EP0015815A1 - Réflecteur à lames parallèles pour antenne microondes et procédé de fabrication d'un tel réflecteur - Google Patents

Réflecteur à lames parallèles pour antenne microondes et procédé de fabrication d'un tel réflecteur Download PDF

Info

Publication number
EP0015815A1
EP0015815A1 EP80400254A EP80400254A EP0015815A1 EP 0015815 A1 EP0015815 A1 EP 0015815A1 EP 80400254 A EP80400254 A EP 80400254A EP 80400254 A EP80400254 A EP 80400254A EP 0015815 A1 EP0015815 A1 EP 0015815A1
Authority
EP
European Patent Office
Prior art keywords
reflector
plates
metallized
reflectors
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP80400254A
Other languages
German (de)
English (en)
French (fr)
Inventor
François Salvat
Jean Bouko
Jean Le Foll
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales SA
Original Assignee
Thomson CSF SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thomson CSF SA filed Critical Thomson CSF SA
Publication of EP0015815A1 publication Critical patent/EP0015815A1/fr
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/24Polarising devices; Polarisation filters 
    • H01Q15/242Polarisation converters
    • H01Q15/246Polarisation converters rotating the plane of polarisation of a linear polarised wave
    • H01Q15/248Polarisation converters rotating the plane of polarisation of a linear polarised wave using a reflecting surface, e.g. twist reflector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/14Reflecting surfaces; Equivalent structures
    • H01Q15/22Reflecting surfaces; Equivalent structures functioning also as polarisation filter

Definitions

  • the present invention relates to parallel plate reflectors more specifically used in microwave antennas. It also relates to a method of manufacturing such reflectors.
  • Microwave antennas used for example in radar systems generally require selective primary or auxiliary reflectors, that is to say reflecting rectilinear radiation polarized in a defined direction (horizontal polarization for example) and transmitting polarized radiation rectilinear cross (vertical polarization), and reflectors with polarization rotation.
  • Selective reflectors or polarization rotation reflectors of known types comprise either a sheet of parallel metallic wires which are arranged perpendicular to the plane of polarization of the wave which it is desired to transmit, or a set of thin metal lamellae, parallel to each other, and whose profile has a determined shape.
  • the method of manufacturing reed reflectors according to the invention makes it possible to avoid these difficulties, ensuring easy production and reliable operation, this process consisting more particularly in stacking and bonding of plates of dielectric material, at least one of the two faces placed opposite and belonging to two successive plates, is metallized, this assembly forming a compact block in which the reflector is machined.
  • a reflector with parallel plates for microwave antennas is characterized in that it is produced by a stack of plates of dielectric material, at least one two plates placed facing each other and belonging to two successive plates being metallized, and by gluing these plates stacked so as to form a compact block in which this reflector is machined.
  • the blades 1 of this reflector must be arranged parallel to the direction of the polarization of the wave O 1 , that the spacing a between two consecutive blades 1 is small compared to the wavelength ⁇ and that the width b (or depth) of the blades 1 is such that the energy W "of the wave 0" 1 transmitted is small compared to the energy W ' 1 of the reflected wave O' 1 .
  • the ratio W " 1 / W ' 1 which must therefore be very small, in fact defines the quality of the selective reflector.
  • the attenuation ⁇ , expressed in decibels, of the energy W" 1 transmitted is given by the relation: _
  • the depth b of the blades 1 is chosen to be close from A / 2 so as not to cause the mismatching of the O 2 wave with rectilinear polarization of direction perpendicular to the blades 1, this O 2 wave then being transmitted by the selective reflector with very little attenuation. It is therefore the spacing of the blades 1 which will determine the value of the attenuation ⁇ as defined above.
  • the antenna reflectors When the antenna reflectors must operate at very short wavelengths (a few millimeters for example), the production of conventional reflectors (selective or polarization rotation reflectors) with wires or blades becomes difficult. These wires or these blades must respectively have a diameter or a thickness of the order of a few hundredths of a millimeter and the pitch of the network formed, a few tenths of a millimeter.
  • the manufacturing process according to the invention makes it possible to produce reed reflectors for electromagnetic waves of very small wavelengths, these reflectors, of easy construction, having great rigidity.
  • This method of manufacturing reed reflectors uses flat plates P of dielectric material of small thickness (FIG. 1). Indeed, the thickness e of these plates P must be small compared to the wavelength ⁇ of operation of the reflector (e ⁇ / 30 for example, and ⁇ equal to a few millimeters for example).
  • This material can for example be polytetrafluorethylene or epoxy glass.
  • a thin metallic layer m (copper for example) by a deposition process known per se (vacuum metallization for example). This metallic layer m may be a few hundredths of a millimeter thick.
  • These metallized plates P are then cut so as to obtain a plurality of plates p l , p 2 , p 3 ... having substantially the same dimensions.
  • These plates p l , p 2 , P3 ... are then stacked, then glued to each other, a non-metallized face of a wafer being against the metallized face of the neighboring wafer.
  • This stacking makes it possible to obtain a parallelepipedal block B in which plants a reflector with a specific profile: either a flat reflector (figure 3), or a parabolic reflector (figure 4) for example.
  • FIG. 3 shows a selective reflector R 1 of planar shape, produced according to the method which has just been described.
  • This reflector R 1 is formed by a stack of plates p l , p 2 , p 3 ... of dielectric material, the metal deposits of which m (FIG. 2) form a network of blades 1 1 , 1 2 , 1 3 .. metallic, the pitch of which is substantially equal to the thickness e of the plate P (FIG. 1).
  • FIG. 5 represents, the front and side views of a selective reflector R 2 of parabolic shape produced from a parallelepipedal block B as shown in FIG. 2 and in which the parabola has been machined.
  • the planes of the plates 1 1 , l 2 , 1 3 ... of the selective reflectors R 1 or R 2 are arranged parallel to the direction of the rectilinear polarization of the electromagnetic wave which it is desired to reflect.
  • the selective reflectors such as the reflectors R 1 or R 2 are arranged on the path of two incident waves O 1 , 0 2 with rectilinear polarization, whose polarization directions are orthogonal.
  • the incident wave 0 2 (FIG. 4) having a direction of polarization perpendicular to the blades 1 1 , 1 2 , 1 3 ... is transmitted while the incident wave O 1 having a direction of polarization parallel to the blades l 1 , l 2 , l 3 ... is reflected.
  • the method according to the invention makes it possible to produce parabolic reflectors with plates having a low cross-polarization rate.
  • FIG. 7 represents a plane reflector with polarization rotation produced by the method according to the invention which has just been described.
  • the blades l 1 , l 2 , 1 3 ... will be oriented so as to be inclined at 45 ° relative to the rectilinear polarization of the incidence wave.
  • This incident wave can be considered as the superposition of two component wave equiphases inclined at 45 ° relative to the blades l 1 , l 2 , 1 3 ...
  • the component parallel to the blades 1 1 , 1 2 , 1 3 ... is reflected, while the component perpendicular to the slats 1 1 , 1 2 , 1 3 is transmitted by the grating and is reflected by the metal layer c m so that it is out of phase with A relative to the component parallel to the slats l 1 , l 2 , 1 3 .
  • the combination of these two reflected waves creates a wave whose polarization is orthogonal to the polarization of the incident wave.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Aerials With Secondary Devices (AREA)
EP80400254A 1979-03-02 1980-02-22 Réflecteur à lames parallèles pour antenne microondes et procédé de fabrication d'un tel réflecteur Withdrawn EP0015815A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR7905001 1979-02-27
FR7905501A FR2450508A1 (fr) 1979-03-02 1979-03-02 Reflecteur a lames paralleles pour antennes microondes et procede de fabrication d'un tel reflecteur

Publications (1)

Publication Number Publication Date
EP0015815A1 true EP0015815A1 (fr) 1980-09-17

Family

ID=9222703

Family Applications (1)

Application Number Title Priority Date Filing Date
EP80400254A Withdrawn EP0015815A1 (fr) 1979-03-02 1980-02-22 Réflecteur à lames parallèles pour antenne microondes et procédé de fabrication d'un tel réflecteur

Country Status (2)

Country Link
EP (1) EP0015815A1 (enrdf_load_stackoverflow)
FR (1) FR2450508A1 (enrdf_load_stackoverflow)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3224545A1 (de) * 1982-07-01 1984-01-05 Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt Gruppenantenne
FR2538959A1 (fr) * 1983-01-04 1984-07-06 Thomson Csf Lentille hyperfrequence bi-bande, son procede de fabrication et antenne radar bi-bande de poursuite
GB2150357A (en) * 1983-10-12 1985-06-26 Schwerionenforsch Gmbh Solid material having anisotropic electrical conductivity and a method for its preparation
WO1999043047A1 (de) * 1998-02-20 1999-08-26 Pates Technology Patentverwertungsgesellschaft Für Satelliten- Und Moderne Informationstechnologien Mbh Polarisierer und verfahren zur herstellung von diesem
WO2001099229A1 (fr) * 2000-06-23 2001-12-27 Thales Antenne bi-faisceaux a deux sources
CN105492937A (zh) * 2013-08-30 2016-04-13 国立研究开发法人科学技术振兴机构 线栅装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107768839B (zh) * 2017-09-01 2020-07-31 电子科技大学 一种太赫兹超材料极化隔离器

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB716939A (en) * 1952-08-22 1954-10-20 Elliott Brothers London Ltd Improvements in or relating to high frequency radio aerials
US2736895A (en) * 1951-02-16 1956-02-28 Elliott Brothers London Ltd High frequency radio aerials
FR1145595A (fr) * 1956-03-09 1957-10-28 Thomson Houston Comp Francaise Dispositif de polarisation pour antenne à plusieurs cornets
US3188642A (en) * 1959-08-26 1965-06-08 Raytheon Co Polarization grating for scanning antennas

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2736895A (en) * 1951-02-16 1956-02-28 Elliott Brothers London Ltd High frequency radio aerials
GB716939A (en) * 1952-08-22 1954-10-20 Elliott Brothers London Ltd Improvements in or relating to high frequency radio aerials
FR1145595A (fr) * 1956-03-09 1957-10-28 Thomson Houston Comp Francaise Dispositif de polarisation pour antenne à plusieurs cornets
US3188642A (en) * 1959-08-26 1965-06-08 Raytheon Co Polarization grating for scanning antennas

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ELECTRONICS, Vol. 38, No. 11, 31 Mai 1965, page 75 Mac Grawhill, New York, U.S.A. H.E. OBER et al.: "Foil and styrofoam polarize radar beam" * Page 75 * *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3224545A1 (de) * 1982-07-01 1984-01-05 Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt Gruppenantenne
FR2538959A1 (fr) * 1983-01-04 1984-07-06 Thomson Csf Lentille hyperfrequence bi-bande, son procede de fabrication et antenne radar bi-bande de poursuite
GB2150357A (en) * 1983-10-12 1985-06-26 Schwerionenforsch Gmbh Solid material having anisotropic electrical conductivity and a method for its preparation
WO1999043047A1 (de) * 1998-02-20 1999-08-26 Pates Technology Patentverwertungsgesellschaft Für Satelliten- Und Moderne Informationstechnologien Mbh Polarisierer und verfahren zur herstellung von diesem
WO2001099229A1 (fr) * 2000-06-23 2001-12-27 Thales Antenne bi-faisceaux a deux sources
FR2810799A1 (fr) * 2000-06-23 2001-12-28 Thomson Csf Antenne bi-faisceaux a deux sources
CN105492937A (zh) * 2013-08-30 2016-04-13 国立研究开发法人科学技术振兴机构 线栅装置
KR20160048831A (ko) * 2013-08-30 2016-05-04 고쿠리츠 다이가쿠 호우징 이바라키 다이가쿠 와이어 그리드 장치
EP3040748A4 (en) * 2013-08-30 2016-08-17 Univ Ibaraki WIRE GRID DEVICE
US9964678B2 (en) 2013-08-30 2018-05-08 Ibaraki University Wire grid device
CN105492937B (zh) * 2013-08-30 2018-10-19 国立研究开发法人科学技术振兴机构 线栅装置
KR102169837B1 (ko) 2013-08-30 2020-10-26 고쿠리츠켄큐카이하츠호진 카가쿠기쥬츠신코키코 와이어 그리드 장치

Also Published As

Publication number Publication date
FR2450508B1 (enrdf_load_stackoverflow) 1983-04-29
FR2450508A1 (fr) 1980-09-26

Similar Documents

Publication Publication Date Title
EP3547450B1 (fr) Element rayonnant a polarisation circulaire mettant en oeuvre une resonance dans une cavite de fabry perot
EP0205212B1 (fr) Modules unitaires d'antenne hyperfréquences et antenne hyperfréquences comprenant de tels modules
EP0123350B1 (fr) Antenne plane hyperfréquences à réseau de lignes microruban complètement suspendues
EP0145597B1 (fr) Antenne périodique plane
CA1290449C (fr) Dispositif d'excitation d'un guide d'onde en polarisation circulaire par une antenne plane
EP0134611B1 (fr) Antenne plane hyperfréquence à réseau d'éléments rayonnants ou récepteurs et système d'émission ou de réception de signaux hyperfréquences comprenant une telle antenne plane
FR2857755A1 (fr) Surface a selectivite en frequence et fenetre electromagnetique, notamment pour radome
EP0082751B1 (fr) Radiateur d'ondes électromagnétiques et son utilisation dans une antenne à balayage électronique
EP3840124B1 (fr) Antenne à onde de fuite en technologie afsiw
EP3843202A1 (fr) Cornet pour antenne satellite bi-bande ka a polarisation circulaire
EP1042845B1 (fr) Antenne
EP1430566B1 (fr) Antenne a large bande ou multi-bandes
EP0015815A1 (fr) Réflecteur à lames parallèles pour antenne microondes et procédé de fabrication d'un tel réflecteur
EP2658032B1 (fr) Cornet d'antenne à grille corruguée
FR2535547A1 (fr) Resonateurs bi-rubans et filtres realises a partir de ces resonateurs
FR2569906A1 (fr) Reflecteur pour antenne a micro-ondes, muni d'une structure de grille a polarisation selective
EP0711001A2 (en) Frequency selective surface devices
FR2518828A1 (fr) Filtre spatial de frequences et antenne comportant un tel filtre
EP0015804A2 (fr) Dispositif polariseur et antenne microonde comportant un tel dispositif
EP1131858B1 (fr) Reflecteur dielectrique stratifie pour antenne parabolique
EP0065467B1 (fr) Radiateur d'onde électromagnétique polarisée circulairement
FR2538959A1 (fr) Lentille hyperfrequence bi-bande, son procede de fabrication et antenne radar bi-bande de poursuite
FR2552273A1 (fr) Antenne hyperfrequence omnidirectionnelle
EP0671049B1 (fr) Composite hyperfrequence anisotrope
EP0550320B1 (fr) Guide à fentes rayonnantes non inclinées excitées par des volets métalliques

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): BE CH DE GB IT LU NL SE

17P Request for examination filed

Effective date: 19801001

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19820913

RIN1 Information on inventor provided before grant (corrected)

Inventor name: BOUKO, JEAN

Inventor name: LE FOLL, JEAN

Inventor name: SALVAT, FRANCOIS