EP0020980B1 - Segmented-display device - Google Patents

Segmented-display device Download PDF

Info

Publication number
EP0020980B1
EP0020980B1 EP80102574A EP80102574A EP0020980B1 EP 0020980 B1 EP0020980 B1 EP 0020980B1 EP 80102574 A EP80102574 A EP 80102574A EP 80102574 A EP80102574 A EP 80102574A EP 0020980 B1 EP0020980 B1 EP 0020980B1
Authority
EP
European Patent Office
Prior art keywords
stroke
segment
display system
segments
register
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP80102574A
Other languages
German (de)
French (fr)
Other versions
EP0020980A2 (en
EP0020980A3 (en
Inventor
Robert Howard Lantz
Alfred Alexander Schwartz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
International Business Machines Corp
Original Assignee
International Business Machines Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by International Business Machines Corp filed Critical International Business Machines Corp
Publication of EP0020980A2 publication Critical patent/EP0020980A2/en
Publication of EP0020980A3 publication Critical patent/EP0020980A3/en
Application granted granted Critical
Publication of EP0020980B1 publication Critical patent/EP0020980B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G1/00Control arrangements or circuits, of interest only in connection with cathode-ray tube indicators; General aspects or details, e.g. selection emphasis on particular characters, dashed line or dotted line generation; Preprocessing of data
    • G09G1/06Control arrangements or circuits, of interest only in connection with cathode-ray tube indicators; General aspects or details, e.g. selection emphasis on particular characters, dashed line or dotted line generation; Preprocessing of data using single beam tubes, e.g. three-dimensional or perspective representation, rotation or translation of display pattern, hidden lines, shadows
    • G09G1/08Control arrangements or circuits, of interest only in connection with cathode-ray tube indicators; General aspects or details, e.g. selection emphasis on particular characters, dashed line or dotted line generation; Preprocessing of data using single beam tubes, e.g. three-dimensional or perspective representation, rotation or translation of display pattern, hidden lines, shadows the beam directly tracing characters, the information to be displayed controlling the deflection and the intensity as a function of time in two spatial co-ordinates, e.g. according to a cartesian co-ordinate system
    • G09G1/10Control arrangements or circuits, of interest only in connection with cathode-ray tube indicators; General aspects or details, e.g. selection emphasis on particular characters, dashed line or dotted line generation; Preprocessing of data using single beam tubes, e.g. three-dimensional or perspective representation, rotation or translation of display pattern, hidden lines, shadows the beam directly tracing characters, the information to be displayed controlling the deflection and the intensity as a function of time in two spatial co-ordinates, e.g. according to a cartesian co-ordinate system the deflection signals being produced by essentially digital means, e.g. incrementally

Definitions

  • the present invention relates to circuits relating to display devices in which symbols or alpha-numerical configurations are defined by means of a series of segments. More particularly, the present invention essentially relates to a technique making it possible to reduce the size of the memory required to define groups of segments corresponding to the different elements that comprise any assortment of alpha-numeric characters.
  • a conventional display system which uses the use of segments is described in US Pat. No. 3,540,032.
  • a main deflection coil is used to direct the beam towards a point on the surface. of a cathode ray tube (CRT) where it is desired to form a character, point from which a character deflection coil is used to move the beam so as to trace successive segments, the video circuits being in turn turned on and off, appropriately, to obtain the desired character, symbol, number, etc.
  • CTR cathode ray tube
  • the data necessary for the generation of all the characters, numbers, etc. that the system is capable of displaying are stored in a register.
  • US-A-4,054,951 describes a technique applicable to long data sets which are repeated periodically.
  • the space available in memory is saved by omitting the integral repetitions of such sets in the data suite.
  • the sets thus omitted are inserted by means of devices capable of recognizing the presence of a particular flag among the data in memory.
  • the next element of information contained in the data series is then interpreted as constituting the address in memory of the start of a data set which must be inserted in this data series.
  • the next item of information is interpreted as representing the length of the data set to be inserted, and the next item of information indicates the number of insertions of this data set.
  • This technique therefore makes it possible to obtain the address of the data to be inserted, an address which must then be accessed from another part of the memory.
  • segment memory the bits defining the segments
  • this technique requires the allocation of a particular “flag” code, which, in the case of the segment display method described above, would require the allocation of one of only sixteen possible bit configurations. , assuming the use of four bits per segment.
  • the present invention as characterized in claims 1 and 6 therefore provides a technique for compressing the data relating to the segments with a view to their storage and for expanding this data for the purposes of their use by the display device, and which makes it possible to obtain a reduction in the dimensions of the segment memory.
  • This technique is based on the fact that when an elementary segment or increment is traced in one of, for example, eight possible directions, it is never necessary that the following segment has an opposite orientation and presents the same video state (applicable or deletion of the beam) than the segment which precedes it.
  • the segments are here the subject of a special transposition and coding so that, when the segment consecutive to that which is being traced has relative to the latter an opposite orientation and an identical video state, the display device is informed that it must automatically take certain predetermined measures instead of displaying said consecutive segment.
  • the preferred embodiment described below is a device in which the recognition of the fact that the segment consecutive to the current segment has a reverse orientation and the same video state, automatically causes the tracing of two additional segments identical to the segment current. There is therefore no need, when using the present technique, to provide a particular coded configuration intended to act as a flag and which cannot be used as a segment. It suffices that it is observed that a segment presents with respect to that immediately preceding it an opposite orientation and the same video state for the circuit to automatically supply a series of additional segments.
  • the circuit described below is intended to be used with a display device on cathode-ray tube by means of a directed beam, which device makes it possible to trace segments of characters or symbols, each segment being defined by four bits, to know three bits that specify its orientation and one bit that governs the application or removal of the beam.
  • the segments are stored at the rate of nine segments per word, so that each word can contain a maximum of thirty-six bits divided into groups of four.
  • the present invention takes advantage of the fact that it is never necessary for a given segment to be followed by another segment having the same video state and an orientation which differs by 180 ° with respect to that of the first segment. Since these reverse segments are unnecessary for the purpose of character representation, they are used in the present invention to indicate the presence of several segments having the same orientation as the first segment and preceding one or more reverse segments.
  • the reverse segments are not transmitted to the deflection device.
  • a reverse segment is equivalent to two additional segments of the same type as the segment immediately preceding the first reverse segment, but the number of additional segments could possibly differ from two and any other type of automatic operation could possibly be triggered as soon as the detection of a reverse segment having the same video state.
  • Figure 1 shows the logic elements of the preferred embodiment of the invention.
  • the first four bits of the word are transferred via a multiplexer 12 to a four-bit register 13, hereinafter called register A.
  • register A the register of the word
  • the remaining thirty-two bits are loaded into a shift register 10.
  • the register 10 and register A are both loaded, or their content is shifted, by means of a pulse designated SC which is generated by an inverted OR circuit 14. This loading or this shift is caused by negative transitions which occur in the SC pulse train. Normally, this pulse train is an inversion of the clock pulse train which is applied to circuit 14.
  • FIG. 2 shows that, at clock time 0, a series of segments represented by the characters M, N, P, Q, R, S and T are stored in the floors SR1 to SR8 of the shift register, as well as in registers A and B.
  • each of the segments M, N, P, etc. of Figure 2 represents a group of four bits of binary data .
  • Three of the four bits in each group represent one of the eight possible orientations of the beam, while the fourth bit represents the video state of the beam (the application or removal thereof).
  • register A contains a single segment represented by N in Figure 2. This same register does not contain the series of segments necessary to generate the character N.
  • comparison circuit A the comparison circuit 16 hereinafter called comparison circuit A, is connected so as to receive on one of its two inputs the four bits contained in the first stage of the shift register 10 and defining a segment, and on its other input the four bits contained in register A and defining another segment.
  • the comparison circuit A therefore acts as a forecasting device which makes it possible to detect the appearance of an inverse segment in the first stage of the shift register 10, that is to say a segment which has the same video state as that of the segment contained in register A and an opposite orientation. In this case, the comparison circuit A transmits on its output line 22 a high level signal.
  • a comparison circuit 17, hereinafter called comparison circuit B makes it possible to compare the content of register A with that of register B and transmits a high level signal on its output line 23 if it detects the presence in register A of a segment which is the reverse of that contained in register B.
  • the appearance of this signal on line 23 results in the obtaining of a low level signal at the output of an inverter 18, this latter signal having the effect of prohibiting the transfer by the AND gate 9 of the segment contained in register A to register B.
  • the registers A and B as well as the eight stages of the shift register 10 constitute a sequential routing circuit (or “pipeline”) of the data relating to the segments, which circuit is interposed between the memory of segments and the deflection device that comprises the cathode ray tube.
  • the segment stored in register B is available to the deflection device.
  • a segment M is in the register B, a segment N in the register A, a segment P in the stage SR1 of the deca register lage, and a segment P of opposite orientation in the stage SR2 of this register. Since neither of the comparison circuits generates a high level signal at the first clock instant, the content of each of the elements of the sequential routing circuit is shifted and transferred to the element following of this circuit.
  • a segment N is in the register B and is available to the deflection device.
  • the segment P is in the register A and the segment P reverses in the stage SR1 of the shift register.
  • This high level is applied via the OR gate 28 to the CLR (restore) and J inputs of the JK 21 flip-flop.
  • the positive transition from the clock pulse train toggles the flip-flop 21 and provides a level SRB signal on line 14 high.
  • the flip-flop 21 switches again for a short time interval, then is restored at the start of the fourth clock instant due to the fact that the signal present on the line 23 is at the high level and remains at this level until segment offset has ended.
  • this high level signal disappears, at the instant when the output signal of the comparison circuit B goes to the low level, the input CLR of the flip-flop 21 no longer receives a positive input and this flip-flop is restored .
  • the different codes contained in the stages of the shift register 10 and in the registers A and B are subject to a shift.
  • the flip-flop 21 remains restored and none of the comparison circuits A and B provides a high level output signal.
  • the comparison circuit A detects the presence in the first stage of the shift register 10 of a segment whose orientation is the opposite of that of the segment contained in the register A.
  • the codes are shifted in the register 10 and in the registers A and B.
  • the flip-flop 21 switches and provides a high level signal on line 24 so as to prevent any shift at the start of the eighth clock instant.
  • the comparison circuit B detects the presence in the register A of a segment whose orientation is the opposite of that of the segment contained in the register B and generates on line 23 a signal of high level which has the effect of restoring the flip-flop 21 at the start of the eighth instant of the clock.
  • the segment S is available to the deflection circuit, as well as during the eighth clock instant.
  • the segment S which is thus available during the eighth clock instant is the first of the two segments S which are automatically generated in response to the detection of the inverse segment S which immediately follows the segment S in the series of segments initially stored.
  • the flip-flop 21 Since the flip-flop 21 is now restored, at the beginning of the ninth clock instant the segments are shifted in register 10 and in register A. However, since the comparison circuit B has continued to generate a high level signal during eighth clock instant, the reverse segment S is not transferred by shift from register A to register B. During this ninth clock instant, the second of the two segments S automatically generated is available to the deflection circuit. However, comparison circuit B continues to generate a high level output during this time interval due to the fact that the second inverse segment has now been transferred by shift to register A. At the ninth clock instant, the flip-flop 21 is engaged due to the fact that the high level signal continues to be generated on line 23 by the comparison circuit B.
  • the codes are not subject to any shift in register 10 and in register A. Due to the presence on line 23 of the high level signal generated by the comparison circuit B, the inverse segment S is not transferred by shift from register A to register B.
  • the second of the two automatically generated segments S is made available to the deflection circuit due to the presence of the first inverse segment S immediately consecutive to the segment S in the series of segments initially stored.
  • the first of two segments S which are automatically generated again is made available to the deflection circuit. This second pair of segments S is automatically generated due to the second inverse segment S which was present in the series of segments which had been stored.
  • a segment S is made available to the deflection circuit.
  • the flip-flop 21 is again restored.
  • the content of the shift register 10 and that of the register A are shifted, so that the register A now contains a new segment.
  • the inverse segment S which was previously in the register A is not transferred to the register B because of the high level signal generated by the comparison circuit B which was present on the line 23 at the beginning of this clock instant.
  • the second segment of the second pair of automatically generated segments S is available to the deflection circuit.
  • the flip-flop 21 is activated for a short period of time and then restored in the same way as it had been at the beginning of the fourth clock instant.
  • the flip-flop 21 is activated for a short period of time and then restored in the same way as it had been at the beginning of the fourth clock instant.
  • another shift in the content of all the registers occurs and the last segment forming part of the stored sequence is available to the deflection circuit.
  • the comparison circuit A triggers an automatic operation in response to the detection of a series of reverse segments, while the comparison circuit B maintains this automatic operation.
  • This may result in a restriction in the preferred embodiment of the invention. Indeed, since the last segment of a word composed of nine segments is introduced into register B when loading a new word, it is not possible to detect the presence of reverse segments during the passage of one word to another, and the series of segments stored in the memory of segments for each character or symbol that one wishes to display must comply with this restriction. However, the latter can easily be avoided by using a third comparison circuit connected so as to be able to determine whether the first segment of the next word contained in the segment memory and which must be transferred to the decompression logic is an inverse segment of the segment. contained in register A.
  • FIG. 4 shows schematically the part of a typical device for displaying character segments with which the present invention can be advantageously used, said part relating to the deviation of the characters.
  • each of the codes representing the alpha-numeric symbols which it is desired to display is transferred from a regeneration memory to a consultation memory 30 by the through a line 29.
  • the memory 30 can be produced, for example, in the form of an unalterable memory comprising tables so as to be able to supply a starting address to the address counter 31 which addresses the memory of segments 32 so that it provides as many nine-segment words as necessary to draw a character or an alpha-numeric symbol corresponding to each of the codes accessed in the regeneration memory.
  • the nine-segment words from the segment memory 32 are applied to the decompression logic 33 which constitutes the essence of the present invention shown in Figures 1 to 3.
  • the output of the latter logic consists of a signal which is transmitted on line 25 and which controls the application or suppression of the video beam, and a three-bit signal which is transmitted on line 26 and which controls the orientation of a segment. These last two signals are applied to both the original decoder 34 and the segment decoder 40.
  • the decoder 34 decodes the first segment of each character or alpha-numeric symbol so as to control the accumulators x and y 41 and 43 in order to direct the beam towards the correct starting position for the tracing of the character or of the particular alpha-numeric symbol which it is about. All the following segments are applied to the decoder 40 in order to increment and decrement the accumulators 41 and 43 and according to the data relating to the segments, so that the beam moves correctly to form the character or the alpha-numeric symbol.
  • the signal transmitted on line 25 controls the application or suppression of the beam in an appropriate manner.
  • the increment or decrement values x and y of the accumulators 41 and 43 are respectively applied to the digital / analog converters 42 and 44, whose output signals respectively transmitted on lines 50 and 51 are applied to the deflection coils of so as to ensure correct and precise positioning of the cathode beam.
  • the invention therefore makes it possible to reduce the amount of memory required to specify groups of sequences of segments corresponding to any of the characters or symbols of a chosen alpha-numeric assortment.
  • the logic circuits make it possible to determine the presence of a segment whose video state (application or suppression of the beam) is the same as that of the segment which immediately precedes it and whose orientation is the reverse of that of the latter, so as to cause in such a case the generation of a predetermined number of additional segments identical to the previous segment, instead of using the reverse segment to return the beam to the position it occupied immediately before the tracing of the previous segment. Thanks to this technique, there is no need to assign a particular code acting as flag to cause this automatic operation, which flag could not also be used as a segment. It will also be noted that the use of two additional segments generated in response to the detection of a reverse segment constitutes only an example used for the purposes of the description of the present invention and does not constitute a limitation, said detection possibly being used to trigger any other type of automatic operation.

Description

Domaine techniqueTechnical area

La présente invention concerne des circuits afférents à des dispositifs d'affichage dans lesquels des symboles ou des configurations alpha-numériques sont définis au moyen d'une suite de segments. Plus particulièrement, la présente invention concerne essentiellement une technique permettant de réduire l'importance de la mémoire requise pour définir des groupes de segments correspondant aux différents éléments que comporte un assortiment quelconque de caractères alpha-numériques.The present invention relates to circuits relating to display devices in which symbols or alpha-numerical configurations are defined by means of a series of segments. More particularly, the present invention essentially relates to a technique making it possible to reduce the size of the memory required to define groups of segments corresponding to the different elements that comprise any assortment of alpha-numeric characters.

Etat de la technique antérieureState of the prior art

Un système d'affichage classique qui fait appel à l'emploi de segments est décrit dans le Brevet US-A-3 540 032. Dans ce dernier brevet, une bobine principale de déviation est utilisée pour diriger le faisceau vers un point de la surface d'un tube à rayons cathodiques (CRT) où l'on désire former un caractère, point à partir duquel une bobine de déviation de caractères est employée pour déplacer le faisceau de manière à tracer des segments successifs, les circuits vidéo étant tour à tour mis en fonction et hors fonction, de façon appropriée, pour obtenir le caractère, symbole, chiffre, etc..., désiré. Les données nécessaires aux fins de la génération de tous les caractères, chiffres, etc... que le système est capable d'afficher sont emmagasinées dans un registre.A conventional display system which uses the use of segments is described in US Pat. No. 3,540,032. In this latter patent, a main deflection coil is used to direct the beam towards a point on the surface. of a cathode ray tube (CRT) where it is desired to form a character, point from which a character deflection coil is used to move the beam so as to trace successive segments, the video circuits being in turn turned on and off, appropriately, to obtain the desired character, symbol, number, etc. The data necessary for the generation of all the characters, numbers, etc. that the system is capable of displaying are stored in a register.

Avant de tracer chaque caractère sur l'écran, on définit une position de départ, puis on fournit une suite d'informations définissant des modifications successives de position, et chacune de ces dernières s'accompagne d'informations supplémentaires relatives à l'application ou à la suppression du faisceau cathodique. On pourra se référer également au document US-A-3 459 926 qui décrit un générateur de segments élémentaires courts, de même amplitude destiné à permettre le traçage d'un segment long d'amplitude variable. Bien que de nombreuses variantes soient possibles, on a constaté qu'il y avait intérêt à définir chaque segment élémentaire au moyen de quatre bits, trois desquels permettent de définir l'une de huit directions séparées les unes des autres par 45°, le quatrième bit servant à déterminer l'application ou la suppression du faisceau cathodique. Il est évident que si chaque segment élémentaire est suffisamment court pour que l'on puisse obtenir une représentation suffisamment détaillée de caractères tels que e, a et s, un grand nombre de segments est indispensable pour former des caractères tels que L, E, et'F. Si l'assortiment de caractères alpha-numériques est important, une mémoire de grandes dimensions devient nécessaire.Before tracing each character on the screen, a starting position is defined, then a series of information is defined defining successive modifications of position, and each of these is accompanied by additional information relating to the application or to the suppression of the cathode beam. Reference may also be made to document US-A-3,459,926 which describes a generator of short elementary segments, of the same amplitude intended to allow the tracing of a long segment of variable amplitude. Although many variants are possible, it has been found that there is interest in defining each elementary segment by means of four bits, three of which make it possible to define one of eight directions separated from each other by 45 °, the fourth bit used to determine the application or the suppression of the cathode beam. It is obvious that if each elementary segment is short enough for a sufficiently detailed representation of characters such as e, a and s to be obtained, a large number of segments is essential to form characters such as L, E, and 'F. If the assortment of alpha-numeric characters is large, a large memory becomes necessary.

Etant donné que la capacité d'une mémoire n'augmente généralement que par incréments discrets, une diminution relativement faible (exprimée en pourcentage) du nombre de bits de mémoire correspondant à tous les segments qui constituent les différents éléments d'un assortiment de caractères donné peut permettre de réaliser une économie relativement importante (exprimée également en pourcentage) en ce qui concerne les dimensions de la mémoire dès lors qu'il n'y a pas lieu d'augmenter sa capacité d'un incrément pour pouvoir emmagasiner tous les bits requis pour un assortiment choisi de caractères alpha-numériques et de symboles.Since the capacity of a memory generally only increases in discrete increments, a relatively small decrease (expressed as a percentage) in the number of memory bits corresponding to all the segments which constitute the different elements of a given assortment of characters can allow a relatively significant saving (also expressed as a percentage) with regard to the dimensions of the memory since it is not necessary to increase its capacity by an increment in order to be able to store all the required bits for a selected assortment of alpha-numeric characters and symbols.

Il est donc évident qu'il y aurait intérêt à utiliser une technique de compression des données pour réduire au minimum les dimensions de la mémoire requise pour emmagasiner les segments constituant les caractères alpha-numériques ou les symboles que l'on désire afficher. De nombreux documents traitent du problème de la compression des données dans des cas spécifiques. Un exemple est l'article publié dans l'IBM Technical Disclosure Bulletin Vol. 15 N° 9 de février 1973, page 2966. Pour tracer une courbe continue, il y est proposé de grouper par deux les huit types de segments définissant les huit directions possibles, ce qui permet d'économiser quelques bits. Mais il existe un problème plus général lié à la technique de codage à quatre bits décrite ci-dessus. Si l'on étudie les suites de segments constituant les caractères ou les symboles, on constate que, dans de nombreux cas, l'on utilise des suites-ininterrompues de segments identiques. Si l'on utilise la technique de codage décrite ci-dessus, qui fait appel à l'emploi de quatre bits par segment, on constate qu'un nombre considérable de bits est utilisé sans raison pour définir une suite de segments identiques.It is therefore obvious that it would be advantageous to use a data compression technique to minimize the dimensions of the memory required to store the segments constituting the alpha-numeric characters or the symbols which it is desired to display. Many documents deal with the problem of data compression in specific cases. An example is the article published in the IBM Technical Disclosure Bulletin Vol. 15 N ° 9 of February 1973, page 2966. To draw a continuous curve, it is proposed to group in pairs the eight types of segments defining the eight possible directions, which saves a few bits. But there is a more general problem related to the four-bit coding technique described above. If we study the sequences of segments constituting characters or symbols, we see that, in many cases, we use uninterrupted sequences of identical segments. If we use the coding technique described above, which calls for the use of four bits per segment, we see that a considerable number of bits are used without reason to define a series of identical segments.

Le brevet US-A-4 054 951 décrit une technique applicable à de longs ensembles de données qui sont répétés de façon périodique. Dans cette technique, on économise la place disponible en mémoire en omettant les répétitions intégrales de tels ensembles dans la suite de données. Lorsque des données doivent être extraites de la mémoire, les ensembles ainsi omis sont insérés par l'intermédiaire de dispositifs capables de reconnaître la présence d'un drapeau particulier parmi les données en mémoire. L'élément suivant d'information contenu dans la suite de données est alors interprété comme constituant l'adresse en mémoire du début d'un ensemble de données qui doit être inséré dans cette suite de données. L'élément suivant d'information est interprété comme représentant la longueur de l'ensemble de données à insérer, et l'élément suivant d'information indique le nombre d'insertions de cet ensemble de données. Cette technique permet donc d'obtenir l'adresse des données à insérer, adresse à laquelle il faut ensuite accéder depuis une autre partie de la mémoire. Dans le cas d'un dispositif d'affichage à grande vitesse, il serait extrêmement coûteux, voire impossible, de gérer de la sorte les données afférentes aux segments, étant entendu que la détection d'un drapeau nécessiterait un accès à une autre partie de la mémoire contenant les bits définissant les segments (dite mémoire de segments) aux fins de la récupération des informations afférentes à ces derniers. Par ailleurs, cette technique nécessite l'attribution d'un code « drapeau particulier, ce qui, dans le cas du procédé d'affichage par segments décrit ci-dessus, nécessiterait l'attribution de l'une de seulement seize configurations de bits possibles, en supposant l'emploi de quatre bits par segments. Enfin, si l'on tient compte de la nécessité d'employer un drapeau et trois multiplets de données supplémentaires (adresse, longueur et nombre de répétitions), il est évident que cette technique de l'art antérieur ne se traduirait pas nécessairement par une réduction importante du nombre de bits correspondant aux segments qui constituent un ensemble de caractères alpha-numériques à afficher.US-A-4,054,951 describes a technique applicable to long data sets which are repeated periodically. In this technique, the space available in memory is saved by omitting the integral repetitions of such sets in the data suite. When data must be extracted from the memory, the sets thus omitted are inserted by means of devices capable of recognizing the presence of a particular flag among the data in memory. The next element of information contained in the data series is then interpreted as constituting the address in memory of the start of a data set which must be inserted in this data series. The next item of information is interpreted as representing the length of the data set to be inserted, and the next item of information indicates the number of insertions of this data set. This technique therefore makes it possible to obtain the address of the data to be inserted, an address which must then be accessed from another part of the memory. In the case of a high-speed display device, it would be extremely expensive, if not impossible, to manage the data relating to the segments in this way, it being understood that the detection of a flag would require access to another part of the memory containing the bits defining the segments (called segment memory) for the purpose of retrieving the information relating to these. Furthermore, this technique requires the allocation of a particular “flag” code, which, in the case of the segment display method described above, would require the allocation of one of only sixteen possible bit configurations. , assuming the use of four bits per segment. Finally, if we take into account the need to use a flag and three additional bytes of data (address, length and number of repetitions), it is obvious that this technique of the prior art would not necessarily result in a significant reduction in the number of bits corresponding to the segments which constitute a set of alpha-numeric characters to be displayed.

Une compression des données faisant appel à la technique de codage dite à longueur de course peut être employée à cette fin. Le document US-A-3 755 805 décrit une telle technique. En pareil cas, on ajoute quelques bits (généralement deux) à chaque segment pour indiquer le nombre de segments qui doivent être tracés dans la direction spécifiée. Selon les paramètres du système, on peut ainsi obtenir une certaine diminution des dimensions de la mémoire de segments. Cependant, ce type de codage peut entraîner une expansion des données lorsque les courses ne sont pas suffisamment longues et, s'il est mis en oeuvre, des pénalités substantielles en l'absence de segments identiques consécutifs.Data compression using the so-called stroke length coding technique can be used for this purpose. Document US-A-3,755,805 describes such a technique. In this case, a few bits (usually two) are added to each segment to indicate the number of segments that are to be drawn in the specified direction. Depending on the parameters of the system, it is thus possible to obtain a certain reduction in the dimensions of the segment memory. However, this type of coding can lead to data expansion when the races are not long enough and, if implemented, substantial penalties in the absence of consecutive identical segments.

Il y aurait donc intérêt à utiliser une technique de compression et d'expansion des données qui puisse être appliquée aux segments élémentaires, qui ne provoque pas d'expansion des données lors de l'emmagasinage des segments, et qui permette d'obtenir une plus grande compression que dans le cas de la technique de codage à longueur de course.It would therefore be advantageous to use a data compression and expansion technique which can be applied to elementary segments, which does not cause data expansion during the storage of the segments, and which makes it possible to obtain more greater compression than in the case of the stroke length coding technique.

Exposé de l'inventionStatement of the invention

La présente invention telle qu'elle est caractérisée dans les revendications 1 et 6 fournit donc une technique de compression des données afférentes aux segments en vue de leur emmagasinage et d'expansion de ces données aux fins de leur utilisation par le dispositif d'affichage, et qui permet d'obtenir une réduction des dimensions de la mémoire de segments. Cette technique est basée sur le fait que lorsqu'un segment élémentaire ou incrément est tracé dans l'une de, par exemple, huit directions possibles, il n'est jamais nécessaire que le segment suivant ait une orientation inverse et présente le même état vidéo (applicable ou suppression du faisceau) que le segment qui le précède. Au contraire, les segments font ici l'objet d'une transposition et d'un codage spéciaux de telle sorte que, lorsque le segment consécutif à celui que l'on est en train de tracer présente par rapport à ce dernier une orientation inverse et un état vidéo identique, le dispositif d'affichage soit informé qu'il doit automatiquement prendre certaines mesures prédéterminées au lieu d'afficher ledit segment consécutif. A titre d'exemple, la réalisation préférée décrite ci-après est un dispositif dans lequel la reconnaissance du fait que le segment consécutif au segment actuel présente une orientation inverse et le même état vidéo, provoque automatiquement le traçage de deux segments supplémentaires identiques au segment actuel. Il n'y a donc pas lieu, lorsqu'on utilise la présente technique, de prévoir une configuration codée particulière destinée à faire fonction de drapeau et qui ne peut pas être employée comme segment. Il suffit que l'on constate qu'un segment présente par rapport à celui qui le précède immédiatement une orientation inverse et le même état vidéo pour que le circuit fournisse automatiquement une suite de segments supplémentaires.The present invention as characterized in claims 1 and 6 therefore provides a technique for compressing the data relating to the segments with a view to their storage and for expanding this data for the purposes of their use by the display device, and which makes it possible to obtain a reduction in the dimensions of the segment memory. This technique is based on the fact that when an elementary segment or increment is traced in one of, for example, eight possible directions, it is never necessary that the following segment has an opposite orientation and presents the same video state (applicable or deletion of the beam) than the segment which precedes it. On the contrary, the segments are here the subject of a special transposition and coding so that, when the segment consecutive to that which is being traced has relative to the latter an opposite orientation and an identical video state, the display device is informed that it must automatically take certain predetermined measures instead of displaying said consecutive segment. By way of example, the preferred embodiment described below is a device in which the recognition of the fact that the segment consecutive to the current segment has a reverse orientation and the same video state, automatically causes the tracing of two additional segments identical to the segment current. There is therefore no need, when using the present technique, to provide a particular coded configuration intended to act as a flag and which cannot be used as a segment. It suffices that it is observed that a segment presents with respect to that immediately preceding it an opposite orientation and the same video state for the circuit to automatically supply a series of additional segments.

D'autres objets, caractéristiques et avantages de la présente invention ressortiront mieux de l'exposé qui suit, fait en référence aux dessins annexés à ce texte, qui représentent un mode de réalisation préféré de celle-ci.Other objects, characteristics and advantages of the present invention will emerge more clearly from the following description, made with reference to the drawings appended to this text, which represent a preferred embodiment thereof.

Brève description des figuresBrief description of the figures

  • La Figure 1 représente schématiquement la réalisation préférée de la logique de décompression des segments de la présente invention.Figure 1 schematically shows the preferred embodiment of the segment decompression logic of the present invention.
  • La Figure 2 représente schématiquement la circulation des données afférentes aux segments à différents instants d'horloge.Figure 2 schematically shows the flow of data relating to the segments at different clock times.
  • La Figure 3 est un diagramme des temps qui montre l'état de plusieurs dispositifs logiques du circuit de la Figure 1 pendant la circulation des données utilisées dans l'exemple de la figure 2.Figure 3 is a timing diagram showing the state of several logic devices in the circuit of Figure 1 during the flow of data used in the example in Figure 2.
  • La Figure 4 représente schématiquement une partie d'un dispositif typique d'affichage de caractères constitués par des segments avec lequel la présente invention peut être avantageusement utilisée, ladite partie du dispositif étant consacrée à la déviation des caractères.FIG. 4 schematically represents a part of a typical device for displaying characters constituted by segments with which the present invention can be advantageously used, said part of the device being devoted to the deviation of the characters.
Description d'un mode de réalisation de l'inventionDescription of an embodiment of the invention

Le circuit décrit ci-dessous est destiné à être utilisé avec un dispositif d'affichage sur tube cathodique au moyen d'un faisceau dirigé, lequel dispositif permet de tracer des segments de caractères ou de symboles, chaque segment étant défini par quatre bits, à savoir trois bits qui spécifient son orientation et un bit qui régit l'application ou la suppression du faisceau. Les segments sont emmagasinés à raison de neuf segments par mot, si bien que chaque mot peut contenir un maximum de trente-six bits répartis en groupes de quatre. Ces chiffres ne sont indiqués qu'à titre d'exemple et pourraient éventuellement être modifiés, la présente invention pouvant être utilisée dans une vaste gamme de dispositifs.The circuit described below is intended to be used with a display device on cathode-ray tube by means of a directed beam, which device makes it possible to trace segments of characters or symbols, each segment being defined by four bits, to know three bits that specify its orientation and one bit that governs the application or removal of the beam. The segments are stored at the rate of nine segments per word, so that each word can contain a maximum of thirty-six bits divided into groups of four. These figures are given by way of example only and could possibly be modified, the present invention being able to be used in a wide range of devices.

Dans le présent exemple, on peut utiliser autant de mots qu'il le faut pour former un caractère, mais un caractère doit obligatoirement commencer par un nouveau mot et un segment particulier sert à indiquer la fin du caractère. Ce dernier segment est indispensable, même s'il nécessite l'emploi d'un mot supplémentaire. Les quatre premiers bits d'un caractère ne sont pas interprétés comme un segment, mais contiennent des informations initiales de positionnement.In this example, you can use as many words as you need to form a character, but a character must necessarily start with a new word and a particular segment is used to indicate the end of the character. This last segment is essential, even if it requires the use of an additional word. The first four bits of a character are not interpreted as a segment, but contain initial positioning information.

La présente invention tire parti du fait qu'il n'est jamais nécessaire qu'un segment donné soit suivi d'un autre segment présentant le même état vidéo et une orientation qui diffère de 180° par rapport à celle du premier segment. Etant donné que ces segments inverses sont inutiles aux fins de la représentation des caractères, ils servent dans la présente invention à indiquer la présence de plusieurs segments présentant la même orientation que le premier segment et précédant un ou plusieurs segments inverses. Les segments inverses ne sont pas transmis au dispositif de déviation. Dans la réalisation préférée, un segment inverse équivaut à deux segments supplémentaires du même type que le segment qui précédait immédiatement le premier segment inverse, mais le nombre de segments supplémentaires pourrait éventuellement différer de deux et tout autre type de fonctionnement automatique pourrait éventuellement être déclenché dès la détection d'un segment inverse présentant le même état vidéo.The present invention takes advantage of the fact that it is never necessary for a given segment to be followed by another segment having the same video state and an orientation which differs by 180 ° with respect to that of the first segment. Since these reverse segments are unnecessary for the purpose of character representation, they are used in the present invention to indicate the presence of several segments having the same orientation as the first segment and preceding one or more reverse segments. The reverse segments are not transmitted to the deflection device. In the preferred embodiment, a reverse segment is equivalent to two additional segments of the same type as the segment immediately preceding the first reverse segment, but the number of additional segments could possibly differ from two and any other type of automatic operation could possibly be triggered as soon as the detection of a reverse segment having the same video state.

La Figure 1 représente les éléments logiques de la réalisation préférée de l'invention. Afin de faciliter la compréhension du fonctionnement du circuit représenté sur la Figure 1, on se reportera également aux Figures 2 et 3. Sur la Figure 1, lors du transfert de chaque mot de trente-six bits de la mémoire de segments au circuit de décompression, les quatre premiers bits du mot sont transférés par l'intermédiaire d'un multiplexeur 12 à un registre 13 à quatre bits, ci-après appelé registre A. Les trente-deux bits restants sont chargés dans un registre à décalage 10. Le registre 10 et le registre A sont tous deux chargés, ou leur contenu est décalé, au moyen d'une impulsion désignée SC qui est engendrée par un circuit OU inversé 14. Ce chargement ou ce décalage est provoqué par des transitions négatives qui se produisent dans le train d'impulsions SC. Normalement, ce train d'impulsions est une inversion du train d'impulsions d'horloge qui est appliqué au circuit 14. Cependant, ainsi qu'on le verra plus loin de façon détaillée, la présence d'un signal SRB de niveau haut émanant d'un flip-flop 21 et qui est appliqué au circuit 14 par l'intermédiaire d'une ligne 24, a pour effet d'interdire toute transition dans le train d'impulsions SC, si bien que ces impulsions sont maintenues à un niveau bas tant que le signal SRB est au niveau haut.Figure 1 shows the logic elements of the preferred embodiment of the invention. In order to facilitate understanding of the operation of the circuit shown in Figure 1, reference will also be made to Figures 2 and 3. In Figure 1, during the transfer of each thirty-six bit word from the segment memory to the decompression circuit , the first four bits of the word are transferred via a multiplexer 12 to a four-bit register 13, hereinafter called register A. The remaining thirty-two bits are loaded into a shift register 10. The register 10 and register A are both loaded, or their content is shifted, by means of a pulse designated SC which is generated by an inverted OR circuit 14. This loading or this shift is caused by negative transitions which occur in the SC pulse train. Normally, this pulse train is an inversion of the clock pulse train which is applied to circuit 14. However, as will be seen in detail below, the presence of a high level SRB signal emanating from of a flip-flop 21 and which is applied to the circuit 14 via a line 24, has the effect of prohibiting any transition in the train of pulses SC, so that these pulses are maintained at a level low as long as the SRB signal is high.

On se reportera à présent à la Figure 2, qui montre que, à l'instant d'horloge 0, une suite de segments représentés par les caractères M, N, P, Q, R, S et T se trouvent emmagasinés dans les étages SR1 à SR8 du registre à décalage, ainsi que dans les registres A et B. Il est particulièrement important de noter que chacun des segments M, N, P, etc... de la Figure 2 représente un groupe de quatre bits de données binaires. Trois des quatre bits de chaque groupe représentent l'une des huit orientations possibles du faisceau, cependant que le quatrième bit représente l'état vidéo du faisceau (l'application ou la suppression de celui-ci). Par exemple, le registre A contient un unique segment représenté par N sur la Figure 2. Ce même registre ne contient pas la suite de segments nécessaire pour engendrer le caractère N. La flèche dirigée vers la gauche qui se trouve au-dessus de certains des caractères de la Figure 2 qui représentent des segments indique que le segment dont il s'agit est un segment inverse présentant le même état vidéo que le segment qui le précède et qui n'est pas surmonté d'une flèche. L'orientation des flèches de la Figure 2 ne correspond nullement à la direction dans laquelle se déplace le faisceau lors du traçage d'un segment.We will now refer to Figure 2, which shows that, at clock time 0, a series of segments represented by the characters M, N, P, Q, R, S and T are stored in the floors SR1 to SR8 of the shift register, as well as in registers A and B. It is particularly important to note that each of the segments M, N, P, etc. of Figure 2 represents a group of four bits of binary data . Three of the four bits in each group represent one of the eight possible orientations of the beam, while the fourth bit represents the video state of the beam (the application or removal thereof). For example, register A contains a single segment represented by N in Figure 2. This same register does not contain the series of segments necessary to generate the character N. The arrow pointing to the left which is above some of the characters in Figure 2 which represent segments indicates that the segment in question is a reverse segment having the same video state as the segment which precedes it and which is not surmounted by an arrow. The orientation of the arrows in Figure 2 in no way corresponds to the direction in which the beam moves when tracing a segment.

On se reportera de nouveau à la Figure 1, sur laquelle le circuit de comparaison 16, ci-après appelé circuit de comparaison A, est connecté de manière à recevoir sur l'une de ses deux entrées les quatre bits contenus dans le premier étage du registre à décalage 10 et définissant un segment, et sur son autre entrée les quatre bits contenus dans le registre A et définissant un autre segment. Le circuit de comparaison A fait donc fonction de dispositif de prévision qui permet de détecter l'apparition d'un segment inverse dans le premier étage du registre à décalage 10, c'est-à-dire un segment qui présente le même état vidéo que celui du segment contenu dans le registre A et une orientation inverse. Dans ce cas, le circuit de comparaison A transmet sur sa ligne de sortie 22 un signal de niveau haut.Reference will again be made to FIG. 1, on which the comparison circuit 16, hereinafter called comparison circuit A, is connected so as to receive on one of its two inputs the four bits contained in the first stage of the shift register 10 and defining a segment, and on its other input the four bits contained in register A and defining another segment. The comparison circuit A therefore acts as a forecasting device which makes it possible to detect the appearance of an inverse segment in the first stage of the shift register 10, that is to say a segment which has the same video state as that of the segment contained in register A and an opposite orientation. In this case, the comparison circuit A transmits on its output line 22 a high level signal.

Les codes emmagasinés dans le registre A peuvent faire l'objet d'un décalage et être transférés au registre B par l'intermédiaire de la porte ET 9. Un circuit de comparaison 17, ci-après appelé circuit de comparaison B, permet de comparer le contenu du registre A avec celui du registre B et transmet un signal de niveau haut sur sa ligne de sortie 23 s'il détecte la présence dans le registre A d'un segment qui est l'inverse de celui contenu dans le registre B. L'apparition de ce signal sur la ligne 23 se traduit par l'obtention d'un signal de niveau bas à la sortie d'un inverseur 18, ce dernier signal ayant pour effet d'interdire le transfert par la porte ET 9 du segment contenu dans le registre A au registre B.The codes stored in register A can be shifted and transferred to register B via the AND gate 9. A comparison circuit 17, hereinafter called comparison circuit B, makes it possible to compare the content of register A with that of register B and transmits a high level signal on its output line 23 if it detects the presence in register A of a segment which is the reverse of that contained in register B. The appearance of this signal on line 23 results in the obtaining of a low level signal at the output of an inverter 18, this latter signal having the effect of prohibiting the transfer by the AND gate 9 of the segment contained in register A to register B.

Ainsi qu'on peut le constater en se reportant aux Figures 1 et 2, les registres A et B ainsi que les huit étages du registre à décalage 10 constituent un circuit d'acheminement séquentiel (ou « pipe-line •) des données afférentes aux segments, lequel circuit est interposé entre la mémoire de segments et le dispositif de déviation que comporte le tube cathodique. A chaque instant d'horloge, le segment emmagasiné dans le registre B se trouve à la disposition du dispositif de déviation. Ainsi, sur la Figure 2, à l'instant d'horloge 0, un segment M se trouve dans le registre B, un segment N dans le registre A, un segment P dans l'étage SR1 du registre à décalage, et un segment P d'orientation inverse dans l'étage SR2 de ce registre. Etant donné que ni l'un ni l'autre des circuits de comparaison n'engendre un signal de niveau haut au premier instant d'horloge, le contenu de chacun des éléments du circuit d'acheminement séquentiel est décalé et transféré à l'élément suivant de ce circuit.As can be seen by referring to FIGS. 1 and 2, the registers A and B as well as the eight stages of the shift register 10 constitute a sequential routing circuit (or “pipeline”) of the data relating to the segments, which circuit is interposed between the memory of segments and the deflection device that comprises the cathode ray tube. At each clock instant, the segment stored in register B is available to the deflection device. Thus, in Figure 2, at clock time 0, a segment M is in the register B, a segment N in the register A, a segment P in the stage SR1 of the deca register lage, and a segment P of opposite orientation in the stage SR2 of this register. Since neither of the comparison circuits generates a high level signal at the first clock instant, the content of each of the elements of the sequential routing circuit is shifted and transferred to the element following of this circuit.

De ce fait, au premier instant d'horloge, un segment N se trouve dans le registre B et est à la disposition du dispositif de déviation. Le segment P se trouve dans le registre A et le segment P inverse dans l'étage SR1 du registre à décalage. On notera en se reportant également à la Figure 3 qu'après le premier instant d'horloge la sortie du circuit de comparaison A passe au niveau haut sur la ligne 22. Ce niveau haut est appliqué par l'intermédiaire de la porte OU 28 aux entrées CLR (restauration) et J du flip-flop J-K 21. Au second instant d'horloge, la transition positive du train d'impulsions d'horloge fait basculer le flip-flop 21 et fournit sur la ligne 14 un signal SRB de niveau haut.Therefore, at the first clock instant, a segment N is in the register B and is available to the deflection device. The segment P is in the register A and the segment P reverses in the stage SR1 of the shift register. It will also be noted with reference to FIG. 3 that after the first clock instant the output of the comparison circuit A goes high on line 22. This high level is applied via the OR gate 28 to the CLR (restore) and J inputs of the JK 21 flip-flop. At the second clock instant, the positive transition from the clock pulse train toggles the flip-flop 21 and provides a level SRB signal on line 14 high.

A ce second instant d'horloge, les segments contenus dans les différents étages du circuit d'acheminement séquentiel font l'objet d'un nouveau décalage. Le segment P est maintenant à la disposition du dispositif de déviation dans le registre B et le segment P inverse se trouve à présent dans le registre A. La sortie du circuit de comparaison A passe au niveau bas et celle du circuit de comparaison B passe au niveau haut sur la ligne 23 parce que le segment qui se trouve maintenant dans le registre A est l'inverse que celui que contient le registre B.At this second clock instant, the segments contained in the different stages of the sequential routing circuit are shifted again. The segment P is now available to the deflection device in register B and the reverse segment P is now in register A. The output of comparison circuit A goes low and that of comparison circuit B goes to high level on line 23 because the segment which is now in register A is the opposite than that in register B.

Au troisième instant d'horloge aucun décalage des codes ne se produit étant donné que le signal SC est au niveau bas, le signal SRB appliqué par l'intermédiaire de la ligne 24 à l'entrée du circuit 14 étant au niveau haut. Le flip-flop 21 est alors restauré en raison du fait qu'il existait sur la ligne 23, au début de ce troisième instant d'horloge, un signal de niveau haut émanant du circuit de comparaison B. Pendant ce même instant d'horloge, un autre segment P se trouve dans le registre B, à la disposition du circuit de déviation. Il s'agit là du premier des deux segments qui doivent être automatiquement engendrés en raison du fait que le segment P actuel précède immédiatement un segment d'orientation inverse présentant le même état vidéo. Ainsi que le comprendra l'homme de l'art, tout autre type de fonctionnement automatique résultant de la détection d'un segment inverse et présentant le même état vidéo que le segment qui le précède pourrait éventuellement être envisagé.At the third clock instant, no code shift occurs since the signal SC is at the low level, the signal SRB applied via the line 24 to the input of the circuit 14 being at the high level. The flip-flop 21 is then restored due to the fact that there was on line 23, at the start of this third clock instant, a high level signal emanating from the comparison circuit B. During this same clock instant , another segment P is found in register B, available to the deflection circuit. This is the first of two segments that must be automatically generated due to the fact that the current P segment immediately precedes a reverse orientation segment with the same video state. As will be understood by those skilled in the art, any other type of automatic operation resulting from the detection of an inverse segment and having the same video state as the segment which precedes it could possibly be envisaged.

Etant donné que la sortie du flip-flop 21 présente sur la ligne 24 a été ramenée à un niveau bas au commencement du troisième instant d'horloge, les codes sont décalés dans le registre 10 et dans le registre A au commencement du quatrième instant d'horloge, comme le montre la Figure 2. Toutefois, étant donné que la sortie du circuit de comparaison B se trouvait encore à un niveau haut au commencement de ce quatrième instant d'horloge, la porte ET 9 n'a pas transmis le contenu du registre A au registre B. De ce fait, le registre B contient encore le segment P pendant le quatrième instant d'horloge. Le segment P est donc à la disposition du circuit de déviation pendant trois instants d'horloge et ce troisième segment P est le second des deux segments P qui sont automatiquement engendrés. On notera par ailleurs que le segment P inverse a été remplacé par le segment Q transféré par décalage du premier étage du registre à décalage 10 au registre A.Since the output of the flip-flop 21 present on line 24 has been reduced to a low level at the beginning of the third clock instant, the codes are shifted in register 10 and in register A at the beginning of the fourth instant d clock, as shown in Figure 2. However, since the output of comparison circuit B was still at a high level at the beginning of this fourth clock instant, AND gate 9 did not transmit the content from register A to register B. Therefore, register B still contains the segment P during the fourth clock instant. The segment P is therefore at the disposal of the deflection circuit for three clock instants and this third segment P is the second of the two segments P which are automatically generated. It will also be noted that the inverse segment P has been replaced by the segment Q transferred by offset from the first stage of the shift register 10 to the register A.

On notera que le flip-flop 21 bascule de nouveau pendant un bref intervalle de temps, puis est restauré au commencement du quatrième instant d'horloge en raison du fait que le signal présent sur la ligne 23 est au niveau haut et reste à ce niveau jusqu'à ce que le décalage des segments ait pris fin. Lorsque ce signal de niveau haut disparaît, à l'instant où le signal de sortie du circuit de comparaison B passe au niveau bas, l'entrée CLR du flip-flop 21 ne reçoit plus d'entrée positive et ce flip-flop est restauré.It will be noted that the flip-flop 21 switches again for a short time interval, then is restored at the start of the fourth clock instant due to the fact that the signal present on the line 23 is at the high level and remains at this level until segment offset has ended. When this high level signal disappears, at the instant when the output signal of the comparison circuit B goes to the low level, the input CLR of the flip-flop 21 no longer receives a positive input and this flip-flop is restored .

Au commencement du cinquième instant d'horloge, les différents codes contenus dans les étages du registre à décalage 10 et dans les registres A et B font l'objet d'un décalage. Le flip-flop 21 demeure restauré et aucun des circuits de comparaison A et B ne fournit un signal de sortie de niveau haut.At the beginning of the fifth clock instant, the different codes contained in the stages of the shift register 10 and in the registers A and B are subject to a shift. The flip-flop 21 remains restored and none of the comparison circuits A and B provides a high level output signal.

Au sixième instant d'horloge, le circuit de comparaison A détecte la présence dans le premier étage du registre à décalage 10 d'un segment dont l'orientation est l'inverse de celle du segment contenu dans le registre A. De même que dans l'exemple relatif au segment P et au segment P inverse, au commencement du septième instant d'horloge, les codes font l'objet d'un décalage dans le registre 10 et dans les registres A et B. Le flip-flop 21 bascule et fournit un signal de niveau haut sur la ligne 24 de manière à interdire tout décalage au commencement du huitième instant d'horloge. Pendant le septième instant d'horloge, le circuit de comparaison B détecte la présence dans le registre A d'un segment dont l'orientation est l'inverse de celle du segment contenu dans le registre B et engendre sur la ligne 23 un signal de niveau haut qui a pour effet de restaurer le flip-flop 21 au commencement du huitième instant d'horloge. Pendant le septième instant d'horloge, le segment S est à la disposition du circuit de déviation, de même que pendant le huitième instant d'horloge. Le segment S qui est ainsi disponible pendant le huitième instant d'horloge est le premier des deux segments S qui sont automatiquement engendrés en réponse à la détection du segment S inverse qui fait immédiatement suite au segment S dans la suite de segments initialement emmagasinés.At the sixth clock instant, the comparison circuit A detects the presence in the first stage of the shift register 10 of a segment whose orientation is the opposite of that of the segment contained in the register A. As in the example relating to the segment P and the inverse segment P, at the beginning of the seventh clock instant, the codes are shifted in the register 10 and in the registers A and B. The flip-flop 21 switches and provides a high level signal on line 24 so as to prevent any shift at the start of the eighth clock instant. During the seventh clock instant, the comparison circuit B detects the presence in the register A of a segment whose orientation is the opposite of that of the segment contained in the register B and generates on line 23 a signal of high level which has the effect of restoring the flip-flop 21 at the start of the eighth instant of the clock. During the seventh clock instant, the segment S is available to the deflection circuit, as well as during the eighth clock instant. The segment S which is thus available during the eighth clock instant is the first of the two segments S which are automatically generated in response to the detection of the inverse segment S which immediately follows the segment S in the series of segments initially stored.

Etant donné que le flip-flop 21 est à présent restauré, au commencement du neuvième instant d'horloge les segments sont décalés dans le registre 10 et dans le registre A. Cependant, étant donné que le circuit de comparaison B a continué à engendrer un signal de niveau haut pendant le huitième instant d'horloge, le segment S inverse n'est pas transféré par décalage du registre A au registre B. Pendant ce neuvième instant d'horloge, le second des deux segments S automatiquement engendrés est à la disposition du circuit de déviation. Toutefois, le circuit de comparaison B continue à engendrer une sortie de niveau haut pendant cet intervalle de temps en raison du fait que le second segment inverse a maintenant été transféré par décalage au registre A. Au neuvième instant d'horloge, le flip-flop 21 est enclenché en raison du fait que le signal de niveau haut continue d'être engendré sur la ligne 23 par le circuit de comparaison B. Ainsi, au dixième instant d'horloge, les codes ne font l'objet d'aucun décalage dans le registre 10 et dans le registre A. Du fait de la présence sur la ligne 23 du signal de niveau haut engendré par le circuit de comparaison B, le segment S inverse n'est pas transféré par décalage du registre A au registre B.Since the flip-flop 21 is now restored, at the beginning of the ninth clock instant the segments are shifted in register 10 and in register A. However, since the comparison circuit B has continued to generate a high level signal during eighth clock instant, the reverse segment S is not transferred by shift from register A to register B. During this ninth clock instant, the second of the two segments S automatically generated is available to the deflection circuit. However, comparison circuit B continues to generate a high level output during this time interval due to the fact that the second inverse segment has now been transferred by shift to register A. At the ninth clock instant, the flip-flop 21 is engaged due to the fact that the high level signal continues to be generated on line 23 by the comparison circuit B. Thus, at the tenth time of the clock, the codes are not subject to any shift in register 10 and in register A. Due to the presence on line 23 of the high level signal generated by the comparison circuit B, the inverse segment S is not transferred by shift from register A to register B.

Pendant le neuvième instant d'horloge, le second des deux segments S automatiquement engendrés est mis à la disposition du circuit de déviation du fait de la présence du premier segment S inverse immédiatement consécutif au segment S dans la suite de segments initialement emmagasinée. Pendant le dixième instant d'horloge, le premier de deux segments S qui sont de nouveau automatiquement engendrés est mis à la disposition du circuit de déviation. Cette seconde paire de segments S est automatiquement engendrée du fait du second segment S inverse qui était présent dans la suite de segments qui avait été emmagasinée.During the ninth clock instant, the second of the two automatically generated segments S is made available to the deflection circuit due to the presence of the first inverse segment S immediately consecutive to the segment S in the series of segments initially stored. During the tenth clock instant, the first of two segments S which are automatically generated again is made available to the deflection circuit. This second pair of segments S is automatically generated due to the second inverse segment S which was present in the series of segments which had been stored.

Pendant le dixième instant d'horloge, un segment S est mis à la disposition du circuit de déviation. Au commencement de cet instant d'horloge, le flip-flop 21 est de nouveau restauré. Ainsi, au onzième instant d'horloge, le contenu du registre à décalage 10 et celui du registre A font l'objet d'un décalage, si bien que le registre A contient à présent un nouveau segment. Le segment S inverse qui se trouvait précédemment dans le registre A n'est pas transféré au registre B du fait du signal de niveau haut engendré par le circuit de comparaison B qui était présent sur la ligne 23 au commencement de cet instant d'horloge. Pendant ce dernier, le second segment de la seconde paire de segments S automatiquement engendrés est à la disposition du circuit de déviation. Au commencement du onzième instant d'horloge le flip-flop 21 est enclenché pendant un court intervalle de temps puis restauré de la même façon qu'il l'avait été au commencement du quatrième instant d'horloge. Au douzième instant d'horloge, un autre décalage du contenu de tous les registres se produit et le dernier segment faisant partie de la suite emmagasinée se trouve à la disposition du circuit de déviation.During the tenth clock instant, a segment S is made available to the deflection circuit. At the beginning of this clock instant, the flip-flop 21 is again restored. Thus, at the eleventh clock instant, the content of the shift register 10 and that of the register A are shifted, so that the register A now contains a new segment. The inverse segment S which was previously in the register A is not transferred to the register B because of the high level signal generated by the comparison circuit B which was present on the line 23 at the beginning of this clock instant. During the latter, the second segment of the second pair of automatically generated segments S is available to the deflection circuit. At the beginning of the eleventh clock instant the flip-flop 21 is activated for a short period of time and then restored in the same way as it had been at the beginning of the fourth clock instant. At the twelfth clock instant, another shift in the content of all the registers occurs and the last segment forming part of the stored sequence is available to the deflection circuit.

Ainsi qu'on l'a précédemment mentionné, neuf segments à la fois sont chargés dans le registre à décalage 10 et dans le registre A de la Figure 1. Comme le montre la Figure 2, pour ces neuf segments, douze segments ont été mis à la disposition du circuit de déviation dans le présent exemple. Il est donc évident que, dans cet exemple, la compression et la décompression des données emmagasinées de la façon qui vient d'être décrite permettent de réaliser une économie de 25 % en ce qui concerne les dimensions de la mémoire.As previously mentioned, nine segments at a time are loaded into the shift register 10 and into the register A of Figure 1. As shown in Figure 2, for these nine segments, twelve segments have been put available to the deflection circuit in this example. It is therefore obvious that, in this example, compressing and decompressing the data stored in the manner just described makes it possible to achieve a saving of 25% as regards the dimensions of the memory.

Il ressort de ce qui précède que le circuit de comparaison A déclenche un fonctionnement automatique en réponse à la détection d'une suite de segments inverses, cependant que le circuit de comparaison B assure le maintien de ce fonctionnement automatique. Il peut en résulter une restriction dans la réalisation préférée de l'invention. En effet, étant donné que le dernier segment d'un mot composé de neuf segments est introduit dans le registre B lors du chargement d'un nouveau mot, il n'est pas possible de détecter la présence de segments inverses lors du passage d'un mot à un autre, et la suite de segments emmagasinés dans la mémoire de segments pour chaque caractère ou symbole que l'on désire afficher doit se conformer à cette restriction. Toutefois, cette dernière peut aisément être évitée en utilisant un troisième circuit de comparaison connecté de manière à pouvoir déterminer si le premier segment du mot suivant contenu dans la mémoire de segments et qui doit être transféré à la logique de décompression est un segment inverse du segment contenu dans le registre A.It emerges from the above that the comparison circuit A triggers an automatic operation in response to the detection of a series of reverse segments, while the comparison circuit B maintains this automatic operation. This may result in a restriction in the preferred embodiment of the invention. Indeed, since the last segment of a word composed of nine segments is introduced into register B when loading a new word, it is not possible to detect the presence of reverse segments during the passage of one word to another, and the series of segments stored in the memory of segments for each character or symbol that one wishes to display must comply with this restriction. However, the latter can easily be avoided by using a third comparison circuit connected so as to be able to determine whether the first segment of the next word contained in the segment memory and which must be transferred to the decompression logic is an inverse segment of the segment. contained in register A.

On a schématiquement représenté sur la Figure 4 la partie d'un dispositif typique d'affichage de segments de caractères avec lequel la présente invention peut être avantageusement utilisée, ladite partie concernant la déviation des caractères. Pendant chaque cycle de régénération de l'affichage obtenu sur l'écran du tube cathodique, chacun des codes représentant les symboles alpha-numériques que l'on désire afficher est transféré d'une mémoire de régénération à une mémoire de consultation 30 par l'intermédiaire d'une ligne 29. La mémoire 30 peut être réalisée, par exemple, sous la forme d'une mémoire inaltérable comportant des tables de manière à pouvoir fournir une adresse de départ au compteur d'adresses 31 qui adresse la mémoire de segments 32 de telle sorte que celle-ci fournisse autant de mots de neuf segments qu'il le faut pour tracer un caractère ou un symbole alpha-numérique correspondant à chacun des codes auxquels on accède dans la mémoire de régénération. Les mots à neuf segments provenant de la mémoire de segments 32 sont appliqués à la logique de décompression 33 qui constitue l'essentiel de la présente invention représentée sur les Figures 1 à 3. La sortie de cette dernière logique se compose d'un signal qui est transmis sur la ligne 25 et qui commande l'application ou la suppression du faisceau vidéo, et d'un signal de trois bits qui est transmis sur la ligne 26 et qui commande l'orientation d'un segment. Ces deux derniers signaux sont appliqués à la fois au décodeur d'origine 34 et au décodeur de segment 40.FIG. 4 shows schematically the part of a typical device for displaying character segments with which the present invention can be advantageously used, said part relating to the deviation of the characters. During each regeneration cycle of the display obtained on the screen of the cathode-ray tube, each of the codes representing the alpha-numeric symbols which it is desired to display is transferred from a regeneration memory to a consultation memory 30 by the through a line 29. The memory 30 can be produced, for example, in the form of an unalterable memory comprising tables so as to be able to supply a starting address to the address counter 31 which addresses the memory of segments 32 so that it provides as many nine-segment words as necessary to draw a character or an alpha-numeric symbol corresponding to each of the codes accessed in the regeneration memory. The nine-segment words from the segment memory 32 are applied to the decompression logic 33 which constitutes the essence of the present invention shown in Figures 1 to 3. The output of the latter logic consists of a signal which is transmitted on line 25 and which controls the application or suppression of the video beam, and a three-bit signal which is transmitted on line 26 and which controls the orientation of a segment. These last two signals are applied to both the original decoder 34 and the segment decoder 40.

Le décodeur 34 décode le premier segment de chaque caractère ou symbole alpha-numérique de manière à commander les accumulateurs x et y 41 et 43 afin de diriger le faisceau vers la position de départ correcte pour le traçage du caractère ou du symbole alpha-numérique particulier dont il s'agit. Tous les segments suivants sont appliqués au décodeur 40 afin d'incrémenter et de décrémenter les accumulateurs 41 et 43 et fonction des données afférentes aux segments, de telle sorte que le faisceau se déplace correctement pour former le caractère ou le symbole alpha-numérique. A chaque segment, le signal transmis sur la ligne 25 commande l'application ou la suppression du faisceau de façon appropriée. Les valeurs d'incrémentation ou de décré- mentation x et y des accumulateurs 41 et 43 sont respectivement appliquées aux convertisseurs numérique/analogique 42 et 44, dont les signaux de sortie respectivement transmis sur les lignes 50 et 51 sont appliqués aux bobines de déviation de manière à assurer un positionnement correct et précis du faisceau cathodique.The decoder 34 decodes the first segment of each character or alpha-numeric symbol so as to control the accumulators x and y 41 and 43 in order to direct the beam towards the correct starting position for the tracing of the character or of the particular alpha-numeric symbol which it is about. All the following segments are applied to the decoder 40 in order to increment and decrement the accumulators 41 and 43 and according to the data relating to the segments, so that the beam moves correctly to form the character or the alpha-numeric symbol. At each segment, the signal transmitted on line 25 controls the application or suppression of the beam in an appropriate manner. The increment or decrement values x and y of the accumulators 41 and 43 are respectively applied to the digital / analog converters 42 and 44, whose output signals respectively transmitted on lines 50 and 51 are applied to the deflection coils of so as to ensure correct and precise positioning of the cathode beam.

La Figure 4 n'est donnée qu'à titre de référence, étant entendu que c'est la logique de décompression décrite plus haut et représentée de façon détaillée sur les Figures 1 à 3 qui constitue l'essentiel de la présente invention.Figure 4 is given only for reference, it being understood that it is the decompression logic described above and shown in detail in Figures 1 to 3 which constitutes the essence of the present invention.

L'invention permet donc de réduire l'importance de la mémoire requise pour spécifier des groupes de suites de segments correspondant à n'importe lequel des caractères ou symboles d'un assortiment alpha-numérique choisi. Les circuits logiques permettent de déterminer la présence d'un segment dont l'état vidéo (application ou suppression du faisceau) est le même que celui du segment qui le précède immédiatement et dont l'orientation est l'inverse de celle de ce dernier, de manière à provoquer en pareil cas la génération d'un nombre prédéterminé de segments supplémentaires identiques au segment précédent, au lieu d'utiliser le segment inverse pour ramener le faisceau à la position qu'il occupait immédiatement avant le traçage du segment précédent. Grâce à cette technique, il est inutile d'attribuer un code particulier faisant fonction de drapeau pour provoquer ce fonctionnement automatique, lequel drapeau ne pourrait pas être utilisé également comme segment. On notera d'autre part que l'utilisation de deux segments supplémentaires engendrés en réponse à la détection d'un segment inverse ne constitue qu'un exemple employé aux fins de la description de la présente invention et ne constitue pas une limitation, ladite détection pouvant éventuellement servir à déclencher tout autre type de fonctionnement automatique.The invention therefore makes it possible to reduce the amount of memory required to specify groups of sequences of segments corresponding to any of the characters or symbols of a chosen alpha-numeric assortment. The logic circuits make it possible to determine the presence of a segment whose video state (application or suppression of the beam) is the same as that of the segment which immediately precedes it and whose orientation is the reverse of that of the latter, so as to cause in such a case the generation of a predetermined number of additional segments identical to the previous segment, instead of using the reverse segment to return the beam to the position it occupied immediately before the tracing of the previous segment. Thanks to this technique, there is no need to assign a particular code acting as flag to cause this automatic operation, which flag could not also be used as a segment. It will also be noted that the use of two additional segments generated in response to the detection of a reverse segment constitutes only an example used for the purposes of the description of the present invention and does not constitute a limitation, said detection possibly being used to trigger any other type of automatic operation.

Bien que l'on ait décrit dans ce qui précède et représenté sur les dessins les caractéristiques essentielles de l'invention appliquées à un mode de réalisation préféré de celle-ci, il est évident que l'homme de l'art peut y apporter toutes modifications de forme ou de détail qu'il juge utiles, sans pour autant sortir du cadre de ladite invention.Although the essential characteristics of the invention applied to a preferred embodiment of the invention have been described in the foregoing and represented in the drawings, it is obvious that a person skilled in the art can provide all of them. modifications of form or detail which he judges useful, without departing from the scope of said invention.

Claims (10)

1. A segmented display system in which a sequence of strokes defines individual symbols, characterized in that it includes :
detection means (10, 13, 16) for generating a signal upon detection of a first stroke that immediately precedes a second stroke of opposite direction and of the same video state as said first stroke ; and
means (9, 15) responsive to said first signal for automatically initiating a new operating cycle of the display system.
2. A segmented display system according to claim 1, characterized in that said detecting means comprise look ahead means (16) for generating said signal before said second stroke has been executed by said display system.
3. A segmented display system according to claim 2, characterized in that it further includes means (9) which, in response to said signal, inhibit the execution of said second stroke.
4. A segmented display system according to claim 3, characterized in that said means for automatically initiating a new operation cycle of the display system further comprise means (27, 28) for generating a predetermined number of strokes identical with said first stroke an immediately following said first stroke.
5. A segmented display system according to claim 4, characterized in that said predetermined number is two.
6. A segmented display system of the type wherein a sequence of strokes defines individual symbols, characterized in that it includes :
first storage means (10) for storing strokes ;
second storage means (13) for storing at least one stroke ;
means (14) for loading a first stroke of said sequence of strokes into said second storage means and the remaining strokes of said sequence of strokes into said first storage means ;
means (16) for comparing the direction and video state of said first stroke stored in said second storage means with a second stroke stored in said first storage means ;
means (16) for generating a signal (22) upon detection by said comparison means that said first stroke and second stroke are of opposite direction and of the same video state ; and means (17, 18, 23, 9) which, in response to said signal, automatically initiate a new operating cycle of the display system and inhibit the execution of said second stroke.
7. A segmented display system according to claim 6, characterized in that it further includes a third storage means (15) to which said first stroke is transferred, and wherein said means which, in response to said signal, inhibit the execution of said second stroke, include means (9) for inhibiting the transfer of said second stroke to said third storage means.
8. A segmented display system according to claim 7, characterized in that said means which, in response to said signal, inhibit the execution of said second stroke, include second comparison means (17) for comparing the direction and video state of said first stroke and said second stroke stored in said third storage means and said second storage means, respectively.
9. A segmented display system according to claim 8, characterized in that said first storage means (10) comprise a multiple-stage shift register.
10. A segmented display system according to claim 9, characterized in that said second storage means (13) comprise a single-stage shift register.
EP80102574A 1979-06-25 1980-05-09 Segmented-display device Expired EP0020980B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US06/052,054 US4237458A (en) 1979-06-25 1979-06-25 Stroke expansion apparatus
US52054 1979-06-25

Publications (3)

Publication Number Publication Date
EP0020980A2 EP0020980A2 (en) 1981-01-07
EP0020980A3 EP0020980A3 (en) 1982-03-17
EP0020980B1 true EP0020980B1 (en) 1985-04-03

Family

ID=21975140

Family Applications (1)

Application Number Title Priority Date Filing Date
EP80102574A Expired EP0020980B1 (en) 1979-06-25 1980-05-09 Segmented-display device

Country Status (5)

Country Link
US (1) US4237458A (en)
EP (1) EP0020980B1 (en)
JP (1) JPS5638092A (en)
CA (1) CA1135427A (en)
DE (1) DE3070411D1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4434420A (en) * 1982-06-21 1984-02-28 Motorola, Inc. Interline spacing adjustment circuit in a scanning CRT visual display system
JPS6041193U (en) * 1983-08-29 1985-03-23 鈴木 允 embossing device
JPS60114155A (en) * 1983-11-22 1985-06-20 Daikei:Kk Method for feeding food material to apparatus for automatic production of processed food comprising cooked rice
US4724432A (en) * 1985-08-15 1988-02-09 Sperry Marine Inc. Generation of graphic symbols for cathode ray tube displays
JPS6471451A (en) * 1987-09-12 1989-03-16 Fuji Seiki Kk Apparatus for forming rice ball

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3402395A (en) * 1965-02-15 1968-09-17 Bunker Ramo Data compression and display system
US3459926A (en) * 1965-10-18 1969-08-05 Ibm Graphic vector generator
US3540032A (en) * 1968-01-12 1970-11-10 Ibm Display system using cathode ray tube deflection yoke non-linearity to obtain curved strokes
FR2044615A5 (en) * 1970-03-05 1971-02-19 Philips Ind Commerciale
US4054951A (en) * 1976-06-30 1977-10-18 International Business Machines Corporation Data expansion apparatus

Also Published As

Publication number Publication date
EP0020980A2 (en) 1981-01-07
DE3070411D1 (en) 1985-05-09
EP0020980A3 (en) 1982-03-17
US4237458A (en) 1980-12-02
JPS5638092A (en) 1981-04-13
JPS623955B2 (en) 1987-01-28
CA1135427A (en) 1982-11-09

Similar Documents

Publication Publication Date Title
EP0142439B1 (en) Method of compressing a train of digital information, and apparatus therefor
FR2752638A1 (en) METHOD FOR SYNCHRONIZING THE PRESENTATION OF STATIC AND DYNAMIC COMPONENTS OF AN INTERACTIVE MULTIMEDIA DOCUMENT
EP0416985B1 (en) Method of multiplexing a sound signal with an analogue video signal and corresponding distribution system for still images with sound
EP0171789A1 (en) Frame synchronisation device
EP0441692A1 (en) Control process for a matrix screen comprising two independent parts and device to carry it out
FR2747209A1 (en) POLICE OF HOLLOW LETTERS WITH GRADUAL RETURN AND ITS CREATION, TRANSMISSION AND RETURN PROCEDURES
EP0026699B1 (en) Method and device for coding digital data, device for decoding digital data and a transmission system comprising such a device
EP0020980B1 (en) Segmented-display device
WO1995016311A1 (en) Block interleaving and deinterleaving method and device therefor
FR2522490A1 (en) APPARATUS FOR ULTRASONIC DIAGNOSIS
EP0049652A1 (en) Device for time compression and device for time decompression of data
FR2718590A1 (en) Method for detecting a pattern in a serial transmission.
FR2491651A1 (en) MEMORY ASSEMBLY FOR TRANSFERRING DATA TO A CATHODIC TUBE DISPLAY DEVICE
EP0151077A2 (en) Matrix image addressing circuit including shift registers formed of static memories and addressing method with such a circuit
EP1759390A1 (en) Method for the restitution of an audio-visual work with random sequencing, and corresponding restitution device, computer program and data medium
EP0083998B1 (en) Scramble or unscramble byte generator
FR2743248A1 (en) MPEG-coded data demultiplexer
EP0325509B1 (en) Device for the block-wise permutation of television lines
EP0054490A1 (en) Method and device for the transfer of information between information processing systems with different processing cycles
EP0187077B1 (en) Processor for vector tracing
FR2619461A1 (en) METHOD AND VIDEO COMPRESSION CIRCUIT FOR BIT CARD DISPLAY
EP0056207A1 (en) Method and apparatus for displaying on a raster-scanned display system, e.g. a CRT screen, messages transmitted by a television-like signal and comprising repeating elements
EP0391784B1 (en) Device and method for generating control signals
FR2539939A1 (en) Switching unit for digital packet data switch
EP0021942A1 (en) Method and arrangement for the phasing of a local clock

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): DE FR GB

17P Request for examination filed

Effective date: 19810828

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Designated state(s): DE FR GB

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): DE FR GB

REF Corresponds to:

Ref document number: 3070411

Country of ref document: DE

Date of ref document: 19850509

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19900404

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19900424

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19900529

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19910509

GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19920131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19920303

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST