of 15 to 20% by weight.

Il est encore plus souhaitable que la température de la coulée dans laquelle sont jetées les particules de graphite se situe entre une valeur supérieure de 50 °C par rapport au liquidus et 900 °C environ. Quand la température n'est pas maintenue au-dessus de ce niveau supérieur de 50 °C par rapport au liquide, la fluidité de la coulée se dégrade et des défauts comme des soufflures risquent de se former.It is even more desirable that the temperature of the casting into which the graphite particles are thrown is between a value greater than 50 ° C relative to the liquidus and approximately 900 ° C. When the temperature is not maintained above this level 50 ° C higher than the liquid, the fluidity of the casting degrades and faults such as blowing are likely to form.

Il n'est pas souhaitable que la température de la coulée soit supérieure à 900 °C, parce que les particules de graphite risquent de flotter. Il est possible d'utiliser des particules de graphite naturel. Le liquidue est environ à 570 °C avec un alliage AI-Si contenant 12 %, en poids, de Si, à 700 °C avec un alliage Ai-Si contenant 20 %, en poids de Si, à 640 °C avec un alliage AI-Sn contenant 10 %, en poids, de Sn et à 650 °C avec un alliage AI-Cu contenant 4 %, en poids, de Cu. Il est recommandé d'ajouter le Cu, Mg, Ni, Zn, Mn ou Pb, et les éléments d'alliage analogues en petites quantités à ces deux systèmes élément-matrice pour renforcer la matrice. La température du liquidus change en fonction de la quantité des éléments ajoutés pour supprimer la flottaison des particules de graphite et si ces particules de graphite sont ajoutées de façon adéquate pour empêcher qu'elles flottent, la température ne change que de ± 200 °C.It is not desirable that the temperature of the casting be higher than 900 ° C, because the graphite particles are likely to float. It is possible to use natural graphite particles. The liquid is approximately at 570 ° C with an AI-Si alloy containing 12%, by weight, of Si, at 700 ° C with an Ai-Si alloy containing 20%, by weight of Si, at 640 ° C with an alloy AI-Sn containing 10%, by weight, of Sn and at 650 ° C. with an AI-Cu alloy containing 4%, by weight, of Cu. It is recommended to add Cu, Mg, Ni, Zn, Mn or Pb, and similar alloying elements in small amounts to these two element-matrix systems to strengthen the matrix. The liquidus temperature changes according to the quantity of elements added to suppress the buoyancy of the graphite particles and if these graphite particles are added adequately to prevent them from floating, the temperature changes only by ± 200 ° C.

La coulée, Immédiatement avant l'incorporation des particules de graphite, est maintenue soit au repos soit agitée. Quand la coulée est maintenue au repos, elle doit être agitée après incorporation des particules de graphite. De toutes façons, une fois que les particules de graphite sont incorporées, elles sont mises en suspension dans les tourbillons de la coulée, produits par agitation, de manière à faciliter leur dispersion.The casting, immediately before the incorporation of the graphite particles, is maintained either at rest or agitated. When the casting is kept at rest, it must be stirred after incorporating the graphite particles. In any case, once the graphite particles are incorporated, they are suspended in the eddies of the casting, produced by stirring, so as to facilitate their dispersion.

Cette opération est très importante, car, dans le cas contraire, on ne peut pas obtenir un lingot moulé dans lequel sont uniformément dispersées les particules de graphite. Quand l'agitation de la coulée est terminée et que cette coulée est laissée au repos, elle est solidifiée sous pression. Cette solidification sous pression résulte dans une solidification rapide de la coulée. Le transfert de chaleur entre la coulée et le moule est amélioré par pressurisation, la solidification de la coulée est accélérée et on obtient une structure de moulage précise.This operation is very important because, otherwise, one cannot obtain a molded ingot in which the graphite particles are uniformly dispersed. When the stirring of the pouring is finished and this pouring is left to stand, it is solidified under pressure. This solidification under pressure results in a rapid solidification of the casting. The heat transfer between the casting and the mold is improved by pressurization, the solidification of the casting is accelerated and a precise molding structure is obtained.

En outre, les imperfections du lingot disparaissent aussi. Une pression de 400 à 1 000 kg/cm2 est souhaitable pour réaliser la solidification. Si cette pression est inférieure à 400 kg/cm2, on ne peut pas extraire assez de gaz. Si au contraire elle est supérieure à 1 000kg/cm2, une telle haute pression nécessite un dispositif trop important augmentant de ce fait les frais de cet appareillage.In addition, the imperfections of the ingot also disappear. A pressure of 400 to 1000 kg / cm 2 is desirable to achieve solidification. If this pressure is less than 400 kg / cm 2 , you cannot extract enough gas. If, on the contrary, it is greater than 1000 kg / cm 2 , such a high pressure requires too large a device, thereby increasing the costs of this apparatus.

On peut aussi façonner un lingot dans lequel le graphite est uniformément dispersé, en faisant varier la forme du moule métallique utilisé à cet effet, par exemple en rendant le diamètre du moule long et étroit, et en utilisant un système de refroidissement par eau.It is also possible to shape an ingot in which the graphite is uniformly dispersed, by varying the shape of the metal mold used for this purpose, for example by making the diameter of the mold long and narrow, and by using a water cooling system.

Dans l'alliage d'allumlnium contenant du graphite, ce dernier agit généralement comme un lubrifiant solide et contribue fortement à améliorer la résistance à l'abrasion. Cette action est influencée par la taille des particules de graphite utilisées.In the aluminum alloy containing graphite, the latter generally acts as a solid lubricant and greatly contributes to improving the abrasion resistance. This action is influenced by the size of the graphite particles used.

Quand la grosseur des particules de graphite est trop petite, une adhérence intervient dans ces particules en frottement et le graphite adhère à la surface de frottement d'un élément de contact. Ce phénomène s'observe souvent quand la grosseur des particules de graphite se situe entre 20 et 50 jim. Si cette grosseur est Inférieure à ces valeurs, le graphite qui adhère au contact est expulsé du système de frottement.When the size of the graphite particles is too small, adhesion occurs in these friction particles and the graphite adheres to the friction surface of a contact element. This phenomenon is often observed when the size of the graphite particles is between 20 and 50 µm. If this size is less than these values, the graphite which adheres to the contact is expelled from the friction system.

Compte tenu de ce qui précède, il est souhaitable que le diamètre moyen des particules de graphite à utiliser soit de 50 µm. Le degré de dispersion des particules de graphite est influencé par la vitesse d'agitation de la coulée. Par exemple, un alliage d'aluminium contenant, en poids, 12 % de Si et 3 % de Cr est fondu et maintenu à une température de 700 °C dans un creuset en graphite de 90 mm de diamètre. On agite ensuite la coulée en utilisant des palettes à différentes vitesses, et on ajoute de la poudre de graphite naturel de 60 à 80 mailles à la coulée, dans une quantité égale à 9 %, en poids, puis on observe la dispersion des particules de graphite. A une vitesse de rotation inférieure à 50 tours/minute, aucun tourbillon ne se produit dans la coulée qui est seulement agitée, de sorte que cela prend un grand moment avant que les particules de graphite ne soient dispersées dans la coulée. De plus, une petite partie de ces particules de graphite ne se disperse pas dans la coulée malgré une agitation assez longue, vu les taches sur les couches superficielles.In view of the above, it is desirable for the mean diameter of the graphite particles to be used to be 50 μm. The degree of dispersion of the graphite particles is influenced by the speed of agitation of the casting. For example, an aluminum alloy containing, by weight, 12% of Si and 3% of Cr is melted and maintained at a temperature of 700 ° C in a graphite crucible of 90 mm in diameter. The casting is then stirred using paddles at different speeds, and powder is added. natural graphite of 60 to 80 meshes in the casting, in an amount equal to 9%, by weight, then the dispersion of the graphite particles is observed. At a rotational speed of less than 50 rpm, no vortex occurs in the flow which is only stirred, so it takes a long time before the graphite particles are dispersed in the flow. In addition, a small part of these graphite particles does not disperse in the casting despite a fairly long stirring, given the stains on the surface layers.

A une vitesse d'agitation supérieure à 500 tours/minute, on observe de nombreux tourbillons désordonnés et les particules de graphite incorporées flottent à la surface de la coulée. Entre 50 et 500 tours/minute, des tourbillons normaux se produisent et les particules de graphite sont dispersées dans la coulée.At a stirring speed greater than 500 revolutions / minute, numerous disordered vortices are observed and the incorporated graphite particles float on the surface of the casting. Between 50 and 500 revolutions / minute, normal vortices occur and the graphite particles are dispersed in the casting.

Possibilité d'exploitation industriellePossibility of industrial exploitation

On va expliquer à présent, en fonction d'exemples comparatifs, certains modes de réalisation de l'invention.We will now explain, according to comparative examples, certain embodiments of the invention.

Mode de réalisation 1Embodiment 1

On fait fondre dans un creuset en graphite de 90 mm de diamètre intérieur 700 g d'un alliage AI-Si contenant 20 %, en poids, de Si et on maintient une température de 690 °C. On introduit dans le creuset un élément en forme de palette qui fera tourner et agiter la coulée d'alliage AI-Si à 100 tours/minute pour y former des tourbillons.700 g of an AI-Si alloy containing 20%, by weight, of Si are melted in a graphite crucible 90 mm in internal diameter and a temperature of 690 ° C. is maintained. An element in the form of a pallet is introduced into the crucible which will make the AI-Si alloy flow turn and agitate at 100 revolutions / minute to form vortices.

Ensuite, on ajoute à la coulée du graphite naturel pulvérisé de 177 à 250 µm de grosseur, en une quantité de 9 % en poids. On incorpore dans la coulée l'un des éléments suivants : Ti, Cr, Zr, V, Ni, Co, Mn et Nb, et la quantité d'un tel élément additif incorporé est changée pour déterminer la quantité de l'élément additif nécessaire pour disperser jusqu'à 30%, en poids, des particules de graphite sans provoquer la flottaison de ces dernières. Les résultats mesurés sont représentés sur le tableau 1. On peut y constater que si la coulée contient l'un de ces éléments dans une quantité de 1 à 20 %, en poids, les particules de graphite peuvent être incorporées entre 2 et 30 % en poids. Dans ce procédé, la solidification sous pression se fait à 600 kg/cm2.Next, pulverized natural graphite 177 to 250 μm in size is added to the casting, in an amount of 9% by weight. One of the following elements is incorporated into the casting: Ti, Cr, Zr, V, Ni, Co, Mn and Nb, and the quantity of such an incorporated additive element is changed to determine the quantity of the necessary additive element to disperse up to 30% by weight of graphite particles without causing them to float. The measured results are shown in Table 1. It can be seen there that if the casting contains one of these elements in an amount of 1 to 20%, by weight, the graphite particles can be incorporated between 2 and 30% in weight. In this process, solidification under pressure takes place at 600 kg / cm 2 .

On fond à nouveau un lingot à particules de graphite incorporées qui contient un élément efficace pour supprimer la flottaison du graphite, mais les particules de graphite ne flottent pas. On n'observe aucune différence en dispersant les particules de graphite sur la base de la différence de l'élément additif.Again ingots an ingot with incorporated graphite particles which contains an element effective in suppressing the buoyancy of graphite, but the graphite particles do not float. No difference was observed in dispersing the graphite particles based on the difference of the additive element.

Exemple comparatif 1Comparative example 1

On fait fondre dans un creuset en graphite de 90 mm de diamètre intérieur 700 g d'un alliage AI-Si contenant 20 %, en poids, de Si et on maintient la température de la coulée à 850 °C. On introduit dans ce creuset un élément en forme de palette qui fera tourner et agiter la coulée d'alliage AI-Si à 100 tours/minute pour y former des tourbillons. Ensuite, on ajoute à cette coulée 9 %, en poids, de graphite naturel pulvérisé de 177 à 250 µm de grosseur et on solidifie sous pression de 600 kg/cm?. Cependant, le graphite flotte à la surface de la coulée et ne se disperse pas dans celle-ci.700 g of an AI-Si alloy containing 20%, by weight, of Si is melted in a graphite crucible with an inside diameter of 90 mm, and the temperature of the casting is maintained at 850 ° C. A pallet-shaped element is introduced into this crucible which will rotate and stir the flow of AI-Si alloy at 100 revolutions / minute to form vortices. Then 9%, by weight, of pulverized natural graphite of 177 to 250 µm in thickness are added to this flow and solidified under pressure of 600 kg / cm 2. However, the graphite floats on the surface of the flow and does not disperse in it.

Exemple comparatif 2Comparative example 2

On fait fondre dans un creuset en graphite de 90 mm de diamètre intérieur 700 g d'un alliage AI-Sn contenant 10 %, en poids, de Sn et on maintient la température de cette coulée à 650 °C. On introduit dans le creuset un élément en forme de palette qui fera tourner et agiter l'alliage AI-Sn à 100 tours/minute pour y former des tourbillons. Ensuite, on ajoute dans cette coulée 9 %, en poids, de graphite naturel pulvérisé de 177 à 250 Fim de grosseur et on solidifie sous pression de 600 kg/cm2. Cependant, des particules de graphite flottent à la surface de la coulée et ne se dispersent pas dans cette dernière.700 g of an AI-Sn alloy containing 10%, by weight, Sn is melted in a graphite crucible with an internal diameter of 700 mm and the temperature of this casting is maintained at 650 ° C. A paddle-shaped element is introduced into the crucible which will rotate and stir the AI-Sn alloy at 100 revolutions / minute to form vortices. Then 9% by weight of pulverized natural graphite of 177 to 250 μm in thickness is added to this flow and solidified under pressure of 600 kg / cm 2 . However, graphite particles float on the surface of the casting and do not disperse in the latter.

Exemple comparatif 3Comparative example 3

Dans les mêmes conditions que dans l'exemple comparatif 1, on fabrique une coulée d'alliage AI-Si et on y ajoute individuellement les éléments Ba, Be, Ce, Hf, Cs, Fe, K, Ca, Mg, Np et Sb. Ensuite, on fait tourner la coulée pour y provoquer des tourbillons. Dans ces conditions, on ajoute à cette coulée du graphite naturel pulvérisé de 177 à 250 µm de grosseur. Or, les particules de graphite flottent à la surface de la coulée et ne se dispersent pas dans cette dernière.Under the same conditions as in Comparative Example 1, an AI-Si alloy casting is produced and the elements Ba, Be, Ce, Hf, Cs, Fe, K, Ca, Mg, Np and Sb are added to it individually. . Then, the flow is rotated to cause vortices. Under these conditions, pulverized natural graphite of 177 to 250 μm in thickness is added to this flow. However, the graphite particles float on the surface of the casting and do not disperse in the latter.

(Voir Tableau 1, page 6)(See Table 1, page 6)

Figure imgb0001
Figure imgb0001

Mode de réalisation 2Embodiment 2

On fait fondre dans un creuset en graphite de 90 mm de diamètre intérieur 700 g d'aluminium pur et on maintient la température de la coulée à 710 °C. On introduit dans la coulée du creuset un élément en forme de palette qui fera tourner et agiter cette coulée d'aluminium à 100 tours/minute pour y former des tourbillons. Ensuite, on ajoute dans cette coulée 9 %, en poids, de graphite naturel pulvérisé de 177 à 250 µm de grosseur. Cependant, les particules de graphite flottent à la surface de la coulée et ne se dispersent pas dans cette dernière. Au contraire, si l'on maintient une coulée d'alliage AI-Ti contenant 5 %, en poids, de Ti à une température de 1 100 °C et dans les conditions d'agitation mentionnées ci-dessus, on ajoute la même quantité des particules de graphite, qui se dispersent dans la coulée et ne flottent pas à sa surface.700 g of pure aluminum are melted in a graphite crucible 90 mm in internal diameter and the temperature of the casting is maintained at 710 ° C. A pallet-shaped element is introduced into the crucible casting which will make this aluminum casting rotate and agitate at 100 revolutions / minute to form vortices. Then 9% by weight of pulverized natural graphite of 177 to 250 μm in thickness is added to this flow. However, the graphite particles float on the surface of the casting and do not disperse in the latter. On the contrary, if a flow of AI-Ti alloy containing 5%, by weight, of Ti is maintained at a temperature of 1100 ° C. and under the stirring conditions mentioned above, the same amount is added particles of graphite, which disperse in the casting and do not float on its surface.

On solidifie alors la coulée d'aluminium contenant le graphite sous une pression de 600 kg/cm2 et on fabrique ainsi un alliage d'aluminium contenant du graphite.The aluminum casting containing the graphite is then solidified under a pressure of 600 kg / cm 2 and an aluminum alloy containing graphite is thus produced.

Mode de réalisation 3Embodiment 3

On fait fondre dans un creuset en graphite de 90 mm de diamètre intérieur un alliage AI-Cu-Zr contenant, en poids, 50 % de Cu et 3 % de Zr et on maintient la coulée résultante à une température de 750 °C. On introduit dans le creuset un élément en forme de palette grâce auquel on fera tourner et agiter l'alliage AI-Cu-Zr à 100 tours/minute pour former des tourbillons dans la coulée. Ensuite, on ajoute dans cette coulée, en une seule fois, 2 % en poids de graphite naturel pulvérisé dont la grosseur varie de 150 à 105 µm, de 177 à 150 µm, de 250 à 177 µm, de 500 à 250 µm, de 710 à 500 µm ou est supérieure à 710 µm, jusqu'à ce que la flottaison des particules de graphite intervienne, pour déterminer la relation entre la quantité du graphite dispersé et la granulométrie de celui-ci. La solidification est réalisée sous une pression de 600 kg/cm2. La relation entre la quantité de graphite dispersé et la taille particulaire est déterminée par des procédés identiques en changeant le Zr. Les résultats sont représentés sur le dessin unique annexé. Sur cette figure, la région 1 représente une région de flottaison du graphite et la région Il une région de dispersion du graphite. On pourra y constater que la quantité de graphite dispersé change en fonction de la quantité de l'élément additif ajouté et que le graphite est susceptible de flotter à la surface de la coulée suivant sa granulométrie.An AI-Cu-Zr alloy containing, by weight, 50% Cu and 3% Zr is melted in a graphite crucible with an internal diameter of 90 mm inside diameter and the resulting casting is maintained at a temperature of 750 ° C. A pallet-shaped element is introduced into the crucible with which the AI-Cu-Zr alloy will be rotated and stirred at 100 revolutions / minute to form vortices in the casting. Then 2% by weight of pulverized natural graphite, the size of which varies from 150 to 105 µm, from 177 to 150 µm, from 250 to 177 µm, from 500 to 250 µm, 710 to 500 µm or greater than 710 µm, until the flotation of the graphite particles occurs, to determine the relationship between the quantity of dispersed graphite and the particle size thereof. Solidification is carried out under a pressure of 600 kg / cm 2 . The relationship between the amount of dispersed graphite and the particle size is determined by identical methods by changing the Zr. The results are shown in the accompanying single drawing. In this figure, region 1 represents a flotation region of graphite and region II a dispersion region of graphite. It will be seen there that the quantity of dispersed graphite changes according to the quantity of the additive element added and that the graphite is likely to float on the surface of the casting according to its particle size.

Mode de réalisation 4Embodiment 4

On fait fondre dans un creuset en graphite de 90 mm de diamètre intérieur un alliage AI-Si contenant, en poids, 12 % de Si et on ajoute dans cette coulée, respectivement, 0,1, 0,5, 1,0, 2,0, 3,0 et 4,0 %, en poids, de phosphore. Ensuite, on maintient les coulées à une température de 700 °C. On introduit dans le creuset un élément en forme de palette grâce auquel on fera tourner et agiter l'alliage AI-Si-P à 150 tours/minute pour y former des tourbillons.An AI-Si alloy containing, by weight, 12% of Si is melted in a graphite crucible with an inside diameter of 90 mm, and 0.1, 0.5, 1.0, 2 are added to this flow, respectively. , 0, 3.0 and 4.0%, by weight, of phosphorus. Then, the flows are maintained at a temperature of 700 ° C. We introduce in the crucible a pallet-shaped element with which the AI-Si-P alloy will be rotated and stirred at 150 revolutions / minute to form vortices.

On ajoute dans la coulée, à une vitesse de 2 % en poids, des particules de graphite de 177 à 250 ¡.Lm de grosseur pour déterminer la limite quantitative des particules de graphite dispersées en fonction de chaque coulée. On détermine la limite quantitative des particules de graphite dispersées par un procédé identique avec un alliage AI-Si contenant, en poids, 20 % de Si, un alliage AI-Sn contenant, en poids, 5 % de Sn et un alliage AI-Cu contenant, en poids, 4 % de Cu. Les résultats sont représentés sur le tableau 2. Sur ce dernier, on peut voir que la quantité limite des particules de graphite dispersées est influencée par la quantité de phosphore mais pas par la matrice. En outre, quand il est nécessaire d'incorporer une quantité supérieure à 30 %, en poids, de particules de graphite, on peut ajouter 3,0 à 4,0 %, en poids, de phosphore.

Figure imgb0002
Graphite particles from 177 to 250 µm in size are added to the casting, at a rate of 2% by weight, in order to determine the quantitative limit of the dispersed graphite particles as a function of each casting. The quantitative limit of the graphite particles dispersed is determined by an identical process with an AI-Si alloy containing, by weight, 20% of Si, an AI-Sn alloy containing, by weight, 5% of Sn and an AI-Cu alloy. containing, by weight, 4% Cu. The results are shown in Table 2. On the latter, it can be seen that the limit quantity of the dispersed graphite particles is influenced by the quantity of phosphorus but not by the matrix. In addition, when it is necessary to incorporate an amount greater than 30%, by weight, of graphite particles, 3.0 to 4.0%, by weight, of phosphorus can be added.
Figure imgb0002

Claims (16)

1. A process for preparation of graphite containing aluminium alloys by incorporating graphite into an aluminium or aluminium alloy melt, comprising the steps of incorporating at least one additive element selected from the group consisting of titanium, chromium, zirconium, nickel, vanadium, cobalt, manganese, and niobium in the range of 1.5-20 % by weight, Into an aluminium or an aluminium alloy melt ; then, incorporating raw graphite particles without metal-coating, into the melt in an amount of 2-30 % by weight, and dispersing the raw graphite particles into the melt ; and thereafter, solidifying the aluminium or aluminium alloy melt containing the raw graphite particles.
2. A process according to claim 1, wherein the raw graphite particles are incorporated in an amount of 20-30 % by weight, and the additive element is incorporated in the melt to suppress floating of the raw graphite particles to the surface of the melt.
3. A process according to claim 1, wherein the raw graphite particles are incorporated in an amount of 15-20 % by weight, and the additive element is incorporated in the melt to suppress floating of the raw graphite particles to the surface of the melt.
4. A process according to claim 1, wherein the raw graphite particles are incorporated in an amount of 2-15 % by weight, and the additive element is incorporated in the melt to suppress floatting of the raw graphite particles to the surface of the melt.
5. A process according to claim 4, wherein the raw graphite particles are incorporated in an amount of 3-5 % by weight.
6. A process according to claim 1, 2, 3 or 4, wherein the average particle size of the raw graphite particles is larger than 50 µm in diameter.
7. A process according to claim 1, 2, 3 or 4, wherein the aluminium alloy is an Al-Sn alloy, an AI-Cu alloy, an Al-Pb alloy or an AI-Si alloy.
8. A process according to claim 1, 2, 3 or 4, wherein the temperature of the melt is held between a temperature 50 °C higher than the liquidus of the melt and 900 °C.
9. A process according to claim 1, 2, 3 or 4, wherein the aluminium or aluminium alloy melt containing raw graphite particles is solidified under the pressure of 400-1 000 kg/cm2.
10. A process according to claim 1, 2, 3 or 4, wherein the aluminium alloy melt containing the raw graphite particles is solidified by water cooling.
11. A process for preparation of graphite-containing aluminium alloys by incorporating raw graphite particles Into an aluminium or aluminium alloy melt, comprising the steps of incorporating phosphorus Into the aluminium or aluminium alloy melt in an amount of 0.1-4% weight ; then, incorporating and dispersing the raw graphite particles without metal-coating in an amount of 4-30 % by weight ito the melt ; and thereafter, solidifying the aluminium or aluminium alloy melt containing the raw gral hite.
12. A process according to claim 11, wherein the average size of raw graphite particles is larger than 50 µm.
13. A process according to claim 11, wherein the aluminium alloy is an Al-Sn alloy, an AI-Cu alloy, an Al-Pb alloy or an Al-Si alloy.
14. A process according to claim 11, wherein the temperature of the melt is held between a temperature 50 °C higher than the liquidus of the melt and 900 °C.
15. A process according to claim 11, wherein the aluminium or aluminium alloy melt containing the raw graphite particles is solidified under the pressure of 400-1 000 kg/cm2.
16. A process according to claim 11, wherein the aluminium or aluminium alloy melt containing the raw graphite particles is solidified by water cooling.
EP79900934A 1978-08-11 1979-08-09 Process for producing graphite-containing aluminum alloy Expired EP0022869B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP97227/78 1978-08-11
JP9722778A JPS5524949A (en) 1978-08-11 1978-08-11 Manufacture of graphite-containing aluminium alloy

Publications (3)

Publication Number Publication Date
EP0022869A4 EP0022869A4 (en) 1980-12-12
EP0022869A1 EP0022869A1 (en) 1981-01-28
EP0022869B1 true EP0022869B1 (en) 1983-08-03

Family

ID=14186735

Family Applications (1)

Application Number Title Priority Date Filing Date
EP79900934A Expired EP0022869B1 (en) 1978-08-11 1979-08-09 Process for producing graphite-containing aluminum alloy

Country Status (6)

Country Link
US (1) US4383970A (en)
EP (1) EP0022869B1 (en)
JP (1) JPS5524949A (en)
DE (1) DE2953015C1 (en)
GB (1) GB2039961B (en)
WO (1) WO1980000352A1 (en)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4759995A (en) * 1983-06-06 1988-07-26 Dural Aluminum Composites Corp. Process for production of metal matrix composites by casting and composite therefrom
US4786467A (en) * 1983-06-06 1988-11-22 Dural Aluminum Composites Corp. Process for preparation of composite materials containing nonmetallic particles in a metallic matrix, and composite materials made thereby
CA1289748C (en) * 1985-03-01 1991-10-01 Abinash Banerji Producing titanium carbide
JPH0630794B2 (en) * 1985-10-14 1994-04-27 栗田工業株式会社 Ultrapure water production system for semiconductor cleaning
US4865806A (en) * 1986-05-01 1989-09-12 Dural Aluminum Composites Corp. Process for preparation of composite materials containing nonmetallic particles in a metallic matrix
IN168301B (en) * 1986-09-02 1991-03-09 Council Scient Ind Res
GB8622458D0 (en) * 1986-09-18 1986-10-22 Alcan Int Ltd Alloying aluminium
US6127047A (en) * 1988-09-21 2000-10-03 The Trustees Of The University Of Pennsylvania High temperature alloys
US5227045A (en) * 1989-01-09 1993-07-13 Townsend Douglas W Supersaturation coating of cathode substrate
US5028301A (en) * 1989-01-09 1991-07-02 Townsend Douglas W Supersaturation plating of aluminum wettable cathode coatings during aluminum smelting in drained cathode cells
JPH03267355A (en) * 1990-03-15 1991-11-28 Sumitomo Electric Ind Ltd Aluminum-chromium alloy and its production
EP0539011B1 (en) * 1991-10-23 1997-05-07 Inco Limited Nickel coated carbon preforms
US5236468A (en) * 1992-03-19 1993-08-17 J. S. Mccormick Company Method of producing formed carbonaceous bodies
GB2267912A (en) * 1992-06-15 1993-12-22 Secr Defence Metal matrix for composite materials
EP0582435B1 (en) * 1992-08-06 1996-02-28 Toyota Jidosha Kabushiki Kaisha Method of producing TiC whiskers and metallic composite material reinforced by TiC whiskers
US5296056A (en) * 1992-10-26 1994-03-22 General Motors Corporation Titanium aluminide alloys
US9963395B2 (en) 2013-12-11 2018-05-08 Baker Hughes, A Ge Company, Llc Methods of making carbon composites
US9325012B1 (en) * 2014-09-17 2016-04-26 Baker Hughes Incorporated Carbon composites
US10315922B2 (en) 2014-09-29 2019-06-11 Baker Hughes, A Ge Company, Llc Carbon composites and methods of manufacture
US10480288B2 (en) 2014-10-15 2019-11-19 Baker Hughes, A Ge Company, Llc Articles containing carbon composites and methods of manufacture
US9962903B2 (en) 2014-11-13 2018-05-08 Baker Hughes, A Ge Company, Llc Reinforced composites, methods of manufacture, and articles therefrom
US9745451B2 (en) 2014-11-17 2017-08-29 Baker Hughes Incorporated Swellable compositions, articles formed therefrom, and methods of manufacture thereof
US11097511B2 (en) 2014-11-18 2021-08-24 Baker Hughes, A Ge Company, Llc Methods of forming polymer coatings on metallic substrates
US10300627B2 (en) 2014-11-25 2019-05-28 Baker Hughes, A Ge Company, Llc Method of forming a flexible carbon composite self-lubricating seal
US10125274B2 (en) 2016-05-03 2018-11-13 Baker Hughes, A Ge Company, Llc Coatings containing carbon composite fillers and methods of manufacture
US10344559B2 (en) 2016-05-26 2019-07-09 Baker Hughes, A Ge Company, Llc High temperature high pressure seal for downhole chemical injection applications
CN106334787B (en) * 2016-10-24 2018-06-29 三峡大学 A kind of gradient graphite/aluminium base surface layer self-lubricating composite and preparation method

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1207538A (en) * 1966-10-07 1970-10-07 Int Nickel Ltd Graphitic alloys and processes for the production thereof
FR95986E (en) * 1968-03-25 1972-05-19 Int Nickel Ltd Graphitic alloys and their production processes.
CH515195A (en) * 1969-07-31 1971-11-15 Battelle Memorial Institute Composite material and process for its manufacture
US3753694A (en) * 1970-07-06 1973-08-21 Int Nickel Co Production of composite metallic articles
JPS4918891B1 (en) * 1970-12-25 1974-05-14
JPS5438125B2 (en) * 1971-08-24 1979-11-19
JPS5523892B2 (en) * 1973-04-03 1980-06-25
JPS5293621A (en) * 1976-02-02 1977-08-06 Hitachi Ltd Production of copper alloy containing graphite
JPS5295503A (en) * 1976-02-09 1977-08-11 Hitachi Ltd Production of alloy dispersed with metal particles

Also Published As

Publication number Publication date
WO1980000352A1 (en) 1980-03-06
JPS5524949A (en) 1980-02-22
US4383970A (en) 1983-05-17
DE2953015C1 (en) 1984-08-30
GB2039961B (en) 1983-11-09
GB2039961A (en) 1980-08-20
EP0022869A4 (en) 1980-12-12
EP0022869A1 (en) 1981-01-28
JPS6158534B2 (en) 1986-12-12

Similar Documents

Publication Publication Date Title
EP0022869B1 (en) Process for producing graphite-containing aluminum alloy
US5626692A (en) Method of making an aluminum-base metal matrix composite
EP0358751B1 (en) Multi-phase electro-melted material based on alumina, oxycarbide and oxynitride of aluminium
CN108570571A (en) Sliding material and its manufacturing method and sliding component and bearing arrangement
FR2491090A1 (en) ALLOY FOR ANTIFRICTION LAYER OF BEARINGS AND METHOD FOR FORMING AN ANTI-FRRICTION LAYER ON A SUPPORTING STEEL STRIP
FR2718462A1 (en) Aluminum alloys containing bismuth, cadmium, indium and / or lead in a very finely dispersed state and process for obtaining the same.
FR2813317A1 (en) SINTERED ALLOY MATERIAL FOR VALVE GUIDES
WO2014073630A1 (en) Copper alloy
FR2494722A1 (en) PRECIPITATION-CURABLE ALUMINUM ALLOY ARTICLE AND METHOD OF MANUFACTURE
JPS58110652A (en) Wear resistant composite aluminum material and its manufacture
CH619005A5 (en)
JP4121733B2 (en) Method for producing graphite-containing aluminum alloy and sliding member
FR2707191A1 (en) Metallic powder for producing parts by compression and sintering and process for obtaining this powder
Mohan et al. Liquid-liquid dispersion for fabrication of Al Pb metal-metal composites
US4906531A (en) Alloys strengthened by dispersion of particles of a metal and an intermetallic compound and a process for producing such alloys
KR820002303B1 (en) Process for aluminum alloy contained graphite
EP1877589A1 (en) Grain refinement agent comprising titanium nitride and method for making same
JPS6149374B2 (en)
Sharma et al. AA6061/B 4 C/Graphite/CeO 2 Reinforced Hybrid Composite Development and Evaluation of Its Properties.
JP2609107B2 (en) Intermetallic compound particle dispersion strengthened alloy and method for producing the same
JPH06287664A (en) Aluminum system metal matrix composite material
Rohatgi Development of Lead-Free Copper Alloy-Graphite Castings
Choudhury et al. Effect of nickel aluminides on tribological behaviour of Zn-Al alloy
Haoran et al. A new technique for preventing lead segregation in aluminium bearing alloys
BE636032A (en)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19800904

AK Designated contracting states

Designated state(s): FR

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): FR

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19980814

Year of fee payment: 20