EP0013781B1 - Preparation of oxygenated chlorine compounds by electrolysis - Google Patents

Preparation of oxygenated chlorine compounds by electrolysis Download PDF

Info

Publication number
EP0013781B1
EP0013781B1 EP79200810A EP79200810A EP0013781B1 EP 0013781 B1 EP0013781 B1 EP 0013781B1 EP 79200810 A EP79200810 A EP 79200810A EP 79200810 A EP79200810 A EP 79200810A EP 0013781 B1 EP0013781 B1 EP 0013781B1
Authority
EP
European Patent Office
Prior art keywords
electrolysis
cells
electrolyte
velocity
parallel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP79200810A
Other languages
German (de)
French (fr)
Other versions
EP0013781A1 (en
Inventor
Karl Dipl.-Ing. Lohrberg
Rainer Dipl.-Ing. Pfohl
Ing.-Grad. Gritschke Martin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GEA Group AG
Original Assignee
Metallgesellschaft AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Metallgesellschaft AG filed Critical Metallgesellschaft AG
Publication of EP0013781A1 publication Critical patent/EP0013781A1/en
Application granted granted Critical
Publication of EP0013781B1 publication Critical patent/EP0013781B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/24Halogens or compounds thereof
    • C25B1/26Chlorine; Compounds thereof

Definitions

  • the invention relates to a process for the production of chlorine oxygen acids or their salts by electrolysis of salt solutions or sea water contaminated with calcium and / or magnesium.
  • electrolytic processes only allow the electrolyte to remain in the cell for a short time, so that a hydraulic series connection is not expedient.
  • the cost of the rectifier required to supply the electrolytic cells forces an electrical series connection of a large number of electrolytic cells. It is therefore common practice in most electrolysis processes, such as chloralkali or chlorate electrolysis, to connect the cells electrically in series and in parallel on the electrolyte side.
  • electrolysis processes such as chloralkali or chlorate electrolysis
  • the invention has for its object to provide a method which avoids the disadvantages of the known procedures, is simple to carry out and incrustations in particular in the first seawater cells during the electrolysis of calcium and / or magnesium contaminated salt solutions in the production of chlorine-oxygen excludes.
  • the invention now consists in electrolysis in the initial phase at a flow rate of the electrolyte of greater than 0.7 m / sec and up to 2.0 m / sec and in the subsequent phase at a flow rate of 0.3 m / sec to less than 0.7 m / sec, the rolling speed being based in each case on gas-free electrolytes.
  • individual cells are connected upstream of a group of hydraulically connected cells.
  • the ratio of the upstream number of cells to the number of cells in the downstream cell group is a maximum of 1: 1. If there is more than one upstream cell, these can be connected hydraulically in series or hydraulically in parallel. All cells of the system are electrically connected in series. In this way it is achieved that the electrolyte speed in the or the upstream cells, which are the first cells of an electrolysis system on the sea water side, is substantially greater than that in the downstream group of parallel cells.
  • a greatly increased flow rate in the first phase of the electrolysis process reliably prevents incrustation by hardening agents.
  • the flow rate should preferably be in the range of greater than 0.7 m / sec and up to 1.4 m / sec.
  • the electrolyte treated in the first phase at an increased flow rate enters the further treatment phase with a reduced flow rate.
  • This flow rate is preferably 0.5 m / sec to less than 0.7 m / sec. Due to the structural conditions in the electrolysis cell, in some cases, for example, with strongly fluctuating gas contents of the electrolyte, the actual flow velocity of the electrolyte in the subsequent phase can reach the value of 0.7 m / sec or, under certain circumstances, can reach a value of 0.9 m / sec.
  • Such temporary effects are compensated for by regulating the flow rate and the flow rate of a gas-free electrolyte is preferably set from 0.5 to less than 0.7 m / sec.
  • the flow rate of a gas-free electrolyte is preferably set from 0.5 to less than 0.7 m / sec.
  • approaches in the downstream groups of hydraulically operated cells are avoided. It can be assumed that this is based on the presence of a sufficient amount of hypochlorite ions, which apparently prevent the formation of batches from calcium or magnesium hydroxide or calcium carbonate or are capable of dissolving batches that have already formed.
  • the electrolysis system is expediently set up in such a way that all the individual elements or electrolysis cells are electrically connected in series, but hydraulically in different numerical ratios depending on the conditions of the raw material, such as the content of hardness formers in seawater, brackish water or salt solutions , can be connected in parallel or in series.
  • an electrolysis cell of a group of four hydraulically operated electrolysis cells is connected upstream of the subsequent phase.
  • the anodes to be used when carrying out the method according to the invention using conventional electrolysis cells can consist of graphite.
  • titanium, niobium or tantalum electrodes coated with noble metal or noble metal oxide or so-called dimensionally stable anodes, in which the electrocatalytic effect of mixed oxides of noble metals and film-forming metals, in particular titanium, originate, are particularly advantageous.
  • Wear-resistant metal materials in particular steel, titanium and nickel, nickel or iron alloys, are particularly suitable as the cathode material.
  • the method according to the invention in its preferred embodiment with a high flow rate in the initial phase and, on the other hand, a greatly reduced flow rate in the subsequent phase, in which a group of cells operated in parallel hydraulically, the escaping electrolyte of which are combined and then again divided into electrolytic cells connected in parallel in a simple and progressive way, the possibility of designing flow velocities of the electrolyte differently in individual phases and adapting them to the different conditions of the raw material with regard to batch formation.
  • (1) denotes the rectifier, which is electrically connected in series with the electrolysis cells or cell groups (3, 4, 5, 6) via line (2).
  • seawater enters the upstream cells (3) of the initial phase as the electrolyte via feed (7).
  • the electrolyte emerging from the upstream cell or cells is fed via line (8) to a subsequent phase of a group of hydraulically connected cells (4) and electrolyzed there at a reduced flow rate.
  • the electrolyte emerging there from the individual cells is brought together again and fed via the line (9) or (10) in a hydraulic series connection and with subsequent division to further groups of cells (6, 5) connected in parallel.
  • the sodium hypochlorite solution finally emerges.
  • the cooling water is chlorinated in a nuclear power plant.
  • the sodium hypochlorite required for this is supplied by an electrolysis system which has a capacity of 10.5 tpd chlorine (active chlorine of sodium hypochlorite). To generate this quantity, a total of 72 individual elements are required, which are divided into three electrolyte circuits with 24 elements each.
  • the 24 individual elements of an electrolyte circuit are each hydraulically connected in series to 6 elements and hydraulically in parallel to 4 elements each, but all are electrically connected in series.
  • Each of the elements with vertically arranged anodes (made of titanium expanded metal coated with mixed oxides of titanium / ruthenium dioxides) and cathodes (made of high-alloy nickel-based alloy, Hastelloy C) has a width of 230 mm and a depth of 68 mm. In this room there are 9 cathodes and 8 anodes, each 1.5 mm thick.
  • Each of the 4 hydraulically connected element rows is charged with a quantity of sea water (containing approx. 30 g NaCI / I and approx. 100 ppm calcium and magnesium) of 20 m 3 / h. With this amount of water there is an effective speed, without taking into account the developed hydrogen of 0.57 m / sec.
  • the first cells of the 4 rows of elements, each with 6 cells, are equipped with anodes and cathodes which have a thickness of 2.5 mm, while the electrodes of the other cells have a thickness of 1.5 mm.
  • the free cross section for the passage of the sea water is reduced accordingly and the speed in the first, ie in those cells into which the water enters, increases to 0.9 m / sec.
  • the incrustation in the first cells is practically prevented and the running time of the system between two possibly necessary cleaners doubled.

Description

Die Erfindung betrifft ein Verfahren zur Herstellung von Chlorsauerstoffsäuren bzw. deren Salzen durch Elektrolyse von mit Calcium und/ oder Magnesium verunreinigten Salzlösungen oder Meerwasser.The invention relates to a process for the production of chlorine oxygen acids or their salts by electrolysis of salt solutions or sea water contaminated with calcium and / or magnesium.

Bei der Elektrolyse von Meerwasser und von mit Calcium und/oder Magnesium verunreinigten Salzlösungen treten auch heute noch Schwierigkeiten auf, welche die kommerzielle Nutzung und die Wirtschaftlichkeit belasten. Die in derartigen Salzlösungen enthaltenen Calcium- oder Magnesiumionen reagieren mit den an der Kathode erzeugten Hydroxylionen unter Bildung von Calcium- oder Magnesiumhydroxid. Magnesiumhydroxid neigt dazu, an der Kathode zu haften oder sich an den Wänden der Elektrolysekammer abzusetzen und dadurch die Strömung des Elektrolyten zu behindern und den Wirkungsgrad herabzusetzen. Die anwachsenden Ablagerungen verstopfen vor allem den Raum zwischen Anode und Kathode in der Elektrolysekammer, wodurch für längere Zeit ein kontinuierlicher Betrieb der Zelle unmöglich wird. Zur Vermeidung dieser Schwierigkeiten hat man bereits nach bekannten Vorschlägen zur elektrolytischen Herstellung von Hypochlorit glatte, nicht unterbrochene Bleche als Kathoden verwendet und bei erhöhter Strömungsgeschwindigkeit ein bestimmtes Verhältnis von Strömungsgeschwindigkeit und Konzentration des Elektrolyten vorgesehen (DE-A 2619 497). In bekannten Elektrolysezellen zur Gewinnung von Hypochlorit aus Meerwasser hat man durch bauliche Maßnahmen die nach oben gerichtete Elektrolytströmung mit solcher Geschwindigkeit eingestellt, daß die an Kathode und Anode erzeugten Substanzen nicht zwischen diesen, sondern in einer anschließenden verengten Zone großer Turbulenz reagieren (DE-B 1956156).Difficulties still arise with the electrolysis of sea water and salt solutions contaminated with calcium and / or magnesium, which burden commercial use and economy. The calcium or magnesium ions contained in such salt solutions react with the hydroxyl ions generated at the cathode to form calcium or magnesium hydroxide. Magnesium hydroxide tends to adhere to the cathode or settle on the walls of the electrolysis chamber, thereby hindering the flow of the electrolyte and reducing the efficiency. The growing deposits mainly clog the space between the anode and cathode in the electrolysis chamber, making continuous cell operation impossible for a long time. In order to avoid these difficulties, according to known proposals for the electrolytic production of hypochlorite, smooth, uninterrupted sheets have been used as cathodes, and a certain ratio of flow rate and concentration of the electrolyte has been provided for an increased flow rate (DE-A 2619 497). In known electrolysis cells for the extraction of hypochlorite from sea water, the upward directed electrolyte flow has been set at such a speed by constructional measures that the substances generated on the cathode and anode do not react between them but in a subsequent narrowed zone of great turbulence (DE-B 1956156 ).

Elektrolytische Prozesse erlauben in vielen Fällen nur eine geringe Verweilzeit des Elektrolyten in der Zelle, so daß eine hydraulische Reihenschaltung nicht zweckmäßig ist. Andererseits zwingt der preisliche Aufwand des zur Versorgung der Elektrolysezellen erforderlichen Gleichrichters zu einer elektrischen Serienschaltung einer Vielzahl von Elektrolysezellen. Es ist daher bei den meisten Elektrolyse-Verfahren, wie Chloralkali- oder Chloratelektrolysen, übliche Praxis, die Zellen elektrisch in Serie und elektrolytseitig parallel zu schalten. Bei Anlagen zur elektrolytischen Gewinnung von Perchlorat mit elektrisch in Serie und hydraulisch parallel geschalteten Zellen hat man auch schon den aus einer parallel geschalteten Zellengruppe austretenden Elektrolyten zusammengefaßt und wieder gleichmäßig auf eine nächste Zellengruppe verteilt (Ullmann, Bd. 9, IV. Auflage, Seite 568 ; Trans. Electrochem. Soc. 92, 1947, Seiten 45 bis 53).In many cases, electrolytic processes only allow the electrolyte to remain in the cell for a short time, so that a hydraulic series connection is not expedient. On the other hand, the cost of the rectifier required to supply the electrolytic cells forces an electrical series connection of a large number of electrolytic cells. It is therefore common practice in most electrolysis processes, such as chloralkali or chlorate electrolysis, to connect the cells electrically in series and in parallel on the electrolyte side. In plants for the electrolytic production of perchlorate with cells electrically connected in series and hydraulically in parallel, the electrolyte emerging from a cell group connected in parallel has already been combined and again distributed evenly to a next cell group (Ullmann, Vol. 9, IV. Edition, page 568 ; Trans. Electrochem. Soc. 92, 1947, pages 45 to 53).

Die vorbekannten Verfahren haben noch nicht in allen Fällen in der Praxis befriedigen Können, sei es, daß die Ansatzbildung bzw. Verkrustung der Elektrolysezellen in unregelmäßigen Zeitintervallen auftritt und die z.B. hydraulisch parallel geschalteten Zellen unterschiedlich beeinflußt werden, sei es, daß ein die Reaktion von anodisch gebildetem Chlor mit kathodisch erzeugten Hydroxylionen verhindernder laminarer Elektrolytfluß nicht aufrechterhalten oder ausreichend hohe Elektrolytgeschwindigkeiten nicht eingestellt werden konnten.The previously known methods have not yet been able to satisfy in practice in all cases, be it that the build-up or crusting of the electrolysis cells occurs at irregular time intervals and which e.g. hydraulically connected cells are influenced differently, be it that a laminar electrolyte flow preventing the reaction of anodically formed chlorine with cathodically generated hydroxyl ions cannot be maintained or sufficiently high electrolyte speeds cannot be set.

Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren bereitzustellen, das die Nachteile der bekannten Arbeitsweisen vermeidet, einfach in der Durchführung ist und Verkrustungen insbesondere in den meerwasserseitig ersten Zellen während der Elektrolyse von mit Calcium und/ oder Magnesium verunreinigten Salzlösungen bei der Herstellung von Chlorsauerstoffsäure praktisch ausschließt.The invention has for its object to provide a method which avoids the disadvantages of the known procedures, is simple to carry out and incrustations in particular in the first seawater cells during the electrolysis of calcium and / or magnesium contaminated salt solutions in the production of chlorine-oxygen excludes.

Bei einem Verfahren zur Herstellung von Chlorsauerstoffsäuren bzw. deren Salzen durch Elektrolyse von mit Calcium und/oder Magnesium verunreinigten Salzi.5sungen oder Meerwasser besteht die Erfindung nun darin, daß man die Elektrolyse in der Anfangsphase bei einer Strömungsgeschwindigkeit des Elektrolyten von größer als 0,7 m/sec und bis 2,0 m/sec und in der nachfolgenden Phase bei einer Strömungsgeschwindigkeit von 0,3 m/sec bis kleiner als 0,7 m/sec durchführt, wobei die Sirolllungsgeschwindigkeit jeweils auf gasfreien Elektrolyten bezogen ist.In a process for the production of chlorine oxygen acids or their salts by electrolysis of salt solutions or sea water contaminated with calcium and / or magnesium, the invention now consists in electrolysis in the initial phase at a flow rate of the electrolyte of greater than 0.7 m / sec and up to 2.0 m / sec and in the subsequent phase at a flow rate of 0.3 m / sec to less than 0.7 m / sec, the rolling speed being based in each case on gas-free electrolytes.

Zur Durchführung des erfindungsgemäßen Verfahrens werden beispielsweise einzelne Zellen einer Gruppe von hydraulisch parallel geschalteten Zellen vorgeschaltet. Das Verhältnis von vorgeschalteter Zellenzahl zur Zellenzahl der nachgeschalteten Zellengruppe beträgt maximal 1: 1. Handelt es sich um mehr als eine Vorschaltzelle, können diese hydraulisch in Serie oder auch hydraulisch parallel geschaltet sein. Elektrisch sind sämtliche Zellen der Anlage in Serie geschaltet. Auf diese Weise wird erreicht, daß die Elektrolytgeschwindigkeit in der oder den Vorschaltzellen, welche die meerwasserseitig ersten Zellen einer Elektrolyseanlage darstellen, wesentlich größer als die in der nachgeschalteten Gruppe paralleler Zellen ist. Eine stark erhöhte Strömungsgeschwindigkeit in der ersten Phase des Elektrolysevorgangs vermeidet in sicherer Weise ein Verkrusten durch Härtebildner. Die Strömungsgeschwindigkeit soll vorzugsweise im Bereich von größer als 0,7 m/sec und bis 1,4 m/sec liegen. Der in der ersten Phase bei erhöhter Strömungsgeschwindigkeit behandelte Elektrolyt tritt in die weitere Behandlungsphase mit verminderter Strömungsgeschwindigkeit ein. Diese Fließgeschwindigkeit beträgt vorzugsweise 0,5 m/sec bis kleiner als 0,7 m/sec. Aufgrund konstruktiv bedingter örtlicher Verhältnisse in der Elektrolysezelle kann in manchen Fällen, beispielsweise bei stark schwankenden Gasgehalten des Elektrolyten, die tatsächliche Strömungsgeschwindigkeit des Elektrolyten in der nachgeschalteten Phase den Wert von 0,7 m/sec erreichen oder unter Umständen einen Wert von 0,9 m/sec annehmen. Solche temporären Effekte werden durch Regulierung der Fließgeschwindigkeit ausgeglichen und die Strömungsgeschwindigkeit eines gasfreien Elektrolyten von vorzugsweise 0,5 bis kleiner als 0,7 m/sec eingestellt. Im genannten Bereich der Fließgeschwindigkeit werden Ansätze in den nachgeschalteten Gruppen hydraulisch parallel betriebener Zellen vermieden. Es ist anzunehmen, daß dies auf der Anwesenheit einer ausreichenden Menge Hypochlorit-Ionen beruht, welche offenbar die Bildung von Ansätzen aus Calcium-oder Magnesiumhydroxid oder Calciumcarbonat verhindern oder aber bereits gebildete Ansätze zu lösen vermögen.To carry out the method according to the invention, for example, individual cells are connected upstream of a group of hydraulically connected cells. The ratio of the upstream number of cells to the number of cells in the downstream cell group is a maximum of 1: 1. If there is more than one upstream cell, these can be connected hydraulically in series or hydraulically in parallel. All cells of the system are electrically connected in series. In this way it is achieved that the electrolyte speed in the or the upstream cells, which are the first cells of an electrolysis system on the sea water side, is substantially greater than that in the downstream group of parallel cells. A greatly increased flow rate in the first phase of the electrolysis process reliably prevents incrustation by hardening agents. The flow rate should preferably be in the range of greater than 0.7 m / sec and up to 1.4 m / sec. The electrolyte treated in the first phase at an increased flow rate enters the further treatment phase with a reduced flow rate. This flow rate is preferably 0.5 m / sec to less than 0.7 m / sec. Due to the structural conditions in the electrolysis cell, in some cases, for example, with strongly fluctuating gas contents of the electrolyte, the actual flow velocity of the electrolyte in the subsequent phase can reach the value of 0.7 m / sec or, under certain circumstances, can reach a value of 0.9 m / sec. Such temporary effects are compensated for by regulating the flow rate and the flow rate of a gas-free electrolyte is preferably set from 0.5 to less than 0.7 m / sec. In the range of flow velocity mentioned, approaches in the downstream groups of hydraulically operated cells are avoided. It can be assumed that this is based on the presence of a sufficient amount of hypochlorite ions, which apparently prevent the formation of batches from calcium or magnesium hydroxide or calcium carbonate or are capable of dissolving batches that have already formed.

Zweckmäßig wird zur Durchführung des erfindungsgemäßen Verfahrens die Elektrolyseanlage in solcher Weise eingerichtet, daß alle Einzelelemente bzw. Elektrolysezellen elektrisch in Serie geschaltet sind, hydraulisch aber in unterschiedlichen Zahlenverhältnissen in Abhängigkeit von den Gegebenheiten des Rohmaterials, wie Gehalt an Härtebildnern bei Meer-, Brackwasser oder Salzlösungen, parallel oder in Serie geschaltet werden können.To carry out the method according to the invention, the electrolysis system is expediently set up in such a way that all the individual elements or electrolysis cells are electrically connected in series, but hydraulically in different numerical ratios depending on the conditions of the raw material, such as the content of hardness formers in seawater, brackish water or salt solutions , can be connected in parallel or in series.

In Ausbildung einer besonderen Ausführungsform des erfindungsgemäßen Verfahrens wird in der Anfangsphase der Elektrolyse eine Elektrolysezelle einer Gruppe von vier hydraulisch parallel betriebenen Elektrolysezellen der nachfolgenden Phase vorgeschaltet.In an embodiment of the method according to the invention, in the initial phase of the electrolysis, an electrolysis cell of a group of four hydraulically operated electrolysis cells is connected upstream of the subsequent phase.

Die bei der Durchführung des erfindungsgemäßen Verfahrens unter Verwendung üblicher Elektrolysezellen einzusetzenden Anoden können aus Graphit bestehen. Besonders vorteilhaft sind jedoch mit Edelmetall oder Edelmetalloxid beschichtete Titan-, Niob- oder Tantal-Elektroden oder sogenannte dimensionsstabile Anoden, bei denen die elektrokatalytische Wirkung von Mischoxiden von Edelmetallen und filmbildenden Metallen, insbesondere Titan, ausgeht.The anodes to be used when carrying out the method according to the invention using conventional electrolysis cells can consist of graphite. However, titanium, niobium or tantalum electrodes coated with noble metal or noble metal oxide or so-called dimensionally stable anodes, in which the electrocatalytic effect of mixed oxides of noble metals and film-forming metals, in particular titanium, originate, are particularly advantageous.

Als Kathodenmaterial sind verschleißfeste Metallwerkstoffe, insbesondere Stahl, Titan und Nickel, Nickel- oder Eisenlegierungen, besonders geeignet.Wear-resistant metal materials, in particular steel, titanium and nickel, nickel or iron alloys, are particularly suitable as the cathode material.

Das erfindungsgemäße Verfahren in seiner bevorzugten Ausführungsform mit hoher Strömungsgeschwindigkeit in der Anfangsphase und demgegenüber stark verringerter Strömungsgeschwindigkeit in der nachfolgenden Phase, bei der eine Gruppe von hydraulisch parallel geschalteten Zellen betrieben, deren austretender Elektrolyt vereinigt und anschließend erneut auf hydraulisch parallel geschaltete Elektrolysezellen aufgeteilt wird, gibt in einfacher und fortschrittlicher Weise die Möglichkeit, Strömungsgeschwindigkeiten des Elektrolyten in einzelnen Phasen unterschiedlich zu gestalten und den unterschiedlichen Gegebenheiten des Rohmaterials im Hinblick auf Ansatzbildungen anzupassen.The method according to the invention in its preferred embodiment with a high flow rate in the initial phase and, on the other hand, a greatly reduced flow rate in the subsequent phase, in which a group of cells operated in parallel hydraulically, the escaping electrolyte of which are combined and then again divided into electrolytic cells connected in parallel in a simple and progressive way, the possibility of designing flow velocities of the electrolyte differently in individual phases and adapting them to the different conditions of the raw material with regard to batch formation.

Die Erfindung wird anhand des Fließschemas und des Ausführungsbeispiels näher erläutert.The invention is explained in more detail with the aid of the flow diagram and the exemplary embodiment.

In dem Fließschema bezeichnet (1) den Gleichrichter, der über Leitung (2) mit den Elektrolysezellen bzw. Zellengruppen (3, 4, 5, 6) elektrisch in Serie geschaltet ist. Über Zufuhr (7) tritt als Elektrolyt beispielsweise Meerwasser in die Vorschaltzellen (3) der Anfangsphase ein. Der aus der oder den Vorschaltzellen austretende Elektrolyt wird über die Leitung (8) einer nachfolgenden Phase einer Gruppe hydraulisch parallel geschalteter Zellen (4) zugeführt und dort bei verminderter Strömungsgeschwindigkeit elektrolysiert. Der dort aus den einzelnen Zellen austretende Elektrolyt wird wieder zusammengeführt und über die Leitung (9) bzw. (10) in hydraulischer Serienschaltung und unter nachfolgender Aufteilung weiteren Gruppen parallel geschalteter Zellen (6, 5) zugeführt. Bei (11) tritt schließlich die Natriumhypochlorit-Lösung aus.In the flow diagram, (1) denotes the rectifier, which is electrically connected in series with the electrolysis cells or cell groups (3, 4, 5, 6) via line (2). For example, seawater enters the upstream cells (3) of the initial phase as the electrolyte via feed (7). The electrolyte emerging from the upstream cell or cells is fed via line (8) to a subsequent phase of a group of hydraulically connected cells (4) and electrolyzed there at a reduced flow rate. The electrolyte emerging there from the individual cells is brought together again and fed via the line (9) or (10) in a hydraulic series connection and with subsequent division to further groups of cells (6, 5) connected in parallel. At (11) the sodium hypochlorite solution finally emerges.

AusführungsbeispielEmbodiment

In einem Nuklear-Kraftwerk wird eine Chlorung des Kühlwassers vorgenommen. Das hierzu erforderliche Natriumhypochlorit wird von einer Elektrolyseanlage geliefert, die eine Kapazität von 10,5 tato Chlor (aktives Chlor des Natriumhypochlorits) besitzt. Um diese Menge zu erzeugen, werden insgesamt 72 Einzelelemente benötigt, die auf drei Elektrolytkreise mit je 24 Elementen aufgeteilt sind. Die 24 Einzelelemente eines Elektrolytkreises sind zu jeweils 6 Elementen hydraulisch hintereinander und zu jeweils 4 Elementen hydraulisch parallel geschaltet, jedoch elektrisch alle in Reihe geschaltet. Jedes der Elemente mit senkrecht angeordneten Anoden (aus mit Mischoxiden aus Titan-/Ruthenium-Dioxiden überzogenes Titanstreckmetall) und Kathoden (aus hochlegierter Nickelbasislegierung, Hastelloy C) hat eine Breite von 230 mm und eine Tiefe von 68 mm. In diesem Raum sind 9 Kathoden und 8 Anoden von jeweils 1,5 mm Stärke angeordnet. Jede der 4 hydraulisch parallel geschalteten Elementenreihen wird mit einer Meerwassermenge (enthaltend ca. 30 g NaCI/I und ca. 100 ppm Calcium und Magnesium) von 20 m3/h beaufschlagt. Bei dieser Wassermenge ergibt sich eine effektive Geschwindigkeit, ohne Berücksichtigung des entwickelten Wasserstoffes von 0,57 m/sec. Jeweils die ersten Zellen der 4 Elementreihen mit je 6 Zellen werden mit Anoden und Kathoden ausgerüstet, die eine Dicke von 2,5 mm besitzen, während die Elektroden der übrigen Zellen eine Dicke von 1,5 mm aufweisen. Aufgrund dieser Maßnahme verringert sich der freie Querschnitt für den Durchtritt des Meerwassers entsprechend und die Geschwindigkeit in den ersten, d.h. in denjenigen Zellen, in die das Wasser eintritt, steigt auf 0,9 m/sec. Mit dieser Anordnung wird die Verkrustung in den ersten Zellen praktisch verhindert und die Laufzeit der Anlage zwischen zwei gegebenenfalls erforderlich werdenden Reinigungen verdoppelt.The cooling water is chlorinated in a nuclear power plant. The sodium hypochlorite required for this is supplied by an electrolysis system which has a capacity of 10.5 tpd chlorine (active chlorine of sodium hypochlorite). To generate this quantity, a total of 72 individual elements are required, which are divided into three electrolyte circuits with 24 elements each. The 24 individual elements of an electrolyte circuit are each hydraulically connected in series to 6 elements and hydraulically in parallel to 4 elements each, but all are electrically connected in series. Each of the elements with vertically arranged anodes (made of titanium expanded metal coated with mixed oxides of titanium / ruthenium dioxides) and cathodes (made of high-alloy nickel-based alloy, Hastelloy C) has a width of 230 mm and a depth of 68 mm. In this room there are 9 cathodes and 8 anodes, each 1.5 mm thick. Each of the 4 hydraulically connected element rows is charged with a quantity of sea water (containing approx. 30 g NaCI / I and approx. 100 ppm calcium and magnesium) of 20 m 3 / h. With this amount of water there is an effective speed, without taking into account the developed hydrogen of 0.57 m / sec. The first cells of the 4 rows of elements, each with 6 cells, are equipped with anodes and cathodes which have a thickness of 2.5 mm, while the electrodes of the other cells have a thickness of 1.5 mm. As a result of this measure, the free cross section for the passage of the sea water is reduced accordingly and the speed in the first, ie in those cells into which the water enters, increases to 0.9 m / sec. With this arrangement, the incrustation in the first cells is practically prevented and the running time of the system between two possibly necessary cleaners doubled.

Claims (3)

1. A process of producing oxyacids of chlorine or salts of such acids by an electrolysis of salt solutions which are contaminated with calcium and/or magnesium or of sea water, characterized in that the electrolysis is carried out
a) in an initial phase with an electrolyte flowing at a velocity above 0.7 meter per second and up to 2.0 meters per second and
b) in a succeeding phase with an electrolyte flowing at a velocity of 0.3 meter per second to less than 0.7 meter per second,

the velocity of flow being stated for electrolyte which is free from gas.
2. A process according to claim 1, characterized in that the electrolysis is carried out in the initial phase at a velocity of flow above 0.7 and up to 1.4 meters per second and in the succeeding phase at a velocity of flow of 0.5 to less than 0.7 meter per second.
3. A process according to claims 1 and 2, characterized in that the electrolyte streams leaving a plurality of electrolytic cells which are hydraulically connected in parallel and electrically connected in series are united and the united stream is the redistributed to electrolytic cells which are hydraulically connected in parallel.
EP79200810A 1979-01-13 1979-12-28 Preparation of oxygenated chlorine compounds by electrolysis Expired EP0013781B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19792901221 DE2901221A1 (en) 1979-01-13 1979-01-13 METHOD FOR THE ELECTROLYTIC PRODUCTION OF CHLORINE OXYGEN ACIDS
DE2901221 1979-01-13

Publications (2)

Publication Number Publication Date
EP0013781A1 EP0013781A1 (en) 1980-08-06
EP0013781B1 true EP0013781B1 (en) 1981-11-11

Family

ID=6060520

Family Applications (1)

Application Number Title Priority Date Filing Date
EP79200810A Expired EP0013781B1 (en) 1979-01-13 1979-12-28 Preparation of oxygenated chlorine compounds by electrolysis

Country Status (7)

Country Link
US (1) US4370207A (en)
EP (1) EP0013781B1 (en)
JP (1) JPS5594485A (en)
AR (1) AR219206A1 (en)
BR (1) BR8000148A (en)
DE (2) DE2901221A1 (en)
MX (1) MX153867A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1928792A4 (en) * 2005-08-22 2009-04-15 Poolrite Equipment Pty Ltd A pool chlorinator
USPP18483P3 (en) 2006-02-06 2008-02-12 Snc Elaris Apple tree named ‘Dalirail’
CA3091908A1 (en) * 2018-02-22 2019-08-29 Evoqua Water Technologies Llc Electrochlorination system configurations for the generation of high product strength solutions

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1104078A (en) * 1965-07-17 1968-02-21 William David Jones Improvements in or relating to electrolytic cells
FR1502793A (en) * 1966-09-14 1967-11-24 Krebs & Cie Paris Electrolytic process for the electrolytic manufacture of alkali metal chlorates and in particular of sodium chlorate
US3718540A (en) * 1971-04-19 1973-02-27 Int Research & Dev Co Ltd Electrolytic cells
US3893902A (en) * 1973-04-12 1975-07-08 Diamond Shamrock Corp Electrolytic sea water process
US4108756A (en) * 1973-10-30 1978-08-22 Oronzio De Nora Impianti Electtrochimici S.P.A. Bipolar electrode construction
IT1031897B (en) * 1975-02-20 1979-05-10 Oronzio De Nora Impianti PROCEDURE AND EQUIPMENT FOR THE PRODUCTION OF ALKALINE HALOGENATES
US3974051A (en) * 1975-05-07 1976-08-10 Diamond Shamrock Corporation Production of hypochlorite from impure saline solutions
SE429449B (en) * 1978-07-18 1983-09-05 Chlorine Eng Corp Ltd ELECTRIC LIGHT CELL FOR ELECTRIC LIGHT OF THE SEA WATER

Also Published As

Publication number Publication date
MX153867A (en) 1987-01-29
DE2901221A1 (en) 1980-07-24
AR219206A1 (en) 1980-07-31
US4370207A (en) 1983-01-25
BR8000148A (en) 1980-09-23
EP0013781A1 (en) 1980-08-06
DE2961336D1 (en) 1982-01-14
JPS5594485A (en) 1980-07-17

Similar Documents

Publication Publication Date Title
DE2732503B2 (en) Method and device for cleaning and decolorizing concentrated sulfuric acid
DE3802699C2 (en) Process for the electrolytic production of a hydroxylamine nitrate solution by direct reduction of nitric acid
CH649101A5 (en) APPARATUS FOR PRODUCING SODIUM HYPOCHLORITE.
DE3043571A1 (en) METHOD AND DEVICE FOR CARRYING OUT AN ELECTROLYTIC PROCESS
DE4137022C2 (en) Process and device for the regeneration of sulfuric, copper-containing peroxodisulfate pickling solutions
DE2418739A1 (en) METHOD FOR PREPARING HYPOCHLORITE SOLUTION
DE1667835B2 (en) METHOD OF ELECTROLYTIC OXYDATION OF THALLIUM (I) OR CER (III) SALT SOLUTIONS
DE2523117A1 (en) METHOD AND DEVICE FOR REGENERATING A PAPER SOLUTION
EP0013781B1 (en) Preparation of oxygenated chlorine compounds by electrolysis
DE2559192A1 (en) DIAPHRAGM ELECTROLYSIS CELL
DE1546706A1 (en) Bipolar electrolytic cell and operating procedures therefor
DE2624694C2 (en) Process for the electrolysis of aqueous alkali metal chloride solutions in a multi-electrode cell
DE2240731C3 (en) Process for the production of glyoxylic acid
DE2948343C2 (en)
EP0008470B1 (en) Process for the electrolysis of aqueous alkali metal halide solutions
DD215589A1 (en) METHOD FOR ELECTROLYTIC METAL SEPARATION FOR FOREIGN CONVECTION
DD281095A7 (en) PROCESS FOR THE PREPARATION OF PEROXODIC ACIDIC ACIDS AND PEROXODISULPATES
DE1220798B (en) Process for the electrolytic treatment of water containing sodium chloride, in particular sea water, for the purpose of preventing scale deposits
EP2401422A2 (en) Method and device for regenerating peroxodisulfate pickling solution
DE2520869C2 (en) Countercurrent extraction column for liquid-liquid extraction of two mutually insoluble phases with simultaneous electrolysis
EP0445516B1 (en) Process and apparatus for the production of silver nitrate
DE743465C (en) Electrolytic cell, especially for the production of hypochlorites
DE2945557A1 (en) DEVICE FOR RECOVERING GAS WHICH IS DURING THE ELECTROLYSIS OF ALKALICHLORIDES
DE2940741A1 (en) METHOD FOR ELECTROLYTICALLY PRODUCING NICKEL
DE1417787C (en) Multiple electrolysis cell

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): BE DE FR GB IT NL

17P Request for examination filed

Effective date: 19801007

ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): BE DE FR GB IT NL

REF Corresponds to:

Ref document number: 2961336

Country of ref document: DE

Date of ref document: 19820114

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19840930

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19841004

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19841206

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19860701

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19871231

BERE Be: lapsed

Owner name: METALL-G. A.G.

Effective date: 19871231

GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19880831

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19881118

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19920113

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19930901

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT