EP0021911A1 - Process and apparatus for treating decontamination effluents coming from nuclear reactor components - Google Patents

Process and apparatus for treating decontamination effluents coming from nuclear reactor components Download PDF

Info

Publication number
EP0021911A1
EP0021911A1 EP80400790A EP80400790A EP0021911A1 EP 0021911 A1 EP0021911 A1 EP 0021911A1 EP 80400790 A EP80400790 A EP 80400790A EP 80400790 A EP80400790 A EP 80400790A EP 0021911 A1 EP0021911 A1 EP 0021911A1
Authority
EP
European Patent Office
Prior art keywords
tank
effluent
hydrogen peroxide
solution
reduction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP80400790A
Other languages
German (de)
French (fr)
Other versions
EP0021911B1 (en
Inventor
Yves Berton
Pierre Chauvet
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Commissariat a lEnergie Atomique CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat a lEnergie Atomique CEA filed Critical Commissariat a lEnergie Atomique CEA
Publication of EP0021911A1 publication Critical patent/EP0021911A1/en
Application granted granted Critical
Publication of EP0021911B1 publication Critical patent/EP0021911B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor

Definitions

  • the subject of the present invention is a process for treating effluents originating from the decontamination of components of nuclear reactors, such as those which result from the decontamination of metallic stainless steel parts which have remained for a certain time in contact with the coolant of a reactor.
  • this fluid can consist of water or liquid sodium.
  • chemical agents in solution are used in a known manner which make it possible to dissolve the active products thus deposited on the parts.
  • the chemical agents used are of variable nature, but generally contain acids and / or bases in aqueous solution and are often supplemented by potassium permanganate which acts as an oxidizing agent.
  • composition of such a decontamination effluent is as follows:
  • the chemical treatment of such an effluent must firstly aim at decontamination, which consists in passing the main part of the radioactivity into precipitates of sludge which are subsequently stored separately so as to be able to reject the phase liquid in nature, and, secondly, obtaining a good concentration of said sludge formed during the treatment of the effluent, that is to say a small volume of this sludge compared to the initial volume of the liquid effluent to be treated.
  • the present invention specifically relates to a process for treating such decontamination effluents which makes it possible to obtain both satisfactory decontamination factors, a good concentration of the sludge to be stored and the rejection in nature of a liquid phase acceptable to the with regard to defined legal standards.
  • This treatment process which applies to effluents of the type of those which comprise permanganate, phosphate and sulfate ions in solution, and radioactive ions of manganese, chromium and cobalt, is essentially characterized in that it comprises the steps successive reduction of permanganate ions by addition of hydrogen peroxide, alkalinization to a pH equal to or greater than 12, separa tion of the precipitate formed and final acidification of the remaining liquid phase to bring its pH to a value compatible with its release into the environment.
  • the decontamination factors are improved by adding a nickel salt or a ferrous salt to the effluent after the addition of hydrogen peroxide and before alkalization.
  • the nickel salt may be either S0 4 Ni sulfate or Ni (C0 3 ) 2 , 6H 2 0 nitrate; the ferrous salt used is most often sulphate SO 4 Fe, 7H 2 O.
  • the reduction of permanganate ions is carried out by hydrogen peroxide, generally at 100 volumes, which is added to the liquid phase until an adjustment of the potential d is obtained. oxidation-reduction to a value close to 550 mV compared to a calomel electrode.
  • the present invention also relates to a device for implementing this method.
  • the device for implementing the method is characterized in that it comprises a first tank communicating with a second tank, the two tanks being provided with stirring means, means for introducing into said first tank the liquid effluent to treating and the hydrogen peroxide, means for adjusting the oxidation-reduction potential of the effluent present in said tank to the desired value, means for introducing into said second tank a nickel salt and an alkaline solution, means to adjust the pH of the effluent present in said tank to the desired value, means for separating the precipitate formed from the effluent and for bringing it into a third tank provided with stirring means, means for introducing into said third tank an acid solution and means for adjusting the pH of the effluent to the desired value.
  • This device is characterized in that the means for separating the precipitate formed are constituted by a centrifuge and by a filter.
  • the hydrogen peroxide added is 100 volumes hydrogen peroxide and the amount used was 1.1 ml / 1 of solution. Alkalization at a pH above 12 was obtained using sodium hydroxide in an amount equal to 85 g / l of solution.
  • the nickel is introduced in the form of a solution of nickel sulphate SO 4 Ni at 0.3 g / 1.
  • the following table gives, for each of the three radionuclides 54 Mn, 60 Co and 51 Cr, the activities in micro-curies / m 3 before and after the treatment. It can be seen that good decontamination factors are already obtained by the treatment with hydrogen peroxide plus soda, but that these factors are still much improved if the nickel salt is added. A decontamination factor greater than 430 for manganese, greater than 15 for chromium and equal to 10 for cobalt is then obtained.
  • the second example of implementation of the treatment method according to the invention relates to an effluent solution whose initial activity (indicated below) is significantly greater than the activities of the effluent of the previous example. It will be seen in the table below that the results obtained with regard to the decontamination factor are therefore much more spectacular.
  • This effluent has the following chemical characteristics:
  • the effluent solution was treated with the addition of hydrogen peroxide at 100 volumes at a dose of 1.5 ml / 1 of solution to reduce the permanganate ions; 0.3 g / l of nickel ion solution in the form of sulphate was then added and the medium was basified by adding 80 to 95 g / l of sodium hydroxide to obtain a pH equal to or greater than 12.
  • This example relates to comparative experiments carried out with nickel and other metallic cations such as iron, copper, calcium or cobalt, in order to compare the decontamination factors obtained.
  • the following table clearly shows the clear superiority of nickel over the other cations.
  • 1.5 ml of hydrogen peroxide at 100 volumes per liter of effluent were introduced and, after addition of the metal salt, sodium hydroxide was added until a pH of 12 was obtained.
  • a column called "total gamma" has been added to the specific decontamination factor for each of the three preceding radionuclides, corresponding to the overall decontamination of all the gamma emitters considered as a whole.
  • FIG. 1 shows, under the conditions of the experiment corresponding to the penultimate line of the table above (300 mg / 1 of nickel ions) the influence of the pH of the solution, plotted on the abscissa on the decontamination factor obtained for each of the three radionuclides contained in the initial effluent, namely 51 Cr, 60Co, and 54 Mn. It is obvious, when consulting this curve, that the maximum effect of pH on decontamination is located for a value of the latter equal to or greater than 12.
  • the sludge formed by precipitation during the chemical treatment is generally very divided and, taking into account the high salinity of the treated effluent, they do not settle. Under these conditions, to obtain a true separation of the liquid and solid phases, use must be made of a filtration or preferably centrifugation operation because the latter technique is much more effective due to the low cohesion of the sludge. Additional filtration eliminates fine particles which may have remained in suspension after centrifugation.
  • FIG. 2 shows the curve showing the change in the apparent volume of the sludge as a percentage relative to the initial volume of effluent, as a function of the centrifugal field applied, said field being expressed in units g of gravity acceleration earthly.
  • the results of FIG. 2 have been grouped together, giving the apparent volume of the packed sludge and its residual humidity as a function of the centrifugal field applied and the duration in minutes of the application of this field. It can thus be seen that under the best treatment conditions, the dewatered sludge has a volume of 30 ml / l of solution with a humidity of 86%.
  • the effluents are brought by a pipe 1 into a first tank 2 provided with an agitator 3.
  • the hydrogen peroxide contained in a storage tank 5 is injected into the container 2, controlling at using a device per se known 6 the redox potential of this solution so as to bring it to the desired value, generally close to 550mV relative to a calomel electrode.
  • the effluents generally stay for a period of the order of 30 minutes in the tank 2.
  • a pipe 7 then conducts the effluents into a second container 8 also provided with an agitator 9 and into which the nickel sulphate stored in the container 11 is introduced via the line 10, and, via the line 12, the sodium hydroxide stored in the container 13 to bring the pH to a value equal to or greater than 12 which is controlled using the probe 14.
  • the effluent then passes through the line 15 in a buffer capacity 16 before reaching the centrifuge 17 where the sludge is separated by spinning.
  • the sludge comes out at 20 of the centrifuge 17 and the liquid phase, separated from the sludge, then passes through the line 21 through a second buffer capacity 22.
  • the liquid effluent must still be filtered through the filter 23 to remove fine particles which have not been completely separated by centrifugation; the pipe 24 then leads the liquid phase thus treated in a new tank 25 provided with an agitator and into which is introduced by a pipe 26 the quantity of acid (nitric or sulfuric) necessary coming from the storage container 27 to adjust the pH before rejection at a value compatible with current regulations and generally around 7.
  • Control of the pH value is carried out by a probe 28 bypass on the tank 25.
  • the final rejection can then take place by gravity at the base 29 of container 25.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Removal Of Specific Substances (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

Ce procédé comprend les étapes successives de réduction des ions permanganate par addition d'eau oxygénée (récipient 2) d'alclinisation à un pH égal ou supérieur à 12 (récipient 8), de séparation du précipité formé (centrifugeuse 17) et d'acidification finale de la phase liquide restante pour porter son pH à une valeur compatible avec son rejet dans la nature (récipient 25). Application dans un dispositif de traitement des effluents de décontamination des réacteurs nucléaires refroidis au sodium.This process comprises the successive stages of reduction of permanganate ions by addition of hydrogen peroxide (container 2) of inclination to a pH equal to or greater than 12 (container 8), of separation of the precipitate formed (centrifuge 17) and of acidification final of the remaining liquid phase to bring its pH to a value compatible with its release into the environment (container 25). Application in a device for treating decontamination effluents from sodium-cooled nuclear reactors.

Description

Laprésente invention a pour objet un procédé de traitement des effluents provenant de la décontamination de composants de réacteurs nucléaires, tels que ceux qui résultent de la décontamination de pièces métalliques en acier inoxydable ayant séjourné pendant un certain temps au contact du fluide réfrigérant d'un réacteur nucléaire, ce fluide pouvant être constitué par de l'eau ou par du sodium liquide.The subject of the present invention is a process for treating effluents originating from the decontamination of components of nuclear reactors, such as those which result from the decontamination of metallic stainless steel parts which have remained for a certain time in contact with the coolant of a reactor. nuclear, this fluid can consist of water or liquid sodium.

On sait que dans un réacteur nucléaire de ce dernier type, les mouvements de convection qui se produisent au sein de la masse de sodium conduisent au transfert de certains atomes radioactifs qui sont véhiculés ainsi par le réfrigérant métallique liquide et viennent contaminer certains composants du réacteur. Un des radionucléides le plus fréquemment rencontré parmi les responsables de cette contamination, est le manganèse 54 qui prend naissance dans le coeur du réacteur par réaction 54Fe (n, p)+ 54 Mn. It is known that in a nuclear reactor of the latter type, the convection movements which occur within the sodium mass lead to the transfer of certain radioactive atoms which are thus transported by the liquid metallic coolant and come to contaminate certain components of the reactor. One of the most frequently encountered radionuclides among those responsible for this contamination is manganese 54, which begins in the reactor core by reaction 54 Fe ( n , p) + 54 Mn.

Pour réaliser la décontamination de ces pièces en acier inoxydable, on fait appel de façon connue à des agents chimiques en solution qui permettent de dissoudre les produits actifs ainsi déposés sur les pièces. Les agents chimiques utilisés sont de nature variable, mais contiennent en général des acides et/ou des bases en solution aqueuse et sont souvent complétés par le permanganate de potassium qui agit comme agent oxydant.To carry out the decontamination of these stainless steel parts, chemical agents in solution are used in a known manner which make it possible to dissolve the active products thus deposited on the parts. The chemical agents used are of variable nature, but generally contain acids and / or bases in aqueous solution and are often supplemented by potassium permanganate which acts as an oxidizing agent.

De façon classique, la composition d'un tel effluent de décontamination est la suivante:

Figure imgb0001
Conventionally, the composition of such a decontamination effluent is as follows:
Figure imgb0001

La radioactivité, due principalement aux produits d'activation : 54 Mn - 60Co - 51Cr est de l'ordre de 10-2 à 10-1 Ci/m3.The radioactivity, mainly due to the activation products: 54 Mn - 60 Co - 51 Cr is around 10-2 to 10 -1 Ci / m 3 .

Le traitement chimique d'un tel effluent doit avoir pour but d'une part la décontamination, qui consiste à faire passer l'essentiel de la radioactivité dans des précipités de boues que l'on stocke ultérieurement à part de façon à pouvoir rejeter la phase liquide dans la nature, et, d'autre part l'obtention d'une bonne concentration desdites boues formées au cours du traitement de l'effluent, c'est à dire d'un faible volume de ces boues par rapport au volume initial de l'effluent liquide à traiter. C'est ici le lieu de rappeler que l'on mesure de façon classique la qualité de la décontamination à laquelle on parvient en utilisant le facteur de décontamination (en abrégé FD) qui s'exprime, pour chaque radionucléide présent, par le rapport entre les activités de ce radionucléide dans la solution avant et après le traitement de l'effluent. Par ailleurs, pour chacun des radionucléides envisagés, des normes de sécurité définissent en activité, c'est à dire en nombre de désintégrations par unité de volume et par unité de temps, la concentration maximale admissible pour la population (en abrégé C. M. A. P.) dans l'eau de boisson. Enfin, des questions de pH peuvent se présenter, en ce sens que les eaux de rejets ne doivent pas perturber trop gravement par leur acidité ou leur alcalinité les qualités du milieu biologique environnant.The chemical treatment of such an effluent must firstly aim at decontamination, which consists in passing the main part of the radioactivity into precipitates of sludge which are subsequently stored separately so as to be able to reject the phase liquid in nature, and, secondly, obtaining a good concentration of said sludge formed during the treatment of the effluent, that is to say a small volume of this sludge compared to the initial volume of the liquid effluent to be treated. This is the place to remember that we measure in a conventional way the quality of the decontamination that we achieve using the decontamination factor (abbreviated FD) which is expressed, for each radionuclide present, by the ratio between the activities of this radionuclide in the solution before and after the treatment of the effluent. In addition, for each of the radionuclides envisaged, safety standards define in activity, that is to say in number of disintegrations per unit of volume and per unit of time, the maximum admissible concentration for the population (abbreviated as CMAP) in the drinking water. Finally, questions of pH can arise, in the sense that the waste water must not disturb too seriously by their acidity or alkalinity the qualities of the surrounding biological environment.

La présente invention a précisément pour objet un procédé de traitement de tels effluents de décontamination qui permet d'obtenir a la fois des facteurs de décontamination satisfaisants, une bonne concentration des boues à stocker et le rejet dans la nature d'une phase liquide acceptable au regard des normes légales définies.The present invention specifically relates to a process for treating such decontamination effluents which makes it possible to obtain both satisfactory decontamination factors, a good concentration of the sludge to be stored and the rejection in nature of a liquid phase acceptable to the with regard to defined legal standards.

Ce procédé de traitement qui s'applique aux effluents du type de ceux qui comportent en solution des ions permanganate, phosphate et sulfate, et des ions radioactifs de manganèse, de chrome et de cobalt, se caractérise essentiellement en ce qu'il comprend les étapes successives de réduction des ions permanganate par addition d'eau oxygénée, d'alcalinisation à un pH égal ou supérieur à 12, de séparation du précipité formé et d'acidification finale de la phase liquide restante pour porter son pH à une valeur compatible avec son rejet dans la nature.This treatment process which applies to effluents of the type of those which comprise permanganate, phosphate and sulfate ions in solution, and radioactive ions of manganese, chromium and cobalt, is essentially characterized in that it comprises the steps successive reduction of permanganate ions by addition of hydrogen peroxide, alkalinization to a pH equal to or greater than 12, separa tion of the precipitate formed and final acidification of the remaining liquid phase to bring its pH to a value compatible with its release into the environment.

Selon une caractéristique importante de la présente invention, on améliore les facteurs de décontamination en ajoutant dans l'effluent un sel de nickel ou un sel ferreux après l'addition d'eau oxygénée et avant alcalini- sation. A titre d'exemple préféré, le sel de nickel peut être soit le sulfate S04Ni, soit le nitrate Ni(C03)2, 6H20; le sel ferreux utilisé est le plus souvent le sulfate SO4Fe,7H2O.According to an important characteristic of the present invention, the decontamination factors are improved by adding a nickel salt or a ferrous salt to the effluent after the addition of hydrogen peroxide and before alkalization. As a preferred example, the nickel salt may be either S0 4 Ni sulfate or Ni (C0 3 ) 2 , 6H 2 0 nitrate; the ferrous salt used is most often sulphate SO 4 Fe, 7H 2 O.

Selon une autre caractéristique importante de la présente invention, la réduction des ions permanganate est effectuée par de l'eau oxygénée, en général à 100 volumes, laquelle est ajoutée à la phase liquide jusqu'à l'obtention d'un ajustement du potentiel d'oxydoréduction à une valeur voisine de 550 mV par rapport à une électrode au calomel.According to another important characteristic of the present invention, the reduction of permanganate ions is carried out by hydrogen peroxide, generally at 100 volumes, which is added to the liquid phase until an adjustment of the potential d is obtained. oxidation-reduction to a value close to 550 mV compared to a calomel electrode.

Dans la majorité des cas, il est avantageux d'effectuer la séparation du précipité de boues au sein de la phase liquide par centrifugation.In the majority of cases, it is advantageous to carry out the separation of the sludge precipitate within the liquid phase by centrifugation.

La présente invention a également pour objet un dispositif pour la mise en oeuvre de ce procédé.The present invention also relates to a device for implementing this method.

Le dispositif pour la mise en oeuvre du procédé se caractérise en ce qu'il comprend une première cuve communiquant avec une deuxième cuve, les deux cuves étant munies de moyens d'agitation, des moyens pour introduire dans ladite première cuve l'effluent liquide à traiter et l'eau oxygénée, des moyens pour ajuster à la valeur voulue le potentiel d'oxydo-réduction de l'effluent présent dans ladite cuve, des moyens pour introduire dans ladite deuxième cuve un sel de nickel et une solution alcaline, des moyens pour ajuster à la valeur voulue le pH de l'effluent présent dans ladite cuve, des moyens pour séparer de l'effluent le précipité formé et pour l'amener dans une troisième cuve munie de moyens d'agitation, des moyens pour introduire dans ladite troisième cuve une solution acide et des moyens pour ajuster le pH de l'effluent à la valeur désirée.The device for implementing the method is characterized in that it comprises a first tank communicating with a second tank, the two tanks being provided with stirring means, means for introducing into said first tank the liquid effluent to treating and the hydrogen peroxide, means for adjusting the oxidation-reduction potential of the effluent present in said tank to the desired value, means for introducing into said second tank a nickel salt and an alkaline solution, means to adjust the pH of the effluent present in said tank to the desired value, means for separating the precipitate formed from the effluent and for bringing it into a third tank provided with stirring means, means for introducing into said third tank an acid solution and means for adjusting the pH of the effluent to the desired value.

Ce dispositif est caractérisé en ce que les moyens pour séparer le précipité formé sont constitués par une centrifugeuse et par un filtre.This device is characterized in that the means for separating the precipitate formed are constituted by a centrifuge and by a filter.

De toute façon, l'invention sera mieux comprise en se référant à la description qui suit de trois exemples de mise en oeuvre du procédé, exemples qui seront décrits en se référant également aux figures 1 à 3 ci-jointes sur lesquelles :

  • - la figure 1 représente les variations du facteur de décontamination en fonction du pH de la solution;
  • - la figure 2 représente le volume apparent des boues en pourcentage par rapport au volume initial d'effluents en fonction du champ appliqué par la centrifugeuse, exprimé en accélérations de la pesanteur g;
  • - la figure 3 représente un dispositif de mise en oeuvre du procédé de traitement des effluents objet de l'invention.
In any case, the invention will be better understood by referring to the following description of three examples of implementation of the method, examples which will be described with reference also to attached Figures 1 to 3 in which:
  • - Figure 1 shows the variations of the decontamination factor depending on the pH of the solution;
  • - Figure 2 represents the apparent volume of sludge in percentage compared to the initial volume of effluents as a function of the field applied by the centrifuge, expressed in accelerations of gravity g;
  • - Figure 3 shows a device for implementing the effluent treatment process object of the invention.

EXEMPLE 1EXAMPLE 1

  • - Cet exemple donne les résultats d'un traitement, par le procédé selon l'invention, d'un effluent ayant la composition suivante:
    Figure imgb0002
    - This example gives the results of a treatment, by the method according to the invention, of an effluent having the following composition:
    Figure imgb0002

L'eau oxygénée ajoutée est de l'eau oxygénée à 100 volumes et la quantité utilisée a été de 1,1 ml/1 de solution. L'alcalinisation à un pH supérieur à 12 a été obtenue à l'aide de soude en quantité égale à 85 g/l de solution.The hydrogen peroxide added is 100 volumes hydrogen peroxide and the amount used was 1.1 ml / 1 of solution. Alkalization at a pH above 12 was obtained using sodium hydroxide in an amount equal to 85 g / l of solution.

On a effectué deux traitements, l'un avec nickel et l'autre sans nickel. Le nickel est introduit sous forme d'une solution de sulfate de nickel S04Ni à 0,3 g/1. On donne dans le tableau suivant, pour chacun des trois radio- nucléïdes 54Mn, 60Co et 51Cr, les activités en micro-curies/ m3 avant et après le traitement. On constate que l'on obtient déjà de bons facteurs de décontamination par le traitement eau oxygénée plus soude, mais que ces facteurs sont encore nettement améliorés si l'on ajoute le sel de nickel. On obtient alors un facteur de décontamination supérieur à 430 pour le manganèse, supérieur à 15 pour le chrome et égal à 10 pour le cobalt.

Figure imgb0003
We performed two treatments, one with nickel and the other without nickel. The nickel is introduced in the form of a solution of nickel sulphate SO 4 Ni at 0.3 g / 1. The following table gives, for each of the three radionuclides 54 Mn, 60 Co and 51 Cr, the activities in micro-curies / m 3 before and after the treatment. It can be seen that good decontamination factors are already obtained by the treatment with hydrogen peroxide plus soda, but that these factors are still much improved if the nickel salt is added. A decontamination factor greater than 430 for manganese, greater than 15 for chromium and equal to 10 for cobalt is then obtained.
Figure imgb0003

EXEMPLE 2EXAMPLE 2

Le deuxième exemple de mise en oeuvre du procédé de traitement selon l'invention concerne une solution d'effluents dont l'activité initiale (indiquée plus bas) est nettement plus importante que les activités de l'effluent de l'exemple précédent. On verra dans le tableau qui suit que les résultats obtenus en ce qui concerne le facteur de décontamination sont de ce fait beaucoup plus spectaculaires. Cet effluent présente les caractéristiques chimiques suivantes :

Figure imgb0004
The second example of implementation of the treatment method according to the invention relates to an effluent solution whose initial activity (indicated below) is significantly greater than the activities of the effluent of the previous example. It will be seen in the table below that the results obtained with regard to the decontamination factor are therefore much more spectacular. This effluent has the following chemical characteristics:
Figure imgb0004

Dans cet exemple, on a traité la solution d'effluents par une addition d'eau oxygénée à 100 volumes à la dose de 1,5 ml/1 de solution pour réduire les ions permanganate; on a ensuite ajouté 0,3 g/1 de solution d'ions nickel sous forme de sulfate puis on a alcalinisé le milieu par addition de 80 à 95 g/1 de soude pour obtenir un pH égal ou supérieur à 12.In this example, the effluent solution was treated with the addition of hydrogen peroxide at 100 volumes at a dose of 1.5 ml / 1 of solution to reduce the permanganate ions; 0.3 g / l of nickel ion solution in the form of sulphate was then added and the medium was basified by adding 80 to 95 g / l of sodium hydroxide to obtain a pH equal to or greater than 12.

On a obtenu les facteurs de décontamination mentionnés dans le tableau ci-dessous, dans lequel les activités sont exprimées en micro-curies/m3.

Figure imgb0005
The decontamination factors mentioned in the table below were obtained, in which the activities are expressed in micro-curies / m 3 .
Figure imgb0005

EXEMPLE 3 :EXAMPLE 3:

Cet exemple concerne des expériences comparatives effectuées avec le nickel et d'autres cations matalli- ques tels que le fer, le cuivre, le calcium ou le cobalt, afin de comparer les facteurs de décontamination obtenus. Le tableau suivant fait apparaître de toute évidence la supériorité très nette du nickel sur les autres cations. Dans toutes ces expériences, on a introduit 1,5 ml d'eau oxygénée à 100 volumes par litre d'effluent et après addition du sel métallique, on a ajouté de la soude jusqu'à obtenir un pH de 12. Dans le tableau qui suit, on a ajouté au facteur de décontamination spécifique de chacun des trois radionucléides précédents une colonne dénommée "gamma total" et correspondant à la décontamination globale de tous les émetteurs gamma considérés dans leur ensemble.

Figure imgb0006
This example relates to comparative experiments carried out with nickel and other metallic cations such as iron, copper, calcium or cobalt, in order to compare the decontamination factors obtained. The following table clearly shows the clear superiority of nickel over the other cations. In all these experiments, 1.5 ml of hydrogen peroxide at 100 volumes per liter of effluent were introduced and, after addition of the metal salt, sodium hydroxide was added until a pH of 12 was obtained. In the table which follows, a column called "total gamma" has been added to the specific decontamination factor for each of the three preceding radionuclides, corresponding to the overall decontamination of all the gamma emitters considered as a whole.
Figure imgb0006

En ce qui concerne l'influence du pH auquel on porte la solution après l'étape de réduction des ions permanganate et l'addition d'un sel métallique, on se reportera avantageusement à la figure 1, qui montre, dans les conditions de l'expérience correspondant a l'avant-dernière ligne du tableau ci-dessus (300mg/1 d'ions nickel) l'influence du pH de la solution, porté en abscisses sur le facteur de décontamination obtenu pour chacun des trois radionucléides contenus dans l'effluent de départ, à savoir le 51Cr, le 60Co, et le 54Mn. Il est évident, lorsqu'on consulte cette courbe, que l'effet maximum du pH sur la décontamination se situe pour une valeur de ce dernier égale ou supérieure à 12.As regards the influence of the pH to which the solution is brought after the step of reduction of the permanganate ions and the addition of a metal salt, reference will advantageously be made to FIG. 1, which shows, under the conditions of the experiment corresponding to the penultimate line of the table above (300 mg / 1 of nickel ions) the influence of the pH of the solution, plotted on the abscissa on the decontamination factor obtained for each of the three radionuclides contained in the initial effluent, namely 51 Cr, 60Co, and 54 Mn. It is obvious, when consulting this curve, that the maximum effect of pH on decontamination is located for a value of the latter equal to or greater than 12.

Les boues formées par précipitation au cours du traitement chimique sont en général très divisées et, compte tenu de la salinité élevée de l'effluent traité, elles ne décantent pas. Dans ces conditions, pour obtenir une véritable séparation des phases liquides et solides, on doit avoir recours à une opération de filtration ou de préférence de centrifugation car cette dernière technique est beaucoup plus efficace en raison de la faible cohésion des boues. Une filtration complémentaire permet d'éliminer les fines particules qui seraient éventuellement restées en suspension après la centrifugation.The sludge formed by precipitation during the chemical treatment is generally very divided and, taking into account the high salinity of the treated effluent, they do not settle. Under these conditions, to obtain a true separation of the liquid and solid phases, use must be made of a filtration or preferably centrifugation operation because the latter technique is much more effective due to the low cohesion of the sludge. Additional filtration eliminates fine particles which may have remained in suspension after centrifugation.

Le pH de fin de traitement (012) est abaissé entre pH = 5,5 et pH = 8,5 pour pouvoir rejeter l'effluent dans le milieu récepteur; cette correction du pH entraîne une addition d'acide nitrique voisine de 75 kg/m3 (HN03 - 13N) ou de 35 kg/m3 d'acide sulfurique (H2S04- 36 N)The end-of-treatment pH (012) is lowered between pH = 5.5 and pH = 8.5 in order to be able to reject the effluent in the receiving medium; this correction of the pH results in the addition of nitric acid close to 75 kg / m 3 (HN0 3 - 13N) or 35 kg / m 3 of sulfuric acid (H 2 S0 4 - 36 N)

Sur la figure 2, on a représenté la courbe montrant l'évolution du volume apparent des boues en pourcentage par rapport au volume initial d'effluent, en fonction du champ centrifuge appliqué, ledit champ étant exprimé en unités g d'accélération de la pesanteur terrestre. Dans le tableau suivant, on a regroupé les résultats de la figure 2 en donnant le volume apparent des boues tassées et leur humidité résiduelle en fonction du champ centrifuge appliqué et de la durée en minutes de l'application de ce champ. On voit ainsi que dans les meilleures conditions de traitement, les boues déshydratées présentent un volume de 30 ml/1 de solution avec une humidité de 86 %.

Figure imgb0007
FIG. 2 shows the curve showing the change in the apparent volume of the sludge as a percentage relative to the initial volume of effluent, as a function of the centrifugal field applied, said field being expressed in units g of gravity acceleration earthly. In the following table, the results of FIG. 2 have been grouped together, giving the apparent volume of the packed sludge and its residual humidity as a function of the centrifugal field applied and the duration in minutes of the application of this field. It can thus be seen that under the best treatment conditions, the dewatered sludge has a volume of 30 ml / l of solution with a humidity of 86%.
Figure imgb0007

En se référant maintenant à la figure 3, on va décrire le schéma d'une installation de traitement des effluents de décontamination, conforme à la présente invention.Referring now to Figure 3, we will describe the diagram of an installation for treating decontamination effluents, according to the present invention.

Sur ce schéma, les effluents sont amenés par une conduite 1 dans une première cuve 2 munie d'un agitateur 3. Par la canalisation 4, on injecte dans le récipient 2, l'eau oxygénée contenue dans un réservoir de stockage 5 en contrôlant à l'aide d'un dispositif en soi connu 6 le potentiel d'oxydoréduction de cette solution de façon à l'amener à la valeur voulue, généralement voisine de 550mV par rapport à une électrode à calomel. Les effluents séjournent généralement pendant une durée de l'ordre de 30 minutes dans la cuve 2.In this diagram, the effluents are brought by a pipe 1 into a first tank 2 provided with an agitator 3. By the pipe 4, the hydrogen peroxide contained in a storage tank 5 is injected into the container 2, controlling at using a device per se known 6 the redox potential of this solution so as to bring it to the desired value, generally close to 550mV relative to a calomel electrode. The effluents generally stay for a period of the order of 30 minutes in the tank 2.

Une canalisation 7 conduit alors les effluents dans un deuxième récipient 8 également muni d'un agitateur 9 et dans lequel on introduit par la conduite 10 le sulfate de nickel stocké dans le récipient 11, et, par la conduite 12 la soude stockéedans le récipient 13 pour amener le pH à une valeur égale ou supérieure à 12 que l'on contrôle à l'aide de la sonde 14. L'effluent transite ensuite au travers de la canalisation 15 dans une capacité tampon 16 avant de parvenir dans la centrifugeuse 17 où a lieu la séparation des boues par essorage. Pour faciliter cette séparation, il peut être avantageux d'ajouter à la solution un agent floculant que l'on introduit par la conduite 18 en provenance d'un réservoir de stockage 19. Les boues sortent en 20 de la centrifugeuse 17 et la phase liquide, séparée des boues, transite ensuite par la conduite 21 au travers d'une deuxième capacité tampon 22. A ce stade, l'effluent liquide doit être encore filtré au travers du filtre 23 pour éliminer les fines particules qui n'auraient pas été totalement séparées par centrifugation; la conduite 24 mène ensuite la phase liquide ainsi traitée dans une nouvelle cuve 25 munie d'un agitateur et dans laquelle on introduit par une canalisation 26 la quantité d'acide (nitrique ou sulfurique) nécessaire en provenance du récipient de stockage 27 pour ajuster le pH avant rejet à une valeur compatible avec les réglementations en vigueur et généralement aux alentours de 7. Le contrôle de la valeur du pH est effectué par une sonde 28 en dérivation sur la cuve 25. Le rejet final peut alors avoir lieu par gravité a la base 29 du récipient 25.A pipe 7 then conducts the effluents into a second container 8 also provided with an agitator 9 and into which the nickel sulphate stored in the container 11 is introduced via the line 10, and, via the line 12, the sodium hydroxide stored in the container 13 to bring the pH to a value equal to or greater than 12 which is controlled using the probe 14. The effluent then passes through the line 15 in a buffer capacity 16 before reaching the centrifuge 17 where the sludge is separated by spinning. To facilitate this separation, it may be advantageous to add a flocculating agent to the solution which is introduced via line 18 from a storage tank 19. The sludge comes out at 20 of the centrifuge 17 and the liquid phase, separated from the sludge, then passes through the line 21 through a second buffer capacity 22. At this stage, the liquid effluent must still be filtered through the filter 23 to remove fine particles which have not been completely separated by centrifugation; the pipe 24 then leads the liquid phase thus treated in a new tank 25 provided with an agitator and into which is introduced by a pipe 26 the quantity of acid (nitric or sulfuric) necessary coming from the storage container 27 to adjust the pH before rejection at a value compatible with current regulations and generally around 7. Control of the pH value is carried out by a probe 28 bypass on the tank 25. The final rejection can then take place by gravity at the base 29 of container 25.

Bien entendu, un certain nombre de pompes sont nécessaires pour mettre en mouvement les liquides véhiculés aux différents stades de l'installation et celles-ci sont représentées schématiquement par les références 30.Of course, a certain number of pumps are necessary to set in motion the liquids conveyed at the various stages of the installation and these are represented schematically by the references 30.

Claims (7)

1. Procédé de traitement des effluents de décontamination, notamment de composants de réacteurs nucléaires, du genre de ceux qui comportent en solution des ions permanganate, phosphate et sulfate et des ions actifs de manganèse, de chrome et de cobalt, caractérisé en ce qu'il comprend les étapes successives de réduction des ions permanganate par addition d'eau oxygénée, d'alcalinisation à un pH égal ou supérieur à 12, de séparation du précipité formé et d'acidification finale de la phase liquide restante pour porter son pH à une valeur compatible avec son rejet dans la nature.1. Process for the treatment of decontamination effluents, in particular of components of nuclear reactors, of the kind of those which contain permanganate, phosphate and sulfate ions and active ions of manganese, chromium and cobalt in solution, characterized in that it comprises the successive stages of reduction of permanganate ions by addition of hydrogen peroxide, alkalinization to a pH equal to or greater than 12, separation of the precipitate formed and final acidification of the remaining liquid phase to bring its pH to a value compatible with its rejection in nature. 2. Procédé de traitement des effluents selon la revendication 1, caractérisé en ce que, après ladite étape de réduction par l'eau oxygénée, on ajoute dans l'effluent un sel de nickel, choisi de préférence parmi le groupe comprenant le sulfate S04Ni et le nitrate Ni(N03)2 , 6H2 0).2. A method of treating effluents according to claim 1, characterized in that, after said step of reduction with hydrogen peroxide, a nickel salt is added to the effluent, preferably chosen from the group comprising sulphate SO 4 Ni and nitrate Ni (N0 3 ) 2 , 6H 2 0 ). 3. Procédé de traitement des effluents selon la revendication 1, caractérisé en ce que, après ladite étape de réduction par l'eau oxygénée, on ajoute dans l'effluent un sel ferreux, de préférence le sulfate S04Fe,7H20.3. A method of treating effluents according to claim 1, characterized in that, after said step of reduction with hydrogen peroxide, a ferrous salt, preferably sulphate SO 4 Fe, 7H 2 0, is added to the effluent. 4. Procédé de traitement des effluents selon la revendication 1, caractérisé en ce que l'eau oxygénée est ajoutée jusqu'à ajustement du potentiel d'oxydoréduction à une valeur voisine de 550 mV par rapport à une électrode à calomel.4. A method of treating effluents according to claim 1, characterized in that the hydrogen peroxide is added until the redox potential is adjusted to a value close to 550 mV relative to a calomel electrode. 5. Procédé de traitement des effluents selon la revendication 1, caractérisé en ce que la séparation du précipité de la phase liquide se fait par centrifugation.5. A method of treating effluents according to claim 1, characterized in that the separation of the precipitate from the liquid phase is carried out by centrifugation. 6. Dispositif pour la mise en oeuvre du procédé selon l'une quelconque des revendications 1 à 5, caractérisé en ce qu'il comprend une première cuve communiquant avec une deuxième cuve, les deux cuves étant munies de moyens d'agitation, des moyens pour introduire dans ladite première cuve l'effluent liquide à traiter et l'eau oxygénée, des moyens pour ajuster à la valeur voulue le potentiel d'oxydo-réduction de l'effluent présent dans ladite cuve, des moyens pour introduire dans ladite deuxième cuve un sel de nickel et une solution alcaline, des moyens pour ajuster à la valeur voulue le pH de l'effluent présent dans ladite cuve, des moyens pour séparer de l'effluent le précipité formé et pour l'amener dans une troisième cuve munie de moyens d'agitation, des moyens pour introduire dans ladite troisième cuve une solution acide et des moyens pour ajuster le pH de l'effluent à la valeur désirée.6. Device for implementing the method according to any one of claims 1 to 5, characterized in that it comprises a first tank communicating with a second tank, the two tanks being provided with stirring means, means for introducing into said first tank the liquid effluent to be treated and the oxygenated water, means for adjusting the redox potential of the effluent present in said tank to the desired value, means for introducing into said tank second tank a nickel salt and an alkaline solution, means for adjusting the pH of the effluent present in said tank to the desired value, means for separating the precipitate formed from the effluent and for bringing it into a third tank provided with stirring means, means for introducing an acid solution into said third tank and means for adjusting the pH of the effluent to the desired value. 7. Dispositif selon la revendication 6, caractérisé en ce que les moyens pour séparer le précipité formé sont constitués par une centrifugeuse et par un filtre.7. Device according to claim 6, characterized in that the means for separating the precipitate formed are constituted by a centrifuge and by a filter.
EP80400790A 1979-06-14 1980-06-03 Process and apparatus for treating decontamination effluents coming from nuclear reactor components Expired EP0021911B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR7915273 1979-06-14
FR7915273A FR2459536A1 (en) 1979-06-14 1979-06-14 PROCESS FOR TREATING DECONTAMINATION EFFLUENTS, IN PARTICULAR NUCLEAR REACTOR COMPONENTS AND DEVICE FOR IMPLEMENTING SAID METHOD

Publications (2)

Publication Number Publication Date
EP0021911A1 true EP0021911A1 (en) 1981-01-07
EP0021911B1 EP0021911B1 (en) 1984-03-07

Family

ID=9226624

Family Applications (1)

Application Number Title Priority Date Filing Date
EP80400790A Expired EP0021911B1 (en) 1979-06-14 1980-06-03 Process and apparatus for treating decontamination effluents coming from nuclear reactor components

Country Status (7)

Country Link
US (1) US4312758A (en)
EP (1) EP0021911B1 (en)
JP (1) JPS562885A (en)
CA (1) CA1154180A (en)
DE (1) DE3066814D1 (en)
ES (1) ES492429A0 (en)
FR (1) FR2459536A1 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4572797A (en) * 1983-03-02 1986-02-25 The United States Of America As Represented By The United States Department Of Energy Method for removing trace pollutants from aqueous solutions
US5380443A (en) * 1989-05-09 1995-01-10 The Regents Of The University Of California Method of treating waste water
US4983306A (en) * 1989-05-09 1991-01-08 The Regents Of The University Of California Method of treating waste water
DE4313127A1 (en) * 1993-04-22 1994-10-27 Wismut Gmbh Process for simultaneous precipitation of uranium, arsenic and radium from mining effluence
US9056784B2 (en) * 2006-09-19 2015-06-16 Ken V. Pandya High efficiency water-softening process
US20100010285A1 (en) * 2008-06-26 2010-01-14 Lumimove, Inc., D/B/A Crosslink Decontamination system
FR2937054B1 (en) * 2008-10-13 2010-12-10 Commissariat Energie Atomique METHOD AND DEVICE FOR DECONTAMINATING A METAL SURFACE
RU2465666C2 (en) * 2010-12-29 2012-10-27 Александр Гаврилович Басиев Method of processing liquid radioactive wastes
RU2597242C1 (en) * 2015-04-13 2016-09-10 Акционерное общество "Государственный научный центр Российской Федерации - Физико-энергетический институт имени А.И. Лейпунского" Method of cleaning liquid radioactive wastes from organic impurities
RU2641656C1 (en) * 2016-12-21 2018-01-19 федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)" (МГТУ им. Н.Э. Баумана) Method of purifying liquid radioactive wastes and device for its implementation
RU2654195C1 (en) * 2017-06-01 2018-05-17 Общество с ограниченной ответственностью "РАОТЕХ" Method for processing liquid radioactive wastes

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2031844A5 (en) * 1969-02-10 1970-11-20 Commissariat Energie Atomique Decontamination of radioactive effluent - from irradiated nuclear fuel treatment

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA724706A (en) * 1965-12-28 H. Rice Archie Process for clarifying water
US2105835A (en) * 1932-12-13 1938-01-18 Katadyn Inc Sterilizing liquid
US3013978A (en) * 1959-09-15 1961-12-19 Rosinski John Removal of fission products from water
FR2067743A5 (en) * 1969-11-14 1971-08-20 Commissariat Energie Atomique Decontamination of effluent liquids contng cesium 137
JPS4811280B1 (en) * 1970-11-09 1973-04-12
US3716485A (en) * 1971-01-11 1973-02-13 Ayteks International Corp Process and apparatus for destroying hexavalent chromium in solution
JPS49116854A (en) * 1973-03-08 1974-11-08
US3873362A (en) * 1973-05-29 1975-03-25 Halliburton Co Process for cleaning radioactively contaminated metal surfaces
JPS5132057A (en) * 1974-09-13 1976-03-18 Toa Gosei Chem Ind Haisui no shorihoho
DE2613128C2 (en) * 1976-03-27 1982-03-04 Hoechst Ag, 6000 Frankfurt Process for reducing the mercury content of industrial wastewater
US4049545A (en) * 1976-07-08 1977-09-20 Rocky Carvalho Chemical waste water treatment method
DE2723025C3 (en) * 1977-05-21 1980-03-13 Rheinisch-Westfaelisches Elektrizitaetswerk Ag, 4300 Essen Process for treating wastewater containing boric acid, radioactive antimony and other radioactive nuclides
DE2724954C2 (en) * 1977-06-02 1984-11-15 Reaktor-Brennelement Union Gmbh, 6450 Hanau Process for the decontamination of alpha and beta-active process water

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2031844A5 (en) * 1969-02-10 1970-11-20 Commissariat Energie Atomique Decontamination of radioactive effluent - from irradiated nuclear fuel treatment

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHEMICAL ABSTRACTS, vol. 58, no. 1, 1963, colonnes 351h et 352a-b, Columbus, Ohio, USA, N.M. NIKITIN: "Ekperimental study of methods for decontamination of drinking water in pipelines". & Tr. Konf. po Radiats. Gigiene, 1959, Leningra d, 55-8. *

Also Published As

Publication number Publication date
JPS6116957B2 (en) 1986-05-02
US4312758A (en) 1982-01-26
ES8105115A1 (en) 1981-05-16
ES492429A0 (en) 1981-05-16
FR2459536A1 (en) 1981-01-09
EP0021911B1 (en) 1984-03-07
JPS562885A (en) 1981-01-13
DE3066814D1 (en) 1984-04-12
FR2459536B1 (en) 1983-10-28
CA1154180A (en) 1983-09-20

Similar Documents

Publication Publication Date Title
EP0021911B1 (en) Process and apparatus for treating decontamination effluents coming from nuclear reactor components
AU2002355854B2 (en) Compositions for removing metal ions from aqueous process solutions and methods of use thereof
EP0559537B1 (en) Process for the separation of elements from aqueous solutions coming from the reprocessing of nuclear fuel
US5288728A (en) Process for recovering silver from photographic solutions
EP0623561B1 (en) Process and device for decontaminating a liquid effluent containing ionic metals
US20110220579A1 (en) Removal of metal ions from aqueous effluents
CA2519056A1 (en) Method for separating uranium (vi) from actinides (iv) and/or (vi) and the use thereof
FR2551745A1 (en) PROCESS FOR THE SEPARATION OF NEPTUNIUM FORMING FROM AN ORGANIC PHASE DURING THE RETIREMENT OF IRRADIATED COMBUSTIBLE AND / OR FERTILIZED MATERIALS
EP0018922A1 (en) Process for ruthenium decontamination of liquid radioactive wastes, and device for performing this process
BE477290A (en) ELECTROLYTE PURIFICATION PROCESS
FR2548042A1 (en) PROCESS FOR TREATING LOW RADIOACTIVE WASTE
Chugunov et al. Dialysis membranes based on microfiltration elements for separating the components of NPP radioactive wastewater via precipitation
Aktas Silver recovery from silver-rich photographic processing solutions by copper
US4170552A (en) Method for coalescing mercury particles
CA1075636A (en) Recovery of zinc from residual solutions of electroplating
LU82135A1 (en) PROCESS FOR REDUCING THE CONTENT OF MOLTEN MASS CONTAMINANTS OF ALUMINUM AND ALUMINUM ALLOY
EP0018923B1 (en) Process for ruthenium decontamination of liquid radioactive wastes
JP5497226B1 (en) Method and apparatus for treating desalted dust containing cesium
WO1996011478A1 (en) METHOD FOR PARTIALLY α-DECONTAMINATING AN AQUEOUS EFFLUENT
KR830001693B1 (en) Radioactive removal treatment method of effluent
FR2672582A1 (en) PROCESS FOR THE ELIMINATION OF RUTHENIUM CONTAINED IN URANIUM SOLUTIONS.
FR2656149A1 (en) Extraction of metals such as Pu, U and Sr using an organic solvent or a solid phase containing the cis-syn-cis isomer of the crown ether DCH18C6
BE535584A (en)
LU85010A1 (en) PROCESS FOR RECOVERING METALS FROM WASTE HYDROTREATMENT CATALYSTS
JP2002263662A (en) Method for treating selenium-containing waste water

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): BE DE GB IT NL SE

17P Request for examination filed

Effective date: 19810606

ITF It: translation for a ep patent filed

Owner name: JACOBACCI & PERANI S.P.A.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): BE DE GB IT NL SE

REF Corresponds to:

Ref document number: 3066814

Country of ref document: DE

Date of ref document: 19840412

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19890517

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19890526

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19890531

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19890602

Year of fee payment: 10

ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19890630

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19900603

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19900604

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19900630

BERE Be: lapsed

Owner name: COMMISSARIAT A L'ENERGIE ATOMIQUE ETABLISSEMENT D

Effective date: 19900630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19910101

GBPC Gb: european patent ceased through non-payment of renewal fee
NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19910301

EUG Se: european patent has lapsed

Ref document number: 80400790.4

Effective date: 19910206