EP0011037B1 - Procédé de gazéification et gazogène - Google Patents

Procédé de gazéification et gazogène Download PDF

Info

Publication number
EP0011037B1
EP0011037B1 EP79400809A EP79400809A EP0011037B1 EP 0011037 B1 EP0011037 B1 EP 0011037B1 EP 79400809 A EP79400809 A EP 79400809A EP 79400809 A EP79400809 A EP 79400809A EP 0011037 B1 EP0011037 B1 EP 0011037B1
Authority
EP
European Patent Office
Prior art keywords
chamber
gases
matters
materials
recycled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP79400809A
Other languages
German (de)
English (en)
Other versions
EP0011037A1 (fr
Inventor
Jean Marie Lucas
Jean-François Molle
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Centre National du Machinisme Agricole du Genie Rural des Eaux et des Forets CEMAGREF
Original Assignee
Centre National du Machinisme Agricole du Genie Rural des Eaux et des Forets CEMAGREF
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre National du Machinisme Agricole du Genie Rural des Eaux et des Forets CEMAGREF filed Critical Centre National du Machinisme Agricole du Genie Rural des Eaux et des Forets CEMAGREF
Priority to AT79400809T priority Critical patent/ATE5419T1/de
Publication of EP0011037A1 publication Critical patent/EP0011037A1/fr
Application granted granted Critical
Publication of EP0011037B1 publication Critical patent/EP0011037B1/fr
Expired legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/002Horizontal gasifiers, e.g. belt-type gasifiers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/02Fixed-bed gasification of lump fuel
    • C10J3/20Apparatus; Plants
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/02Fixed-bed gasification of lump fuel
    • C10J3/20Apparatus; Plants
    • C10J3/30Fuel charging devices
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/58Production of combustible gases containing carbon monoxide from solid carbonaceous fuels combined with pre-distillation of the fuel
    • C10J3/60Processes
    • C10J3/64Processes with decomposition of the distillation products
    • C10J3/66Processes with decomposition of the distillation products by introducing them into the gasification zone
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/72Other features
    • C10J3/74Construction of shells or jackets
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2200/00Details of gasification apparatus
    • C10J2200/15Details of feeding means
    • C10J2200/154Pushing devices, e.g. pistons
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0913Carbonaceous raw material
    • C10J2300/0916Biomass
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0953Gasifying agents
    • C10J2300/0956Air or oxygen enriched air
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0953Gasifying agents
    • C10J2300/0959Oxygen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/18Details of the gasification process, e.g. loops, autothermal operation
    • C10J2300/1807Recycle loops, e.g. gas, solids, heating medium, water
    • C10J2300/1823Recycle loops, e.g. gas, solids, heating medium, water for synthesis gas

Definitions

  • the present invention relates to a gasification process and a gasifier for the treatment of large vegetable matter.
  • De Lacotte gasifiers have been known for a long time, for example De Lacotte gasifiers. These consist of a tower loaded from above with the materials to be treated and at the base of which the ash and the gases produced are recovered, the materials successively undergoing drying, pyrolysis and gasification.
  • Gases are recovered at the top of the gasifier, mixed with combustion air, and the very hot gases produced are reinjected into the gasifier substantially at the limit of the pyrolysis and gasification zones. Part of the gases reinjected back into the gasifier - ensuring pyrolysis and drying and taking care of tars produced by pyrolysis, these tars being removed by cracking after mixing with combustion air. The other part of the gas descends into the gasifier and ensures gasification.
  • a gasifier which comprises: a treatment chamber having a rear end and a front end; a device for supplying the chamber with materials to be treated situated at the rear end of the chamber; a mechanical drive device for advancing the materials to be treated between the rear end and the front end of the chamber; a discharge opening formed in the lower part of the chamber at the front thereof; an outlet for gases produced by gasification; a hot gas generator in front of the natural slope of materials contained in the chamber; and a recycling duct for recycling at the front of the chamber gases withdrawn through an outlet situated at the rear of the chamber, a gasifier in which, according to the invention, a suction device is placed in the duct recycling to establish a forced circulation of gases through the bed of materials and to recycle gases.
  • the oxidizing gas used can be air or oxygen.
  • oxygenation gasification with a view in particular to producing synthesis gas causes temperatures such that the ashes of plant materials, including peat, inevitably melt in the gasification zone, their melting temperature being approximately 800 ° C.
  • An advantage of the gasifier according to the invention is that in the case of combustion with air or with oxygen, the combustion gases are not injected directly into the mass of materials, but into a space free located at the front of the slope of materials and authorizing their dilution before injection.
  • the gasifier represented in FIGS. 1 to 4 essentially comprises a horizontal treatment chamber 10, a supply device 20 for supplying the chamber 10, at its rear end 10a, with materials to be treated, a feed device 21 for advancing the materials to be treated through the chamber 10, a generator 30 for supplying hot gases to the chamber 10 at its front end 1 Ob, and a recycling device 40.
  • the chamber 10 has the form of a horizontal tunnel whose side wall 11 is made of refractory material and which is extended, at the rear, by a supply chamber 22 and closed, at the front, by a front partition 1 Oc.
  • a first outlet 12 provided with a grid 12a
  • a second outlet 13 provided with a grid 13a and a discharge opening 14.
  • the outlet 12 is formed at the rear end of the floor 11 a, or in the immediate vicinity of this rear end.
  • the outlet 13 is the outlet for gases produced by the gasifier; it is formed in the middle part of the tunnel or slightly on the front side of it.
  • An outlet pipe 18 is connected to the outlet 13 and opens, at 18a, towards the rear of the gasifier, in a compartment 13b situated under the grid 13a.
  • the opening 14 is formed over the entire width of the floor 1 a at its front end. It communicates, via a vertical duct 15, with a tank 16 which is located below the chamber 11 and where the ashes are collected. materials treated in the gasifier.
  • a water seal shown diagrammatically at 17 is provided to compensate for the difference in pressures prevailing outside and inside the gasifier when the latter is in operation.
  • the supply chamber 22 is surmounted by an airlock 23 for admitting the materials to be treated.
  • a pusher or piston 21 can slide horizontally in the chamber 22 over the entire length of the latter.
  • the piston 21 is provided with a cap 21 fixed on its front face, overhanging on it.
  • the piston When the piston is in its rear extreme position (in broken lines in FIG. 2), the content of the airlock 23 can be introduced into the chamber 22.
  • the advance of the piston 21 is then controlled at a constant and slow speed equal to that to which the heat treatment of the materials is carried out in the chamber 10.
  • the materials to be treated when freshly introduced tend to rise upwards. However, this rise is limited by the cap 21a and there can be no jamming of materials to be treated between the front face of the piston and the lower front edge 23a of the airlock 23, jamming which would block the advance of the piston.
  • the piston When the piston is in its extreme front position (shown in solid lines in FIG. 2), it is quickly brought back to the rear position to allow a new loading of the chamber 22.
  • At the front of the chamber 10 opens at least one injector 31 of oxidizing gas, for example oxygen or combustion air.
  • injectors 31 Preferably, several injectors 31 form a horizontal row, at a level situated immediately above that of the floor 11 a.
  • The, or each, injector 31 is supplied by a pipe 36 coming from a heat exchanger 33.
  • the latter receives the pipe 18 and a pipe 34 for supplying cold oxidant gas, for example cold air.
  • This cold air is heated in the exchanger 33 by the calories conveyed by the gases produced by the gasifier which, cooled, are evacuated through a pipe 19.
  • each injector 31 there opens an opening 32 which is supplied with gas by a recycling conduit 41 connected to the outlet 12.
  • the assembly 31-32 is arranged to provide one. good mixture between oxidizing gas and combustible recycled gases, as in a conventional gas burner.
  • a suction device 42 constituted by a refractory fan supporting high temperatures is disposed between a conduit 43 connected to the outlet 12 and the conduit 41.
  • the conduit 43 opens, at 43a, towards the rear of the gasifier, in a compartment 12b located under the grid 12a.
  • At least one burner 35 capable of being supplied with fuel, is disposed at the rear of the chamber 10.
  • the chamber 22 being loaded and the piston 21 being in the rear position, the advance movement of the latter is controlled as soon as the drying, pyrolysis and gasification operations have started.
  • the start-up phase of the operation of the gas generator having ended, which can be seen by observing the flow of gas produced, the burner 35 is switched off.
  • the hot gases are then produced by the reaction of the gases recycled through the pipe 41 with the air or the combustion oxygen injected at the front of the chamber 10.
  • the hot combustion gases are produced at the front of the chamber 10 in a free space contained in this chamber and located in front of the natural slope formed in front of the materials contained in the chamber 10.
  • the particles of materials closest to the opening 14 are attacked by the hottest gases (approximately 1200 ° C). The carbon possibly remaining at the heart of these particles is thus reached and the rejected ashes have been completely gasified.
  • the hot gases progress from front to rear through the materials to be treated under the effect of suction by the fan 42.
  • the arrangement of the outlets 12 and 13 in the floor of the chamber 10 requires combustion gases to cross the bed of materials to be treated over its thickness and practically throughout the room.
  • the temperature of the gases gradually decreases, and reaches approximately 800 ° C. at the level of the outlet 13.
  • the gases not captured by this outlet pass, towards the rear, the pyrolysis P and drying S zones. before being taken up in the recycling conduit by outlet 12.
  • the temperature of the recycled gases is at least 500 ° C, approximately 600 to 700 ° C.
  • the temperature of the gases is relatively high.
  • the time required for these operations is therefore short.
  • the length of the drying and pyrolysis zones is therefore quite short.
  • the outlet 13 is the outlet from which the gas produced by the gasifier is taken. To avoid the presence of tars in this gas, it is desirable that the outlet 13 is located in front of the pyrolysis zone or at the limit between the latter and the gasification zone. In practice, this means that the outlet 13 is located at a distance from the opening 14, at the front of the chamber 10, between approximately L / 4 and L / 2, L denoting the distance between the rear end of the chamber 10 and opening 14.
  • the outlets 12 and 13 are formed in the floor 11 of the chamber 10.
  • the hot gases passing through the materials contained in the chamber thus necessarily come into contact with the materials located in the bottom of the chamber 10, which could not be the case if the openings 12 and 13 were located at a certain height above the floor 1 a.
  • the advance of the materials into the chamber 10 is produced by the piston 21. It will be noted that the materials entering the chamber are brought straight away to a high temperature (several hundred ° C.). The carbonization of materials is very fast. The materials to be treated therefore very quickly become brittle, in particular in the vicinity of the wall 11 which prevents any jamming of these materials which may oppose the force exerted by the piston 21.
  • the advance of the piston 21 is interrupted when 'It reaches the front of the chamber 22, this interruption only during the time necessary to return the piston 21 to its rear position and fill the chamber 22. The advance movement of the piston 21 can then immediately resume.
  • the advance speed of the piston 21 is determined as a function of the treatment speed in the chamber.
  • This treatment speed is relatively high, in the present case, because the materials to be treated are subjected to high temperatures as soon as they enter the chamber 10.
  • the processing speed is not only a function of the temperature of the gases passing through the bed of materials to be treated, but also, and above all, a function of the flow rate of the recycled gases and, thereby, the flow rate of the gases passing through the chamber 10. , a strong recycling results in a strong gas flow in the gasification zone and, consequently, in a high reaction speed.
  • the adjustment of the flow rate of recycled gases can be carried out by adjusting the position of an adjustable flap inserted in the duct 43 or by modifying the speed of the suction fan 42.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Processing Of Solid Wastes (AREA)
  • Gasification And Melting Of Waste (AREA)
  • Mattresses And Other Support Structures For Chairs And Beds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Absorbent Articles And Supports Therefor (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Manipulator (AREA)
  • Chemical And Physical Treatments For Wood And The Like (AREA)
  • Coke Industry (AREA)

Description

  • La présente invention concerne un procédé de gazéification et un gazogène pour le traitement de matières végétales grosses.
  • Dans un gazogène à lit fixe, le contact entre les matières végétales traitées et les gaz chauds de traitement est réalisé par circulation de ces gaz à travers un lit de matières. Celles-ci doivent se présenter sous forme de particules de poids suffisant pour ne pas être entraînées par les gaz chauds. Le domaine d'application du gazogène selon l'invention est donc limité aux matières végétales grosses. Pour illustrer ce que l'on entend ici par ces termes, on peut citer, à titre d'exemples non limitatifs, les bûches de bois, les coques de noix ou de noix de coco, les coques de palmiste, les bourres de noix de coco, les rafles de maïs, la tourbe, etc. D'autres matières végétales plus fines, par exemple la paille, peuvent aussi être utilisées si elles ont été préalablement agglomérées.
  • Des gazogènes à lit fixe sont connus depuis longtemps, par exemple les gazogènes De Lacotte. Ceux-ci sont constituées par une tour chargée par le haut en matières à traiter et à la base de laquelle sont récupérés les cendres et les gaz produits, les matières subissant successivement le séchage, la pyrolyse et la gazéification.
  • Des gaz sont récupérés au sommet du gazogène, mélangés à de l'air de combustion, et les gaz très chauds produits sont réinjectés dans le gazogène sensiblement à la limite des zones de pyrolyse et de gazéification. Une partie des gaz réinjectés remonte dans le gazogène, - assurant la pyrolyse et le séchage et se chargeant de goudrons produits par la pyrolyse, ces goudrons étant éliminés par cracking après le mélange à l'air de combustion. L'autre partie des gaz descend dans le gazogène et assure la gazéification.
  • Ces gazogènes connus présentent divers inconvénients.
  • En premier, le traitement est très lent et cela conduit à des gazogènes de grande taille. Ainsi, il a été réalisé des gazogènes à bois De Lacotte atteignant 20 m de haut pour un diamètre de 3 m et d'un débit de 1 T/h, 24 heures pouvant s'écouler entre le moment où une bûche est introduite en haut du gazogène et celui où les cendres de cette bûche sont récupérées en bas du gazogène. L'encombrement et le coût de construction de tels gazogènes sont prohibitifs et leur exploitation est malaisée.
  • En second lieu, il est extrêmement difficile de réaliser l'injection des gaz chauds de façon uniforme dans toute la section transversale du produit contenu dans le gazogène, au niveau où cette injection a lieu. Même si plusieurs orifices d'injection sont prévus tout autour du gazogène, il y a un refroidissement notable des gaz avant que ceux-ci parviennent au contact du produit situé au centre. Pour remédier à cela, il est connu de former un rétrécissement de la section transversale du gazogène au niveau de l'injection des gaz chauds afin de réaliser cette injection aussi près que possible de l'axe du gazogène. Toutefois, il s'avère que le rétrécissement perturbe l'écoulement des matières traitées du fait notamment de prises en masse du produit et de formation de voûte causées par la présence de goudrons produits lors de la pyrolyse.
  • Un autre inconvénient encore des gazogènes à lit fixe verticaux du type De Lacotte est qu'ils offrent des possibilités très réduites de réglage du débit de gaz produits. Ce réglage ne peut en effet se faire qu'en modifiant la quantité d'air de combustion servant à produire les gaz chauds, d'où une faculté de réglage limitée. De surcroît, le temps de réponse du gazogène est très long, c'est-à-dire qu'il s'écoule un long intervalle de temps entre l'instant..où le réglage est effectué et l'instant où il produit ses effets.
  • Il a été propose dans le brevet GB 352.271, de réaliser un gazogène comportant une zone verticale d'alimentation et de pyrolyse et une zone horizontale de gazéification dont la paroi inférieure est formée par le tapis d'un convoyeur. Les gaz recyclés sont mélanges à l'air de combustion sous la chambre horizontale et injectés par dessous dans la couche des matières à traiter. Le recyclage est réalisé sensiblement de la même façon que dans le gazogène De Lacotte et n'apporte rien de plus. On notera en plus que le gazogène du brevet GB 352.271 ne peut être utilisé pour la gazéification de matières dont les cendres ont une basse température de fusion, en particulier les matières végétables, au risque d'obturer les passages 'aménagés au travers du convoyeur.
  • La présente invention a pour but de remé dier à ces incovénients. Plus précisément, la présente invention a pour but de fournir un procédé de gazéification et un gazogène particulièrement adaptés au traitement de matières végétales grosses et possédant notamment les propriétés suivantes:
    • - à production égale, une durée de traitement, un encombrement et un coût d'installation et d'exploitation très nettement réduits par rapport aux gazogènes à lit fixe connus évoqués plus haut,
    • - traitement par les gaz chauds du contenu du gazogène de façon uniforme dans toute sa section transversale,
    • -gazéification totale avec production de gaz exempts de goudrons,
    • - possibilités de réglage plus étendues que dans les gazogènes connus et avec un temps de réponse plus court.
  • Ce but est atteint par un procédé selon lequel les matières végétales sont déplacées dans une chambre de traitement fixe ayant des extrémités opposées arrière et avant, les matières progressant de l'arrière vers l'avant de la chambre sous l'action de moyens mécaniques d'entraînement en étant soumises successivement à des opérations de séchage, pyrolyse et gazéification dans des zones successives de la chambre, des gaz chauds sont produits dans une zone libre de matières à traiter située dans la chambre devant l'e talus naturel créé à l'avant des matières contenues dans la chambre, des gaz sont prélevés de la chambre et sont recyclés dans ladite zone située devant le talus naturel de matières, et, des gaz produits sont extraits de la chambre de traitement, procédé caractérisé en ce que:
    • - les gaz recyclés sont prélevés par aspiration à l'extrémité arrière de la chambre, ce qui produit un courant forcé de gaz chauds en direction de l'arrière de la chambre, à travers toutes les matières contenues dans la chambre et sur toute la section transversale de celle-ci et des goudrons produits dans la zone de pyrolyse sont véhiculés par les gaz recyclés et éliminés par la chaleur dans ladite zone située à l'avant du talus de matières,
    • - la température des gaz recyclés est au moins égale à 500° C après avoir traversé les matières contenues dans la chambre, et
    • = les gaz produits sont extraits à l'avant de la zone de pyrolyse après avoir traversé des matières contenues dans la zone de gazéification.
  • Ce but est également atteint par un gazogène qui comporte: une chambre de traitement ayant une extrémité arrière et une extrémité avant; un dispositif d'alimentation de la chambre en matières à traiter située à l'extrémité arrière de la chambre; un dispositif mécanique d'entraînement pour faire progresser les matières à traiter entre l'extrémité arrière et l'extrémité avant de la chambre; une ouverture d'évacuation formée dans la partie inférieure de la chambre à l'avant de celle-ci; une sortie pour les gaz produits par la gazéification; un générateur de gaz chauds à l'avant du talus naturel de matières contenues dans la chambre; et un conduit de recyclage pour recycler à l'avant de la chambre des gaz prélevés à travers une sortie située à l'arrière de la chambre, gazogène dans lequel, conformément à l'invention un dispositif d'aspiration est disposé dans le conduit de recyclage pour établir une circulation forcée de gaz à travers le lit de matières et recycler des gaz.
  • Le recyclage avec aspiration établit une circulation forcée de gaz chauds dans le gazogène, ce qui permet de mettre les matières à traiter introduites dans la chambre de traitement directement en contact avec des gaz à température relativement élevée. Le séchage et la pyrolyse sont donc effectués très rapidement. Les gaz de pyrolyse sont amenés dans l'espace libre situé devant le talus naturel, espace où a lieu leur combustion. Par talus naturel, on entend ici la forme que prend librement sous l'action de la pesanteur l'extrémité avant du lit de matières contenues dans la chambre de traitement. Comme ce talus naturel n'a besoin d'aucune pièce de soutien, telle que grille ou paroi, fragile dans les conditions thermiques requises par la gazéification et limitant la température de travail, ce talus est attaqué directement par l'avant et sur toute la section du gazogène par les gaz de combustion. Ceci, allié à la circulation forcée des gaz à travers le lit de matières est un facteur supplémentaire de rapidité et d'achèvement des réactions chimiques. L'utilisation des gaz de combustion chauds est donc optimisée pour obtenir une gazéification rapide. Cette vitesse de traitement élevée conduit à un gazogène ayant des dimensions relativement restreintes et un coût raisonnable.
  • Le problème de l'injection uniforme de gaz chauds dans toute la section transversale du contenu du gazogène est résolu puisque cette injection se fait sur toute la surface du talus naturel. On notera, à ce propos, que l'admission des gaz chauds à travers des orifices formés à l'extrémité inférieure d'un gazogène vertical connu, pour réaliser une injection sur toute la section transversale, est irréalisable car ces orifices seraient soumis à des efforts mécaniques importants dans des conditions thermiques sévères et très rapidement obturés par les cendres accumulées et agglomérées.
  • On note encore qu'une possibilité de modification du débit de gaz produits est offerte par la réglage du débit des gaz recyclés. De surcroît, du fait que la vitesse de réaction est élevée, et dépend essentiellement du recyclage, le temps de réponse de gazogène à un tel réglage est très court.
  • Le gaz comburant utilisé peut être de l'air ou de l'oxygène. Or, la gazéification à l'oxygène en vue notamment de produire du gaz de synthèse occasionne des températures telles que les cendres de matières végétales, y compris la tourbe, fondent inévitablement dans la zone de gazéification, leur température de fusion étant d'environ 800° C. Un avantage du gazogène conforme à l'invention est que dans le cas d'une combustion à l'air ou à l'oxygene, les gaz de combustion ne sont pas injectés directement dans la masse de matières, mais dans un espace libre situé à l'avant du talus de matières et autorisant leur dilution avant injection.
  • D'autres particularités et avantages du procédé et du gazogène de l'invention ressortiront"à la lecture de la description d'un mode particulier de réalisation de ce gazogène, description faite ci-après, à titre indicatif mais non limitatif, en référence aux dessins joints sur lesquels:
    • - la figure 1 est une vue très schématique en élévation latérale d'un gazogène conforme à l'invention,
    • -la figure 2 est une vue très schématique du gazogène illustré par la figure 1, vue en élévation et en coupe longitudinale médiane suivant la ligne II-II de la figure 4,
    • - la figure 3 est une vue en coupe transversale suivant la ligne III-lll de la figure 2, et
    • -la figure 4 est une vue de dessus en coupe suivant la ligne IV-IV de la figure 3.
  • Le gazogène représenté sur les figures 1 à 4 comporte essentiellement une chambre de traitement horizontale 10, un dispositif d'alimentation 20 pour alimenter la chambre 10, à son extrémité arrière 10a, en matières à traiter, un dispositif d'avance 21 pour faire progresser les matières à traiter à travers la chambre 10, un générateur 30 d'alimentation en gaz chauds de la chambre 10 à son extrémité avant 1 Ob, et un dispositif de recyclage 40.
  • La chambre 10 présente la forme d'un tunnel horizontal dont la paroi latérale 11 est en matériau réfractaire et qui est prolongé, à l'arrière, par une chambre d'alimentation 22 et obturée, à l'avant, par une cloison frontale 1 Oc . Dans le plancher 11 a de la chambre 10 sont formées, de l'arrière vers l'avant, une première sortie 12 munie d'une grille 12a, une deuxième sortie 13 munie d'une grille 13a et une ouverture d'évacuation 14.
  • La sortie 12 est formée à l'extrémité arrière du plancher 11 a, ou à proximité immédiate de cette extrémité arrière.
  • La sortie 13 est la sortie de gaz produits par le gazogène ; elle est formée dans la partie médiane du tunnel ou légèrement du côté avant de celui-ci. Une conduite de sortie- 18 est branchée sur la sortie 13 et s'ouvre, en 18a, vers l'arrière du gazogène, dans un compartiment 13b situé sous la grille 13a.
  • L'ouverture 14 est formée sur toute la largeur du plancher 1 a à son extrémité avant. Elle communique, par un conduit vertical 15, avec un bac 16 qui est situé au-dessous de la chambre 11 et où sont receuillies les cendres. des matières traitées dans le gazogène. Un joint d'eau schématisé en 17 est prévu pour compenser la différence des pressions régnant à l'extérieur et à l'intérieur du gazogène lorsque ce dernier est en fonctionnement.
  • La chambre d'alimentation 22 est surmontée d'un sas 23 d'admission des matières à traiter. Un poussoir ou piston 21 peut coulisser horizontalement dans la chambre 22 sur toute la longueur de celle-ci. Le piston 21 est muni d'un chapeau 21 a fixé sur sa face avant, en surplomb sur celle-ci.
  • Lorsque le piston est dans sa position extrême arrière (en traits interrompus sur la figure 2), le contenu du sas 23 peut être introduit dans la chambre 22. L'avance du piston 21 est ensuite commandée à une vitesse constante et lente égale à celle à laquelle le traitement thermique des matières est effectué dans la chambre 10. Sous la poussée du piston 21, les matières à traiter fraîchement introduites ont tendance à remonter vers le haut. Toutefois, cette remontée est limitée par le chapeau 21 a et il ne peut y avoir de coincement de matières à traiter entre la face avant du piston et le bord inférieur avant 23a du sas 23, coincement qui bloquerait l'avance du piston. Lorsque le piston est dans sa position extrême avant (représentée en traits pleins sur la figure 2), il est ramené rapidement en position arrière pour permettre un nouveau chargement de la chambre 22.
  • A l'avant de la chambre 10 débouche au moins un injecteur 31 de gaz comburant, par exemple oxygène ou air de combustion. De préférence plusieurs injecteurs 31 forment une rangée horizontale, à un niveau situé immédiatement au-dessus de celui du plancher 11 a. Le, ou chaque, injecteur 31 est alimenté par une conduite 36 provenant d'un échangeur de chaleur 33. Ce dernier reçoit la conduite 18 et une conduite 34 d'alimentation en gaz comburant froid, par exemple en air froid. Cet air froid est réchauffé dans l'échangeur 33 par les calories véhiculées par les gaz produits par le gazogène lesquels, refroidis, sont évacués par une conduite 19.
  • Au niveau de chaque injecteur 31, débouche une ouverture 32 qui est alimentée en gaz par un conduit de recyclage 41 relié à la sortie 12. L'ensemble 31-32 est agencé pour assurer un . bon mélange entre gaz comburant et gaz recyclés combustibles, comme dans un brûleur à gaz classique.
  • Un dispositif d'aspiration 42 constitué par un ventilateur réfractaire supportant les températures élevées est disposé entre un conduit 43 branché à la sortie 12 et le conduit 41. Le conduit 43 s'ouvre, en 43a, vers l'arrière du gazogène, dans un compartiment 12b situé sous la grille 12a.
  • Au moins un brûleur 35, pouvant être alimenté en combustible est disposé à l'arrière de la chambre 10.
  • Le fonctionnement du gazogène décrit ci- avant est le suivant:
    • La chambre de traitement 10 étant chargée en matières à gazéifier, le ou chaque brûleur 35 est mis en marche, ainsi qu l'aspirateur 42.
  • La chambre 22 étant chargée et le piston 21 étant en position arrière, le mouvement d'avance de ce dernier est commandé dès que les opérations de séchage, pyrolyse et gazéification ont démarré.
  • La phase de démarrage du fonctionnement du gazogène étant terminée, ce que l'on peut constater en observant le débit de gaz produits, le brûleur 35 est coupé. Les gaz chauds sont alors produits par la réaction des gaz recyclés par le conduit 41 avec l'air ou l'oxygène de combustion injecté à l'avant de la chambre 10.
  • Les gaz de combustion chauds sont produits à l'avant de la chambre 10 dans un espace libre contenu dans cette chambre et situé devant le talus naturel formé à l'avant des matières contenues dans la chambre 10. Les particules de matières les plus proches de l'ouverture 14 sont attaquées par les gaz les plus chauds (environ 1200° C). Le carbone restant éventuellement au coeur de ces particules est ainsi atteint et les cendres rejetées ont été complètement gazéifiées.
  • Les gaz chauds progressent de l'avant vers l'arrière à travers les matières à traiter sous l'effet de l'aspiration par le ventilateur 42. La disposition des sorties 12 et 13 dans le plancher de la chambre 10 impose aux gaz de combustion de traverser le lit de matières à traiter sur tôute son épaisseur et pratiquement dans toute la chambre.
  • Dans la zone de gazéification G, la température des gaz décroît progressivement, et atteint environ 800° C au niveau de la sortie 13. Les gaz non captés par cette sortie traversent, vers l'arrière, les zones de pyrolyse P et de séchage S avant d'être repris dans le conduit de recyclage par la sortie 12. La température des gaz recyclés est d'au moins 500° C, environ 600 à 700° C.
  • Dans les zones de séchage et de pyrolyse, la température des gaz est relativement élevée. Le temps nécessaire à ces opérations est donc court. La longueur des zones de séchage et de pyrolyse est de ce fait assez réduite.
  • Lors de la traversée de la zone de pyrolyse, les gaz se chargent des goudrons produits par la pyrolyse. Ces goudrons sont véhiculés par les gaz recyclés. Comme ceux-ci sont injectés dans la flamme créée à l'avant de la chambre 10, la température dans cette zone assure leur élimination par crackage ou par combustion.
  • Comme indiqué plus haut, la sortie 13 est la sortie où est prélevé le gaz produit par le gazogène. Pour éviter la présence de goudrons dans ce gaz, il est souhaitable que la sortie 13 soit située en avant de la zone de pyrolyse ou à la limite entre celle-ci et la zone de gazéification. Pratiquement, cela signifie que la sortie 13 est située à une distance de l'ouverture 14, à l'avant de la chambre 10, comprise environ entre L/4 et L/2, L désignant la distance entre l'extrémité arrière de la chambre 10 et l'ouverture 14.
  • Les sorties 12 et 13 sont pratiquées dans le plancher 1 1 de la chambre 10. Les gaz chauds traversant les matières contenues dans la chambre viennent ainsi nécessairement au contact des matières situées dans le bas de la chambre 10, ce qui pourrait ne pas être le cas si les ouvertures 12 et 13 étaient situées à une certaine hauteur au-dessus du plancher 1 a. Toutefois, il est possible d'envisager, en particulier pour la sortie 12, de former plusieurs ouvertures formées dans le plancher et les côtés de la chambre 10 et reliées au conduit de recyclage.
  • L'avance des matières dans la chambre 10 est produite par le piston 21. On notera que les matières pénétrant dans la chambre sont portées d'emblée à une température élevée (plusieurs centaines de °C). La carbonisation des matières est très rapide. Les matières à traiter deviennent donc très vite friables, en particulier au voisinage de la paroi 11 ce qui empêche tout coincement de ces matières susceptible de s'opposer à l'effort exercé par le piston 21. L'avance du piston 21 est interrompue lorsqu'il parvient à l'avant de la chambre 22, cette interruption ne durant que le temps nécessaire pour ramener le piston 21 dans sa position arrière et remplir la chambre 22. Le mouvement d'avance du piston 21 peut alors aussitôt reprendre.
  • La vitesse d'avance du piston 21 est déterminée en fonction de la vitesse de traitement dans la chambre.
  • Cette vitesse de traitement est relativement élevée, dans le cas présent, du fait que les matières à traiter sont soumises à des températures élevées dès leur entrée dans la chambre 10.
  • La vitesse de traitement est non seulement fonction de la température des gaz traversant le lit de matières à traiter, mais aussi, et surtout, fonction du débit des gaz recyclés et, par là- même, du débit des gaz traversant la chambre 10. Ainsi, un fort recyclage se traduit par un fort écoulement da gaz dans la zone de gazéification et, par suite, par une vitesse de réaction élevée.
  • En plus du réglage de la quantité d'air ou d'oxygène de combustion injecté, il existe donc une possibilité de réglage du débit de gaz recyclés pour ajuster la vitesse de traitement et la quantité de gaz produits à des valeurs souhaitées.
  • Le réglage du débit de gaz recyclés peut être effectué en ajustant la position d'un volet réglable inséré dans le conduit 43 ou en modifiant la vitesse du ventilateur d'aspiration 42.
  • Comme la vitesse de traitement est assez élevée et dépend essentiellement du recyclage, le temps de réponse du gazogène à une modification du débit de gaz recyclés est relativement court.
  • Bien entendu, diverses modifications ou adjonctions pourront être apportées au mode de réalisation décrit plus haut d'un gazogène conforme à l'invention, sans pour cela sortir du cadre de protection défini par les revendications annexées.
  • On notera en particulier qu'il est possible d'augmenter la vitesse du piston pour l'amener à une valeur telle que la gazéification ne peut avoir lieu afin de produire du charbon de bois.

Claims (9)

1. Procédé de gazéification de matières grosses, procédé selon lequel:
- les matières végétales sont déplacées dans une chambre de traitement fixe ayant des extrémités opposées arrière et avant, les matières progressant de l'arrière vers l'avant de la chambre sous l'action de moyens mécaniques d'entraînement en étant soumises successivement à des opérations de séchage, pyrolyse et gazéification dans des zones successives de la chambre,
- des gaz chauds sont produits dans une zone libre de matières à traiter située dans la chambre devant le talus naturel créé à l'avant des matières contenues dans la chambre,
-des gaz sont prélevés de la chambre et sont recyclés dans ladite zone située devant le talus naturel de matières, et
- des gaz produits sont extraits de la chambre de traitement, caractérisé en ce que:
- les gaz recyclés sont prélevés par aspiration à l'extrémité arrière de la chambre, ce qui produit un courant forcé de gaz chauds en direction de l'arrière de la chambre, à travers toutes les matières contenues dans la chambre et sur toute la section transversale de celle-ci et des goudrons produits dans la zone de pyrolyse sont véhiculés par les gaz recyclés et éliminés par la chaleur dans ladite zone située à l'avant du talus de matières,
- la température des gaz recyclés est au moins égale à 500° C après avoir traversé les matières contenues dans la chambre, et
- les gaz produits sont extraits à l'avant de la zone de pyrolyse après avoir traversé des matières contenues dans la zone de gazéification.
2. Procédé selon la revendication 1, caractérisé en ce que la température des gaz recyclés est comprise entre 600 et 700° C.
3. Procédé selon l'une quelconque des revendications 1 et 2, caractérisé en ce que les gaz recyclés sont prélevés à la partie arrière de la chambre au moins à travers une ouverture située sous les matières contenues dans la chambre.
4. Procédé selon l'une quelconque des revendications 1 à 3, caractérisé en ce que les gaz chauds sont produits en ajoutant un gaz comburant aux gaz recyclés.
5. Gazogène comportant: une chambre de traitement (10) ayant une extrémité arrière (10a) et une extrémité avant (1 Ob); un dispositif d'alimentation (20) de la chambre en matières à traiter situé à l'extrémité arrière (10a) de la chambre; un dispositif mécanique d'entraînement (21) pour faire progresser les matières à traiter entre l'extrémité arrière et l'extrémité avant de la chambre; une ouverture d'évacuation (14) formée dans la partie inférieure de la chambre à l'avant de celle-ci; une sortie (13) pour les gaz produits par la gazéification; un générateur (30) de gaz chauds à l'avant du talus naturel de matières contenus dans la chambre; et un conduit de recyclage (41) pour recycler à l'avant de la chambre des gaz prélevés à travers une sortie située à l'arrière de la chambre, caractérisé en ce qu'un dispositif d'aspiration (42) est disposé dans le conduit de recyclage (41) pour établir une circulation forcée de gaz à travers le lit de matières, et recycler des gaz.
6. Gazogène selon la revendication 5, caractérisé en ce que la sortie pour les gaz recyclés (12) est formée à l'extrémité arrière du plancher (11 a) de la chambre (10).
7. Gazogène selon l'une quelconque des revendications 5 et 6, caractérisé en ce que la sortie des gaz produits (13) est formée dans la paroi inférieure de la chambre, à l'avant de la sortie (12) pour les gaz recyclés.
8. Gazogène selon l'une quelconque des revendications 5 à 7, caractérisé en ce que le générateur de gaz chauds (30) est alimenté en gaz comburant et en gaz recyclés.
9. Gazogène selon l'une quelconque des revendications 5 à 7, caractérisé en ce qu'il comporte des moyens de réglage du débit des gaz recyclés.
EP79400809A 1978-11-06 1979-10-31 Procédé de gazéification et gazogène Expired EP0011037B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT79400809T ATE5419T1 (de) 1978-11-06 1979-10-31 Vergasungsverfahren und vergasungsvorrichtung.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR7831356 1978-11-06
FR7831356A FR2440398A1 (fr) 1978-11-06 1978-11-06 Gazogene a lit fixe

Publications (2)

Publication Number Publication Date
EP0011037A1 EP0011037A1 (fr) 1980-05-14
EP0011037B1 true EP0011037B1 (fr) 1983-11-23

Family

ID=9214519

Family Applications (1)

Application Number Title Priority Date Filing Date
EP79400809A Expired EP0011037B1 (fr) 1978-11-06 1979-10-31 Procédé de gazéification et gazogène

Country Status (8)

Country Link
US (1) US4414002A (fr)
EP (1) EP0011037B1 (fr)
AT (1) ATE5419T1 (fr)
BR (1) BR7907201A (fr)
CA (1) CA1149614A (fr)
DE (1) DE2966425D1 (fr)
FR (1) FR2440398A1 (fr)
OA (1) OA06374A (fr)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2527321A1 (fr) * 1982-05-19 1983-11-25 Creusot Loire Procede et installation de traitement d'une matiere solide reduite en morceaux
AT390445B (de) * 1986-08-14 1990-05-10 Voest Alpine Ag Verfahren zur thermischen verwertung von abfaellen und/oder abfallbrennstoffen
US5656044A (en) * 1992-05-07 1997-08-12 Hylsa S.A. De C.V. Method and apparatus for gasification of organic materials
US5851246A (en) * 1992-05-07 1998-12-22 Hylsa, S.A. De C.V. Apparatus for gasifying organic materials
JPH0673384A (ja) * 1992-05-07 1994-03-15 Hylsa Sa 有機物質をガス化するための方法および装置
US5423891A (en) * 1993-05-06 1995-06-13 Taylor; Robert A. Method for direct gasification of solid waste materials
FR2914314B1 (fr) * 2007-03-26 2011-04-08 Litelis Procede et installation pour la gazeification a puissance variable de matieres combustibles.
FR2916760B1 (fr) * 2007-06-01 2010-12-24 Isaac Behar Module, systeme et procede de traitement de biomasse a lit fixe horizontal
FR2975401B1 (fr) * 2011-05-18 2014-05-02 Leclerc Christian Gerard Huret Gazogene a lit fixe reversible

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1814463A (en) * 1925-05-18 1931-07-14 Trent Process Corp Process for carbonizing materials
US1639391A (en) * 1926-01-13 1927-08-16 George W Wallace Process of distilling and gasifying solid carbonaceous fuel
US1964877A (en) * 1929-07-18 1934-07-03 Hereng Alfred Jean Andre Apparatus for the treatment of fuel
GB352271A (en) * 1929-07-18 1931-07-09 Alfred Jean Andre Hereng Improvements in or relating to the gasification of solid fuel
FR885704A (fr) * 1941-10-20 1943-09-23 Daimler Benz Ag Procédé pour obtenir un gaz de gazogène à partir de briquettes de lignite ou de combustibles analogues fortement bitumeux, riches en cendres et ayant aisément tendance à la formation de scories
US3990865A (en) * 1974-10-21 1976-11-09 Allis-Chalmers Corporation Process for coal gasification utilizing a rotary kiln

Also Published As

Publication number Publication date
US4414002A (en) 1983-11-08
EP0011037A1 (fr) 1980-05-14
ATE5419T1 (de) 1983-12-15
OA06374A (fr) 1981-08-31
DE2966425D1 (en) 1983-12-29
FR2440398B1 (fr) 1981-05-29
CA1149614A (fr) 1983-07-12
FR2440398A1 (fr) 1980-05-30
BR7907201A (pt) 1980-08-26

Similar Documents

Publication Publication Date Title
EP2627739B1 (fr) Dispositif pour la transformation d'un combustible
EP0011037B1 (fr) Procédé de gazéification et gazogène
EP0045256A2 (fr) Procédé et installation de gazéification de matières d'origine végétale
EP0010048B1 (fr) Procédé et appareil de gazéification au moins partielle de matières combustibles
EP1840191A1 (fr) Installation de gazéification de biomasse avec dispositif de craquage des goudrons dans le gaz de synthèse produit
FR2624876A1 (fr) Procede et dispositif de torrefaction de matiere ligneuse vegetale
WO2006053869A1 (fr) Procede de gazeification de matieres carbonees et dispositif pour sa mise en oeuvre
EP0190787A1 (fr) Installation pour faire réagir des particules solides et un fluide
EP2247697A2 (fr) Procede et systeme de production d'hydrogene integre a partir de matiere organique.
EP3960837A1 (fr) Réacteur de pyro-gazéification a lit fixe présentant un rendement amélioré
EP2723832B1 (fr) Gazeifieur de combustible solide carbone
BE512102A (fr)
EP2753677B1 (fr) Gazeifieur de combustible solide carbone
EP0094893B1 (fr) Procédé et installation de traitement d'une matière solide réduite en morceaux
EP1235889B1 (fr) Procede de gazeification de composes carbones
FR2511028A1 (fr) Procede et installation pour la gazeification de matieres carbonees
FR2560425A1 (fr) Installation pour traiter un melange de substances et procede a mettre en oeuvre avec une telle installation
FR2505350A1 (fr) Gazeificateurs de combustibles solides a lit fixe et a tirage inverse
FR3113312A1 (fr) Four pour chauffe œnologique de bois
EP0078068A2 (fr) Perfectionnements aux gazogènes
BE709829A (fr)
WO2017129871A4 (fr) Procédé de gazéification de matières carbonées et dispositifs permettant de le mettre en oeuvre
BE550054A (fr)
LU86942A1 (fr) Procede de fabrication de briquettes de charbon et installation pour la mise en oeuvre de ce procede
BE359021A (fr)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE CH DE GB IT LU NL SE

17P Request for examination filed

Effective date: 19801103

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: CENTRE NATIONAL DU MACHINISME AGRICOLE, DU GENIE R

ITF It: translation for a ep patent filed

Owner name: JACOBACCI & PERANI S.P.A.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): AT BE CH DE GB IT LU NL SE

REF Corresponds to:

Ref document number: 5419

Country of ref document: AT

Date of ref document: 19831215

Kind code of ref document: T

REF Corresponds to:

Ref document number: 2966425

Country of ref document: DE

Date of ref document: 19831229

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19920925

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19921023

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19921028

Year of fee payment: 14

Ref country code: BE

Payment date: 19921028

Year of fee payment: 14

ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19921031

Year of fee payment: 14

EPTA Lu: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19930914

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19930917

Year of fee payment: 15

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19931031

Ref country code: BE

Effective date: 19931031

Ref country code: AT

Effective date: 19931031

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19931031

Year of fee payment: 15

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19931101

BERE Be: lapsed

Owner name: CENTRE NATIONAL DU MACHINISME AGRICOLE DU GENIE RU

Effective date: 19931031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19940501

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19931031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19941031

Ref country code: CH

Effective date: 19941031

EUG Se: european patent has lapsed

Ref document number: 79400809.4

Effective date: 19940610

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19950701