EP0013003B1 - Electron beam investigation process and electron impact spectrometer therefor - Google Patents

Electron beam investigation process and electron impact spectrometer therefor Download PDF

Info

Publication number
EP0013003B1
EP0013003B1 EP79105288A EP79105288A EP0013003B1 EP 0013003 B1 EP0013003 B1 EP 0013003B1 EP 79105288 A EP79105288 A EP 79105288A EP 79105288 A EP79105288 A EP 79105288A EP 0013003 B1 EP0013003 B1 EP 0013003B1
Authority
EP
European Patent Office
Prior art keywords
cylinder
electron
axis
monochromator
electrons
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP79105288A
Other languages
German (de)
French (fr)
Other versions
EP0013003A1 (en
Inventor
Hermann Dr. Froitzheim
Harald Prof. Dr. Ibach
Heinz-Dieter Bruchmann
Sieghard Dr. Lehwald
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Forschungszentrum Juelich GmbH
Original Assignee
Forschungszentrum Juelich GmbH
Kernforschungsanlage Juelich GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Forschungszentrum Juelich GmbH, Kernforschungsanlage Juelich GmbH filed Critical Forschungszentrum Juelich GmbH
Publication of EP0013003A1 publication Critical patent/EP0013003A1/en
Application granted granted Critical
Publication of EP0013003B1 publication Critical patent/EP0013003B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/06Electron- or ion-optical arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/44Energy spectrometers, e.g. alpha-, beta-spectrometers
    • H01J49/46Static spectrometers
    • H01J49/48Static spectrometers using electrostatic analysers, e.g. cylindrical sector, Wien filter

Definitions

  • the invention relates to a method for electron beam analysis, in particular of solid bodies, in which the electrons cathodically emitted and electron-optically bundled by an emission system are subjected to at least one energy selection in a cylinder capacitor deflection unit and are subsequently detected with a detector. It also includes an electron impact spectrometer for performing the method with electrostatic cylindrical capacitor deflection units as energy-dispersive units, which is designed in particular for impact energies between 1 and 1000 eV.
  • Electron impact spectrometers also known as “electron energy loss spectrometers” or abbreviated “electron spectrometers” are used for the analysis of gases and solids, whereby the relevant information is obtained in the form of characteristic energy losses after the electrons are impacted with gas molecules or a solid sample
  • Electron impact spectrometers for the applications described have been implemented using various energy-dispersive elements.
  • cylindrical capacitors, spherical capacitors and so-called cylinder mirrors have become known.
  • the corresponding values for g and the best half-width achieved (as a measure of the resolution) are listed in the table below, provided information on the current at the detector has been made in previous work.
  • Such a beam guidance electron impact spectrometer with an emission system comprising a cathode and a linden system for an electron current focused on the input aperture of the monochromator, which enters the cylindrical capacitor monochromator for energy selection of the electrons, which come from the monochromator and fall onto the sample after reflection and after reflection on the same
  • Via a lens system in a cylinder capacitor analyzer and after energy selection and passage through the output aperture of the analyzer hit a detector are characterized by a differently designed emission system perpendicular or parallel to the monochromator cylinder axis in such a way that the electrons perpendicular to the cylinder axis in a known manner to be focused on the input aperture of the monochromator while focusing on the detector parallel to the cylinder axis, and by means of a lens system between the monochrome ator and analyzer with a focusing effect perpendicular to the cylinder axis, but without a focusing effect parallel to the cylinder axis.
  • the emission system preferably comprises a repeller on the cathode, the focusing surface of which has different radii of curvature parallel and perpendicular to the monochromator cylinder axis, the radius of the curvature profile being greater in the plane passing through the monochromator cylinder axis than perpendicular to it.
  • the height h of the slots in the inlet and outlet panels is preferably greater than the root of the path radius r and slot width s.
  • An electron impact spectrometer also contains a system for beam generation 5 (hereinafter referred to as an emission system) (with an emitting cathode 6, repeller 7 and possibly focusing elements 8), and a lens system 9 or 10 between monochromator 1 and sample 11 or sample 11 and analyzer 2, This serves to guide the beam and to image the electrons (otherwise reflected on the target 11) from the exit slit 4 of the monochromator 1 into the entry slit 3 'of the analyzer 2. The electrons are then detected in the detector 12.13, which denotes a supply unit.
  • an emission system with an emitting cathode 6, repeller 7 and possibly focusing elements 8
  • a lens system 9 or 10 between monochromator 1 and sample 11 or sample 11 and analyzer 2
  • a parallel beam is formed, with the rest of the lens systems used, which map the exit spa of the monochromator to the entrance slit of the analyzer in the spectrometer plane, but not the beam perpendicular to the spectrometer plane influence, whereby the focus formed by the cathode system in this direction in the detector remains unaffected.
  • the prescribed beam guidance not only leads to a good current yield at the detector, as explained above, but also brings advantages for the resolution of the system:
  • the energetic resolution of a cylinder capacitor is given by where s and h slot width and height of the input and output diaphragm (3, 3 'and 4,4' in Fig. 4), rd radius of the cylindrical capacitor, E the energy of the electrons in the cylindrical capacitor (1, 2) and ⁇ d angular divergence are perpendicular to the cylinder axis.
  • the second term of the equation results from who beams pass through the cylindrical capacitor in such a way that they can get from a point on the upper edge of the input slot (3) to a point on the lower edge of the output slot (4) the second term is omitted with the result of a correspondingly improved resolution b of the given energy of the electrons in the monochromator.
  • the omission of term 2 in equation (2) also means a fundamental advantage with regard to the maximum achievable resolution. This theoretical finding allows them to be confirmed experimentally. In order to achieve maximum resolution, local inhomogeneities in the surface potential should be kept as small as possible.
  • Such a coating with carbon also proves to be expedient in the spectrometer according to the invention, and surprisingly a particularly favorable behavior of the system is achieved if the carbon coating is provided in the form of graphite, such as, in particular, by immersing the electrodes in a suspension of colloidal graphite u brief "baking" of the coating is obtained.
  • the electron impact spectrometer sketched in FIG. 4 and described above comprises an emission system, the different focal lengths of which are realized by appropriate shaping (electrodes as can be seen in FIG. 1), which shows a vertical section above and a horizontal section through the system below different designs in the two directions, in particular the special shape of the repeller 7 with a curved repeller surface 7 'with radii of curvature r 1 , r 2 u which are different in both directions and a lens system 8 which is matched thereto.
  • the lenses 9 used in the spectrometer between the monochromator 1 and analyzer 2 10 have an elongated lens profile with blunted corners, as can be seen in Fig. 2.
  • the lenses 8 of the emission system have an analog profile.
  • the current in the sample position and at the detector function of the energy width ⁇ E half-value width was measured in direct penetration (see FIG. 3).
  • the energy of the electrons on the sample was kept fixed at 5 eV.
  • the energy resolution of the monochromator and analyzer was the same in each case.
  • the g factor resulting from the curve is 3.5 ⁇ 10 -6 A / (eV) 5/2 .
  • a maximum resolution of ⁇ E min 5 meV was achieved.
  • Table 1 shows that, as a result of the described invention, resolutions in the range of 5 meV with acceptable current (g factor) were realized for the first time.
  • the invention enables the use of particularly simple to manufacture cylindrical capacitors as energy-dispersive elements without loss of current and resolution.

Description

Die Erfindung bezieht sich auf ein Verfahren zur Elektronenstrahl-Untersuchung, insbesondere von Festkörpern, bei dem die von einem Emissionssystem kathodisch emittierten und elektronenoptisch gebündelten Elektronen zumindest einer Energieselektion in einer Zylinderkondensator-Ablenkeinheit unterworfen und abschließend mit einem Detektor nachgewiesen werden. Sie umfaßt ferner ein Elektronenstoßspektrometer zur Durchführung des Verfahrens mit elektrostatischen Zylinderkondensator-Ablenkeinheiten als energiedispersive Einheiten, das insbesondere für Stoßenergien zwischen 1 und 1000 eV konzipiert ist.The invention relates to a method for electron beam analysis, in particular of solid bodies, in which the electrons cathodically emitted and electron-optically bundled by an emission system are subjected to at least one energy selection in a cylinder capacitor deflection unit and are subsequently detected with a detector. It also includes an electron impact spectrometer for performing the method with electrostatic cylindrical capacitor deflection units as energy-dispersive units, which is designed in particular for impact energies between 1 and 1000 eV.

Elektronenstoßspektrometer (auch »Elektronen-Energieveriust-Spektrometer« oder abgekürzt »Elektronenspektrometer« genannt) werden zur Analyse von Gasen und Festkörpern verwendet, wobei die relevante Information in Form charakteristischer Energieverluste nach Stoß der Elektronen mit Gasmolekülen oder einer Festkörperprobe erhalten wird In neuerer Zeit ist die Anwendung zur Aufnahme von Schwingungsspektren von Adsorbaten und damit der Einsatz in der Katalyseforschung von besonderem Interesse. Dazu muß die Energieauflösung der verwendeten Spektrometer im Bereich von ΔE=5-10 meV liegen. Insbesondere bei dieser Anwendung wird ein möglichst hoher Strom bei gegebener Auflösung ΔE angestrebt.Electron impact spectrometers (also known as "electron energy loss spectrometers" or abbreviated "electron spectrometers") are used for the analysis of gases and solids, whereby the relevant information is obtained in the form of characteristic energy losses after the electrons are impacted with gas molecules or a solid sample Application for recording vibration spectra of adsorbates and thus the use in catalysis research of particular interest. To do this, the energy resolution of the spectrometers used must be in the range of ΔE = 5-10 meV. In this application in particular, the highest possible current is sought for a given resolution ΔE.

Es ist ein besonderes Charakteristikum solcher Untersuchungen, daß hierbei der wesentliche Teil der Elektronen von der Probe spiegelnd reflektiert werden. Dies gilt auch für solche Elektronen, die durch Anregung von Adsorbatschwingungen Energieverluste erlitten haben (H. Ibach, J. Vac. Sci. Technol. 9, 713 (1972) und E. Evans and D. L. Mills, Phys. Rev. B5, 4126 (1972)). Aufgrund dieser physikalischen Gegebenheiten wird durch die Anwesenheit der Probe - abgesehen von einer Strahlumlenkung - der Strahlengang im Hinblick auf die Fokussierungsbedingungen nicht beeinflußt und der Vergleich verschiedenartiger Spektrometer kann durch Vergleich ihrer Eigenschaften in direktem Durchschuß ohne Anwesenheit der Probe erfolgen.It is a special characteristic of such examinations that the essential part of the electrons are reflected by the specimen. This also applies to electrons that have lost energy due to excitation of adsorbate vibrations (H. Ibach, J. Vac. Sci. Technol. 9, 713 (1972) and E. Evans and DL Mills, Phys. Rev. B5, 4126 ( 1972)). Due to these physical conditions, the presence of the sample - apart from a beam deflection - does not affect the beam path with regard to the focusing conditions and the comparison of different types of spectrometers can be done by comparing their properties in direct penetration without the presence of the sample.

Es ist bekannt, daß der Strom durch Raumladungseffekte begrenzt wird (H. Ibach, Applications of Surf. Sci. 1, 1 (1979)). Dadurch ergibt sich eine Abhängigkeit des transmittierten Stromes am Detektor 10 proportional zu ΔE5/2. Verschiedene Ausführungsformen elektrostatischer Elektronenstoßspektrometer unterschieden sich in dem erzielten Vorfaktor g der Gleichung

Figure imgb0001
der zugleich ein Maß für die Güte des Spektrometers darstellt. Bei Einstellung der höchstmöglichen Auflösung wird ein zusätzlicher Abfall des transmittierten Stromes durch verstärkte Bildfehler bei niedrigen Elektronenenergien bedingt. Die erzielbare Auflösung ΔEmin (üblicherweise gemessen als Energiebreite bei halbem Signalstrom; englisch »FWHM«), bei der der Strom noch Gleichung (1) folgt, ist deshalb ebenfalls ein Maß für die Spektrometerqualität.It is known that the current is limited by space charge effects (H. Ibach, Applications of Surf. Sci. 1, 1 (1979)). This results in a dependency of the transmitted current at the detector 1 0 proportional to ΔE5 / 2. Different embodiments of electrostatic electron impact spectrometers differed in the pre-factor g obtained in the equation
Figure imgb0001
which also represents a measure of the quality of the spectrometer. If the highest possible resolution is set, an additional drop in the transmitted current is caused by increased image errors at low electron energies. The achievable resolution ΔE min (usually measured as the energy width at half the signal current; English »FWHM«), at which the current still follows equation (1), is therefore also a measure of the spectrometer quality.

Elektronenstoßspektrometer für die beschriebenen Anwendungen sind mit verschiedenartigen energiedispersiven Elementen realisiert worden. Insbesondere sind Zylinderkondensatoren, Kugelkondensatoren und sogenannte Zylinderspiegel bekannt geworden. Die entsprechenden Werte für g und die beste erzielte Halbwertsbreite (als Maß für die Auflösung) sind, soweit in bisherigen Arbeiten Angaben über den Strom am Detektor gemacht wurden, in der nachfolgenden Tabelle aufgeführt.

Figure imgb0002
Electron impact spectrometers for the applications described have been implemented using various energy-dispersive elements. In particular, cylindrical capacitors, spherical capacitors and so-called cylinder mirrors have become known. The corresponding values for g and the best half-width achieved (as a measure of the resolution) are listed in the table below, provided information on the current at the detector has been made in previous work.
Figure imgb0002

Danach werden mit Kugelkondensator- oder Zylinderspiegel-Ablenkeinheiten besonders hohe Auflösungen erzielt. Da jedoch Fertigung und Handhabung von Zylinderkondensator-Ablenkeinheiten erheblich einfacher sind, ist es die Aufgabe der Erfindung, Elektronenstoßspektrometer mit Zylinderkondensator-Ablenkeinheiten so zu verbessern, daß günstigere Werte für g und ΔEmin erhalten werden.Then particularly high resolutions are achieved with spherical capacitor or cylindrical mirror deflection units. However, since the manufacture and handling of cylinder capacitor deflection units are considerably simpler, it is the object of the invention to improve electron impact spectrometers with cylinder capacitor deflection units in such a way that more favorable values for g and ΔE min are obtained.

Dieses Ziel wird erfindungsgemäß durch ein Verfahren der eingangs genannten Art erreicht, das dadurch gekennzeichnet ist, daß die Elektronen in der Ebene senkrecht zur Zylinderkondensatorachse auf die Eintrittsblende (3 bzw. 3') des Kondensators (1 bzw. 2) fokussiert werden, während parallel zur Zylinderkondensatorachse eine Fokussierung auf den Detektor (12) erfolgt.This aim is achieved according to the invention by a method of the type mentioned at the outset, which is characterized in that the electrons in the plane perpendicular to the cylinder capacitor axis are focused on the inlet diaphragm (3 or 3 ') of the capacitor (1 or 2) while parallel the cylinder capacitor axis is focused on the detector (12).

Eine solche Strahlführung aufweisende Eiektronenstoßspektrometer mit einem eine Kathode und ein Lindensystem umfassenden Emissionssystem für einen auf die Eingangsblende des Monochromators fokussierten Elektronenstrom, der in den Zylinderkondensator-Monochromator zur Energieselektion der Elektronen eintritt, die vom Monochromator gebündelt herkommend auf die Probe fallen und nach Reflexion an derselben über ein Linsensystem in einen Zylinderkondensator-Analysator gelangen und nach Energieselektion und Durchgang durch die Ausgangsblende des Analysators auf einen Detektor auftreffen, sind somit gekennzeichnet durch ein senkrecht beziehungsweise parallel zur Monochromator-Zylinderachse derart unterschiedlich gestaltetes Emissionssystem, daß die Elektronen senkrecht zur Zylinderachse in bekannter Weise auf die Eingangsblende des Monochromators zu fokussiert werden, während parallel zur Zylinderachse eine Fokussierung auf den Detektor erfolgt, sowie durch ein Linsensystem zwischen Monochromator und Analysator mit fokussierender Wirkung senkrecht zur Zylinderachse, dagegen ohne fokussierende Wirkung parallel zur Zylinderachse.Such a beam guidance electron impact spectrometer with an emission system comprising a cathode and a linden system for an electron current focused on the input aperture of the monochromator, which enters the cylindrical capacitor monochromator for energy selection of the electrons, which come from the monochromator and fall onto the sample after reflection and after reflection on the same Via a lens system in a cylinder capacitor analyzer and after energy selection and passage through the output aperture of the analyzer hit a detector, are characterized by a differently designed emission system perpendicular or parallel to the monochromator cylinder axis in such a way that the electrons perpendicular to the cylinder axis in a known manner to be focused on the input aperture of the monochromator while focusing on the detector parallel to the cylinder axis, and by means of a lens system between the monochrome ator and analyzer with a focusing effect perpendicular to the cylinder axis, but without a focusing effect parallel to the cylinder axis.

Vorzugsweise umfaßt das Emissionssystem zu diesem Zweck einen Repeller an der Kathode, dessen fokussierend wirkende Fläche unterschiedliche Krümmungsradien parallel und senkrecht zur Monochromator-Zylinderachse aufweist, wobei der Radius des Krümmungsprofils in der durch die Monochromator-Zyiinderachse gehenden Ebene größer ist als senkrecht dazu.For this purpose, the emission system preferably comprises a repeller on the cathode, the focusing surface of which has different radii of curvature parallel and perpendicular to the monochromator cylinder axis, the radius of the curvature profile being greater in the plane passing through the monochromator cylinder axis than perpendicular to it.

Ferner ist vorzugsweise die Höhe h der Schlitze in den Eingangs- und Ausgangsblenden größer als die Wurzel aus Bahnradius r und Schlitzbreite s.Furthermore, the height h of the slots in the inlet and outlet panels is preferably greater than the root of the path radius r and slot width s.

Durch die Erfindung wird der systembedingte Nachteil von Zylinderkondensatoren, der darin besteht, daß diese energiedispersiven Elemente nur in einer Ebene fokussieren, ausgeglichen. Dadurch werden die, wie im Ausführungsbeispiel dargelegt, erzielten Werte für g und ΔEmin besser als bei den bisher bekannt gewordenen Konstruktionen, wobei als zusätzlicher Vorteil die vergleichsweise einfache Fertigung von Zylinderkondensatorsystemen zum Tragen kommt.The system-related disadvantage of cylindrical capacitors, which consists in the fact that these energy-dispersive elements focus only in one plane, is compensated for by the invention. As a result, the values for g and ΔE min achieved, as explained in the exemplary embodiment, are better than in the constructions which have hitherto become known, the additional advantage being the comparatively simple manufacture of cylinder capacitor systems.

Zur näheren Erläuterung der Erfindung wird zunächst anhand von Fig. 4 die Funktion der typischen Bauelemente eines Elektronenstoßspektrometers beschrieben:

  • Elektronenstcßspektrometer enthalten mindestens je ein energiedispersives System als Morechromator 1 und als Analysator 2. Solche energiedispersiven Systeme sind selbstfokussierend, das seißt Elektronen der erwünschten Energie werden von der Eintrittsblende 3, 3' auf die Austrittsblende 4, 4' abgebildet. Im Falle von Zylinderkondensatoren als energiedispersive Elemente sind Ein- und Ausgangsblende üblicherweise in der Form von Längsschlitzen (»Schlitzblenden«) ausgebildet und die Selbstfokussierung erfolgt nur in der Ebene senkrecht zur Zylinderachse, (Aufsichtebene in Fig. 4; im folgenden als Spektrometerebene bezeichnet.)
For a more detailed explanation of the invention, the function of the typical components of an electron impact spectrometer is first described with reference to FIG. 4:
  • Electron impact spectrometers each contain at least one energy-dispersive system as a Morechromator 1 and as an Analyzer 2. Such energy-dispersive systems are self-focusing, that is, electrons of the desired energy are imaged from the entrance aperture 3, 3 'to the exit aperture 4, 4'. In the case of cylinder capacitors as energy-dispersive elements, the input and output diaphragms are usually designed in the form of longitudinal slits (“slit diaphragms”) and self-focusing takes place only in the plane perpendicular to the cylinder axis (view plane in Fig. 4; hereinafter referred to as the spectrometer plane).

Ein Elektronenstoßspektrometer enthält ferner ein - im folgenden als Emissionssystem bezeichnetes - geeignetes System zur Strahlerzeugung 5 (mit emittierender Kathode 6, Repeller 7 und gegebenenfalls Fokussierungselementen 8), sowie ein Linsensystem 9 beziehungsweise 10 zwischen Monochromator 1 und Probe 11 beziehungsweise Probe 11 und Analysator 2, weiches der Strahlführung dient sowie der Abbildung der (im übrigen am Target 11 reflektierten) Elektronen vom Austrittsspalt 4 des Monochromators 1 in den Eintrittsspalt 3' des Analysators 2. Der Nachweis der Elektronen erfolgt abschließend im Detektor 12.13 bezeichnet eine Versorgungseinheit.An electron impact spectrometer also contains a system for beam generation 5 (hereinafter referred to as an emission system) (with an emitting cathode 6, repeller 7 and possibly focusing elements 8), and a lens system 9 or 10 between monochromator 1 and sample 11 or sample 11 and analyzer 2, This serves to guide the beam and to image the electrons (otherwise reflected on the target 11) from the exit slit 4 of the monochromator 1 into the entry slit 3 'of the analyzer 2. The electrons are then detected in the detector 12.13, which denotes a supply unit.

Bei den bisher bekannt gewordenen Elektronenstoßspektrometern auf der Basis von Zylinderkondensatoren sind Emissionssystem und Linsensystem entweder zirkularsymmetrisch zur Strahlachse ausgebildet worden (D. Roy und J. Carette in »Electron spectroscopy for surface analysis«, ed. by H. Ibach, Springer 1977) oder aber es wurde auf jede Fokussierung senkrecht zu der in Fig. 4 gezeichneten Ebene verzichtet (N. Propst und Th. C. Piper, J. Vac. Sci. Technology 4, 53 (1967) und H. lbaαh, J. Vac. Sci. Technology 9, 713 (1972)).In the previously known electron impact spectrometers based on cylindrical capacitors, the emission system and lens system were either circularly symmetrical to the beam axis (D. Roy and J. Carette in "Electron spectroscopy for surface analysis", ed. By H. Ibach, Springer 1977) or else any focusing perpendicular to the plane drawn in FIG. 4 was dispensed with (N. Propst and Th. C. Piper, J. Vac. Sci. Technology 4, 53 (1967) and H. lbaαh, J. Vac. Sci. Technology 9, 713 (1972)).

Beide vorbenannten Bauformen sind offensichtlich der Eigentümlichkeit der Zylinderkondensatoren, nur in der Ebene senkrecht zur Zylinderachse zu fokussieren, nicht optimal angepaßt:

  • Beim zirkularsymmetrischen System kann zum Beispiel durch geeignete Wahl der Spannungen ein Fokus der Kathode in den Eintrittsspalt des Monochromators gelegt werden. Offensichtlich entsteht dann aber wegen der Zirkularsymmetrie ein Bündel, welches nach dem Fokus nicht nur in der Spektrometerebene, sondern auch senkrecht dazu divergiert. Da der Zylinderkondensator senkrecht zur Spektrometerebene nicht fokussiert, geht der überwiegende Teil der Elektronen der Nutzung im Detektor verloren. Entsprechendes gilt für die weiteren abbildenden Einheiten. Der Verzicht auf jede abbildende Wirkung senkrecht zu der aus Fig. 4 ersichtlichen Spektrometerebene führt offensichtlich ebenfalls zu großen Verlusten.
Both of the above-mentioned designs are obviously not optimally adapted to the peculiarities of the cylinder capacitors, focusing only in the plane perpendicular to the cylinder axis:
  • In the case of the circularly symmetrical system, for example, a suitable choice of the voltages allows a focus of the cathode to be placed in the entry gap of the monochromator. Obviously, however, because of the circular symmetry, a bundle arises which, after the focus, not only diverges in the spectrometer plane, but also perpendicular to it. Since the cylindrical capacitor does not focus perpendicular to the spectrometer level, the majority of the electrons are lost in the detector. The same applies to the other imaging units. Dispensing with any imaging effect perpendicular to the spectrometer plane shown in FIG. 4 obviously also leads to great losses.

Gemäß der Erfindung wird dem gegenüber durch die oben definierte Ausbildung de Emissionssystems senkrecht zur Spektrometerebene praktisch ein Parallelstrahlenbündel gebilde wobei im übrigen Linsensysteme verwendet werden, die in der Spektrometerebene den Austrittsspa des Monochromators auf den Eintrittsspalt des Analysators abbilden, senkrecht zur Spektrometerebe ne den Strahl jedoch nicht beeinflussen, wodurch der vom Kathodensystem in dieser Richtung ir Detektor ausgebildete Fokus unbeeinflußt bleibt.According to the invention, in contrast to that defined by the above-defined design of the emission system perpendicular to the spectrometer plane, a parallel beam is formed, with the rest of the lens systems used, which map the exit spa of the monochromator to the entrance slit of the analyzer in the spectrometer plane, but not the beam perpendicular to the spectrometer plane influence, whereby the focus formed by the cathode system in this direction in the detector remains unaffected.

Offensichtlich ist ein solches Emissions- und Linsensystem den Abbildungseigenschaften vo Zylinderkondensatoren in optimaler Weise angepaßt. Die entsprechenden Eigenschaften vo Emissionssystem und Linsensystem werden erfindungsgemäß durch eine entsprechende Gestaltun der Elektroden erzielt.Obviously, such an emission and lens system is optimally adapted to the imaging properties of cylindrical capacitors. According to the invention, the corresponding properties of the emission system and lens system are achieved by a corresponding design of the electrodes.

Die vorgeschriebene Strahlführung führt nun nicht nur - wie vorstehend dargelegt - zu eine guten Stromausbeute am Detektor, sondern sie bringt auch Vorteile für die Auflösung des System: Die energetische Auflösung eines Zylinderkondensators ist gegeben durch

Figure imgb0003
wobei s und h Schlitzbreite und -höhe von Eingangs- und Ausgangsblende (3, 3' und 4,4' in Fig. 4), r d Radius des Zylinderkondensators, E die Energie der Elektronen im Zylinderkondensator (1, 2) und α d Winkeldivergenz senkrecht zur Zylinderachse sind. Der zweite Term der Gleichung ergibt sich, wer Strahlen den Zylinderkondensator derart durchsetzen, daß sie von einem Punkt am oberen Rand de Eingangsschlitzes (3) zu einem Punkt am unteren Rand des Ausgangsschlitzes (4) gelangen könne Durch die erfindungsgemäße Strahlführung werden solche Elektronenbahnen ausgeschlosse wodurch der zweite Term entfällt mit dem Resultat einer entsprechend verbesserten Auflösung b gegebener Energie der Elektronen im Monochromator. Da, wie dem Fachmann bekannt ist, die: Energie nicht beliebig erniedrigt werden kann infolge der örtlichen Inhomogenität d Oberflächenpotentials, bedeutet der Wegfall des Terms 2 in Gleichung (2) auch einen grundsätzliche Vorteil im Hinblick auf die maximal erzielbare Auflösung. Dieser theoretische Befund läßt sie experimentell bestätigen. Zur Erzielung einer maximalen Auflösung sollten im übrigen loka Inhomogenitäten des Oberflächenpotentials möglichst klein gehalten werden. Dazu wurden t einigen bisher bekanntgewordenen Spektrometern zusätzlich Ausheizvorrichtungen oder Beschic tungen mit Edelmetallen vorgesehen (Phys. Rev. 173, 222 (1968)). Zur Vermeidung von Aufladungen d Elektroden und zur Reduktion der Sekundärelektronenproduktion ist ferner die Beschichtung n Acetylenruß bekanntgeworden (J. A. Prested, J. Phys. E. Scientific Instruments 6, 661 (1973)).The prescribed beam guidance not only leads to a good current yield at the detector, as explained above, but also brings advantages for the resolution of the system: The energetic resolution of a cylinder capacitor is given by
Figure imgb0003
where s and h slot width and height of the input and output diaphragm (3, 3 'and 4,4' in Fig. 4), rd radius of the cylindrical capacitor, E the energy of the electrons in the cylindrical capacitor (1, 2) and α d angular divergence are perpendicular to the cylinder axis. The second term of the equation results from who beams pass through the cylindrical capacitor in such a way that they can get from a point on the upper edge of the input slot (3) to a point on the lower edge of the output slot (4) the second term is omitted with the result of a correspondingly improved resolution b of the given energy of the electrons in the monochromator. Since, as is known to the person skilled in the art, the: energy cannot be reduced arbitrarily as a result of the local inhomogeneity of the surface potential, the omission of term 2 in equation (2) also means a fundamental advantage with regard to the maximum achievable resolution. This theoretical finding allows them to be confirmed experimentally. In order to achieve maximum resolution, local inhomogeneities in the surface potential should be kept as small as possible. For this purpose, in some spectrometers that have become known, additional heating devices or coatings with precious metals have been provided (Phys. Rev. 173, 222 (1968)). To avoid charging the electrodes and to reduce secondary electron production, the coating n acetylene black has also become known (JA Prested, J. Phys. E. Scientific Instruments 6, 661 (1973)).

Eine solche Beschichtung mit Kohlenstoff erweist sich auch beim erfindungsgemäß Spektrometer als zweckmäßig, wobei überraschenderweise ein besonders günstiges Verhalten d Systems erreicht wird, wenn die Kohlenstoffbeschichtung in der Form von Graphit vorgesehen wii wie sie insbesondere durch Tauchen der Elektroden in e.ine Suspension von kolloidalem Graphit u kurzzeitiges »Aufbacken« der Beschichtung erhalten wird.Such a coating with carbon also proves to be expedient in the spectrometer according to the invention, and surprisingly a particularly favorable behavior of the system is achieved if the carbon coating is provided in the form of graphite, such as, in particular, by immersing the electrodes in a suspension of colloidal graphite u brief "baking" of the coating is obtained.

Nachfolgend wird die Erfindung an Hand eines Ausführungsbeispiels unter Bezugnahme auf angeführten Zeichnungen beschrieben; es zeigt schematisch:

  • Fig. 1 ein Emissionssystem;
  • Fig. 2 dessen Linsenprofil;
  • Fig. 3 Kurven für den gemessenen Strom am Detektor in Abhängigkeit von der Energiebreite ΔE; u
  • Fig. 4 den Aufbau eines Spektrometers;
The invention is described below using an exemplary embodiment with reference to the drawings; it shows schematically:
  • 1 shows an emission system;
  • Fig. 2 whose lens profile;
  • 3 curves for the measured current at the detector as a function of the energy width ΔE; u
  • 4 shows the structure of a spectrometer;

Das in Fig.4 skizzierte und oben beschriebene Elektronenstoßspektrometer umfaßt Emissionssystem, dessen verschiedene Fokallängen durch entsprechende Formgebung ( Elektroden realisiert werden, wie sie aus Fig. 1 ersichtlich ist, die oben einen Vertikalschnitt u darunter einen Horizontalschnitt durch das System zeigt. Man erkennt deutlich die unterschiedlic Ausbildung in den beiden Richtungen, insbesondere die spezielle Gestalt des Repellers 7 mit eii gekrümmten Repellerfläche 7' mit in beiden Richtungen unterschiedlichen Krümmungsradien r1, r2 u ein darauf abgestimmtes Linsensystem 8. Die im Spektrometer zwischen Monochromator 1 u Analysator 2 verwendeten Linsen 9,10 haben ein längliches Linsenprofil mit abgestumpften Ecken, v es aus Fig. 2 ersichtlich ist. Ein analoges Profil haben die Linsen 8 des Emissionssystems.The electron impact spectrometer sketched in FIG. 4 and described above comprises an emission system, the different focal lengths of which are realized by appropriate shaping (electrodes as can be seen in FIG. 1), which shows a vertical section above and a horizontal section through the system below different designs in the two directions, in particular the special shape of the repeller 7 with a curved repeller surface 7 'with radii of curvature r 1 , r 2 u which are different in both directions and a lens system 8 which is matched thereto. The lenses 9 used in the spectrometer between the monochromator 1 and analyzer 2 10 have an elongated lens profile with blunted corners, as can be seen in Fig. 2. The lenses 8 of the emission system have an analog profile.

Bei dem gewählten Beispiel beträgt der Radius der Zylinderkondensatoren r=35 mm und Schlitzbreite s=0,15 mm (√r·s≃2,3 mm). Für Untersuchungen an einkristallinen Proben begrenz Größe wurde als Schlitzhöhe h=4 mm gewählt. Die Winkelhalbwertsbreite ist α=3°. Zur Prüfung Eigenschaften des Spektrometers wurde der Strom in der Probenposition und am Detektor Funktion der Energiebreite ΔE (Halbwertsbreite) im direkten Durchschuß gemessen (siehe Fig. 3). Energie der Elektronen an der Probe wurde dabei fest auf 5 eV gehalten. Die Energieauflösung Monochromator beziehungsweise Analysator war jeweils gleich.In the selected example, the radius of the cylindrical capacitors is r = 35 mm and the slot width s = 0.15 mm (√r · s≃2.3 mm). For investigations on single-crystal specimens of limited size, the slit height h = 4 mm was selected. The angular half width is α = 3 °. To test the properties of the spectrometer, the current in the sample position and at the detector function of the energy width ΔE (half-value width) was measured in direct penetration (see FIG. 3). The energy of the electrons on the sample was kept fixed at 5 eV. The energy resolution of the monochromator and analyzer was the same in each case.

Wie aus Fig. 3 ersichtlich ist, folgt der Strom am Detektor der theoretischen Beziehung (Gleicht 1), ohne daß selbst bei ΔE=5 meV eine verschlechterte Abbildung durch Abweichung von d theoretischen Potenzgesetz offensichtlich ist. Der sich aus der Kurve ergebende g Faktor betr 3,5 · 10-6 A/(eV)5/2. Eine maximale Auflösung von ΔEmin=5 meV wurde erzielt. Der Vergleich Tabelle 1 zeigt, daß als Folge der beschriebenen Erfindung erstmals Auflösungen im Bereich von 5 meV mit akzeptablem Strom (g Faktor) realisiert wurde. Ferner ermöglicht die Erfindung die Verwendung von besonders einfach zu fertigenden Zylinderkondensatoren als energiedispersive Elemente ohne Verlust an Strom und Auflösung.As can be seen from FIG. 3, the current at the detector follows the theoretical relationship (equals 1), without a deteriorated image due to deviation from the theoretical power law being obvious even at ΔE = 5 meV. The g factor resulting from the curve is 3.5 · 10 -6 A / (eV) 5/2 . A maximum resolution of ΔE min = 5 meV was achieved. The comparison Table 1 shows that, as a result of the described invention, resolutions in the range of 5 meV with acceptable current (g factor) were realized for the first time. Furthermore, the invention enables the use of particularly simple to manufacture cylindrical capacitors as energy-dispersive elements without loss of current and resolution.

Claims (7)

1. Method for electron-beam analysis, especially of solid bodies in which the electrons, which are cathodically emitted from an emission system, and are electron-optically bundled, are subjected to at least one energy-selection in a cylinder condenser deflection unit and are finally detected by means of a detector, characterised in that the electrons are focussed onto the entry aperture (3 or 3') of the condenser (1 or 2) in the plane normal to the axis of the cylinder condenser, while a focussing onto the detector (12) takes place parallel to the axis of the cylinder condenser.
2. Electron-impact spectrometer for carrying out the method according to claim 1, with an emission system, comprising a cathode and a lens system, for a stream of electrons which is focussed onto the entry aperture of the monochromator, this stream of electrons entering the cylinder condenser monochromator for energy selection of the electrons, and in which spectrometer the selected electrons arriving bundled from the monochromator fall on the specimen and, after reflection at the specimen, enter a cylinder condenser analyser via a lens system, and, following energy-selection and passage through the exit aperture of the analyser, strike a detector, characterised by an emission system (6, 8) which is differently formed normal and parallel to the cylinder-axis of the monochromator in such a way that normal to the cylinder-axis the electrons are focussed onto the entry aperture (3) of the monochromator (1), while a focussing effect onto the detector (12) takes place parallel to the cylinder-axis, this spectrometer also being characterised by a lens system (9, 10) between monochromator (1) and analyser (2), this lens system having a focussing effect normal to the cylinder-axis, but no focussing effect parallel to this axis.
3. Electron-impact spectrometer according to claim 2, characterised by a repeller (7) at the cathode (6), the surface (7') of this repeller having a focussing effect exhibiting dissimilar radii of curvature (ri, r2) parallel to and normal to the cylinder-axis of the monochromator, the radius r1 of the curvature-profile in the plane passing through the cylinder-axis of the monochromator being greatei than the radius in the plane normal to this axis.
4. Electron-impact spectrometer according to claim 2 or 3, characterised in that the height h of the slits in the entry and exit apertures (3, 3', 4, 4') is greater than the square root of the product of the path-radius r and the slit-width s.
5. Electron-impact spectrometer according to one of claims 2 to 4, characterised in that the element: involved in guiding the beam possess a carbon coating.
6. Electron-impact spectrometer according to claim 5, characterised in that the elements involved ir guiding the beam, which possess a carbon coating, comprise the apertures (3, 3', 4,4'), the lenses (7 tc 10) and the deflecting plates of the condensers (1, 2).
7. Process for manufacturing elements involved in guiding the beam in an electron-impaci spectrometer according to claim 5 or 6, characterised in that these elements are dipped into ε suspension of colloidal graphite.
EP79105288A 1978-12-27 1979-12-20 Electron beam investigation process and electron impact spectrometer therefor Expired EP0013003B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE2856244 1978-12-27
DE19782856244 DE2856244A1 (en) 1978-12-27 1978-12-27 ELECTRONIC SHOCK SPECTROMETER

Publications (2)

Publication Number Publication Date
EP0013003A1 EP0013003A1 (en) 1980-07-09
EP0013003B1 true EP0013003B1 (en) 1982-12-08

Family

ID=6058440

Family Applications (1)

Application Number Title Priority Date Filing Date
EP79105288A Expired EP0013003B1 (en) 1978-12-27 1979-12-20 Electron beam investigation process and electron impact spectrometer therefor

Country Status (4)

Country Link
US (1) US4300045A (en)
EP (1) EP0013003B1 (en)
JP (1) JPS5590848A (en)
DE (2) DE2856244A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8322017D0 (en) * 1983-08-16 1983-09-21 Vg Instr Ltd Charged particle energy spectrometer
US4659926A (en) * 1984-05-23 1987-04-21 Indiana University Foundation High resolution particle spectrometer
US4742223A (en) * 1984-05-23 1988-05-03 Indiana University Foundation High resolution particle spectrometer
US4559449A (en) * 1984-05-23 1985-12-17 Indiana University Foundation High resolution particle spectrometer
GB8604256D0 (en) * 1986-02-20 1986-03-26 Univ Manchester Electron spectrometer
DE3702696A1 (en) * 1987-01-30 1988-08-11 Kernforschungsanlage Juelich METHOD FOR ELECTRON BEAM GUIDANCE WITH ENERGY SELECTION AND ELECTRON SPECTROMETER
FR2666171B1 (en) * 1990-08-24 1992-10-16 Cameca HIGH TRANSMISSION STIGMA MASS SPECTROMETER.
JP3514070B2 (en) * 1997-04-25 2004-03-31 株式会社日立製作所 Scanning electron microscope
WO2008048246A2 (en) * 2005-09-30 2008-04-24 Hazardscan, Inc. Multi-energy cargo inspection system based on an electron accelerator

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE442068A (en) * 1940-07-03
US3313936A (en) * 1964-01-06 1967-04-11 Varian Associates Low energy electron diffraction apparatus having three concentric tubular focusing elctrodes
US3480774A (en) * 1967-05-26 1969-11-25 Minnesota Mining & Mfg Low-energy ion scattering apparatus and method for analyzing the surface of a solid
US3806728A (en) * 1970-05-27 1974-04-23 C Lindholm Electron impact spectrometer with an improved source of monochromatic electrons
NL7301496A (en) * 1973-02-02 1974-08-06
NL7317436A (en) * 1973-12-20 1975-06-24 Philips Nv DEVICE FOR MASS ANALYSIS AND STRUCTURE ANALYSIS OF A SURFACE LAYER BY MEANS OF ION SCREENING.
JPS5117439A (en) * 1974-08-02 1976-02-12 Ono Gijutsu Kenkyusho Jugen Genzoekitono shunotanku
US3980919A (en) * 1974-12-20 1976-09-14 Watkins-Johnson Company Rectangular beam laminar flow electron gun
US4126782A (en) * 1976-02-09 1978-11-21 Hitachi, Ltd. Electrostatic charged-particle analyzer

Also Published As

Publication number Publication date
DE2856244A1 (en) 1980-07-03
US4300045A (en) 1981-11-10
EP0013003A1 (en) 1980-07-09
DE2964232D1 (en) 1983-01-13
JPS5590848A (en) 1980-07-09

Similar Documents

Publication Publication Date Title
DE2223367C3 (en) Micro-beam probe for the quantitative detection of charged secondary particles
DE102015007027A1 (en) Improved imaging mass spectrometry method and apparatus
DE102016009641B4 (en) Detector and slit configuration in an isotopic ratio mass spectrometer
DE112011102323B4 (en) Ion detection arrangement
DE19838600B4 (en) Energy filter and electron microscope with energy filter
DE102018007455A1 (en) Process for detector alignment when imaging objects using a multi-beam particle microscope
EP3712924B1 (en) Device and method for electron transfer from a sample to an energy analyser and an electron spectrometer device
EP0617451A1 (en) Imaging electron energy filter
DE1798021A1 (en) Microanalysis device
EP1995758B1 (en) Monochromator and charged particle beam source with monochromator
EP1252646A1 (en) Method for detecting geometrical-optical aberrations
WO2001082330A1 (en) Electron/ion gun for electron or ion beams with high monochromasy or high current density
EP0013003B1 (en) Electron beam investigation process and electron impact spectrometer therefor
EP3392650A1 (en) Device and method for spectroscopic analysis
DE19929185A1 (en) Device and method for energy and angle resolved electron spectroscopy
DE102020123567A1 (en) Multiple Particle Beam System with Contrast Correction Lens System
DE3045013C2 (en)
EP1559126B9 (en) Energy filter image generator for electrically charged particles and the use thereof
DE102016009809A1 (en) QUANTITATIVE MEASUREMENTS OF ELEMENT AND MOLECULE SPECIES USING MASS SPECTROMETRY WITH HIGH MASS RESOLUTION
DE102019202838A1 (en) Beam irradiation device
EP0276731B1 (en) Method for electron beam guidance with energy selection, and electron spectrometer
DE102020104151B3 (en) Imaging device for electrons and an imaging method for reducing the background signal in imaging electron-optical devices
DE2922128C2 (en)
DE1598657C3 (en) Pulse mass spectrometer
DE19860988B4 (en) Energy filter for electron microscope

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): DE FR GB NL

17P Request for examination filed

Effective date: 19801030

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): DE FR GB NL

REF Corresponds to:

Ref document number: 2964232

Country of ref document: DE

Date of ref document: 19830113

ET Fr: translation filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19931014

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19931206

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19931231

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19940128

Year of fee payment: 15

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19941220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19950701

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19941220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19950831

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19950701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19950901

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT