EP0015815A1 - Réflecteur à lames parallèles pour antenne microondes et procédé de fabrication d'un tel réflecteur - Google Patents
Réflecteur à lames parallèles pour antenne microondes et procédé de fabrication d'un tel réflecteur Download PDFInfo
- Publication number
- EP0015815A1 EP0015815A1 EP80400254A EP80400254A EP0015815A1 EP 0015815 A1 EP0015815 A1 EP 0015815A1 EP 80400254 A EP80400254 A EP 80400254A EP 80400254 A EP80400254 A EP 80400254A EP 0015815 A1 EP0015815 A1 EP 0015815A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- reflector
- plates
- metallized
- reflectors
- manufacturing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 24
- 239000003989 dielectric material Substances 0.000 claims abstract description 9
- 230000010287 polarization Effects 0.000 claims description 23
- 238000000034 method Methods 0.000 claims description 12
- 235000012431 wafers Nutrition 0.000 claims description 12
- 235000014676 Phragmites communis Nutrition 0.000 claims description 7
- 238000001465 metallisation Methods 0.000 claims description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 2
- 239000004593 Epoxy Substances 0.000 claims description 2
- 229910052802 copper Inorganic materials 0.000 claims description 2
- 239000010949 copper Substances 0.000 claims description 2
- 239000011521 glass Substances 0.000 claims description 2
- -1 polytetrafluorethylene Polymers 0.000 claims description 2
- 229920001343 polytetrafluoroethylene Polymers 0.000 claims description 2
- 238000000151 deposition Methods 0.000 claims 1
- 238000003754 machining Methods 0.000 claims 1
- 238000004026 adhesive bonding Methods 0.000 abstract description 2
- 238000010276 construction Methods 0.000 abstract description 2
- 239000002184 metal Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002131 composite material Substances 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 238000005388 cross polarization Methods 0.000 description 1
- 238000005137 deposition process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q15/00—Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
- H01Q15/24—Polarising devices; Polarisation filters
- H01Q15/242—Polarisation converters
- H01Q15/246—Polarisation converters rotating the plane of polarisation of a linear polarised wave
- H01Q15/248—Polarisation converters rotating the plane of polarisation of a linear polarised wave using a reflecting surface, e.g. twist reflector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q15/00—Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
- H01Q15/14—Reflecting surfaces; Equivalent structures
- H01Q15/22—Reflecting surfaces; Equivalent structures functioning also as polarisation filter
Definitions
- the present invention relates to parallel plate reflectors more specifically used in microwave antennas. It also relates to a method of manufacturing such reflectors.
- Microwave antennas used for example in radar systems generally require selective primary or auxiliary reflectors, that is to say reflecting rectilinear radiation polarized in a defined direction (horizontal polarization for example) and transmitting polarized radiation rectilinear cross (vertical polarization), and reflectors with polarization rotation.
- Selective reflectors or polarization rotation reflectors of known types comprise either a sheet of parallel metallic wires which are arranged perpendicular to the plane of polarization of the wave which it is desired to transmit, or a set of thin metal lamellae, parallel to each other, and whose profile has a determined shape.
- the method of manufacturing reed reflectors according to the invention makes it possible to avoid these difficulties, ensuring easy production and reliable operation, this process consisting more particularly in stacking and bonding of plates of dielectric material, at least one of the two faces placed opposite and belonging to two successive plates, is metallized, this assembly forming a compact block in which the reflector is machined.
- a reflector with parallel plates for microwave antennas is characterized in that it is produced by a stack of plates of dielectric material, at least one two plates placed facing each other and belonging to two successive plates being metallized, and by gluing these plates stacked so as to form a compact block in which this reflector is machined.
- the blades 1 of this reflector must be arranged parallel to the direction of the polarization of the wave O 1 , that the spacing a between two consecutive blades 1 is small compared to the wavelength ⁇ and that the width b (or depth) of the blades 1 is such that the energy W "of the wave 0" 1 transmitted is small compared to the energy W ' 1 of the reflected wave O' 1 .
- the ratio W " 1 / W ' 1 which must therefore be very small, in fact defines the quality of the selective reflector.
- the attenuation ⁇ , expressed in decibels, of the energy W" 1 transmitted is given by the relation: _
- the depth b of the blades 1 is chosen to be close from A / 2 so as not to cause the mismatching of the O 2 wave with rectilinear polarization of direction perpendicular to the blades 1, this O 2 wave then being transmitted by the selective reflector with very little attenuation. It is therefore the spacing of the blades 1 which will determine the value of the attenuation ⁇ as defined above.
- the antenna reflectors When the antenna reflectors must operate at very short wavelengths (a few millimeters for example), the production of conventional reflectors (selective or polarization rotation reflectors) with wires or blades becomes difficult. These wires or these blades must respectively have a diameter or a thickness of the order of a few hundredths of a millimeter and the pitch of the network formed, a few tenths of a millimeter.
- the manufacturing process according to the invention makes it possible to produce reed reflectors for electromagnetic waves of very small wavelengths, these reflectors, of easy construction, having great rigidity.
- This method of manufacturing reed reflectors uses flat plates P of dielectric material of small thickness (FIG. 1). Indeed, the thickness e of these plates P must be small compared to the wavelength ⁇ of operation of the reflector (e ⁇ / 30 for example, and ⁇ equal to a few millimeters for example).
- This material can for example be polytetrafluorethylene or epoxy glass.
- a thin metallic layer m (copper for example) by a deposition process known per se (vacuum metallization for example). This metallic layer m may be a few hundredths of a millimeter thick.
- These metallized plates P are then cut so as to obtain a plurality of plates p l , p 2 , p 3 ... having substantially the same dimensions.
- These plates p l , p 2 , P3 ... are then stacked, then glued to each other, a non-metallized face of a wafer being against the metallized face of the neighboring wafer.
- This stacking makes it possible to obtain a parallelepipedal block B in which plants a reflector with a specific profile: either a flat reflector (figure 3), or a parabolic reflector (figure 4) for example.
- FIG. 3 shows a selective reflector R 1 of planar shape, produced according to the method which has just been described.
- This reflector R 1 is formed by a stack of plates p l , p 2 , p 3 ... of dielectric material, the metal deposits of which m (FIG. 2) form a network of blades 1 1 , 1 2 , 1 3 .. metallic, the pitch of which is substantially equal to the thickness e of the plate P (FIG. 1).
- FIG. 5 represents, the front and side views of a selective reflector R 2 of parabolic shape produced from a parallelepipedal block B as shown in FIG. 2 and in which the parabola has been machined.
- the planes of the plates 1 1 , l 2 , 1 3 ... of the selective reflectors R 1 or R 2 are arranged parallel to the direction of the rectilinear polarization of the electromagnetic wave which it is desired to reflect.
- the selective reflectors such as the reflectors R 1 or R 2 are arranged on the path of two incident waves O 1 , 0 2 with rectilinear polarization, whose polarization directions are orthogonal.
- the incident wave 0 2 (FIG. 4) having a direction of polarization perpendicular to the blades 1 1 , 1 2 , 1 3 ... is transmitted while the incident wave O 1 having a direction of polarization parallel to the blades l 1 , l 2 , l 3 ... is reflected.
- the method according to the invention makes it possible to produce parabolic reflectors with plates having a low cross-polarization rate.
- FIG. 7 represents a plane reflector with polarization rotation produced by the method according to the invention which has just been described.
- the blades l 1 , l 2 , 1 3 ... will be oriented so as to be inclined at 45 ° relative to the rectilinear polarization of the incidence wave.
- This incident wave can be considered as the superposition of two component wave equiphases inclined at 45 ° relative to the blades l 1 , l 2 , 1 3 ...
- the component parallel to the blades 1 1 , 1 2 , 1 3 ... is reflected, while the component perpendicular to the slats 1 1 , 1 2 , 1 3 is transmitted by the grating and is reflected by the metal layer c m so that it is out of phase with A relative to the component parallel to the slats l 1 , l 2 , 1 3 .
- the combination of these two reflected waves creates a wave whose polarization is orthogonal to the polarization of the incident wave.
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Aerials With Secondary Devices (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR7905001 | 1979-02-27 | ||
FR7905501A FR2450508A1 (fr) | 1979-03-02 | 1979-03-02 | Reflecteur a lames paralleles pour antennes microondes et procede de fabrication d'un tel reflecteur |
Publications (1)
Publication Number | Publication Date |
---|---|
EP0015815A1 true EP0015815A1 (fr) | 1980-09-17 |
Family
ID=9222703
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP80400254A Withdrawn EP0015815A1 (fr) | 1979-03-02 | 1980-02-22 | Réflecteur à lames parallèles pour antenne microondes et procédé de fabrication d'un tel réflecteur |
Country Status (2)
Country | Link |
---|---|
EP (1) | EP0015815A1 (enrdf_load_stackoverflow) |
FR (1) | FR2450508A1 (enrdf_load_stackoverflow) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3224545A1 (de) * | 1982-07-01 | 1984-01-05 | Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt | Gruppenantenne |
FR2538959A1 (fr) * | 1983-01-04 | 1984-07-06 | Thomson Csf | Lentille hyperfrequence bi-bande, son procede de fabrication et antenne radar bi-bande de poursuite |
GB2150357A (en) * | 1983-10-12 | 1985-06-26 | Schwerionenforsch Gmbh | Solid material having anisotropic electrical conductivity and a method for its preparation |
WO1999043047A1 (de) * | 1998-02-20 | 1999-08-26 | Pates Technology Patentverwertungsgesellschaft Für Satelliten- Und Moderne Informationstechnologien Mbh | Polarisierer und verfahren zur herstellung von diesem |
WO2001099229A1 (fr) * | 2000-06-23 | 2001-12-27 | Thales | Antenne bi-faisceaux a deux sources |
CN105492937A (zh) * | 2013-08-30 | 2016-04-13 | 国立研究开发法人科学技术振兴机构 | 线栅装置 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107768839B (zh) * | 2017-09-01 | 2020-07-31 | 电子科技大学 | 一种太赫兹超材料极化隔离器 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB716939A (en) * | 1952-08-22 | 1954-10-20 | Elliott Brothers London Ltd | Improvements in or relating to high frequency radio aerials |
US2736895A (en) * | 1951-02-16 | 1956-02-28 | Elliott Brothers London Ltd | High frequency radio aerials |
FR1145595A (fr) * | 1956-03-09 | 1957-10-28 | Thomson Houston Comp Francaise | Dispositif de polarisation pour antenne à plusieurs cornets |
US3188642A (en) * | 1959-08-26 | 1965-06-08 | Raytheon Co | Polarization grating for scanning antennas |
-
1979
- 1979-03-02 FR FR7905501A patent/FR2450508A1/fr active Granted
-
1980
- 1980-02-22 EP EP80400254A patent/EP0015815A1/fr not_active Withdrawn
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2736895A (en) * | 1951-02-16 | 1956-02-28 | Elliott Brothers London Ltd | High frequency radio aerials |
GB716939A (en) * | 1952-08-22 | 1954-10-20 | Elliott Brothers London Ltd | Improvements in or relating to high frequency radio aerials |
FR1145595A (fr) * | 1956-03-09 | 1957-10-28 | Thomson Houston Comp Francaise | Dispositif de polarisation pour antenne à plusieurs cornets |
US3188642A (en) * | 1959-08-26 | 1965-06-08 | Raytheon Co | Polarization grating for scanning antennas |
Non-Patent Citations (1)
Title |
---|
ELECTRONICS, Vol. 38, No. 11, 31 Mai 1965, page 75 Mac Grawhill, New York, U.S.A. H.E. OBER et al.: "Foil and styrofoam polarize radar beam" * Page 75 * * |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3224545A1 (de) * | 1982-07-01 | 1984-01-05 | Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt | Gruppenantenne |
FR2538959A1 (fr) * | 1983-01-04 | 1984-07-06 | Thomson Csf | Lentille hyperfrequence bi-bande, son procede de fabrication et antenne radar bi-bande de poursuite |
GB2150357A (en) * | 1983-10-12 | 1985-06-26 | Schwerionenforsch Gmbh | Solid material having anisotropic electrical conductivity and a method for its preparation |
WO1999043047A1 (de) * | 1998-02-20 | 1999-08-26 | Pates Technology Patentverwertungsgesellschaft Für Satelliten- Und Moderne Informationstechnologien Mbh | Polarisierer und verfahren zur herstellung von diesem |
WO2001099229A1 (fr) * | 2000-06-23 | 2001-12-27 | Thales | Antenne bi-faisceaux a deux sources |
FR2810799A1 (fr) * | 2000-06-23 | 2001-12-28 | Thomson Csf | Antenne bi-faisceaux a deux sources |
CN105492937A (zh) * | 2013-08-30 | 2016-04-13 | 国立研究开发法人科学技术振兴机构 | 线栅装置 |
KR20160048831A (ko) * | 2013-08-30 | 2016-05-04 | 고쿠리츠 다이가쿠 호우징 이바라키 다이가쿠 | 와이어 그리드 장치 |
EP3040748A4 (en) * | 2013-08-30 | 2016-08-17 | Univ Ibaraki | WIRE GRID DEVICE |
US9964678B2 (en) | 2013-08-30 | 2018-05-08 | Ibaraki University | Wire grid device |
CN105492937B (zh) * | 2013-08-30 | 2018-10-19 | 国立研究开发法人科学技术振兴机构 | 线栅装置 |
KR102169837B1 (ko) | 2013-08-30 | 2020-10-26 | 고쿠리츠켄큐카이하츠호진 카가쿠기쥬츠신코키코 | 와이어 그리드 장치 |
Also Published As
Publication number | Publication date |
---|---|
FR2450508B1 (enrdf_load_stackoverflow) | 1983-04-29 |
FR2450508A1 (fr) | 1980-09-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3547450B1 (fr) | Element rayonnant a polarisation circulaire mettant en oeuvre une resonance dans une cavite de fabry perot | |
EP0205212B1 (fr) | Modules unitaires d'antenne hyperfréquences et antenne hyperfréquences comprenant de tels modules | |
EP0123350B1 (fr) | Antenne plane hyperfréquences à réseau de lignes microruban complètement suspendues | |
EP0145597B1 (fr) | Antenne périodique plane | |
CA1290449C (fr) | Dispositif d'excitation d'un guide d'onde en polarisation circulaire par une antenne plane | |
EP0134611B1 (fr) | Antenne plane hyperfréquence à réseau d'éléments rayonnants ou récepteurs et système d'émission ou de réception de signaux hyperfréquences comprenant une telle antenne plane | |
FR2857755A1 (fr) | Surface a selectivite en frequence et fenetre electromagnetique, notamment pour radome | |
EP0082751B1 (fr) | Radiateur d'ondes électromagnétiques et son utilisation dans une antenne à balayage électronique | |
EP3840124B1 (fr) | Antenne à onde de fuite en technologie afsiw | |
EP3843202A1 (fr) | Cornet pour antenne satellite bi-bande ka a polarisation circulaire | |
EP1042845B1 (fr) | Antenne | |
EP1430566B1 (fr) | Antenne a large bande ou multi-bandes | |
EP0015815A1 (fr) | Réflecteur à lames parallèles pour antenne microondes et procédé de fabrication d'un tel réflecteur | |
EP2658032B1 (fr) | Cornet d'antenne à grille corruguée | |
FR2535547A1 (fr) | Resonateurs bi-rubans et filtres realises a partir de ces resonateurs | |
FR2569906A1 (fr) | Reflecteur pour antenne a micro-ondes, muni d'une structure de grille a polarisation selective | |
EP0711001A2 (en) | Frequency selective surface devices | |
FR2518828A1 (fr) | Filtre spatial de frequences et antenne comportant un tel filtre | |
EP0015804A2 (fr) | Dispositif polariseur et antenne microonde comportant un tel dispositif | |
EP1131858B1 (fr) | Reflecteur dielectrique stratifie pour antenne parabolique | |
EP0065467B1 (fr) | Radiateur d'onde électromagnétique polarisée circulairement | |
FR2538959A1 (fr) | Lentille hyperfrequence bi-bande, son procede de fabrication et antenne radar bi-bande de poursuite | |
FR2552273A1 (fr) | Antenne hyperfrequence omnidirectionnelle | |
EP0671049B1 (fr) | Composite hyperfrequence anisotrope | |
EP0550320B1 (fr) | Guide à fentes rayonnantes non inclinées excitées par des volets métalliques |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Designated state(s): BE CH DE GB IT LU NL SE |
|
17P | Request for examination filed |
Effective date: 19801001 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 19820913 |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: BOUKO, JEAN Inventor name: LE FOLL, JEAN Inventor name: SALVAT, FRANCOIS |