EP0021167B1 - Process and apparatus for the thermal decoking of an apparatus for the thermal cracking of hydrocarbons such apparatus comprising a cracking zone followed by a cooler for the product gas - Google Patents

Process and apparatus for the thermal decoking of an apparatus for the thermal cracking of hydrocarbons such apparatus comprising a cracking zone followed by a cooler for the product gas Download PDF

Info

Publication number
EP0021167B1
EP0021167B1 EP80103123A EP80103123A EP0021167B1 EP 0021167 B1 EP0021167 B1 EP 0021167B1 EP 80103123 A EP80103123 A EP 80103123A EP 80103123 A EP80103123 A EP 80103123A EP 0021167 B1 EP0021167 B1 EP 0021167B1
Authority
EP
European Patent Office
Prior art keywords
cracking
gas cooler
gas
decoking
cooler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP80103123A
Other languages
German (de)
French (fr)
Other versions
EP0021167A1 (en
Inventor
Bernhard Dr. Lohr
Peter Dr. Hesse
Robert Schuster
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Linde GmbH
Original Assignee
Linde GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=25779465&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0021167(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from DE19792923326 external-priority patent/DE2923326A1/en
Priority claimed from DE19792934570 external-priority patent/DE2934570A1/en
Application filed by Linde GmbH filed Critical Linde GmbH
Priority to AT80103123T priority Critical patent/ATE734T1/en
Publication of EP0021167A1 publication Critical patent/EP0021167A1/en
Application granted granted Critical
Publication of EP0021167B1 publication Critical patent/EP0021167B1/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G9/00Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G9/14Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils in pipes or coils with or without auxiliary means, e.g. digesters, soaking drums, expansion means
    • C10G9/16Preventing or removing incrustation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S585/00Chemistry of hydrocarbon compounds
    • Y10S585/949Miscellaneous considerations
    • Y10S585/95Prevention or removal of corrosion or solid deposits

Definitions

  • the invention relates to a method for thermal decoking of a device for thermal cracking of hydrocarbons, the cracking tubes arranged in a cracking zone and a subsequent cracking gas cooler for cooling the cracked products by indirect heat exchange with a cooling medium, wherein a water stream and oxygen-containing gas flow through the cracking tubes and the Cracked gas cooler passed and the cooling medium is also passed through the cracked gas cooler during decoking.
  • the invention also relates to a device suitable for carrying out the method.
  • a common decoking process for the cracked gas cooler therefore consists in cooling the system and then separating the cracked gas cooler from the cracking zone and cleaning it mechanically.
  • This cleaning can be carried out by a water jet which emerges from a nozzle under very high pressure, for example 700-1000 bar, and causes the deposits to spring off.
  • This process which usually takes about three days, is not only time-consuming, but also leads to a thermal load on the system due to the periodically repeated heating and cooling cycles, which limits the service life of the can.
  • the invention is therefore based on the object of designing a method of the type mentioned at the outset in such a way that the cost and time required for decoking is reduced.
  • this object is achieved in that, in a first process stage, the gas stream is passed through the device in such an amount that the temperature of the deposits on the heat-exchanging surfaces of the cracked gas cooler is in the range of the operating temperature prevailing during thermal cracking, that the first process stage as long as it continues until the can is largely decoked and that the gas flow is then increased in a second process stage to such an extent that the temperature of the deposits on the heat-exchanging surfaces of the cracked gas cooler increases to such an extent that the temperature of the gas stream at the outlet from the cracked gas cooler is at least 400 ° C.
  • a cracked gas cooler has already become known, which is also decoked by thermal means (Bulletin of the Japan Petroleum Institute, Vol. 13, No. 2, November 1971, pages 279 to 284), but deviates in essential points from the method according to the invention becomes.
  • this known cracked gas cooler the cracked gases are cooled in tubes arranged in a spiral.
  • the decoking process is practically the same as that in a cracking zone, because the cooling water is removed from the cracking gas cooler during the decoking phase, causing the cooling pipes to heat up to over 700 ° C and the contaminants burn off.
  • a major disadvantage of this known cracked gas cooler is, however, that the temperature of the tubes in the cracked gas cooler is subject to large fluctuations. This is particularly important because the pipes are arranged in a high-pressure container, which has an operating pressure of the order of 100 bar, for example. If such a container is heated to over 700 ° C at regular intervals compared to the operating temperature of the order of 300 ° C, special measures must be taken for the operational safety of such a cracked gas cooler. In addition, this well-known fission gas cooler deviates from the most commonly used type. In contrast to conventional cracked gas coolers, it does not use straight heat exchange tubes, but rather spirally arranged coils.
  • FR-PS 153'2127 a method is known in which the thermal decoking takes place by the action of water vapor and air on the inner surfaces of the tubes both in the cracking zone and in the cracking gas cooler. It is stated that the heat exchanger for cracked gas cooling can be left in operation during decoking, but if this is actually done, this has two consequences for decoking: either there is insufficient decoking of the cracked gas cooler, as effects occur as they do have already been mentioned at the beginning, or the decoking gas must be passed through the entire system with such a high throughput that damage to the system occurs after a relatively short time.
  • FR-PS 1 532127 does not provide any references to a two-stage process, as is provided according to the invention.
  • a method is known from US Pat. No. 3,365,387 ' which describes the decoking of individual, parallel-connected canned tubes in a split zone. However, references to a two-stage decoking cannot be found in this document either.
  • a gas mixture containing water vapor and oxygen usually a mixture of water vapor and air, is passed through the cracking plant, the deposits in the cracking tubes being burnt off in the manner customary hitherto.
  • a gas mixture containing water vapor and oxygen usually a mixture of water vapor and air
  • the second process stage follows, in which a substantially larger amount of the gas mixture is passed through the plant.
  • the canned tubes are further cleaned and, moreover, the coke in the cracked gas cooler is largely broken down. This is due to the fact that the gas mixture is passed through the cracked gas cooler in such an amount that the temperature of the coke deposits on the inner wall of the tubes increases to such an extent that a noticeable water gas reaction sets in. This temperature increase is possible despite the cooling of the pipes because the thermal conductivity of the coke layer is very low.
  • the two-step procedure is necessary with regard to the service life of the can. If, at the beginning of the decoking process, the gas flow was selected to be so strong that the water gas reaction starts in the cracked gas cooler, there would be a risk that coke parts flaking off in the cracking zone would have an erosive effect on the cracked tubes and damage them.
  • a gas mixture containing water vapor and oxygen is also used in the second process stage, although actually only water vapor is required for the water gas reaction.
  • the presence of oxygen is advantageous for the rate at which the coke is broken down in the cracked gas cooler. This is related to the fact that the water gas reaction is catalyzed by trace constituents from the pipe materials, in particular chromium and nickel, which are contained in the coke by diffusion from the pipe materials.
  • this catalytic effect only occurs when the sulfur components that are always contained in the coke have been broken down.
  • the presence of oxygen in the gas stream now leads to the sulfur traces predominantly being converted into SO 2 delt so that they can no longer act as a catalyst poison.
  • the temperature of the decoking gases at the outlet from the cracked gas cooler is at least 400 ° C. It has been shown that the rate of coke removal in the cracked gas cooler is too low at lower temperatures to ensure an effective decoking treatment. If the amount of decoking gas is kept constant during the second stage of the process, it is expedient to choose the outlet temperature at the beginning of the second stage of the process considerably above the minimum temperature of about 400 ° C, since the outlet temperature decreases with decoking and the minimum temperature should not be fallen below.
  • the deposition layer in the tubes is continuously thinning, which improves the heat exchange with the coolant, so that the outlet temperature drops as the decoking progresses.
  • a termination of the decoking process can therefore be easily determined by checking the outlet temperature, since in this case it remains practically constant.
  • the method according to the invention is illustrated below using an example.
  • the high-severity cracking of a heavy atmospheric gas oil resulted in a cracked gas cooler outlet temperature of 634 ° C after 60 days of operation at an oven outlet temperature of 800 ° C, which indicated strong coking.
  • a steam-air mixture with a mass velocity of 25 kg / sm 2 was used in the cracked gas cooler for 8 hours, the furnace outlet temperature being 750 ° C.
  • the mass velocity in the cracked gas cooler was then increased to 45 kg / sm 2 and the furnace outlet temperature to 800 ° C.
  • the rate of coke extraction is the lowering of the cracked gas cooler outlet temperature during decoking under completely constant conditions.
  • the coke extraction rate during the induction period was 2 K / h, while it subsequently reached a maximum value of 15 K / h.
  • This second phase of decoking was ended after 16 hours.
  • the exit temperature of the decoking gases from the cracked gas cooler was about 400 ° C. The decoking process was ended here.
  • the cracking gas cooler outlet temperature reached about 470 ° C. This means that the cracked gas cooler has been almost completely cleaned. In the subsequent runtime, 60 days could also be reached again, which indicates that the coking rate of the cracked gas cooler cleaned according to the invention is not greater than that of a mechanically cleaned cracked gas cooler.
  • cooling a cracked gas obtained from gas oil leads to rapid coking of the cracked gas cooler when cooling down to about 470 ° C
  • cooling down to temperatures of about 350 to 370 ° C can be carried out with a cracked gas obtained from naphtha, without any more Fear of coking tendencies.
  • the gas emerging from the cracked gas cooler is then usually further cooled by direct heat exchange with a quench oil.
  • the cracked gas cooler is decoked step by step each step the gas flow is only passed through part of the heat-exchanging surface. It is essential here that the heat-exchanging surface is reduced during the decoking of the cracked gas cooler, in order in this way to achieve a temperature increase in the sections through which flow occurs.
  • this can be done, for example, by passing the entire stream of decoking gas through only part of the cooling tubes while other tubes are being shut down.
  • the heat supply to the individual sections of the coked cracked gas cooler can hereby be increased to such an extent that the temperatures required for a sufficiently strong water gas reaction are reached. In contrast, this tempe is due to the exclusive increase in mass throughput temperature increase is not possible because the gas flow is then no longer heated to the required high temperature when it passes through the gap zone.
  • the complete decoking of the cracked gas cooler takes place in this embodiment of the invention in that after decoking a first part of the heat-exchanging surface, the latter is shut off and the gas flow is then passed through a further part in which the process is repeated. This process is continued until the entire cracked gas cooler is decoked.
  • a modified cracked gas cooler which, in addition to the usual features such as a gas inlet hood, a gas outlet hood, and cooling pipes surrounded by a coolant, also has shut-off devices that allow part of the cooling pipes to be shut down becomes. It has proven to be advantageous to arrange the shut-off elements in the area of the gas outlet hood of the cracked gas cooler. Since the shut-off elements are arranged in the colder part of the cracked gas cooler in this way, a structurally simpler design is possible.
  • shut-off devices arranged in the area of the gas inlet hood must remain functional at temperatures of, for example, 850 ° C., it is sufficient to provide valves in the area of the outlet hood that are functional at temperatures of up to, for example, 550 ° C.
  • a particularly simple way of dividing the heat-exchanging surface of the cracked gas cooler has been found to be to split the gas outlet hood into several separate areas. Each area is connected to a number of cooling pipes and each has a gas outlet that can be shut off.
  • the only structural change compared to conventional cracked gas coolers is the subdivision of the gas outlet hood and can therefore be carried out at low cost even with existing systems.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Description

Die Erfindung betrifft ein Verfahren zum thermischen Entkoken einer Vorrichtung zum thermischen Spalten von Kohlenwasserstoffen, die in einer Spaltzone angeordnete Spaltrohre und einen nachfolgenden Spaltgaskühler zur Kühlung der Spaltprodukte durch indirekten Wärmetausch mit einem Kühlmedium aufweist, wobei ein Wasserdampf und Sauerstoff enthaltender Gasstrom durch die Spaltrohre und den Spaltgaskühler geleitet und das Kühlmedium auch während der Entkokung durch den Spaltgaskühler geführt wird. Ausserdem betrifft die Erfindung eine zur Durchführung des Verfahrens geeignete Vorrichtung.The invention relates to a method for thermal decoking of a device for thermal cracking of hydrocarbons, the cracking tubes arranged in a cracking zone and a subsequent cracking gas cooler for cooling the cracked products by indirect heat exchange with a cooling medium, wherein a water stream and oxygen-containing gas flow through the cracking tubes and the Cracked gas cooler passed and the cooling medium is also passed through the cracked gas cooler during decoking. The invention also relates to a device suitable for carrying out the method.

Die thermische Spaltung von Kohlenwasserstoffen, insbesondere die auf die Bildung von Äthylen und anderen niederen Olefinen gerichtete thermische Spaltung, ist von grosser technischer Bedeutung. Bei der Durchführung derartiger Verfahren treten jedoch eine Reihe von Nebenreaktionen auf, die zu wirtschaftlich uninteressanten oder sogar zu störenden Produkten führen. Eine solche störende Nebenreaktion ist in der Verkokung der Spaltrohre und des Spaltgaskühlers zu sehen, da sie zu einer Verschlechterung des Wärmeübergangs sowohl in der von aussen beheizten Spaltzone als auch im nachfolgenden Spaltgaskühler führt und im Extremfall sogar die Verstopfung einzelner Leitungselemente zur Folge haben kann. Es ist deshalb bei fortschreitender Verkokung nötig, die Spaltrohre stärker zu beheizen, um die für die Umsetzung erforderliche Aufheizung der Kohlenwasserstoffe zu gewährleisten. Diesem erhöhten Energieaufwand steht im Spaltgaskühler, in dem ein möglichst grosser Anteil der Spaltgaswärme zur Erzeugung von Hochdruckdampf zurückgewonnen werden soll, eine verminderte Hochdruckdampfproduktion gegenüber. Ausserdem ist natürlich aus prozesstechnischer Sicht die verschlechterte Abkühlung unbefriedigend, weil ein schnelles Abkühlen und damit eine Unterbrechung der Spaltreaktionen im Hinblick auf eine erwünschte Produktausbeute angestrebt wird.The thermal cracking of hydrocarbons, especially the thermal cracking aimed at the formation of ethylene and other lower olefins, is of great technical importance. When such processes are carried out, however, a number of side reactions occur which lead to economically uninteresting or even disruptive products. Such a disruptive side reaction can be seen in the coking of the can and the gas cooler, since it leads to a deterioration in the heat transfer both in the externally heated gap zone and in the subsequent gas cooler and, in extreme cases, can even lead to the blockage of individual line elements. As coking progresses, it is therefore necessary to heat the can more strongly in order to ensure the heating of the hydrocarbons required for the reaction. This increased energy expenditure is offset by a reduced high-pressure steam production in the cracked gas cooler, in which as large a portion of the cracked gas heat as possible is to be recovered for generating high pressure steam. In addition, the worsened cooling is, of course, unsatisfactory from a process engineering point of view, because rapid cooling and thus an interruption of the cleavage reactions with a view to a desired product yield is sought.

Es ist deshalb erforderlich, die thermische Spaltung von Zeit zu Zeit zu unterbrechen und eine Entkokung der Anlage durchzuführen. Dies erfolgt üblicherweise dadurch, dass ein Gemisch aus Luft und Wasserdampf durch die weiterhin von aussen beheizten Spaltrohre und den weiterhin gekühlten Spaltgaskühler geführt wird. Bei den hohen Temperaturen in den Spaltrohren, die beispielsweise zwischen 750 und 850°C liegen können, erfolgt dann ein Abbrand der Ablagerungen. Die Reinigung des Spaltgaskühlers ist auf diese Weise jedoch nicht möglich, da bei den hier herrschenden Temperaturen kein Abbrand mehr erfolgt. Es kann höchstens im Eintrittsbereich des Spaltgaskühlers, in dem die eintretenden Gase noch die hohe Temperatur der Spaltzone aufweisen, zu einem begrenzten Abbrand kommen, der jedoch wegen der Kühlung rasch beendet wird. Ein übliches Entkokungsverfahren für den Spaltgaskühler besteht deshalb darin, dass die Anlage abgekühlt und anschliessend der Spaltgaskühler von der Spaltzone abgetrennt und mechanisch gereinigt wird. Diese Reinigung kann durch einen Wasserstrahl erfolgen, der unter sehr hohem Druck, beispielsweise 700 -1000 bar, aus einer Düse austritt und ein Abspringen der Ablagerungen herbeiführt. Dieses Verfahren, das üblicherweise etwa drei Tage dauert, ist jedoch nicht nur zeitaufwendig, sondern führt darüber hinaus durch die sich periodisch wiederholenden Aufheiz- und Abkühlzyklen zu einer thermischen Belastung der Anlage, durch die die Lebensdauer der Spaltrohre begrenzt wird.It is therefore necessary to interrupt the thermal splitting from time to time and to decoke the system. This is usually done by passing a mixture of air and water vapor through the canned tubes, which are still heated from the outside, and the canned gas cooler, which is still cooled. At the high temperatures in the can, which can be between 750 and 850 ° C, for example, the deposits burn off. However, cleaning of the cracked gas cooler is not possible in this way, since the temperatures prevailing here no longer burn up. At most, in the entrance area of the cracked gas cooler, in which the entering gases still have the high temperature of the cracking zone, a limited burn-up can occur, which, however, is quickly ended due to the cooling. A common decoking process for the cracked gas cooler therefore consists in cooling the system and then separating the cracked gas cooler from the cracking zone and cleaning it mechanically. This cleaning can be carried out by a water jet which emerges from a nozzle under very high pressure, for example 700-1000 bar, and causes the deposits to spring off. This process, which usually takes about three days, is not only time-consuming, but also leads to a thermal load on the system due to the periodically repeated heating and cooling cycles, which limits the service life of the can.

Der Erfindung liegt deshalb die Aufgabe zugrunde, ein Verfahren der eingangs genannten Art so auszugestalten, dass der Kosten- und Zeitaufwand für das Entkoken verringert wird.The invention is therefore based on the object of designing a method of the type mentioned at the outset in such a way that the cost and time required for decoking is reduced.

Diese Aufgabe wird erfindungsgemäss dadurch gelöst, dass in einer ersten Verfahrensstufe der Gasstrom in einer solchen Menge durch die Vorrichtung geleitet wird, dass die Temperatur der Ablagerungen auf den wärmetauschenden Flächen des Spaltgaskühlers im Bereich der bei der thermischen Spaltung herrschenden Betriebstemperatur liegt, dass die erste Verfahrensstufe solange fortgesetzt wird, bis die Spaltrohre weitgehend entkokt sind und dass danach in einer zweiten Verfahrensstufe der Gasstrom soweit verstärkt wird, dass sich die Temperatur der Ablagerungen auf den wärmetauschenden Flächen des Spaltgaskühlers soweit erhöht, dass die Temperatur des Gasstroms am Austritt aus dem Spaltgaskühler mindestens 400°C beträgt.According to the invention, this object is achieved in that, in a first process stage, the gas stream is passed through the device in such an amount that the temperature of the deposits on the heat-exchanging surfaces of the cracked gas cooler is in the range of the operating temperature prevailing during thermal cracking, that the first process stage as long as it continues until the can is largely decoked and that the gas flow is then increased in a second process stage to such an extent that the temperature of the deposits on the heat-exchanging surfaces of the cracked gas cooler increases to such an extent that the temperature of the gas stream at the outlet from the cracked gas cooler is at least 400 ° C.

Erfindungsgemäss wird damit ein Entkokungsverfahren vorgeschlagen, bei dem eine Abtrennung des Spaltgaskühlers von der Spaltzone und eine Abkühlung der Anlage nicht mehr erforderlich ist.According to the invention, a decoking process is thus proposed in which it is no longer necessary to separate the cracked gas cooler from the cracking zone and to cool the plant.

Es ist zwar schon ein Spaltgaskühler bekannt geworden, der ebenfalls auf thermischem Wege entkokt wird (Bulletin of the Japan Petroleum Institute, Vol. 13, Nr. 2, November 1971, Seiten 279 bis 284), wobei aber in wesentlichen Punkten vom erfindungsgemässen Verfahren abgewichen wird. In diesem bekannten Spaltgaskühler werden die Spaltgase in spiralförmig angeordneten Rohren abgekühlt. Die Entkokungsvorgang ist dabei praktisch der gleiche wie der in einer Spaltzone, denn das Kühlwasser wird während der Entkokungsphase aus dem Spaltgaskühler entfernt, wodurch sich die Kühlrohre auf über 700°C erhitzen und ein Abbrand der Verunreinigungen erfolgt.A cracked gas cooler has already become known, which is also decoked by thermal means (Bulletin of the Japan Petroleum Institute, Vol. 13, No. 2, November 1971, pages 279 to 284), but deviates in essential points from the method according to the invention becomes. In this known cracked gas cooler, the cracked gases are cooled in tubes arranged in a spiral. The decoking process is practically the same as that in a cracking zone, because the cooling water is removed from the cracking gas cooler during the decoking phase, causing the cooling pipes to heat up to over 700 ° C and the contaminants burn off.

Ein wesentlicher Nachteil dieses bekannten Spaltgaskühlers ist jedoch darin zu sehen, dass die Temperatur der Rohre im Spaltgaskühler grossen Schwankungen unterworfen ist. Dies ist insbesondere deshalb von Bedeutung, weil die Rohre in einem Hochdruckbehälter, der beispielsweise einen Betriebsdruck in der Grössenordnung von 100 bar aufweist, angeordnet sind. Wenn in einem solchen Behälter gegenüber der Betriebstemperatur in der Grössenordnung von 300°C eine Aufheizung auf über 700°C in regelmässigen Abständen durchgeführt wird, sind besondere Massnahmen für die Betriebssicherheit eines solchen Spaltgaskühlers zu treffen. Darüber hinaus weicht dieser bekannte Spaltgaskühler in seiner Konstruktion von der am häufigsten verwendeten Bauart ab. Er verwendet nämlich im Gegensatz zu üblichen Spaltgaskühlern keine geraden Wärmetauschrohre, sondern spiralförmig angeordnete Rohrschlangen. Eine Übertragung dieses bekannten Konzepts auf Geradrohr-Konstruktionen wäre schon wegen der thermischen Ausdehnung bzw. Schrumpfung beim Temperaturanstieg bzw. beim Rückkühlen auf Betriebstemperatur nicht möglich. Geradrohrkonstruktionen werden unter anderem auch vorgezogen, weil sich auf der Aussenseite der Rohre im Betrieb eine korrosionshemmende Magnetitschicht bildet, die bei grösseren Temperaturschwankungen erhalten bleibt, während bei Rohrschlangen ein Abplatzen dieser Schicht und damit eine erhöhte Korrosionsanfälligkeit auftritt.A major disadvantage of this known cracked gas cooler is, however, that the temperature of the tubes in the cracked gas cooler is subject to large fluctuations. This is particularly important because the pipes are arranged in a high-pressure container, which has an operating pressure of the order of 100 bar, for example. If such a container is heated to over 700 ° C at regular intervals compared to the operating temperature of the order of 300 ° C, special measures must be taken for the operational safety of such a cracked gas cooler. In addition, this well-known fission gas cooler deviates from the most commonly used type. In contrast to conventional cracked gas coolers, it does not use straight heat exchange tubes, but rather spirally arranged coils. A transfer of this known concept to straight tube constructions would not be possible because of the thermal expansion or shrinkage when the temperature rises or when cooling back to operating temperature. Straight pipe constructions are preferred, among other things, because a corrosion-inhibiting magnetite layer forms on the outside of the pipes during operation, which is retained in the event of larger temperature fluctuations, while pipe coils cause this layer to flake off and thus increase susceptibility to corrosion.

Weiterhin ist aus der FR-PS 153'2127 ein Verfahren bekannt, bei dem die thermische Entkokung durch Einwirkung von Wasserdampf und Luft auf die Innenflächen der Rohre sowohl in der Spaltzone als auch im Spaltgaskühler erfolgen. Es wird zwar ausgeführt, dass man den Wärmetauscher für die Spaltgaskühlung während der Entkokung in Betrieb lassen kann, wenn aber tatsächlich so verfahren wird, hat das für die Entkokung zweierlei Konsequenzen: entweder findet keine ausreichende Entkokung des Spaltgaskühlers statt, da Effekte auftreten, wie sie eingangs bereits erwähnt wurden, oder das Entkokungsgas muss von vornherein mit einem so hohen Durchsatz durch die gesamte Anlage geführt werden, dass nach relativ kurzer Zeit Schädigungen an der Anlage auftreten. Hinweise auf ein zweistufiges Verfahren, wie es erfindungsgemäss vorgesehen ist, sind der FR-PS 1 532127 dagegen nicht zu entnehmen. Aus der US-PS 3365387 'ist schliesslich ein Verfahren bekannt, das die Entkokung von einzelnen, parallel geschalteten Spaltrohren in einer Spaltzone beschreibt. Hinweise auf eine zweistufige Entkokung sind jedoch auch dieser Druckschrift nicht zu entnehmen.Furthermore, from FR-PS 153'2127 a method is known in which the thermal decoking takes place by the action of water vapor and air on the inner surfaces of the tubes both in the cracking zone and in the cracking gas cooler. It is stated that the heat exchanger for cracked gas cooling can be left in operation during decoking, but if this is actually done, this has two consequences for decoking: either there is insufficient decoking of the cracked gas cooler, as effects occur as they do have already been mentioned at the beginning, or the decoking gas must be passed through the entire system with such a high throughput that damage to the system occurs after a relatively short time. FR-PS 1 532127, on the other hand, does not provide any references to a two-stage process, as is provided according to the invention. Finally, a method is known from US Pat. No. 3,365,387 ' which describes the decoking of individual, parallel-connected canned tubes in a split zone. However, references to a two-stage decoking cannot be found in this document either.

Erfindungsgemäss wird dagegen ein zweistufiges Verfahren vorgeschlagen, bei dem eine fortlaufende Dampfproduktion ermöglicht wird, und bei dem nur eine vergleichsweise geringe Temperaturänderung der Rohre im Spaltgaskühler erfolgt. Deshalb ist es auch möglich, dieses Verfahren bei üblichen Spaltgaskühlern mit geraden Rohren durchzuführen.According to the invention, on the other hand, a two-stage process is proposed in which continuous steam production is made possible and in which there is only a comparatively small change in the temperature of the tubes in the cracked gas cooler. It is therefore also possible to carry out this process in conventional cracked gas coolers with straight tubes.

In der ersten Stufe des erfindungsgemässen Verfahrens wird ein Wasserdampf und Sauerstoff enthaltendes Gasgemisch, üblicherweise ein Gemisch aus Wasserdampf und Luft, durch die Spaltanlage geleitet, wobei in der bisher üblichen Weise ein Abbrand der Ablagerungen in den Spaltrohren erfolgt. Während dieser schonenden Entkokungsphase wird der grösste Teil des Kokses aus den Spaltrohren entfernt, während der Spaltgaskühler nur geringfügig gereinigt wird, da hier die Temperatur für einen Abbrand zu niedrig ist.In the first stage of the process according to the invention, a gas mixture containing water vapor and oxygen, usually a mixture of water vapor and air, is passed through the cracking plant, the deposits in the cracking tubes being burnt off in the manner customary hitherto. During this gentle decoking phase, most of the coke is removed from the cracking tubes, while the cracking gas cooler is only cleaned slightly, since the temperature here is too low to burn up.

Nach Abschluss dieser ersten Verfahrensstufe, die einige Stunden, beispielsweise 4 - 8 Stunden, währen kann, schliesst sich die zweite Verfahrensstufe an, bei der eine wesentlich grössere Menge des Gasgemisches durch die Anlage geführt wird. In dieser Verfahrensstufe werden die Spaltrohre weiter gereinigt und ausserdem wird der Koks im Spaltgaskühler weitgehend abgebaut. Dies ist darauf zurückzuführen, dass das Gasgemisch in einer solchen Menge durch den Spaltgaskühler geführt wird, dass sich die Temperatur der Koksablagerungen auf der Innenwand der Rohre soweit erhöht, dass eine merkbare Wassergasreaktion einsetzt. Diese Temperaturerhöhung ist trotz der Kühlung der Rohre möglich, weil die Wärmeleitfähigkeit der Koksschicht sehr gering ist. Ein Abbrand, wie er in den Spaltrohren der Spaltzone erfolgt, findet hier jedoch nicht statt, da bei fortlaufender Kühlung des Spaltgaskühlers eine Temperaturerhöhung auf die dafür erforderlichen Werte, die über 600°C liegen, nicht erreicht werden kann. Dagegen wird der Entkokungsvorgang vermutlich durch Abplatzen von Ablagerungen aufgrund des erhöhten Massendurchsatzes begünstigt.After completion of this first process stage, which can last for a few hours, for example 4-8 hours, the second process stage follows, in which a substantially larger amount of the gas mixture is passed through the plant. In this stage of the process, the canned tubes are further cleaned and, moreover, the coke in the cracked gas cooler is largely broken down. This is due to the fact that the gas mixture is passed through the cracked gas cooler in such an amount that the temperature of the coke deposits on the inner wall of the tubes increases to such an extent that a noticeable water gas reaction sets in. This temperature increase is possible despite the cooling of the pipes because the thermal conductivity of the coke layer is very low. However, there is no erosion, as occurs in the gap tubes of the gap zone, since if the gap gas cooler is continuously cooled, a temperature increase to the values required for this, which are above 600 ° C., cannot be achieved. In contrast, the decoking process is probably favored by flaking of deposits due to the increased mass throughput.

Die zweistufige Verfahrensweise ist im Hinblick auf die Lebensdauer der Spaltrohre erforderlich. Würde nämlich bereits zu Beginn der Entkokung der Gasstrom so stark gewählt werden, dass im Spaltgaskühler die Wassergasreaktion einsetzt, dann bestünde die Gefahr, dass in der Spaltzone abplatzende Koksteile eine Erosionswirkung auf die Spaltrohre ausüben und diese beschädigen würden.The two-step procedure is necessary with regard to the service life of the can. If, at the beginning of the decoking process, the gas flow was selected to be so strong that the water gas reaction starts in the cracked gas cooler, there would be a risk that coke parts flaking off in the cracking zone would have an erosive effect on the cracked tubes and damage them.

Von Bedeutung für die Durchführung des erfindungsgemässen Verfahrens ist, dass auch in der zweiten Verfahrensstufe ein Wasserdampf und Sauerstoff enthaltendes Gasgemisch verwendet wird, obwohl für die Wassergasreaktion eigentlich nur der Wasserdampf erforderlich ist. Für die Abbaugeschwindigkeit des Kokses im Spaltgaskühler ist die Anwesenheit von Sauerstoff jedoch von Vorteil. Dies hängt damit zusammen, dass die Wassergasreaktion durch Spurenbestandteile aus den Rohrmaterialien, insbesondere von Chrom und Nickel, die durch Diffusion aus den Rohrmaterialien im Koks enthalten sind, katalysiert wird. Dieser katalytische Effekt tritt jedoch erst dann ein, wenn die im Koks stets auch enthaltenen Schwefelbestandteile abgebaut sind. Die Anwesenheit von Sauerstoff im Gasstrom führt nun dazu, dass die Schwefelspuren vorwiegend in S02 umgewandelt werden, so dass sie nicht mehr als Katalysatorgift wirken können.It is important for the implementation of the process according to the invention that a gas mixture containing water vapor and oxygen is also used in the second process stage, although actually only water vapor is required for the water gas reaction. However, the presence of oxygen is advantageous for the rate at which the coke is broken down in the cracked gas cooler. This is related to the fact that the water gas reaction is catalyzed by trace constituents from the pipe materials, in particular chromium and nickel, which are contained in the coke by diffusion from the pipe materials. However, this catalytic effect only occurs when the sulfur components that are always contained in the coke have been broken down. The presence of oxygen in the gas stream now leads to the sulfur traces predominantly being converted into SO 2 delt so that they can no longer act as a catalyst poison.

Bei der Durchführung des erfindungsgemässen Verfahrens hat es sich als günstig erwiesen, den Gasstrom in der zweiten Verfahrensstufe soweit zu erhöhen, dass die Temperatur der Entkokungsgase am Austritt aus dem Spaltgaskühler mindestens 400°C beträgt. Es hat sich nämlich gezeigt, dass die Koksabbaugeschwindigkeit im Spaltgaskühler bei tieferen Temperaturen zu gering ist, um eine effektive Entkokungsbehandlung zu gewährleisten. Wird die Entkokungsgasmenge während der zweiten Verfahrensstufe konstant gehalten, ist es günstig, die Austrittstemperatur zu Beginn der zweiten Verfahrensstufe beträchtlich über der minimalen Temperatur von etwa 400°C zu wählen, da die Austrittstemperatur mit fortschreitender Entkokung sinkt und die Mindesttemperatur nicht unterschritten werden sollte.When carrying out the process according to the invention, it has proven advantageous to increase the gas flow in the second process stage to such an extent that the temperature of the decoking gases at the outlet from the cracked gas cooler is at least 400 ° C. It has been shown that the rate of coke removal in the cracked gas cooler is too low at lower temperatures to ensure an effective decoking treatment. If the amount of decoking gas is kept constant during the second stage of the process, it is expedient to choose the outlet temperature at the beginning of the second stage of the process considerably above the minimum temperature of about 400 ° C, since the outlet temperature decreases with decoking and the minimum temperature should not be fallen below.

Während der Entkokung des Spaltgaskühlers wird die Ablagerungsschicht in den Rohren laufend dünner, wodurch der Wärmetausch mit dem Kühlmittel verbessert wird, so dass die Austrittstemperatur mit fortschreitender Entkokung absinkt. Eine Beendigung des Entkokungsvorganges lässt sich deshalb durch Überprüfung der Austrittstemperatur leicht feststellen, da sie in diesem Fall praktisch konstant bleibt. Nachfolgend wird das erfindungsgemässe Verfahren anhand eines Beispiels verdeutlicht. Bei der High-Severity-Spaltung eines schweren atmosphärischen Gasöls ergab sich nach 60 Tagen Betrieb bei einer Ofenaustrittstemperatur von 800°C eine Spaltgaskühler-Austrittstemperatur von 634°C, was auf eine starke Verkokung schliessen liess. In einer ersten Phase der Entkokung wurde 8 Stunden lang ein Dampf-Luft-Gemisch mit einer Massengeschwindigkeit von 25 kg/s m2 im Spaltgaskühler verwendet, wobei die Ofenaustrittstemperatur 750°C betrug. Anschliessend wurde die Massengeschwindigkeit im Spaltgaskühler auf 45 kg/s m2 und die Ofenaustrittstemperatur auf 800°C erhöht. Nach einer zweistündigen Induktionsperiode, in der die Koksabbaugeschwindigkeit klein war, trat eine merkliche Erhöhung der Koksabbaugeschwindigkeit ein. (Als Koksabbaugeschwindigkeit wird die Absenkung der Spaltgaskühleraustrittstemperatur während des Entkokens bei völlig konstanten Bedingungen bezeichnet.) Die Koksabbaugeschwindigkeit während der Induktionsperiode betrug 2 K/h, während sie anschliessend einen maximalen Wert 15 K/h erreichte. Diese zweite Phase der Entkokung wurde nach 16 Stunden beendet.During the decoking of the cracked gas cooler, the deposition layer in the tubes is continuously thinning, which improves the heat exchange with the coolant, so that the outlet temperature drops as the decoking progresses. A termination of the decoking process can therefore be easily determined by checking the outlet temperature, since in this case it remains practically constant. The method according to the invention is illustrated below using an example. The high-severity cracking of a heavy atmospheric gas oil resulted in a cracked gas cooler outlet temperature of 634 ° C after 60 days of operation at an oven outlet temperature of 800 ° C, which indicated strong coking. In a first phase of decoking, a steam-air mixture with a mass velocity of 25 kg / sm 2 was used in the cracked gas cooler for 8 hours, the furnace outlet temperature being 750 ° C. The mass velocity in the cracked gas cooler was then increased to 45 kg / sm 2 and the furnace outlet temperature to 800 ° C. After a two-hour induction period in which the coke breakdown rate was slow, there was a marked increase in the coke breakdown rate. (The rate of coke extraction is the lowering of the cracked gas cooler outlet temperature during decoking under completely constant conditions.) The coke extraction rate during the induction period was 2 K / h, while it subsequently reached a maximum value of 15 K / h. This second phase of decoking was ended after 16 hours.

Nach einer Gesamtentkokungszeit von 24 Stunden betrug die Austrittstemperatur der Entkokungsgase aus dem Spaltgaskühler etwa 400°C. Hier wurde der Entkokungsvorgang beendet.After a total decoking time of 24 hours, the exit temperature of the decoking gases from the cracked gas cooler was about 400 ° C. The decoking process was ended here.

Nach Wiederinbetriebnahme des Spaltofens mit schwerem Gasöl stellte sich eine Spaltgaskühleraustrittstemperatur von etwa 470°C ein. Dies bedeutet, dass der Spaltgaskühler praktisch vollständig gereinigt wurde. In der anschliessenden Laufzeit konnten ebenfalls wieder 60 Tage erreicht werden, was darauf hinweist, dass die Verkokungsgeschwindigkeit des erfindungsgemäss gereinigten Spaltgaskühlers nicht grösser ist als bei einem mechanisch gereinigten Spaltgaskühler.After restarting the cracking furnace with heavy gas oil, the cracking gas cooler outlet temperature reached about 470 ° C. This means that the cracked gas cooler has been almost completely cleaned. In the subsequent runtime, 60 days could also be reached again, which indicates that the coking rate of the cracked gas cooler cleaned according to the invention is not greater than that of a mechanically cleaned cracked gas cooler.

Das erfindungsgemässe Verfahren in seiner bisher beschriebenen Form hat sich bei der Entkokung einer Anlage zum Spalten von schweren Kohlenwasserstoffen wie Gasöl oder Vakuumgasöl als günstig erwiesen. Es hat sich jedoch gezeigt, dass eine wirksame Entkokung für Spaltgaskühler einer Anlage zum Spalten von leichteren Einsätzen, wie beispielsweise Naphtha oder Äthan auf diese Weise nicht erreicht werden kann. Dies ist in erster Linie darauf zurückzuführen, dass die Spaltgaskühler bei der Spaltung derartiger Einsätze so ausgelegt sind, dass die Spaltgastemperatur unterhalb der Temperatur liegt, bei der noch eine merkbare Wassergasreaktion erfolgt. Diese verstärkte Kühlung, die beispielsweise durch Verwendung längerer Kühlrohre erreicht werden kann, ist bei der Spaltung leichterer Kohlenwasserstoffe möglich, da diese weniger zur Vorkokung neigende Bestandteile im Spaltgas enthalten. Während beispielsweise bei der Abkühlung eines aus Gasöl gewonnenen Spaltgases eine Kühlung auf weniger als etwa 470°C zu einer raschen Verkokung des Spaltgaskühlers führt, kann bei einem aus Naphtha gewonnenen Spaltgas die Abkühlung auf Temperaturen von etwa 350 bis 370°C durchgeführt werden, ohne stärkere Verkokungsneigungen befürchten zu müssen. Das aus dem Spaltgaskühler austretende Gas wird dann üblicherweise durch direkten Wärmetausch mit einem Quenchöl weiter abgekühlt.The method according to the invention in its form described so far has proven to be advantageous in decoking a plant for splitting heavy hydrocarbons such as gas oil or vacuum gas oil. However, it has been shown that effective decoking for cracked gas coolers in a plant for splitting lighter uses, such as naphtha or ethane, cannot be achieved in this way. This is primarily due to the fact that the cracked gas coolers when splitting such inserts are designed so that the cracked gas temperature is below the temperature at which a noticeable water gas reaction still occurs. This increased cooling, which can be achieved, for example, by using longer cooling tubes, is possible when lighter hydrocarbons are split, since these contain fewer constituents in the cracked gas that tend to precocculate. For example, while cooling a cracked gas obtained from gas oil leads to rapid coking of the cracked gas cooler when cooling down to about 470 ° C, cooling down to temperatures of about 350 to 370 ° C can be carried out with a cracked gas obtained from naphtha, without any more Fear of coking tendencies. The gas emerging from the cracked gas cooler is then usually further cooled by direct heat exchange with a quench oil.

Um dennoch eine Ausweitung des erfindungsgemässen Entkokungsverfahrens auch auf Spaltgaskühler mit niedriger Austrittstemperatur, wie sie bei der Spaltung von unter etwa 200°C siedenden Kohlenwasserstoffen eingesetzt werden, zu ermöglichen, wird in weiterer Ausgestaltung der Erfindung vorgeschlagen, dass der Spaltgaskühler schrittweise entkokt wird, wobei in jedem Schritt der Gasstrom nur durch einen Teil der wärmetauschenden Fläche geführt wird. Wesentlich ist dabei, dass während der Entkokung des Spaltgaskühlers die wärmetauschende Fläche verringert wird, um auf diese Weise eine Temperaturerhöhung in den durchströmten Abschnitten zu erreichen. Dies kann bei Verwendung eines Spaltgaskühlers mit einem Rohrbündelwärmetauscher beispielsweise dadurch geschehen, dass der gesamte Strom des Entkokungsgases nur durch einen Teil der Kühlrohre geführt wird, während andere Rohre stillgelegt werden. Die Wärmezufuhr zu den einzelnen Abschnitten des verkokten Spaltgaskühlers kann hierdurch soweit erhöht werden, dass die für eine hinreichend starke Wassergasreaktion erforderlichen Temperaturen erreicht werden. Dagegen ist durch ausschliessliche Erhöhung des Massendurchsatzes diese Temperaturerhöhung nicht möglich, weil der Gasstrom dann beim Durchlaufen der Spaltzone nicht mehr auf die erforderliche hohe Temperatur erhitzt wird. Die vollständige Entkokung des Spaltgaskühlers erfolgt in dieser Ausgestaltung der Erfindung dadurch, dass nach der Entkokung eines ersten Teils der wärmetauschenden Fläche diese abgesperrt wird und der Gasstrom dann durch einen weiteren Teil geleitet wird, in dem sich der Vorgang wiederholt. Dieses Verfahren wird solange fortgesetzt, bis der gesamte Spaltgaskühler entkokt ist.In order to enable the decoking process according to the invention to be extended to cracked gas coolers with a low outlet temperature, such as are used in the cracking of hydrocarbons boiling below approximately 200 ° C., it is proposed in a further embodiment of the invention that the cracked gas cooler is decoked step by step each step the gas flow is only passed through part of the heat-exchanging surface. It is essential here that the heat-exchanging surface is reduced during the decoking of the cracked gas cooler, in order in this way to achieve a temperature increase in the sections through which flow occurs. When using a cracked gas cooler with a shell-and-tube heat exchanger, this can be done, for example, by passing the entire stream of decoking gas through only part of the cooling tubes while other tubes are being shut down. The heat supply to the individual sections of the coked cracked gas cooler can hereby be increased to such an extent that the temperatures required for a sufficiently strong water gas reaction are reached. In contrast, this tempe is due to the exclusive increase in mass throughput temperature increase is not possible because the gas flow is then no longer heated to the required high temperature when it passes through the gap zone. The complete decoking of the cracked gas cooler takes place in this embodiment of the invention in that after decoking a first part of the heat-exchanging surface, the latter is shut off and the gas flow is then passed through a further part in which the process is repeated. This process is continued until the entire cracked gas cooler is decoked.

Als günstig hat es sich erwiesen, den Spaltgaskühler in zwei Schritten zu entkoken. Es hat sich nämlich gezeigt, dass bei Halbierung der wärmetauschenden Fläche des Spaltgaskühlers bereits die für eine ausreichende Wassergasreaktion erforderliche Temperatur erreicht wird. Die Begrenzung auf möglichst wenige Entkokungsschritte ist natürlich erstrebenswert, um die Entkokungsdauer möglichst gering zu halten, doch muss dabei berücksichtigt werden, dass die Temperatur für eine ausreichende starke Wassergasreaktion in jedem einzelnen Schritt erreicht wird.It has proven to be advantageous to decoke the cracked gas cooler in two steps. It has been shown that by halving the heat-exchanging surface of the cracked gas cooler, the temperature required for a sufficient water gas reaction is already reached. Limiting to as few decoking steps as possible is of course desirable in order to keep the decoking time as short as possible, but it must be taken into account that the temperature for a sufficiently strong water gas reaction is reached in each individual step.

Günstig ist es weiterhin, die schrittweise Entkokung des Spaltgaskühlers nur während der zweiten Verfahrensstufe, d. h. bei erhöhtem Massendurchsatz des Entkokungsgases, durchzuführen. Allerdings kann es in einigen Fällen auch zweckmässig sein, während der ersten Verfahrensstufe, in der eine Entkokung der Spaltrohre erfolgt, den Gasstrom durch einen kleinen Bereich des Spaltgaskühlers zu führen. Das erfindungsgemässe Verfahren kann bei der Spaltung schwerer Kohlenwasserstoffe unter Verwendung der hierfür üblicherweise verwendeten Spaltgaskühler durchgeführt werden. Bei der Spaltung von unter 200°C siedenden Kohlenwasserstoffen wird dagegen ein modifizierter Spaltgaskühler eingesetzt, der neben den üblichen Merkmalen wie eine Gaseintrittshaube, eine Gasaustrittshaube, dazwischen verlaufende, von einem Kühlmittel umgebene Kühlrohre noch Absperrorgane aufweist, durch die die Stillegung eines Teils der Kühlrohre ermöglicht wird. Als günstig hat sich dabei erwiesen, die Absperrorgane im Bereich der Gasaustrittshaube des Spaltgaskühlers anzuordnen. Da auf diese Weise die Absperrorgane im kälteren Teil des Spaltgaskühlers angeordnet sind, ist eine baulich einfachere Ausführung möglich. Während im Bereich der Gaseintrittshaube angeord- _ nete Absperrorgane bei Temperaturen von beispielsweise 850°C funktionsfähig bleiben müssen, genügt es, im Bereich der Austrittshaube Ventile vorzusehen, die bei Temperaturen bis zu beispielsweise 550°C funktionsfähig sind. Als eine besonders einfache Art der Unterteilung der wärmetauschenden Fläche des Spaltgaskühlers hat sich eine Aufteilung der Gasaustrittshaube in mehrere, voneinander getrennte Bereiche erwiesen. Dabei steht jeder Bereich mit einer Zahl von Kühlrohren in Verbindung und weist jeweils eine absperrbare Gasableitung auf. Die einzige bauliche Änderung gegenüber üblichen Spaltgaskühlern besteht damit in der Unterteilung der Gasaustrittshaube und ist deshalb mit geringen Kosten auch bei bereits bestehenden Anlagen durchführbar.It is also expedient to only gradually decoke the cracked gas cooler during the second process stage, ie. H. with increased mass flow rate of the decoking gas. In some cases, however, it may also be expedient to pass the gas flow through a small area of the cracked gas cooler during the first stage of the process, in which the cracking tubes are decoked. The process according to the invention can be carried out in the cracking of heavy hydrocarbons using the cracked gas coolers usually used for this purpose. In contrast, when hydrocarbons boiling below 200 ° C are split, a modified cracked gas cooler is used, which, in addition to the usual features such as a gas inlet hood, a gas outlet hood, and cooling pipes surrounded by a coolant, also has shut-off devices that allow part of the cooling pipes to be shut down becomes. It has proven to be advantageous to arrange the shut-off elements in the area of the gas outlet hood of the cracked gas cooler. Since the shut-off elements are arranged in the colder part of the cracked gas cooler in this way, a structurally simpler design is possible. While shut-off devices arranged in the area of the gas inlet hood must remain functional at temperatures of, for example, 850 ° C., it is sufficient to provide valves in the area of the outlet hood that are functional at temperatures of up to, for example, 550 ° C. A particularly simple way of dividing the heat-exchanging surface of the cracked gas cooler has been found to be to split the gas outlet hood into several separate areas. Each area is connected to a number of cooling pipes and each has a gas outlet that can be shut off. The only structural change compared to conventional cracked gas coolers is the subdivision of the gas outlet hood and can therefore be carried out at low cost even with existing systems.

Claims (9)

1. A process for the thermal decoking of apparatus for the thermal cracking of hydrocarbons, which apparatus comprises cracking tubes arranged in a cracking zone, and a subsequent cracking gas cooler for cooling the cracking products by indirect heat exchange with a cooling medium, in which process a gas stream containing steam and oxygen is passed through the cracking tubes and the cracking gas cooler, and the cooling medium is also passed through the cracking gas cooler during the decoking, characterised in that, in a first process step, the gas stream is led through the apparatus in an amount such that the temperature of the deposits on the heat exchange surfaces of the cracking gas cooler lies in the region of the operating temperature which prevails during the thermal cracking; that the first process stage is continued until the cracking tubes are substantially decoked; and that in a second process stage, the gas stream is thereafter increased to an extent such that the temperature of the deposits on the heat exchange surfaces of the cracking gas cooler increases to an extent such that the temperature of the gas stream at the outlet from the cracking gas cooler is at least 400°C.
2. A process as claimed in claim 1, characterised in that, in the second process stage, a gas stream of constant amount is passed through the apparatus, and that this second process stage is terminated when the outlet temperature of the gas stream from the cracking gas cooler has attained an approximately constant value.
3. A process as claimed in claim 1 or claim 2, characterised in that the cracking gas cooler is decoked in stepwise mariner, in each step, the gas stream being led only over a part of the heat exchange surface.
4. A process as claimed in claim 3, characterised in that the cracking gas cooler in decoked in two steps.
5. A process as claimed in claim 3 or claim 4, characterised in that the stepwise decoking of the cracking gas cooler takes place only during the second process stage.
6. A process as claimed in one of claims 3 to 5, characterised in that, in the second process stage, a gas stream of constant amount is passed through the apparatus, and that one step of the second process stage is terminated when the outlet temperature of the gas stream from the cracking gas cooler has attained an approximately constant value.
7. Apparatus for carrying out the process claimed in one of claims 3 to 6, characterised by a cracking gas cooler having a gas inlet cap, a gas outlet cap, cooling tubes running between these, and shut-off devices for shutting off a part of the cooling tubes.
8. Apparatus as claimed in claim 7, characterised in that the shut-off devices are arranged in the region of the gas outlet cap of the cracking gas cooler.
9. Apparatus as claimed in claim 8, characterised in that the gas outlet cap is divided into a plurality of separate regions each of which is connected to a number of cooling tubes; and that each region is provided with a shut-off device.
EP80103123A 1979-06-08 1980-06-04 Process and apparatus for the thermal decoking of an apparatus for the thermal cracking of hydrocarbons such apparatus comprising a cracking zone followed by a cooler for the product gas Expired EP0021167B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT80103123T ATE734T1 (en) 1979-06-08 1980-06-04 METHOD AND APPARATUS FOR THERMAL DECOKING OF AN APPARATUS FOR THERMAL CLEAVING OF HYDROCARBONS, CONSISTING OF A CRACKING ZONE AND A SUBSEQUENT RELAPE GAS COOLER.

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE19792923326 DE2923326A1 (en) 1979-06-08 1979-06-08 Cracked gas cooler decarbonising - by flushing in two stages at rising flow-rate with air and steam mixt.
DE2923326 1979-06-08
DE2934570 1979-08-27
DE19792934570 DE2934570A1 (en) 1979-08-27 1979-08-27 METHOD FOR THERMALLY DECOKING A DEVICE FOR THERMALLY CLEAVING HYDROCARBONS

Publications (2)

Publication Number Publication Date
EP0021167A1 EP0021167A1 (en) 1981-01-07
EP0021167B1 true EP0021167B1 (en) 1982-03-03

Family

ID=25779465

Family Applications (1)

Application Number Title Priority Date Filing Date
EP80103123A Expired EP0021167B1 (en) 1979-06-08 1980-06-04 Process and apparatus for the thermal decoking of an apparatus for the thermal cracking of hydrocarbons such apparatus comprising a cracking zone followed by a cooler for the product gas

Country Status (4)

Country Link
US (1) US4376694A (en)
EP (1) EP0021167B1 (en)
DE (1) DE3060219D1 (en)
IN (1) IN153444B (en)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3010000A1 (en) * 1980-03-15 1981-09-24 Basf Ag, 6700 Ludwigshafen METHOD FOR THERMAL DECOKING OF COLD GAS COOLERS
US4917787A (en) * 1983-10-31 1990-04-17 Union Carbide Chemicals And Plastics Company Inc. Method for on-line decoking of flame cracking reactors
CA1232856A (en) * 1983-10-31 1988-02-16 Akinobu Fukuhara Method for on-line decoking of flame cracking reactors
US5439583A (en) * 1984-10-31 1995-08-08 Chevron Research And Technology Company Sulfur removal systems for protection of reforming crystals
US4988367A (en) * 1987-12-29 1991-01-29 Shell Oil Company Process for removal of flyash deposits
US4963162A (en) * 1987-12-29 1990-10-16 Shell Oil Company Coal gasification process
KR940009317A (en) * 1992-10-05 1994-05-20 알버트 어네스트 가레드 Coke removal method using air pulse
DE4334827C1 (en) * 1993-10-08 1994-10-06 Mannesmann Ag Process for decreasing the coking of heat exchange surfaces
DE4335711C1 (en) * 1993-10-20 1994-11-24 Schmidt Sche Heissdampf Process for thermal decoking of a cracking furnace and of the downstream cracked gas cooler
FR2743007B1 (en) * 1995-12-27 1998-01-30 Inst Francais Du Petrole CONTINUOUS PYROLYSIS AND DECOKING PROCESS APPLICABLE IN PARTICULAR TO THE PRODUCTION OF ACETYLENE
FR2748273B1 (en) * 1996-05-06 1998-06-26 Inst Francais Du Petrole METHOD AND DEVICE FOR THE THERMAL CONVERSION OF HYDROCARBONS INTO ALIPHATIC HYDROCARBONS MORE UNSATURATED THAN THE STARTING PRODUCTS, COMBINING A STAGE OF STEAM CRACKING AND A STAGE OF PYROLYSIS
US6113774A (en) * 1998-05-22 2000-09-05 Phillips Petroleum Company Antifoulant control process
US6585883B1 (en) 1999-11-12 2003-07-01 Exxonmobil Research And Engineering Company Mitigation and gasification of coke deposits
FR2837273B1 (en) * 2002-03-15 2004-10-22 Inst Francais Du Petrole METHOD FOR AT LEAST PARTIAL REMOVAL OF CARBON DEPOSITS IN A HEAT EXCHANGER
CN100425940C (en) * 2005-10-21 2008-10-15 中国石油化工股份有限公司 High temperature cracking descaling set and method for tube bundle in large shell-and-tube heat exchanger
US7513260B2 (en) * 2006-05-10 2009-04-07 United Technologies Corporation In-situ continuous coke deposit removal by catalytic steam gasification
CN101679879B (en) * 2007-05-07 2013-03-13 鲁姆斯科技公司 Ethylene furnace radiant coil decoking method
DE102007048984A1 (en) 2007-10-12 2009-04-16 Linde Aktiengesellschaft Process for the decoking of cracking furnaces
US8137476B2 (en) * 2009-04-06 2012-03-20 Synfuels International, Inc. Secondary reaction quench device and method of use
WO2014039694A1 (en) * 2012-09-06 2014-03-13 Ineos Usa Llc Medium pressure steam intervention in an olefin cracking furnace decoke procedure

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2289351A (en) * 1939-04-06 1942-07-14 Texas Co Method of cleaning heater tubes
US2405364A (en) * 1942-10-05 1946-08-06 Phillips Petroleum Co Hydrocarbon conversion process and apparatus
US3365387A (en) * 1966-04-29 1968-01-23 Exxon Research Engineering Co Off-stream decoking of a minor portion of on-stream thermal cracking tubes
FR1532127A (en) * 1966-07-25 1968-07-05 Idemitsu Petrochemical Co Advanced process for removing carbon deposits from thermal crackers
JPS503268B1 (en) * 1966-07-25 1975-02-01

Also Published As

Publication number Publication date
EP0021167A1 (en) 1981-01-07
DE3060219D1 (en) 1982-04-01
IN153444B (en) 1984-07-14
US4376694A (en) 1983-03-15

Similar Documents

Publication Publication Date Title
EP0021167B1 (en) Process and apparatus for the thermal decoking of an apparatus for the thermal cracking of hydrocarbons such apparatus comprising a cracking zone followed by a cooler for the product gas
DE69825494T2 (en) U-shaped internally ribbed radiating coil
DE1568469C3 (en) Process for thermal steam cracking of hydrocarbons
DE1948635C3 (en) Decoking process in the thermal cracking of hydrocarbons
EP0036151B2 (en) Process for thermally decoking coolers for cracked gases
DE69822498T2 (en) PRODUCTION OF LIGHT OLEFINS BY THERMAL CUTTING OF CONTAMINATED LIQUID HYDROCARBONS
DE2604496A1 (en) PROCESS FOR RECOVERING HEAT FROM CRACKED HYDROCARBON GASES OF HIGH TEMPERATURE
DE1643074B2 (en) Process for the production of low molecular weight olefins by thermal cracking of hydrocarbons
DE2019475C3 (en) Indirectly heated vertical tube furnace for the production of low molecular weight olefins by thermal cleavage of more saturated hydrocarbons
DE2845376A1 (en) PROCEDURE FOR QUIETING CRACK GASES
DD200677C4 (en) HEATER
CH343374A (en) Process for performing endothermic chemical reactions
DE1645864B2 (en) PLANT FOR GENERATING OLEFINS BY THERMAL CLEARAGE OF HYDROCARBONS IN THE FLOW METHOD AND METHOD FOR GENERATING OLEFINS USING THIS PLANT
DE2209302B2 (en) Process for the steam cracking of naphtha hydrocarbons
DE938844C (en) Process for the conversion of hydrocarbon residue oils
DE3527663A1 (en) Process and equipment for the thermal cracking of hydrocarbons
DE2923326A1 (en) Cracked gas cooler decarbonising - by flushing in two stages at rising flow-rate with air and steam mixt.
DE1551536A1 (en) Heat exchanger and process for cooling media
DE2934570A1 (en) METHOD FOR THERMALLY DECOKING A DEVICE FOR THERMALLY CLEAVING HYDROCARBONS
DE2028913C3 (en) Process for removing carbon deposits during the thermal cracking of hydrocarbons in the presence of water vapor
DE2333185C3 (en) Process for the production of olefins by thermal cracking of hydrocarbons
DE1809177C3 (en) Tube furnace for the thermal splitting of hydrocarbons, which are gaseous or liquid under normal conditions, for the production of less saturated compounds and other products
EP0656928B1 (en) Process for cracking hydrocarbon charges and non hydrogenated c4-fractions
DE1568467C3 (en) Process for removing hydrocarbon deposits in apparatus for thermal cracking of hydrocarbons
DE1618622A1 (en) Process and device for the splitting or dehydrogenation of hydrocarbons

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19801023

AK Designated contracting states

Designated state(s): AT BE DE FR GB IT NL

ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): AT BE DE FR GB IT NL

REF Corresponds to:

Ref document number: 734

Country of ref document: AT

Date of ref document: 19820315

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3060219

Country of ref document: DE

Date of ref document: 19820401

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: THE LUMMUS COMPANY

Effective date: 19821203

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19840326

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19840630

Year of fee payment: 5

PLBN Opposition rejected

Free format text: ORIGINAL CODE: 0009273

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: OPPOSITION REJECTED

27O Opposition rejected

Effective date: 19840612

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19860613

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19870630

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19880604

BERE Be: lapsed

Owner name: LINDE A.G.

Effective date: 19880630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19890101

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19890228

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19890630

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19900525

Year of fee payment: 11

ITTA It: last paid annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19910604

GBPC Gb: european patent ceased through non-payment of renewal fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19920707

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19940301