EP0016415B1 - Method for measurement and regulation of the concentration of copper, formaldehyde and sodiumhydroxide in an electroless copper deposition bath and sampling apparatus for use in this method - Google Patents
Method for measurement and regulation of the concentration of copper, formaldehyde and sodiumhydroxide in an electroless copper deposition bath and sampling apparatus for use in this method Download PDFInfo
- Publication number
- EP0016415B1 EP0016415B1 EP80101281A EP80101281A EP0016415B1 EP 0016415 B1 EP0016415 B1 EP 0016415B1 EP 80101281 A EP80101281 A EP 80101281A EP 80101281 A EP80101281 A EP 80101281A EP 0016415 B1 EP0016415 B1 EP 0016415B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- titration
- determined
- concentration
- copper
- bath
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 title claims description 61
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 title claims description 51
- 238000000034 method Methods 0.000 title claims description 31
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 title claims description 24
- 229910052802 copper Inorganic materials 0.000 title claims description 24
- 239000010949 copper Substances 0.000 title claims description 24
- 238000005070 sampling Methods 0.000 title claims description 16
- 238000005259 measurement Methods 0.000 title claims description 14
- 230000008021 deposition Effects 0.000 title claims description 6
- 235000011121 sodium hydroxide Nutrition 0.000 title claims 5
- 229940083608 sodium hydroxide Drugs 0.000 title 1
- 238000004448 titration Methods 0.000 claims description 26
- 238000000954 titration curve Methods 0.000 claims description 15
- 238000003928 amperometric titration Methods 0.000 claims description 13
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 9
- JPVYNHNXODAKFH-UHFFFAOYSA-N Cu2+ Chemical compound [Cu+2] JPVYNHNXODAKFH-UHFFFAOYSA-N 0.000 claims description 7
- 229910001431 copper ion Inorganic materials 0.000 claims description 7
- 238000003918 potentiometric titration Methods 0.000 claims description 6
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 5
- 229910052737 gold Inorganic materials 0.000 claims description 5
- 239000010931 gold Substances 0.000 claims description 5
- WTDHULULXKLSOZ-UHFFFAOYSA-N Hydroxylamine hydrochloride Chemical compound Cl.ON WTDHULULXKLSOZ-UHFFFAOYSA-N 0.000 claims description 4
- 238000004364 calculation method Methods 0.000 claims description 3
- 238000004737 colorimetric analysis Methods 0.000 claims description 3
- 239000012153 distilled water Substances 0.000 claims description 3
- 230000000630 rising effect Effects 0.000 claims description 3
- GTKRFUAGOKINCA-UHFFFAOYSA-M chlorosilver;silver Chemical compound [Ag].[Ag]Cl GTKRFUAGOKINCA-UHFFFAOYSA-M 0.000 claims description 2
- WSFSSNUMVMOOMR-NJFSPNSNSA-N methanone Chemical compound O=[14CH2] WSFSSNUMVMOOMR-NJFSPNSNSA-N 0.000 claims description 2
- 230000006641 stabilisation Effects 0.000 claims description 2
- 239000003795 chemical substances by application Substances 0.000 claims 4
- 239000000523 sample Substances 0.000 description 21
- 238000002156 mixing Methods 0.000 description 11
- 239000000243 solution Substances 0.000 description 11
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 8
- 230000001105 regulatory effect Effects 0.000 description 7
- 239000000126 substance Substances 0.000 description 6
- 238000004458 analytical method Methods 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 230000010287 polarization Effects 0.000 description 3
- 229910021607 Silver chloride Inorganic materials 0.000 description 2
- 230000001174 ascending effect Effects 0.000 description 2
- 230000002349 favourable effect Effects 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- HKZLPVFGJNLROG-UHFFFAOYSA-M silver monochloride Chemical compound [Cl-].[Ag+] HKZLPVFGJNLROG-UHFFFAOYSA-M 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 239000002253 acid Substances 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 229910001854 alkali hydroxide Inorganic materials 0.000 description 1
- 150000008044 alkali metal hydroxides Chemical class 0.000 description 1
- 239000012482 calibration solution Substances 0.000 description 1
- 238000001311 chemical methods and process Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 150000001879 copper Chemical class 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229910052979 sodium sulfide Inorganic materials 0.000 description 1
- GRVFOGOEDUUMBP-UHFFFAOYSA-N sodium sulfide (anhydrous) Chemical compound [Na+].[Na+].[S-2] GRVFOGOEDUUMBP-UHFFFAOYSA-N 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/16—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
- C23C18/31—Coating with metals
- C23C18/38—Coating with copper
- C23C18/40—Coating with copper using reducing agents
- C23C18/405—Formaldehyde
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T436/00—Chemistry: analytical and immunological testing
- Y10T436/12—Condition responsive control
Definitions
- the invention relates to a method for measuring and regulating the concentration of copper, formaldehyde and sodium hydroxide solution in a bath for electroless deposition of copper, the copper ion concentration colorimetrically detecting the sodium hydroxide concentration by potentiometric titration and the formaldehyde concentration by amperometric titration and compared with adjustable target values, as well as on a drug-taking device for use in this method.
- the main components of a chemical copper bath are to be analyzed and regulated with such a process so that the deposition conditions remain constant and perfect copper layers are achieved.
- a method of the type mentioned at the outset has become known from US Pat. No. 4,096,301.
- a bath sample is continuously taken from the copper bath.
- a standardized acid of such a concentration and amount is also continuously added to this bath sample that a potentially predetermined final value can be achieved.
- the bath sample passes through a pH value measuring station, in which the actual pH value is measured and compared with a predetermined target value.
- sodium hydroxide solution is then metered into the copper bath in accordance with this deviation.
- the bath sample then passes through a colorimeter station, in which the copper ion concentration is checked and, in the event of a deviation from the nominal value, an amount of copper solution corresponding to this deviation is metered into the copper bath.
- a colorimeter station After passing through the colorimeter station, sodium sulfide is continuously added to the bath sample and, after appropriate mixing, is fed to another pH value station, where the pH value of the bath sample is measured again and the difference is formed using the previously determined pH value. This difference is a measure of the formaldehyde concentration. If there is a deviation from the specified setpoint, a corresponding amount of formaldehyde is added to the bath.
- a method of the same type is known from DE-A-2 751 104.
- a bath sample is also continuously taken from the chemical copper bath and passed into a chamber where a deposition electrode is located. Adjacent to this chamber is a further chamber with a comparison electrode, which together with the deposition electrode serves to measure a mixed potential. After the so-called “mixed potential" has been recorded, the bath sample is fed to a pH value station and a colorimeter station via a heat exchanger. The individual bath components are then regulated as a function of this mixed potential.
- GB-A-1 168370 has also disclosed a process of the type mentioned at the outset, in which the pH is kept at a constant value with the aid of alkali hydroxide in order to stabilize the bath, and the copper ions at the specified pH Concentration is measured colorimetrically. Depending on this measurement, a mixture of formaldehyde and copper salt is added in a certain molar ratio.
- the invention has for its object to improve a method of the type mentioned so that the content of the main components can be analyzed, displayed and controlled more precisely.
- This object is achieved in that a sample is taken discontinuously for each of the components mentioned and this is diluted with a certain amount of water, that the copper ion concentration by colorimetry, the sodium hydroxide solution concentration by potentiometric titration and the formaldehyde concentration are then independent of one another be determined by amperometric titration and that in the amperometric titration of the formaldehyde concentration as the titrant hydroxylammonium hydrochloride and as the working electrode a gold electrode operated with a constant polarization voltage of 0-200 mV against a silver-silver chloride reference electrode are used, the current between the working electrode and a counter electrode is measured.
- the titration end point is preferably made from the three by an approximation method known per se largest potential steps with constant addition of titrant are calculated, the supply of the titrant being added with the aid of a motor piston burette in constant volume units by appropriate step-by-step control of the buret motor and after each addition of titrant for stabilization a constant rest time is inserted before the measurement signal is detected. In this way an extremely precise determination of the sodium hydroxide concentration is achieved.
- the end point of the amperometric titration is determined by the intersection of two straight lines, one of which runs parallel to the abscissa and the minimum of the titration curve and the other through several measuring points of the quasi-linear range of the rising part following the minimum the titration curve is determined. It has been found to be particularly favorable that the minimum of the titration curve is determined and stored in order to determine the one straight line, and that five measuring points of the quasi-linear region of the ascending part of the titration curve are used to determine the other straight line, and that this straight line is calculated using a regression method and determining the intersection of the two straight lines with the aid of a computer.
- a particularly simply constructed sampling device for use in the method according to the invention is characterized in that the individual bath samples can be removed from the bath by means of slide-controlled sampling valves with the aid of measuring loops, the individual measuring loops being connected in series when the samples are taken and this series connection of the measuring loop being controlled by a controllable valve in parallel is switched.
- the content of the measuring loops can be transferred into the vessels with the aid of metering syringes which add distilled water.
- FIG. 1 denotes a galvanic bath which is said to have a specific composition, the main components being copper, sodium hydroxide solution and formaldehyde. The concentrations of these components should be regulated to constant values.
- This chemical copper bath works, for example, at a temperature above 50 ° C. A certain proportion of the sample is taken from the chemical copper bath via a line 2. This portion passes through a cooling device 3 and is cooled there to at least 30 ° C. This portion is fed to the individual stations via a line 4.
- the upper part of FIG. 1 shows the process sequence for determining the copper ion concentration by colorimetry. We are looking for the concentration in grams of copper per liter, as indicated by a symbol 5.
- a discontinuous sampling takes place, namely of 1 ml.
- This sample is diluted in a mixing vessel 8 with twice 20 ml of water, as indicated by an arrow 9.
- the two measuring cells 10 and 11 of a colorimeter 12 are filled from the mixing vessel 8, the measuring cell 11 having a thickness of 10 mm and the measuring cell 10 having a thickness of 20 mm.
- the measurement in the colorimeter 12 takes place at 690 nm.
- An alternating light colorimeter is preferably used, since this only requires a photo element for light measurement, onto which the measuring beam and the comparison beam alternately fall. Signals proportional to the light intensity can then be taken from an output line 13 and fed to a corresponding evaluation circuit 14, where the copper concentration C cu is calculated from the product kA, k being a calibration factor and A being the measurement signal proportional to the copper concentration.
- the process sequence for the titration of the sodium hydroxide solution is shown in the middle of FIG.
- the concentration of the sodium hydroxide solution in grams per liter is sought, as indicated by symbol 15.
- a sample amount of 2 ml is preferably taken and mixed in a mixing vessel 18 with twice 20 ml of water, as indicated by an arrow 19.
- the sodium hydroxide solution is titrated with dilute hydrochloric acid (HCl) in the same mixing vessel 18.
- a pH electrode is indicated at 22.
- the signals are fed to an evaluation circuit 24 via a line 23, the alkali concentration C NaoH being determined from the product K'. ⁇ , where K 'is a calibration factor and ⁇ the calculated volumes in the titration end point.
- FIG. 1 In the lower part of FIG. 1, the chemical procedure for the amperometric titration of formaldehyde is shown.
- the concentration of formaldehyde in grams per liter should be determined, as symbol 25 shows.
- a symbol 30 illustrates that 15 ml of 1 M NaOH diluted with 45 ml of H 2 O are fed to the titration vessel 29 before the actual titration.
- the two substances are mixed intimately with the aid of a stirring device 31.
- a gold electrode 32 as the working electrode, a platinum electrode 33 as the counter electrode and a silver / silver chloride electrode 34 as the reference electrode are immersed in the titration vessel 29.
- a titrant is added via a line 36, specifically hydroxylammonium hydrochloride (NH 2 0H. HCl).
- the voltage between the working electrode 32 and the counter electrode 33 is regulated so that the voltage of the working electrode 32 always remains constant with respect to the reference electrode 34. If a silver / silver chloride electrode is used as the reference electrode, it is advantageous that a polarization voltage of +50 mV is selected.
- the current flowing between counter electrode 33 and working electrode 32 is measured and results in a specific titration curve depending on the amount of titrant added.
- the titration end point can then be determined by methods known per se using the titration curve according to FIG. Preferably, such a method is chosen that the titration end point can be determined fully automatically.
- the use of a gold electrode as the working electrode has the advantage that no copper can settle there because the gold electrode always has a positive potential. It has proven to be particularly favorable if the titrant NH Z OH. HCl has a concentration of 0.5 g / l.
- K are a calibration factor and ⁇ the calculated volume at the titration end point.
- Figure 3 shows the typical course of a titration curve K in an amperometric titration of formaldehyde under the aforementioned conditions.
- V [ml] the amount of the continuously added titrant
- NH 2 0H the amount of the continuously added titrant
- HCI the current I [mA] plotted.
- the end point Ep of the amperometric titration is preferably determined by the intersection A of two straight lines G1, G2, one of which runs parallel to the abscissa axis and goes through the minimum of the titration curve and the other through several measuring points P1 ... P5 of the quasi-linear range of the the minimum following ascending part of the titration curve is determined.
- the concentration of copper, sodium hydroxide solution and formaldehyde are therefore determined completely independently of one another.
- the individual control processes and the measurement value processing are carried out with the aid of a control circuit 39 containing a microprocessor.
- the concentration of the main components copper, sodium hydroxide solution and formaldehyde are therefore analyzed independently and the analysis results are recorded, as indicated at 40.
- a signal that is proportional to the deviation is formed for each component.
- These signals can be used to control appropriate dosing groups to refresh the bath.
- the bath temperature can also be measured and logged.
- FIG. 2 shows the mechanical construction of the bath guiding device in principle, with the same parts having the same reference numerals as in FIG. 1.
- a measuring line 42 always receives the actual bath composition
- part of the bath 1 is pumped in the circuit via a line 41 in the secondary flow.
- This flow can be controlled by means of a valve 43. If the valve 43 is closed, the liquid is pressed through the measuring line 42.
- the measuring line 42 can also be connected via a valve 44, which can be a slide valve, for example, to a line 46 which is connected to a container which contains a calibration solution for the purpose of calibrating the individual devices. With the help of a slide 45, the measurement can then Line 42 can either be connected to line 4 or to a line 46.
- a compressed air-controlled valve 7 is used for discontinuous sampling.
- the individual connection bores of the valve are designated by a to f and can be connected to one another or to one another by corresponding grooves 7a, 7b and 7c in the slide.
- a measuring loop 47 is connected between the connection bores b and c and is calibrated to 1 ml. In the slide position shown in FIG. 2, the line 4 is thus connected via the bores a and b of the valve 44 to the connection bore a in the valve 7.
- the sample passes through the connection bore b into the measuring loop 47 and from there via the connection bore c, the longitudinal groove 7c and the connection bore d into the measuring line 42, where it continues in a corresponding manner through the valves 17 and 27 and finally can flow back to the bathroom via the measuring line 4.
- the smaller diameter piston 7d of the valve 7 is constantly pressurized with compressed air from a compressed air supply system 48. If a valve 49 is activated for taking a sample, the compressed air of the compressed air system 48 now also reaches a piston 7a with a larger diameter than that of the piston 7d. Accordingly, the slide is moved to the right in relation to FIG.
- the longitudinal grooves 7b and 7c of the slide now connect the connection bores b and e or c and f; with the help of a dosing syringe 50, a precisely dosed amount of water, namely 20 ml, is taken from a line 51, which is fed via a line 52 to the connection bore f, so that the content of the measuring loop 47 is transferred to the line 9, which ends in the mixing vessel 8 .
- the mixing vessel 8 is provided with a drain valve 53 and a stirring motor 54.
- a valve 59 indicates that the sample raised in the measuring cuvettes 10 and 11 1 can either be returned to the vessel 8 or can be passed into a collecting container; the sample can also be lifted several times.
- the valve 17 is constructed in the same way as the valve 7, except that a measuring loop 60 is inserted into the connection bores b and c, which is calibrated to 2 ml in the special case. With the aid of a dosing syringe 61, the content of this measuring loop can be transferred into the mixing vessel 18 by sucking in distilled water via a line 62, namely with a 20 ml stroke, as can be seen from FIG.
- the pH electrode 22 is immersed in the mixing vessel 18, so that it also serves as a titration vessel.
- 63 is a drain valve and 64 an agitator.
- the engine piston burette, designated 20, takes HCI via a line 65 and is supplied to the vessel 18 via line 21, the engine feeding the engine piston burette to the bath sample intermittently in each case 0.2 ml until the titration end point is recognized.
- the valve 27 corresponds in structure and operation to the valves 7 and 17, except that a measuring loop 66 is connected between the connection bores b and c, which is calibrated to 0.1 ml.
- the valve 27 is activated via a valve 67 in the same way as the valve 49.
- the bath sample taken with the help of the measuring loop 66 is mixed with 45 ml of water and fed to the titration vessel 29 via a line 28.
- a certain quantity of sodium hydroxide solution NaOH
- the titration is then carried out with NH 2 0H. HCI via a line 36.
- the motor piston burette 35 is driven step by step until the titration end point is reached.
- amperometric titration is used for the determination of formaldehyde, since it is much more precise than the known other titration methods.
Landscapes
- Chemical & Material Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
- Chemically Coating (AREA)
Description
Die Erfindung bezieht sich auf ein Verfahren zum Messen und Regeln der Konzentration von Kupfer, Formaldehyd und Natronlauge in einem Bad zum stromlosen Abscheiden von Kupfer, wobei die Kupferionen-Konzentration kolorimetrisch die Natronlaugen-Konzentration durch potentiometrische Titration und die Formaldehyde-Konzeutration durch amperometrische Titration erfaßt und mit einstellbaren Sollwerten verglichen werden, sowie auf eine Droben-nahmevorrichtung zur Verwendung bei diesem Verfahren.The invention relates to a method for measuring and regulating the concentration of copper, formaldehyde and sodium hydroxide solution in a bath for electroless deposition of copper, the copper ion concentration colorimetrically detecting the sodium hydroxide concentration by potentiometric titration and the formaldehyde concentration by amperometric titration and compared with adjustable target values, as well as on a drug-taking device for use in this method.
Mit einem solchem Verfahren sollen die Hauptkomponenten eines chemischen Kupferbades analysiert und geregelt werden, damit die Abscheidebedingungen konstant bleiben und einwandfreie Kupferschichten erzielt werden.The main components of a chemical copper bath are to be analyzed and regulated with such a process so that the deposition conditions remain constant and perfect copper layers are achieved.
Durch die US-A-4 096 301 ist ein Verfahren der eingangs genannten Art bekannt geworden. Bei diesem Verfahren wird dem Kupferbad kontinuierlich eine Badprobe entnommen. Dieser Badprobe wird ebenfalls laufend eine standartisierte Säure von solcher Konzentration und Menge zugesetzt, daß ein potentialmäßig vorgegebener Endwert erreichbar ist. Nach entsprechender Vermischung durchläuft die Badprobe ein pH-Wert-Meßstation, in der der tatsächliche pH-Wert gemessen und mit einem vorgegebenen Sollwert verglichen wird. Bei einer Abweichung vom Sollwert wird dann entsprechend dieser Abweichung Natronlauge dem Kupferbad zudosiert. Anschließend durchläuft die Badprobe eine Kolorimeter-Station, in der die Kupferionen-Konzentration überprüft und veranlaßt wird, daß bei einer Abweichung vom Sollwert eine dieser Abweichung entspechende Menge Kupferlösung dem Kupferbad zudosiert wird. Nach dem Durchlauf der Kolorimeter-Station wird der Badprobe laufend Natriumsulfid zugesetzt und nach entsprechender Mischung einer weiteren pH-Wert-Station zugeführt, wo der pH-Wert der Badprobe nachmals gemessen und die Differenz mit dem zuvor ermittelten pH-Wert gebildet wird. Diese Differenz ist ein Maß für die Formaldehyd-Konzentration. Bei einer Abweichung vom vorgegebenen Sollwert wird eine entsprechende Menge Formaldehyd dem Bad zudosiert.A method of the type mentioned at the outset has become known from US Pat. No. 4,096,301. In this process, a bath sample is continuously taken from the copper bath. A standardized acid of such a concentration and amount is also continuously added to this bath sample that a potentially predetermined final value can be achieved. After appropriate mixing, the bath sample passes through a pH value measuring station, in which the actual pH value is measured and compared with a predetermined target value. In the event of a deviation from the nominal value, sodium hydroxide solution is then metered into the copper bath in accordance with this deviation. The bath sample then passes through a colorimeter station, in which the copper ion concentration is checked and, in the event of a deviation from the nominal value, an amount of copper solution corresponding to this deviation is metered into the copper bath. After passing through the colorimeter station, sodium sulfide is continuously added to the bath sample and, after appropriate mixing, is fed to another pH value station, where the pH value of the bath sample is measured again and the difference is formed using the previously determined pH value. This difference is a measure of the formaldehyde concentration. If there is a deviation from the specified setpoint, a corresponding amount of formaldehyde is added to the bath.
Ein Verfahren gleicher Art ist durch die DE-A-2 751 104 bekannt geworden. Bei diesem bekannten Verfahren wird dem chemischen Kupferbad ebenfalls laufend eine Badprobe entnommen und in eine Kammer geleitet, wo sich eine Abscheidungselektrode befindet. Angrenzend an dieser Kammer ist eine weitere Kammer mit einer Vergleichselektrode angeordnet, welche zusammen mit der Abscheidungselektrode zum Messen eines Mischpotentials dient. Nach der Erfassung des sog. "Mischpotentials" wird die Badprobe über einen Wärmetauscher einer pH-Wert-Station und einer Kolorimeter-Station zugeführt. In Abhängigkeit von diesem Mischpotential werden sodann die einzelnen Badkomponenten geregelt.A method of the same type is known from DE-A-2 751 104. In this known method, a bath sample is also continuously taken from the chemical copper bath and passed into a chamber where a deposition electrode is located. Adjacent to this chamber is a further chamber with a comparison electrode, which together with the deposition electrode serves to measure a mixed potential. After the so-called "mixed potential" has been recorded, the bath sample is fed to a pH value station and a colorimeter station via a heat exchanger. The individual bath components are then regulated as a function of this mixed potential.
Durch die GB-A-1 168370 ist ebenfalls ein Verfahren der eingangs genannten Art bekannt geworden, bei dem zur Stabilisierung des Bades der pH-Wert mit Hilfe von Alkali-Hydroxyd auf einem konstanten Wert gehalten wird und bei dem vorgegebenen pH-Wert die Kupferionen-Konzentration kolorimetrisch gemessen wird.. In Abhängigkeit von dieser Messung wird eine Mischung von Formaldehyd und Kupfersalz in einem bestimmten Mol-Verhältnis zudosiert.GB-A-1 168370 has also disclosed a process of the type mentioned at the outset, in which the pH is kept at a constant value with the aid of alkali hydroxide in order to stabilize the bath, and the copper ions at the specified pH Concentration is measured colorimetrically. Depending on this measurement, a mixture of formaldehyde and copper salt is added in a certain molar ratio.
Bei diesen bekannten Verfahren werden die Konzentrationen der einzelnen Komponenten nicht absolut angezeigt, sondern sie werden lediglich auf vorgegebene Sollwerte geregelt. Der Absolutgehalt der Einzelkomponenten ist also niemals bekannt. Problematisch ist ferner die Messung des pH-Wertes, da durch Elektrodendrift dieser Wert nicht über längere Zeit konstant gehalten werden kann. Ein zeitweises Nacheichen ist daher unumgänglich notwendig.In the case of these known methods, the concentrations of the individual components are not displayed absolutely, but are only regulated to predetermined target values. The absolute content of the individual components is therefore never known. A further problem is the measurement of the pH value, since this value cannot be kept constant over a long period of time due to electrode drift. A temporary re-calibration is therefore absolutely necessary.
Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren der eingangs genannten Art so zu verbessern, daß der Gehalt der Hauptkomponenten genauer analysiert, angezeigt und geregelt werden kann.The invention has for its object to improve a method of the type mentioned so that the content of the main components can be analyzed, displayed and controlled more precisely.
Diese Aufgabe wird erfindungsgemäß dadurch gelöst, daß für jede der genannten Komponenten diskontinuierlich eine Probe entnommen und diese mit einer bestimmten Menge Wasser verdünnt wird, daß dann unabhängig voneinander die Kupferionen-Konzentration durch Kolorimetrie, die Natronlaugen-Konzentration durch potentiometrische Titration und die Formaldehyd-Konzentration durch amperometrische Titration bestimmt werden und daß bei der amperometrischen Titration der Formaldehyd-Konzentration als Titriermittel Hydroxylammoniumhydrochlorid und als Arbeitselektrode eine mit einer konstanten Polarisationsspannung von 0-200 mV gegen eine Silber-Silberchlorid-Referenzelektrode betriebene Goldelektrode verwendet werden, wobei der Strom zwischen der Arbeitselektrode und einer Gegenelektrode gemessen wird.This object is achieved in that a sample is taken discontinuously for each of the components mentioned and this is diluted with a certain amount of water, that the copper ion concentration by colorimetry, the sodium hydroxide solution concentration by potentiometric titration and the formaldehyde concentration are then independent of one another be determined by amperometric titration and that in the amperometric titration of the formaldehyde concentration as the titrant hydroxylammonium hydrochloride and as the working electrode a gold electrode operated with a constant polarization voltage of 0-200 mV against a silver-silver chloride reference electrode are used, the current between the working electrode and a counter electrode is measured.
Durch die genaue Analysierung der einzelnen Komponenten werden absolute Werte der Konzentration erhalten, so daß diese dann auch ganz exakt geregelt werden können. Auf diese Weise wird nicht nur eine optimale Ausnützung des Bades erreicht, sondern auch eine stets gleichbleibende Kupferschicht erzielt. Hervorzuheben ist ferner, daß durch die diskontinuierliche Probenentnahme Verschleppungsreaktionen vermieden werden und somit die Genauigkeit der Analyse wesentlich verbessert wird.Through the precise analysis of the individual components, absolute values of the concentration are obtained, so that these can then also be regulated very precisely. In this way, not only is the bathroom optimally utilized, but the copper layer is always the same. It should also be emphasized that carry-over reactions are avoided by the discontinuous sampling and thus the accuracy of the analysis is significantly improved.
Bei der potentiometrischen Titration der Natronlaugen-Konzentration wird der Titrationsendpunkt vorzugsweise durch ein an sich bekanntes Näherungsverfahren aus den drei größten Potentialschritten bei konstanter Titriermittelzugabe errechnet, wobei die Zufuhr des Titriermittels mit Hilfe einer Motorkolbenbürette in konstanten Volumeneinheiten durch entsprechende schrittweise Steuerung des Bürettenmotors zugegeben wird und nach jeder einzelnen Titriermittelzugabe zur Stabilisierung eine konstante Ruhezeit eingelegt wird, bevor das Meßsignal erfaßt wird. Auf diese Weise wird eine äußerst genaue Bestimmung der Natronlaugen-Konzentration erreicht.In the potentiometric titration of the sodium hydroxide concentration, the titration end point is preferably made from the three by an approximation method known per se largest potential steps with constant addition of titrant are calculated, the supply of the titrant being added with the aid of a motor piston burette in constant volume units by appropriate step-by-step control of the buret motor and after each addition of titrant for stabilization a constant rest time is inserted before the measurement signal is detected. In this way an extremely precise determination of the sodium hydroxide concentration is achieved.
Gemäß einer weiteren Ausgestaltung der Erfindung hat es sich auch als günstig herausgestellt, wenn für die Arbeitselektrode eine Polarisationsspannung von +50 mV verwendet wird.According to a further embodiment of the invention, it has also proven to be advantageous if a polarization voltage of +50 mV is used for the working electrode.
Gemäß einer weiteren bevorzugten Ausgestaltung der Erfindung wird der Endpunkt der amperometrischen Titration durch den Schnittpunkt zweier Geraden bestimmt, von denen die eine parallel zur Abszisse verläuft und das Minimum der Titrationskurve geht und die andere durch mehrere Meßpunkte des quasi linearen Bereichs des dem Minimum folgenden aufsteigenden Teils der Titrationskurve bestimmt wird. Dabei hat es sich als besonders günstig herausgestellt, daß zur Bestimmung der einen Geraden das Minimum der Titrationskurve erfaßt und abgespeichert wird und daß zur Bestimmung der anderen Geraden fünf Meßpunkte des quasi linearen Bereichs des aufsteigenden Teils der Titrationskurve herangezogen werden, und daß die Berechnung dieser Geraden nach einer Regressionsmethode und die Bestimmung des Schnittpunktes der beiden Geraden mit Hilfe eines Rechners erfolgt.According to a further preferred embodiment of the invention, the end point of the amperometric titration is determined by the intersection of two straight lines, one of which runs parallel to the abscissa and the minimum of the titration curve and the other through several measuring points of the quasi-linear range of the rising part following the minimum the titration curve is determined. It has been found to be particularly favorable that the minimum of the titration curve is determined and stored in order to determine the one straight line, and that five measuring points of the quasi-linear region of the ascending part of the titration curve are used to determine the other straight line, and that this straight line is calculated using a regression method and determining the intersection of the two straight lines with the aid of a computer.
Eine besonders einfach aufgebaute Probennahmevorrichtung zur verwendung bei dem erfindungsgemäßen Verfahren ist dadurch gekennzeichnet, daß die einzelnen Badproben über schiebergesteuerte Probenentnahmeventile mit Hilfe von Meßschleifen dem Bad entnehmbar sind, wobei bei der Probenentnahme die einzelnen Meßschliefen hintereinander geschaltet sind und dieser Hintereinanderschaltung der Meßschleife ein steuerbares Ventil parallel geschaltet ist. Bei einer bevorzugten Ausgestaltung dieser Probennahmevorrichtung ist der Inhalt der Meßschleifen mit Hilfe von destilliertes Wasser zusetzenden Dosierspritzen in die Gefäße überführbar.A particularly simply constructed sampling device for use in the method according to the invention is characterized in that the individual bath samples can be removed from the bath by means of slide-controlled sampling valves with the aid of measuring loops, the individual measuring loops being connected in series when the samples are taken and this series connection of the measuring loop being controlled by a controllable valve in parallel is switched. In a preferred embodiment of this sampling device, the content of the measuring loops can be transferred into the vessels with the aid of metering syringes which add distilled water.
Anhand der Zeichnung, in der ein Ausführungsbeispiel schematisch dargestellt ist, wird die Erfindung näher erläutert.The invention is explained in more detail with reference to the drawing, in which an exemplary embodiment is shown schematically.
Es zeigen:
- Figur 1 den chemischen Verfahrensablauf,
- Figur 2 den mechanischen Aufbau einer Proben nahmevorrichtung zur verwendung bei dem Verfahren im Prinzip und
- Figur 3 eine Titrationskurve der amperometrischen Titration.
- FIG. 1 the chemical process sequence,
- Figure 2 shows the mechanical structure of a sampling device for use in the method in principle and
- Figure 3 is a titration curve of the amperometric titration.
In Figur 1 ist mit 1 ein galvanisches Bad bezeichnet, das eine bestimmte Zusammensetzung aufweisen soll, wobei als Hauptkomponenten Kupfer, Natronlauge und Formaldehyd enthalten sind. Die Konzentrationen dieser Komponenten sollen auf konstante Werte geregelt werden. Dieses chemische Kupferbad arbeitet beispielsweise bei einer Temperatur über 50°C. Von dem chemischen Kupferbad wird über eine Leitung 2 ein gewisser Anteil für die Probenentnahme abgezweigt. Dieser Anteil durchläuft ein Kühlgerät 3 und wird dort bis auf mindestens 30°C abgekühlt. Über eine Leitung 4 wird dieser Anteil den einzelnen Stationen zugeführt. Im oberen Teil der Figur 1 ist der Verfahrensablauf zur Bestimmung der Kupferionen-Konzentration durch Kolorimetrie dargestellt. Gesucht wird die Konzentration in Gramm Kupfer pro Liter, wie durch ein Symbol 5 angegeben ist. Wie Symbole 6 und 7 zeigen, findet eine diskontinuierliche Probenentnahme statt, und zwar von 1 ml. Diese Probe wird in einem Mischgefäß 8 mit zweimal 20 ml Wasser verdünnt, wie durch einen Pfeil 9 angedeutet ist. Aus dem Mischgefäß 8 werden die beiden Meßküvetten 10 und 11 eines Kolorimeters 12 gefüllt, wobei die Meßküvette 11 eine Dicke von 10 mm und die Meßküvette 10 eine Dicke von 20 mm aufweist. Die Messung im Kolorimeter 12 erfolgt bei 690 nm. Verzugsweise ist ein Wechsellicht-Kolorimeter verwendet, da dieses zur Lichtmessung nur ein Fotoelement benötigt, auf das abwechselnd der Meß- und der Vergleichsstrahl fallt. An einer Ausgangsleitung 13 können sodann der Lichtintensität proportionale Signale abgenommen werden, die einer entsprechenden Auswerteschaltung 14 zugeführt werden, wo die Kupferkonzentration Ccu aus dem Produkt k.A errechnet wird, wobei k ein Eichfaktor und A das der Kupferkonzentration proportionale Meßsignal sind.In FIG. 1, 1 denotes a galvanic bath which is said to have a specific composition, the main components being copper, sodium hydroxide solution and formaldehyde. The concentrations of these components should be regulated to constant values. This chemical copper bath works, for example, at a temperature above 50 ° C. A certain proportion of the sample is taken from the chemical copper bath via a line 2. This portion passes through a cooling device 3 and is cooled there to at least 30 ° C. This portion is fed to the individual stations via a
In der Mitte der Figur 1 ist der Verfahrensablauf für die Titration der Natronlauge dargestellt. Gesucht wird die Konzentration der Natronlauge in Gramm pro Liter, wie durch Symbol 15 angegeben ist. Es erfolgt wiederum eine diskontinuierliche Probenentnahme bei 16, die mit Hilfe einer Dosiereinrichtung 17 der Leitung 4 entnommen wird. Vorzugsweise wird eine Probenmenge von 2 ml entnommen und diese in einem Mischgefäß 18 mit zweimal 20 ml Wasser vermischt, wie durch einen Pfeil 19 angegeben ist. Die Titration der Natronlauge erfolgt mit verdünnter Salzsäure (HCI) im selben Mischgefäß 18. Mit Hilfe einer Motorkolbenbürette 20 wird Salzsäure von 0,1 M in konstanten Volumeneinheiten AV=0,2 ml durch entsprechende schrittweise Steuerung der Motorkolbenbürette 20 zugegeben, wie durch eine Leitung 21 angedeutet ist. Nach jeder einzelnen Titriermittelzugabe wird beispielsweise eine Ruhezeit von Δt=1.. .5s eingelegt. Diese Ruhezeit kann zu Beginn der Titration verkürzt sein und bei Annäherung an den Titrationsendpunkt Ä entsprechend verlängert werden. Mit 22 ist eine pH-Elektrode angedeutet. Über eine Leitung 23 werden die Signale einer Auswerteschaltung 24 zugeführt, wobei die Laugenkonzentration CNaoH aus dem Produkt K'.Ä bestimmt wird, wobei K' ein Eichfaktor und Ä das berechnete Volumen im Titrationsendpunkt bedeuten.The process sequence for the titration of the sodium hydroxide solution is shown in the middle of FIG. The concentration of the sodium hydroxide solution in grams per liter is sought, as indicated by symbol 15. There is again a discontinuous sampling at 16, which is taken from
Im unteren Teil der Figur 1 ist der chemische Verfahrensablauf für die amperometrische Titration des Formaldehyd dargestellt. Bestimmt werden soll die Konzentration an Formaldehyd in Gramm pro Liter, wie Symbol 25 zeigt. Es erfolgt wiederum eine diskontinuierliche Probenentnahme bei 26 mit Hilfe einer Dosiereinrichtung 27, wobei über eine Leitung 28 diese Probe einem Titriergefäß 29 zugeführt wird. Durch ein Symbol 30 ist veranschaulicht, daß dem Titriergefäß 29 vor der eigentlichen Titration 15 ml 1 M NaOH verdünnt mit 45 ml H20 zugeführt werden. Mit Hilfe einer Rührvorrichtung 31 werden die beiden Substanzen innig vermischt. In das Titriergefäß 29 tauchen eine Goldelektrode 32 als Arbeitselektrode, eine Platinelektrode 33 als Gegenelektrode und eine Silber/Silberchloridelektrode 34 als Referenzelektrode. Die Arbeitselektrode 32 wird mit einer konstanten Spannung von U =0 bis +200 mV gegenüber der Referenzelektrode 34 polarisiert. Mit Hilfe einer Motorkolbenbürette 35 wird über eine Leitung 36 ein Titriermittel zugegeben, und zwar Hydroxylammoniumhydrochlorid (NH20H . HCI).In the lower part of FIG. 1, the chemical procedure for the amperometric titration of formaldehyde is shown. The concentration of formaldehyde in grams per liter should be determined, as symbol 25 shows. There is again a discontinuous sampling at 26 with the aid of a
Mit Hilfe einer entsprechenden Schaltung wird die Spannung zwischen Arbeitselektrode 32 und Gegenelektrode 33 so geregelt, daß die Spannung der Arbeitselektrode 32 in bezug auf die Referenzelektrode 34 stets konstant bleibt. Bei Verwendung einer Silber/Silberchloridelektrode als Referenzelektrode ist es vorteilhaft, daß eine Polarisationsspannung von +50 mV gewählt wird. Der hierbei zwischen Gegenelektrode 33 und Arbeitselektrode 32 fließende Strom wird gemessen und ergibt in Abhängigkeit von der Menge des zugesetzten Titriermittels eine bestimmte Titrationskurve. Anhand der Titrationskurve gemäß Figur 3 kann dann der Titrationsendpunkt durch an sich bekannte Verfahren bestimmt werden. Vorzugsweise wird ein solches Verfahren gewählt, daß der Titrationsendpunkt vollautomatisch bestimmbar ist.With the aid of a corresponding circuit, the voltage between the working
Die Verwendung einer Goldelektrode als Arbeitselektrode hat den Vorteil, daß sich dort kein Kupfer absetzen kann, weil die Goldelektrode stets ein positives Potential aufweist. Als besonders günstig hat sich erwiesen, wenn das Titriermittel NHZOH . HCI eine Konzentration von 0,5 g/I aufweist. Die Ausgangssignale der amperometrischen Titration werden über Leitung 37 einer Auswerteeinrichtung 38 zugeführt, wo mit Hilfe eines Rechners der Titrationsendpunkt bestimmt wird und die Formaldehyd-Konzentration nach folgender Formel:
Die Berechnung des Titrationsendpunktes wird anhand der Figur 3 näher erläutert. Figur 3 zeigt den typischen Verlauf einer Titrationskurve K bei einer amperometrischen Titration des Formaldehyd unter den vorerwähnten Veraussetzungen. Hierbei ist in Abhängigkeit von der Menge V[ml] des kontinuierlich zugegebenen Titriermittels NH20H . HCI der Strom I[mA] aufgetragen.The calculation of the titration end point is explained in more detail with reference to FIG. 3. Figure 3 shows the typical course of a titration curve K in an amperometric titration of formaldehyde under the aforementioned conditions. Here, depending on the amount V [ml] of the continuously added titrant, NH 2 0H. HCI the current I [mA] plotted.
Vorzugsweise wird der Endpunkt Ep der amperometrischen Titration durch den Schnittpunkt Ä zweier Geraden G1, G2 bestimmt, von denen die eine parallel zur Abszissenachse verläuft und durch das Minimum der Titrationskurve geht und die andere durch mehrere Meßpunkte P1...P5 des quasi linearen Bereichs des dem Minimum folgenden aufsteigenden Teils der Titrationskurve bestimmt ist.The end point Ep of the amperometric titration is preferably determined by the intersection A of two straight lines G1, G2, one of which runs parallel to the abscissa axis and goes through the minimum of the titration curve and the other through several measuring points P1 ... P5 of the quasi-linear range of the the minimum following ascending part of the titration curve is determined.
Zur Bestimmung der einen Geraden braucht also nur das Minimum der Titrationskurve erfaßt zu werden. Zur Bestimmung der anderen Geraden werden fünf Meßpunkte P1...P5 des linearen Bereichs benutzt. Die Berechnung dieser Geraden kann mit Hilfe einer an sich bekannten Regressionsmethode erfolgen. Die Berechnung selbst erfolgt mit Hilfe eines Rechners. Es hat sich gezeigt, daß die Abweichung zwischen dem wirklichen und dem errechneten Ä-Ep praktisch konstant ist und als solcher konstanter Wert durch Abziehen vom errechneten Wert berücksichtigt werden kann.To determine the one straight line, only the minimum of the titration curve needs to be recorded. Five measuring points P1 ... P5 of the linear range are used to determine the other straight line. This straight line can be calculated using a known regression method. The calculation itself is carried out using a computer. It has been shown that the deviation between the real and the calculated Ä-Ep is practically constant and as such a constant value can be taken into account by subtracting from the calculated value.
Die Konzentration des Kupfers, der Natronlauge und des Formaldehyds werden also völlig unabhängig voneinander bestimmt. Die einzelnen Steuervorgänge sowie die Meßwertverarbeitung werden mit Hilfe einer einen Mikroprozessor enthaltenden Steuerschaltung 39 durchgeführt.The concentration of copper, sodium hydroxide solution and formaldehyde are therefore determined completely independently of one another. The individual control processes and the measurement value processing are carried out with the aid of a
Die Konzentration der Hauptkomponenten Kupfer, Natronlauge und Formaldehyd werden also selbständig analysiert und die Analyseergebnisse protokolliert, wie bei 40 angedeutet ist.The concentration of the main components copper, sodium hydroxide solution and formaldehyde are therefore analyzed independently and the analysis results are recorded, as indicated at 40.
Durch Vergleich der auf diese Weise gewonnenen Meßwerte mit einem einstellbaren Sollwert wird für jede Komponente ein der Abweichung zeitproportionales Signal gebildet. Diese Signale können zur Steuerung entsprechender Dosiergruppen für die Auffrischung des Bades verwendet werden. Zusätzlich kann auch noch die Badtemperatur gemessen und protokolliert werden.By comparing the measurement values obtained in this way with an adjustable target value, a signal that is proportional to the deviation is formed for each component. These signals can be used to control appropriate dosing groups to refresh the bath. The bath temperature can also be measured and logged.
Figur 2 zeigt den mechanischen Aufbau des Badführungsgerätes im Prinzip, wobei wirkungsmäßig gleiche Teile mit gleichen Bezugszeichen wie in Figur 1 versehen sind.FIG. 2 shows the mechanical construction of the bath guiding device in principle, with the same parts having the same reference numerals as in FIG. 1.
Damit eine Meßleitung 42 stets die wirkliche Badzusammensetzung erhält, wird ein Teil des Bades 1 im Kreislauf über eine Leitung 41 im Nebenfluß gepumpt. Dieser Fluß kann mit Hilfe eines Ventils 43 gesteuert werden. Wird das Ventil 43 geschlossen, so wird die Flüssigkeit durch die Meßleitung 42 gedrückt. Die Meßleitung 42 kann ferner noch über ein Ventil 44, welches beispielsweise ein Schieberventil sein kann, mit einer Leitung 46 verbunden werden, welche zwecks einer Eichung der einzelnen Geräte mit einem Behälter in Verbindung steht, der eine Eichlösung enthält. Mit Hilfe eines Schiebers 45 kann dann die Meßleitung 42 entweder mit der Leitung 4 oder mit einer Leitung 46 verbunden werden.So that a measuring
Zur diskontinuierlichen Probeentnahme wird beispielsweise ein druckluftgesteuertes Ventil 7 verwendet. Mit a bis f sind die einzelnen Anschlußbohrungen des Ventils bezeichnet, die durch entsprechende Nuten 7a, 7b und 7c im Schieber miteinander bzw. untereinander verbindbar sind. Zwischen den Anschlußbohrungen b und c ist eine Meßschleife 47 angeschlossen, die auf 1 ml kalibriert ist. In der in Figur 2 dargestellten Schieberstellung ist also die Leitung 4 über die Bohrungen a und b des Ventils 44 mit der Anschlußbohrung a im Ventil 7 verbunden. Durch die Längsnut 7b im Schieber des Ventils 7 gelangt die Probe über Anschlußbohrung b in die Meßschleife 47 und von dort über die Anschlußbohrung c, Längsnut 7c und Anschlußbohrung d in die Meßleitung 42, wo sie in entsprechender Weise weiter durch die Ventile 17 und 27 und schließlich wieder über die Meßleitung 4 zurück zum Bad fließen kann. In der dargestellten Schieberstellung wird der im Durchmesser kleinere Kolben 7d des Ventils 7 ständig mit Druckluft aus einer Druckluftversorgungsanlage 48 beaufschlagt. Wird zur Probenentnahme ein Ventil 49 angesteuert, so gelangt die Druckluft der Druckluftanlage 48 nunmehr auch an einen Kolben 7a mit einem größeren Durchmesser als dem des Kolbens 7d. Demnach wird der Schieber nach rechts in Bezug auf Figur 2 bewegt, so daß die Quernut 7a nunmehr die beiden Anschlußbohrungen a und b miteinander verbindet, so daß die Probenentnahme für die Ventile 17 und 27 ungehindert stattfinden kann. Die Längsnuten 7b und 7c des Schiebers verbinden nun die Anschlußbohrungen b und e bzw. c und f; mit Hilfe einer Dosierspritze 50 wird einer Leitung 51 eine genau dosierte Wassermenge, nämlich 20 ml entnommen, die über eine Leitung 52 auf die Anschlußbohrung f gegeben wird, so daß der Inhalt der Meßschleife 47 an die Leitung 9 übergeben wird, welche im Mischgefäß 8 endet. Das Mischgefäß 8 ist mit einem Ablaufventil 53 und einem Rührmotor 54 versehen. Mit Hilfe einer weiteren Dosierspritze 55 wird aus dem Mischgefäß über eine Leitung 56 ein Teil der Probe entnommen und den beiden Meßküvetten 10 und 11 des Kolorimeters 12 zugeführt. Mit Hilfe einer Beleuchtungseinrichtung 57 und einer Fotozelle 58 kann dann in an sich bekannter Weise die Kupferkonzentration bestimmt werden. Durch ein Ventil 59 ist angegeben, daß die in die Meßküvetten 10 und 11 1 angehobene Probe entweder dem Gefäß 8 wieder zugeführt werden kann oder in einen Auffangbehälter geleitet werden kann; die Probe kann auch mehrmals angehoben werden.For example, a compressed air-controlled
Das Ventil 17 ist in gleicher Weise aufgebaut wie das Ventil 7, nur daß an die Anschlußbohrungen b und c eine Meßschleife 60 eingefügt ist, die in dem besonderen Fall auf 2 ml kalibriert ist. Mit Hilfe einer Dosierspritze 61 kann der Inhalt dieser Meßschleife in das Mischgefäß 18 übergeführt werden, indem über eine Leitung 62 destilliertes Wasser angesaugt wird, und zwar bei einem Hub 20 ml, wie aus Figur 2 zu entnehmen ist. In das Mischgefäß 18 taucht die pH-Elektrode 22, so daß es gleichzeitig als Titriergefäß dient. Mit 63 ist ein Ablaufventil und mit 64 ein Rührwerk bezeichnet. Die mit 20 bezeichnete Motorkolbenbürette entnimmt über eine Leitung 65 HCI und gibt es über die Leitung 21 an das Gefäß 18, wobei der Motor der Motorkolbenbürette der Badprobe diskontinuierlich jeweils 0,2 ml stufenweise solange zuführt, bis der Titrationsendpunkt erkannt ist.The
Das Ventil 27 entspricht im Aufbau und in seiner Wirkungsweise den Ventilen 7 und 17, nur daß zwischen den Anschlußbohrungen b und c eine Meßschleife 66 eingeschaltet ist, die auf 0,1 ml kalibriert ist. Die Ansteuerung des Ventils 27 erfolgt über ein Ventil 67 in entsprechender Weise wie das Ventil 49. Mit Hilfe einer Dosierspritze 68 wird die mit Hilfe der Meßschleife 66 entnommene Badprobe vermischt mit 45 ml Wasser über eine Leitung 28 dem Titrationsgefäß 29 zugeführt. Wie bereits zuvor ausgeführt worden ist, wird nach der Probenentnahme und Verdünnung mit Hilfe einer Dosiereinrichtung 69 ein bestimmtes Quantum Natronlauge (NaOH) beigefügt, und zwar 15 ml. Danach erfolgt die Titration mit NH20H . HCI über eine Leitung 36. Die Motorkolbenbürette 35 wird hierbei schrittweise solange angetrieben, bis der Titrationsendpunkt erreicht ist.The
Wie bereits zuvor ausgeführt worden ist, wird für die Formaldehydbestimmung die amperometrische Titration benutzt, da sie wesentlich genauer ist als die bekannten anderen Titrationsverfahren.As has already been explained above, the amperometric titration is used for the determination of formaldehyde, since it is much more precise than the known other titration methods.
Claims (7)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE2911073A DE2911073C2 (en) | 1979-03-21 | 1979-03-21 | Method and device for automatically measuring and regulating the concentration of the main components of a bath for the electroless deposition of copper |
DE2911073 | 1979-03-21 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0016415A1 EP0016415A1 (en) | 1980-10-01 |
EP0016415B1 true EP0016415B1 (en) | 1984-06-13 |
Family
ID=6066005
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP80101281A Expired EP0016415B1 (en) | 1979-03-21 | 1980-03-12 | Method for measurement and regulation of the concentration of copper, formaldehyde and sodiumhydroxide in an electroless copper deposition bath and sampling apparatus for use in this method |
Country Status (4)
Country | Link |
---|---|
US (1) | US4286965A (en) |
EP (1) | EP0016415B1 (en) |
JP (1) | JPS55128572A (en) |
DE (1) | DE2911073C2 (en) |
Families Citing this family (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58141374A (en) * | 1982-02-10 | 1983-08-22 | Chiyuushiyou Kigyo Shinko Jigyodan | Automatic controlling method of electroless plating solution |
US4534797A (en) * | 1984-01-03 | 1985-08-13 | International Business Machines Corporation | Method for providing an electroless copper plating bath in the take mode |
US4666858A (en) * | 1984-10-22 | 1987-05-19 | International Business Machines Corporation | Determination of amount of anionic material in a liquid sample |
JPS61110799A (en) * | 1984-10-30 | 1986-05-29 | インタ−ナシヨナル ビジネス マシ−ンズ コ−ポレ−シヨン | Controller of metal plating cell |
US4565575A (en) * | 1984-11-02 | 1986-01-21 | Shiplay Company Inc. | Apparatus and method for automatically maintaining an electroless plating bath |
FR2575306B1 (en) * | 1984-12-21 | 1987-02-13 | Elf Aquitaine | METHOD FOR REGULATING THE AMINE LOAD ON A NATURAL GAS PURIFICATION COLUMN |
US5200047A (en) * | 1985-02-28 | 1993-04-06 | C. Uyemura & Co., Ltd. | Plating solution automatic control |
JPS61199069A (en) * | 1985-02-28 | 1986-09-03 | C Uyemura & Co Ltd | Method for automatically controlling plating solution |
US4654126A (en) * | 1985-10-07 | 1987-03-31 | International Business Machines Corporation | Process for determining the plating activity of an electroless plating bath |
US4967690A (en) * | 1986-02-10 | 1990-11-06 | International Business Machines Corporation | Electroless plating with bi-level control of dissolved oxygen, with specific location of chemical maintenance means |
US4774101A (en) * | 1986-12-10 | 1988-09-27 | American Telephone And Telegraph Company, At&T Technologies, Inc. | Automated method for the analysis and control of the electroless metal plating solution |
DE3718584A1 (en) * | 1987-06-03 | 1988-12-15 | Norddeutsche Affinerie | METHOD FOR MEASURING THE ACTIVE INHIBITOR CONCENTRATION DURING METAL DEPOSITION FROM AQUEOUS ELECTROLYTE |
US4908676A (en) * | 1987-12-18 | 1990-03-13 | Bio-Recovery Systems, Inc. | Sensors for dissolved substances in fluids |
US5117370A (en) * | 1988-12-22 | 1992-05-26 | Ford Motor Company | Detection system for chemical analysis of zinc phosphate coating solutions |
US5352350A (en) * | 1992-02-14 | 1994-10-04 | International Business Machines Corporation | Method for controlling chemical species concentration |
KR100201377B1 (en) * | 1995-10-27 | 1999-06-15 | 김무 | Concentration controlling apparatus of multi-component planting solution |
US6269533B2 (en) | 1999-02-23 | 2001-08-07 | Advanced Research Corporation | Method of making a patterned magnetic recording head |
US6419754B1 (en) | 1999-08-18 | 2002-07-16 | Chartered Semiconductor Manufacturting Ltd. | Endpoint detection and novel chemicals in copper stripping |
US6496328B1 (en) | 1999-12-30 | 2002-12-17 | Advanced Research Corporation | Low inductance, ferrite sub-gap substrate structure for surface film magnetic recording heads |
TWI240763B (en) * | 2001-05-16 | 2005-10-01 | Ind Tech Res Inst | Liquid phase deposition production method and device |
US6986835B2 (en) * | 2002-11-04 | 2006-01-17 | Applied Materials Inc. | Apparatus for plating solution analysis |
US7851222B2 (en) * | 2005-07-26 | 2010-12-14 | Applied Materials, Inc. | System and methods for measuring chemical concentrations of a plating solution |
KR20140066513A (en) * | 2012-11-23 | 2014-06-02 | 삼성전기주식회사 | Analysis method for aldehyde compounds in metal plating solutions |
CA3017667A1 (en) | 2017-09-18 | 2019-03-18 | Ecolab Usa Inc. | Adaptive range titration systems and methods |
CN112041675B (en) * | 2018-04-09 | 2023-06-09 | 埃科莱布美国股份有限公司 | Methods and multiple analyte titration systems for colorimetric end-point detection |
US11397170B2 (en) * | 2018-04-16 | 2022-07-26 | Ecolab Usa Inc. | Repetition time interval adjustment in adaptive range titration systems and methods |
CN108344700A (en) * | 2018-05-15 | 2018-07-31 | 珠海倍力高科科技有限公司 | A kind of chemical copper analysis and Control system |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NL290975A (en) * | 1962-04-10 | |||
NL301241A (en) * | 1963-12-02 | |||
FR1551275A (en) * | 1966-12-19 | 1968-12-27 | ||
CH497699A (en) * | 1969-09-30 | 1970-10-15 | Zellweger Uster Ag | Method and device for measuring the concentration of chemical compounds in solutions |
DE1951324A1 (en) * | 1969-10-10 | 1971-04-22 | Siemens Ag | Electrolytic plating bath automatic - analysis and replenishment |
DE2521282C2 (en) * | 1975-05-13 | 1977-03-03 | Siemens Ag | PROCESS CONTROL SYSTEM FOR INDEPENDENT ANALYZING AND REFRESHING OF GALVANIC BATHS |
CH601505A5 (en) * | 1975-06-03 | 1978-07-14 | Siemens Ag | |
US4096301A (en) * | 1976-02-19 | 1978-06-20 | Macdermid Incorporated | Apparatus and method for automatically maintaining an electroless copper plating bath |
-
1979
- 1979-03-21 DE DE2911073A patent/DE2911073C2/en not_active Expired
-
1980
- 1980-02-28 US US06/125,374 patent/US4286965A/en not_active Expired - Lifetime
- 1980-03-12 EP EP80101281A patent/EP0016415B1/en not_active Expired
- 1980-03-21 JP JP3599380A patent/JPS55128572A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
US4286965A (en) | 1981-09-01 |
EP0016415A1 (en) | 1980-10-01 |
DE2911073A1 (en) | 1980-10-02 |
DE2911073C2 (en) | 1984-01-12 |
JPS55128572A (en) | 1980-10-04 |
JPS6318664B2 (en) | 1988-04-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0016415B1 (en) | Method for measurement and regulation of the concentration of copper, formaldehyde and sodiumhydroxide in an electroless copper deposition bath and sampling apparatus for use in this method | |
DE3039126C2 (en) | Apparatus and method for diluting a liquid sample | |
DE69127327T3 (en) | COLORIMETRIC METHOD FOR DETERMINING AND REGULATING THE PERSONIC CONTENT OF A SOLUTION IN THE PRESENCE OF HYDROGEN PEROXIDE | |
DE68905311T2 (en) | DETERMINATION SYSTEM FOR CHEMICAL ANALYSIS OF ZINC PHOSPHATE COATING SOLUTIONS. | |
EP0178507B1 (en) | Process and device for determining and controlling the concentration of hydrogen peroxide in liquid reaction media | |
DE102019135489A1 (en) | Method for determining a parameter that is dependent on the concentration of at least one analyte in a sample liquid | |
DE69419207T2 (en) | Device for determining the concentration of various ions in aqueous solutions | |
DE60213940T2 (en) | Sample introduction system | |
EP0062101A1 (en) | Process for the determination of the copper content of waste waters | |
DE2617346C2 (en) | Method for determining the amount of titrant added at an equivalence point in a controlled titration in a chemical system | |
EP2581344A1 (en) | Assembly for the treatment of liquids, in particular for water treatment | |
EP0650049A1 (en) | Process and device for mixing two precursor solutions | |
DE102011086942B4 (en) | Method for calibrating and/or adjusting an analysis device for chemical substances in liquids, especially in aqueous solutions | |
DE3217987A1 (en) | Method and apparatus for quantitatively analysing ion concentrations in aqueous solutions, such as all types of water | |
DE2536799C2 (en) | Method for analyzing a low chloride, bromide and / or iodide ion content | |
DD292530A5 (en) | PROCEDURE FOR SAMPLING AND SAMPLE PREPARATION OF MELTED SUBSTANCES FOR THEIR SPECTROMETRIC DETECTION | |
DE69016872T2 (en) | Method for measuring a component in a liquid. | |
DE102019120415A1 (en) | Method for determining a chemical absorption capacity of a process medium in a measuring point and also measuring point for determining a chemical absorption capacity of a process medium | |
DE102019120420A1 (en) | Method for calibrating an analytical measuring device and measuring point for analyzing a process medium and for calibrating an analytical measuring device | |
DE3433618C2 (en) | Method and device for regulating the supply of precipitant in heavy metal precipitation | |
DE2900720C2 (en) | ||
DE3709876C2 (en) | ||
DE2917714C2 (en) | Procedure for measuring with redox or ion-sensitive electrodes | |
DE2051518C3 (en) | Method and device for the simultaneous determination of the chloride and bicarbonate present in the blood serum | |
DE2103089A1 (en) | Method and device for continuous water determination in gases |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Designated state(s): BE FR GB NL |
|
17P | Request for examination filed |
Effective date: 19810306 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Designated state(s): BE FR GB NL |
|
ET | Fr: translation filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 19900316 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 19900321 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 19900331 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 19910218 Year of fee payment: 12 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Effective date: 19910331 |
|
BERE | Be: lapsed |
Owner name: SIEMENS A.G. BERLIN UND MUNCHEN Effective date: 19910331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Effective date: 19911001 |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Effective date: 19911129 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Effective date: 19920312 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |