EP0010163A1 - N-Diazolylalkyl-chloracetanilide, Verfahren zu ihrer Herstellung sowie ihre Verwendung als Herbizide - Google Patents

N-Diazolylalkyl-chloracetanilide, Verfahren zu ihrer Herstellung sowie ihre Verwendung als Herbizide Download PDF

Info

Publication number
EP0010163A1
EP0010163A1 EP79103468A EP79103468A EP0010163A1 EP 0010163 A1 EP0010163 A1 EP 0010163A1 EP 79103468 A EP79103468 A EP 79103468A EP 79103468 A EP79103468 A EP 79103468A EP 0010163 A1 EP0010163 A1 EP 0010163A1
Authority
EP
European Patent Office
Prior art keywords
formula
alkyl
diazolylalkyl
halogen
represents hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP79103468A
Other languages
English (en)
French (fr)
Other versions
EP0010163B1 (de
Inventor
Jörg Dr. Stetter
Klaus Dr. Ditgens
Rudolf Dr. Thomas
Ludwig Dr. Eue
Robert Rudolf Dr. Schmidt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bayer AG
Original Assignee
Bayer AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer AG filed Critical Bayer AG
Priority to AT79103468T priority Critical patent/ATE538T1/de
Publication of EP0010163A1 publication Critical patent/EP0010163A1/de
Application granted granted Critical
Publication of EP0010163B1 publication Critical patent/EP0010163B1/de
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D271/00Heterocyclic compounds containing five-membered rings having two nitrogen atoms and one oxygen atom as the only ring hetero atoms
    • C07D271/02Heterocyclic compounds containing five-membered rings having two nitrogen atoms and one oxygen atom as the only ring hetero atoms not condensed with other rings
    • C07D271/061,2,4-Oxadiazoles; Hydrogenated 1,2,4-oxadiazoles
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/64Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with three nitrogen atoms as the only ring hetero atoms
    • A01N43/647Triazoles; Hydrogenated triazoles
    • A01N43/6531,2,4-Triazoles; Hydrogenated 1,2,4-triazoles
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/72Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with nitrogen atoms and oxygen or sulfur atoms as ring hetero atoms
    • A01N43/82Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with nitrogen atoms and oxygen or sulfur atoms as ring hetero atoms five-membered rings with three ring hetero atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C233/00Carboxylic acid amides
    • C07C233/01Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms
    • C07C233/02Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having nitrogen atoms of carboxamide groups bound to hydrogen atoms or to carbon atoms of unsubstituted hydrocarbon radicals
    • C07C233/04Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having nitrogen atoms of carboxamide groups bound to hydrogen atoms or to carbon atoms of unsubstituted hydrocarbon radicals with carbon atoms of carboxamide groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton
    • C07C233/07Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having nitrogen atoms of carboxamide groups bound to hydrogen atoms or to carbon atoms of unsubstituted hydrocarbon radicals with carbon atoms of carboxamide groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a six-membered aromatic ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D285/00Heterocyclic compounds containing rings having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by groups C07D275/00 - C07D283/00
    • C07D285/01Five-membered rings
    • C07D285/02Thiadiazoles; Hydrogenated thiadiazoles
    • C07D285/04Thiadiazoles; Hydrogenated thiadiazoles not condensed with other rings
    • C07D285/081,2,4-Thiadiazoles; Hydrogenated 1,2,4-thiadiazoles

Definitions

  • the present invention relates to new N-diazolylalkyl-haloacetanilides, several processes for their preparation and their use as herbicides.
  • the new N-diazolylalkyl-haloacetanilides of the formula (I) and their acid addition salts and metal salt complexes have strong herbicidal, in particular also selective herbicidal properties.
  • the N-diazolylalkyl-haloacetanilides according to the invention show better possibilities for use as a selective weed control agent in important crop plants than the 2,6-diethyl-N-methoxymethyl-chloroacetanilide known from the prior art, which is a highly active active ingredient of the same type .
  • the substances according to the invention thus represent a valuable addition to the technology.
  • N-diazolylalkyl-haloacetanilides according to the invention are generally defined by the formula (I).
  • A preferably represents oxygen, sulfur or the grouping> NR, where R preferably represents hydrogen and straight-chain or branched alkyl having 1 to 4 carbon atoms.
  • R ' preferably represents hydrogen and straight-chain or branched alkyl and alkoxy each having 1 to 4 carbon atoms.
  • R 2 and R 3 are the same or different and are preferably hydrogen, straight-chain or branched alkyl and alkoxy each having 1 to 4 carbon atoms, and the halogens fluorine, chlorine and bromine.
  • R 4 preferably represents hydrogen or alkyl having 1 to 4 carbon atoms.
  • X is preferably hydrogen, straight chain or branched alkyl with 1 to 4 carbon atoms, straight-chain or branched alkoxy with 1 to 4 carbon atoms, straight-chain or branched alkylthio with 1 to 4 carbon atoms, alkoxycarbonyl with 1 to 4 carbon atoms in the alkoxy group, furthermore for alkenyl and alkynyl each with 2 to 4 Carbon atoms, further preferably for the halogens fluorine, chlorine and bromine, for haloalkyl with up to 2 carbon atoms and up to 5 identical or different halogen atoms, fluorogens, chlorine and bromine being mentioned in particular, for dialkylamino with 1 to 4 carbon atoms in any alkyl part and for cyano.
  • X also preferably represents optionally substituted phenyl, optionally substituted phenoxy or optionally substituted phenylthio, halogen and alkyl having 1 or 2 carbon atoms being preferred as substituents.
  • Z preferably represents the halogens chlorine, bromine and iodine.
  • N-diazolylalkyl-haloacetanilides of the formula (I) in which A represents oxygen, sulfur or the grouping > NR are very particularly preferred, where R represents methyl, ethyl, propyl or butyl; R 1 , R 2 and R 3 are the same or different and represent hydrogen, methyl, ethyl, isopropyl, sec-butyl, tert-butyl, methoxy, ethoxy or isopropoxy, R 2 and R 3 also represent chlorine or bromine stand; R 4 represents hydrogen or methyl.
  • X for hydrogen, methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, tert-butyl, allyl, propargyl, methoxy, ethoxy, isopropoxy, methylthio, ethylthio, isopropylthio, methoxycarbonyl, ethoxycarbonyl, fluorine, Chlorine, bromine, chloromethyl, bromomethyl, dichloromethyl, tri chloromethyl, trifluoromethyl, dimethylamino, ethylmethylamino, cyano or phenyl optionally substituted by chlorine and / or methyl, phenoxy optionally substituted by chlorine and / or methyl or phenylthio optionally substituted by chlorine and / or methyl; and Z represents chlorine or bromine.
  • Preferred compounds according to the invention are also addition products from acids and those N-diazolylalkyl-haloacetanilides of the formula (I) in which A, R 1, R 2, R3, R4, X and Z have the B-e meanings which have already been mentioned as preferred for these radicals.
  • the acids which can be added preferably include hydrohalic acids, such as, for example, hydrochloric acid and hydrobromic acid, in particular hydrochloric acid, furthermore phosphoric acid, nitric acid, sulfuric acid, mono- and bifunctional carboxylic acids and hydroxycarboxylic acids, such as, for example, acetic acid, maleic acid, succinic acid, fumaric acid, Tartaric acid, citric acid, salicylic acid, sorbic acid, lactic acid, and sulfonic acids such as p-toluenesulfonic acid and 1,5-naphthalenedisulfonic acid.
  • hydrohalic acids such as, for example, hydrochloric acid and hydrobromic acid, in particular hydrochloric acid, furthermore phosphoric acid, nitric acid, sulfuric acid, mono- and bifunctional carboxylic acids and hydroxycarboxylic acids, such as, for example, acetic acid, maleic acid, succinic acid, fumaric acid, Tartaric acid, cit
  • preferred compounds according to the invention are addition products from salts of metals of the II. To IV. Main groups and of I. and II. And IV. To VIII. Subgroups and those N-diazolylalkyl-haloacetanilides of the formula (I) in which A, R 1 , R 2 , R3, R 4 , X and Z have the meanings which have preferably already been mentioned for these radicals.
  • salts of copper, zinc, manganese, magnesium, tin, iron and of nickel is particularly preferred.
  • Anions of these salts are those which are derived from acids which lead to physiologically tolerable addition products.
  • Particularly preferred acids of this type are the hydrohalic acids, such as, for example, hydrochloric acid and hydrobromic acid, also phosphoric acid, nitric acid and sulfuric acid.
  • Formula (II) provides a general definition of the N-diazolylalkylanilines required as starting materials when carrying out process (a) according to the invention.
  • A, R 1 , R 2 , R 3 , R 4 and X preferably represent those radicals which have already been mentioned for these radicals in connection with the description of the substances of the formula (I) according to the invention.
  • reaction temperatures can be varied within a substantial range in the preparation of the N-diazolylalkylanilines of the formula (II) by the above process. Generally one works between 0 ° C and 180 ° C, preferably between 20 ° C and 160 ° C.
  • the anilines of the formula (VI) and the diazolylalkyl derivatives are used of formula (V) in general in equimolar amounts. However, it is also possible to use one of the components, preferably the aniline of the formula (VI), in excess. - The reaction products are worked up and isolated by customary methods (cf. also the preparation examples).
  • the formulas (IIIa) and (IIIb) generally define the haloacetic acid chlorides and bromides or anhydrides to be used as starting materials for process (a) according to the invention.
  • Z preferably represents chlorine, bromine and iodine.
  • haloacetic acid chlorides and bromides or anhydrides of the formulas (IIIa) and (IIIb) are generally known compounds of organic chemistry. Examples include: chloroacetyl chloride, bromoacetyl chloride, iodoacetyl chloride and the corresponding bromides and anhydrides.
  • Formula (IV) provides a general definition of the haloacetanilides required as starting materials when carrying out process (b) according to the invention.
  • R ', ⁇ 2 , R 3 and Z preferably represent those radicals which have already been mentioned for these radicals in connection with the description of the substances of the formula (I) according to the invention.
  • haloacetanilides of the formula (IV) are generally known or can be obtained in a generally known manner by corresponding anilines with a haloacetic acid chloride or bromide or anhydride of the formulas (IIIa) or (IIIb) in the presence an inert organic solvent, such as toluene or dimethylformamide, optionally in the presence of an acid binder, such as potassium carbonate or triethylamine, at temperatures between 0 ° C and 100 ° C (see also the preparation examples).
  • an inert organic solvent such as toluene or dimethylformamide
  • an acid binder such as potassium carbonate or triethylamine
  • Formula (V) provides a general definition of the diazolylalkyl derivatives also to be used as starting materials for process (b) according to the invention.
  • A, R4 and X preferably represent those radicals which have already been mentioned for these radicals in connection with the description of the substances of the formula (I) according to the invention.
  • Y preferably represents chlorine, bromine, the mesylate and tosylate radical.
  • the diazolyl derivatives of the formula (V) are known (compare, inter alia, German Offenlegungsschriften 19 15 495 and 20 54 342, US Pat. Nos. 3,211,742 and 3,264,318, and Bull.Soc.Chim.Belges 73, (1964) 793) ; or they can be obtained in a generally known manner by the processes described therein.
  • the following compounds may be mentioned as examples of compounds of the formula (V):
  • Suitable diluents for the reaction according to the invention according to process variant (a) are preferably inert organic solvents. These preferably include ketones, such as diethyl ketone, in particular acetone and methyl ethyl ketone; Nitriles, such as propionitrile, especially acetonitrile; Ethers such as tetrahydrofuran or dioxane; aliphatic and aromatic hydrocarbons, such as petroleum ether, benzene, toluene or xylene; halogenated hydrocarbons, such as methylene chloride, carbon tetrachloride, chloroform or chlorobenzene; and esters, such as ethyl acetate.
  • ketones such as diethyl ketone, in particular acetone and methyl ethyl ketone
  • Nitriles such as propionitrile, especially acetonitrile
  • Ethers such as tetrahydrofuran or dio
  • process (a) according to the invention can be carried out in the presence of acid binders (hydrogen chloride acceptors).
  • acid binders hydrogen chloride acceptors
  • All conventional acid binders can be used as such.
  • These preferably include organic bases, such as tertiary amines, for example triethylamine or pyridine, and furthermore inorganic bases, such as, for example, alkali metal hydroxides and alkali metal carbonates.
  • reaction temperatures can be varied within a substantial range when carrying out process (a) according to the invention. Generally one works between 0 ° C and 120 ° C, preferably between 20 ° C and 100 ° C.
  • Suitable diluents for the reaction according to the invention in process (b) are all inert, water-immiscible, organic solvents. These preferably include ethers, such as diethyl ether; aromatic hydrocarbons such as benzene, toluene or xylene; halogenated hydrocarbons, such as methylene chloride, carbon tetrachloride, chloroform or chlorobenzene; and esters, such as ethyl acetate.
  • ethers such as diethyl ether
  • aromatic hydrocarbons such as benzene, toluene or xylene
  • halogenated hydrocarbons such as methylene chloride, carbon tetrachloride, chloroform or chlorobenzene
  • esters such as ethyl acetate.
  • the reaction according to the invention in process (b) is carried out in the presence of an acid binder.
  • acid binder All conventional acid binders can be used as such.
  • These preferably include inorganic bases, such as, for example, alkali metal hydroxides and alkali metal carbonates.
  • reaction temperatures can be varied within a substantial range when carrying out process (b) according to the invention. In general, one works between -70 ° C and + 100 ° C, preferably between -20 ° C and + 80 ° C.
  • the reaction according to process (b) is carried out in a two-phase system, such as, for example, aqueous sodium hydroxide solution or potassium hydroxide solution / toluene or methylene chloride, optionally with addition of 0.1-1 mol of a phase transfer catalyst, such as ammonium or phosphonium compounds, for example benzyl-dodecyl-dimethyl-ammonium chloride (zephirol) and triethyl-benzyl-ammonium chloride may be mentioned (see also the preparation examples).
  • a phase transfer catalyst such as ammonium or phosphonium compounds, for example benzyl-dodecyl-dimethyl-ammonium chloride (zephirol) and triethyl-benzyl-ammonium chloride may be mentioned (see also the preparation examples).
  • Both the substances of the formula (I) according to the invention which can be prepared by process (a) and by the process (b) can be converted into acid addition salts or metal salt complexes.
  • the following acids are preferably suitable for the preparation of physiologically compatible acid addition salts of the compounds of formula (I):
  • the hydrohalic acids such as e.g. hydrochloric acid and hydrobromic acid, especially hydrochloric acid, also phosphoric acid, nitric acid, sulfuric acid, mono- and bifunctional carboxylic acids and hydroxycarboxylic acids, e.g. Ethyl acetate, maleic acid, succinic acid, fumaric acid, tartaric acid, citric acid, salicylic acid, sorbic acid, lactic acid, and sulfonic acids, such as e.g. p-toluenesulfonic acid and 1,5-naphthalenedisulfonic acid.
  • the acid addition salts of the compounds of formula (I) can be easily prepared by conventional salt formation methods, e.g. by dissolving a compound of formula (I) in a suitable inert solvent and adding the acid, e.g. Hydrochloric acid can be obtained and in a known manner, e.g. by filtration, isolated and, if necessary, cleaned by washing with an inert organic solvent.
  • a suitable inert solvent e.g. Hydrochloric acid
  • salts of metals preference is given to salts of metals from the II. To IV. Main group and from I. and II. And IV. To VIII. Subgroup, copper, zinc, manganese, Magnesium, tin, iron and nickel may be mentioned as examples.
  • Suitable anions of the salts are those which are preferably derived from the following acids: hydrohalic acids, such as, for example, hydrochloric acid and hydrobromic acid, and also phosphoric acid, nitric acid and sulfuric acid.
  • the metal salt complexes of compounds of formula (I) can be obtained in a simple manner by conventional methods, e.g. by dissolving the metal salt in alcohol, e.g. Ethanol and adding to the compound of formula (I).
  • Metal salt complexes can be prepared in a known manner, e.g. by filtering, isolating and if necessary by recrystallization.
  • the active compounds according to the invention influence plant growth and can therefore be used as defoliants, desiccants, haulm killers, rhyme inhibitors and in particular as weed killers. Weeds in the broadest sense are all plants that grow up in places where they are undesirable. Whether the substances according to the invention act as total or selective herbicides depends essentially on the amount used.
  • the compounds are suitable for total weed control, e.g. on industrial and track systems and on paths and squares with and without tree cover.
  • the compounds for weed control in permanent crops can e.g. Forestry, ornamental wood, fruit, wine, citrus, nut, banana, coffee, tea, rubber, oil palm, cocoa, berry fruit and hop plants and for selective weed control in annual crops.
  • the active compounds according to the invention also show a good herbicidal action in broad-leafed weeds.
  • a selective use of the active ingredients according to the invention is possible, preferably in corn, peanuts, beets, soybeans, cotton, rice and other types of cereals.
  • the active compounds can be converted into the customary 'formulations, such as solutions, emulsions, wettable powders, suspensions, powders, dusts, pastes, soluble powders, granules, suspension-emulsion concentrates, active compound-impregnated natural and synthetic materials, Feinverkapselitch in polymeric substances.
  • customary 'formulations such as solutions, emulsions, wettable powders, suspensions, powders, dusts, pastes, soluble powders, granules, suspension-emulsion concentrates, active compound-impregnated natural and synthetic materials, Feinverkapselitch in polymeric substances.
  • formulations are prepared in a known manner, for example by mixing the active ingredients with extenders, that is to say liquid solvents, and / or solid carriers, optionally using surface-active agents, that is to say emulsifiers and / or dispersants and / or foaming agents. If water is used as an extender, organic solvents can, for example, also be used as auxiliary solvents.
  • aromatics such as xylene, toluene, or alkylnaphthalenes
  • chlorinated aromatics or chlorinated aliphatic hydrocarbons such as chlorobenzenes, chloroethylene or methylene chloride
  • aliphatic hydrocarbons such as cyclohexane or paraffins, for example petroleum fractions
  • alcohols such as butanol or glycol as well as their ethers and esters
  • ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone or cyclohexanone
  • strongly polar solvents such as dimethylformamide and dimethyl sulfoxide, and water.
  • Adhesives such as carboxymethyl cellulose and natural and synthetic polymers in the form of powders, granules or latices, such as gum arabic, polyvinyl alcohol and polyvinyl acetate, can be used in the formulations.
  • Dyes such as inorganic pigments, e.g. Iron oxide, titanium oxide, ferrocyan blue and organic dyes such as alizarin, azole-metal phthalocyanine dyes and trace nutrients such as salts of iron, manganese, boron, copper, cobalt, molybdenum and zinc can be used.
  • the formulations generally contain between 0.1 and 95 percent by weight of active compound, preferably between 0.5 and 90%.
  • the active compounds according to the invention can also be used in a mixture with known herbicides for weed control, finished formulation or tank mixing being possible.
  • a mixture with other known active compounds such as fungicides, insecticides, acaricides, nematicides, bird repellants, growth agents, plant nutrients and agents which improve soil structure, is also possible.
  • the active compounds can be used as such, in the form of their formulations or in the use forms prepared therefrom by further dilution, such as ready-to-use solutions, suspensions, emulsions, powders, pastes and granules. They are used in the usual way, e.g. by pouring, spraying, spraying, sprinkling.
  • the active compounds according to the invention can be applied both before and after emergence of the plants. It is preferably used before the plants emerge, that is to say in the pre-emergence process. They can also be worked into the soil before sowing.
  • the amount of active ingredient used can fluctuate in larger areas. It essentially depends on the type of effect you want. In general, the application rates are between 0.1 and 10 kg of active ingredient per ha, preferably between 0.1 and 5 kg / ha.
  • Solvent 5 parts by weight of acetone emulsifier: 1 part by weight of alkylaryl polyglycol ether
  • active compound 1 part by weight of active compound is mixed with the stated amount of solvent, the stated amount of emulsifier is added and the concentrate is diluted with water to the desired concentration.
  • the active substances 1, 2, 3 and 4 according to the invention show a better selective activity than the substance (A) known from the prior art.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Dentistry (AREA)
  • Wood Science & Technology (AREA)
  • Plant Pathology (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Agronomy & Crop Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Pest Control & Pesticides (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Nitrogen- Or Sulfur-Containing Heterocyclic Ring Compounds With Rings Of Six Or More Members (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Nitrogen And Oxygen As The Only Ring Hetero Atoms (AREA)

Abstract

Die Erfindung betrifft neue N-Diazolylalkyl-halogenacetanilide der Formel <IMAGE> in welcher A für Sauerstoff, Schwefel oder die Gruppierung >NR steht, wobei R für Wasserstoff oder Alkyl steht, R¹ für Wasserstoff, Alkyl oder Alkoxy steht, R² für Wasserstoff, Alkyl, Alkoxy oder Halogen steht, R³ für Wasserstoff, Alkyl, Alkoxy oder Halogen steht, R<4> für Wasserstoff oder Alkyl steht, X für Wasserstoff, Alkyl, Halogen, Alkoxy, Alkylthio, Halogenalkyl, Alkenyl, Alkinyl, Alkoxycarbonyl, Dialkylamino, Cyano und gegebenenfalls substituiertes Phenyl, gegebenenfalls substituiertes Phenoxy oder gegebenenfalls substituiertes Phenylthio steht, Z für Halogen steht und der Diazolyl-Rest über ein Kohlenstoffatom gebunden ist, sowie deren Säureadditions-Salze und Metallsalz-Komplexe, mehrere Verfahren zur Herstellung der neue Stoffe sowie deren Verwendung als Herbizide.

Description

  • Die vorliegende Erfindung betrifft neue N-Diazolylalkyl-halogenacetanilide, mehrere Verfahren zu ihrer Herstellung sowie ihre Verwendung als Herbizide.
  • As ist bereits bekannt geworden, daß man 2,6-Diethyl-N-methoxymethyl-chloracetanilid zur selektiven Unkrautbekämpfung verwenden kann (vgl. R. Wegler, Chemie der Pflanzenschutz- und Schädlingsbekämpfungsmittel, Band 5, Seite 255, Springer-Verlag (1977)). Diese Verbindung ist jedoch nicht immer ausreichend wirksam und in ihrer Selektivität nicht immer ganz befriedigend.
  • Es wurden nun neue N-Diazolylalkyl-halogenacetanilide der Formel
    Figure imgb0001
    in welcher
    • A für Sauerstoff, Schwefel oder die Gruppierung >NR steht, wobei
    • R für Wasserstoff oder Alkyl steht,
    • R1 für Wasserstoff, Alkyl oder Alkoxy steht,
    • R2 für Wasserstoff, Alkyl, Alkoxy oder Halogen steht,
    • R3 für Wasserstoff, Alkyl, Alkoxy oder Halogen steht,
    • R4 für Wasserstoff oder Alkyl steht,
    • X für Wasserstoff, Alkyl, Halogen, Alkoxy, Alkylthio, Halogenalkyl, Alkenyl, Alkinyl, Alkoxycarbonyl, Dialkylamino, Cyano und gegebenenfalls substituiertes Phenyl, gegebenenfalls substituiertes Phenoxy oder gegebenenfalls substituiertes Phenylthio steht,
    • Z für Halogen steht und
    • der Diazolyl-Rest über ein Kohlenstoffatom gebunden ist,
      sowie deren Säureadditions-Salze und Metallsalz-Komplexe gefunden.
  • Weiterhin wurde gefunden, daß man die N-Diazolylalkyl-halogenacetanilide der Formel (I) sowie deren Säureadditions-Salze und Metallsalz-Komplexe erhält, wenn man
    • a) N-Diazolylalkyl-aniline der Formel
      Figure imgb0002
      in welcher
      • A,R1 ,R2 ,R3 ,R4
      • und X die oben angegebene Bedeutung haben, mit Halogenessigsäurechloriden oder -bromiden bzw. -anhydriden der Formeln
        Figure imgb0003
        bzw.
        Figure imgb0004
        in welchen
      • Z die oben angegebene Bedeutung hat,

      in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart eines Säurebindemittels umsetzt, oder
    • b) Halogenacetanilide der Formel
      Figure imgb0005
      in welcher
      • R1, R2, R3
      • und Z die oben angegebene Bedeutung haben, mit Diazolylalkyl-Derivaten der Formel
        Figure imgb0006
        in welcher
      • A,R4 und X die oben angegebene Bedeutung haben und
      • Y für Halogen, den Mesylat- oder Tosylat-Rest steht,

      in Gegenwart eines Säurebinders und gegebenenfalls in Gegenwart eines organischen Verdünnungsmittels umsetzt, und gegebenenfalls anschließend eine Säure oder ein Metallsalz addiert.
  • Die neuen N-Diazolylalkyl-halogenacetanilide der Formel (I) sowie deren Säureadditions-Salze und Metallsalz-Komplexe weisen starke herbizide, insbesondere auch selektiv-herbizide Eigenschaften auf.
  • Ueberraschenderweise zeigen die erfindungsgemäßen N-Diazolylalkyl-halogenacetanilide bei sehr guter Unkrautwirkung bessere Möglichkeiten zum Einsatz als selektive Unkrautbekämpfungsmittel in wichtigen Kulturpflanzen als das aus dem Stand der Technik bekannte 2,6-Diethyl-N-methoxymethyl-chloracetanilid, welches ein hochaktiver Wirkstoff gleicher Wirkungsart ist. Die erfindungsgemäßen Stoffe stellen somit eine wertvolle Bereicherung der Technik dar.
  • Die erfindungsgemäßen N-Diazolylalkyl-halogenacetanilide sind durch die Formel (I) allgemein definiert. In der Formel (I) steht A vorzugsweise für Sauerstoff, Schwefel oder die Gruppierung >NR, wobei R vorzugsweise für Wasserstoff und geradkettiges oder verzweigtes Alkyl mit 1 bis 4 Kohlenstoffatomen steht. R' steht vorzugsweise für Wasserstoff und geradkettiges oder verzweigtes Alkyl und Alkoxy mit jeweils 1 bis 4 Kohlenstoffatomen. R2 und R3 sind gleich oder verschieden und stehen vorzugsweise für Wasserstoff, geradkettiges oder verzweigtes Alkyl und Alkoxy mit jeweils 1 bis 4 Kohlenstoffatomen, sowie für die Halogene Fluor, Chlor und Brom. R4 steht vorzugsweise für Wasserstoff oder Alkyl mit 1 bis 4 Kohlenstoffatomen. X steht vorzugsweise für Wasserstoff, für geradkettiges oder verzweigtes Alkyl mit 1 bis 4 Kohlenstoffatomen, geradkettiges oder verzweigtes Alkoxy mit 1 bis 4 Kohlenstoffatomen, geradkettiges oder verzweigtes Alkylthio mit 1 bis 4 Kohlenstoffatomen, Alkoxycarbonyl mit 1 bis 4 Kohlenstoffatomen in der Alkoxygruppe, weiterhin für Alkenyl und Alkinyl mit jeweils 2 bis 4 Kohlenstoffatomen, ferner vorzugsweise für die Halogene Fluor, Chlor und Brom, für Halogenalkyl mit bis zu 2 Kohlenstoff- und bis zu 5 gleichen oder verschiedenen Halogenatomen, wobei als Halogene insbesondere Fluor, Chlor und Brom genannt seien, für Dialkylamino mit 1 bis 4 Kohlenstoffatomen in jedem Alkylteil und für Cyano. X steht außerdem vorzugsweise für gegebenenfalls substituiertes Phenyl, gegebenenfalls substituiertes Phenoxy oder gegebenenfalls substituiertes Phenylthio, wobei als Substituenten vorzugsweise Halogen und Alkyl mit 1 oder 2 Kohlenstoffatomen in Frage kommen. Z steht vorzugsweise für die Halogene Chlor, Brom und Jod.
  • Ganz besonders bevorzugt sind diejenigen N-Diazolylalkyl-halogenacetanilide der Formel (I), in denen A für Sauerstoff, Schwefel oder die Gruppierung >NR steht, wobei R für Methyl, Ethyl, Propyl oder Butyl steht; R1, R2 und R3 gleich oder verschieden sind und für Wasserstoff, Methyl, Ethyl, Isopropyl, sek.-Butyl, tert.-Butyl, Methoxy, Ethoxy oder Isopropoxy stehen, R2 und R3 außerdem auch für Chlor oder Brom stehen; R4 für Wasserstoff oder Methyl steht. X für Wasserstoff, Methyl, Ethyl, n-Propyl, Isopropyl, n-Butyl, sek.-Butyl, tert.-Butyl, Allyl, Propargyl, Methoxy, Ethoxy, Isopropoxy, Methylthio, Ethylthio, Isopropylthio, Methoxycarbonyl, Ethoxycarbonyl,Fluor, Chlor, Brom, Chlormethyl, Brommethyl, Dichlormethyl, Trichlormethyl, Trifluormethyl, Dimethylamino, Ethylmethylamino, Cyano oder gegebenenfalls durch Chlor und/oder Methyl substituiertes Phenyl, gegebenenfalls durch Chlor und/oder Methyl substituiertes Phenoxy oder gegebenenfalls durch Chlor und/oder Methyl substituiertes Phenylthio steht; und Z für Chlor oder Brom steht.
  • Im einzelnen seien außer den bei den Herstellungsbeispielen genannten Verbindungen die folgenden Verbindungen der allgemeinen Formel (I) genannt:
    Figure imgb0007
    Figure imgb0008
    Figure imgb0009
    Figure imgb0010
    Figure imgb0011
    Figure imgb0012
    Figure imgb0013
    Figure imgb0014
    Figure imgb0015
    Figure imgb0016
    Figure imgb0017
    Figure imgb0018
    Figure imgb0019
    Figure imgb0020
    Figure imgb0021
    Figure imgb0022
    Figure imgb0023
    Figure imgb0024
    Figure imgb0025
  • Bevorzugte erfindungsgemäße Verbindungen sind auch Additionsprodukte aus Säuren
    und denjenigen N-Diazolylalkyl-halogenacetaniliden der Formel (I), in denen A, R 1, R2, R3, R4, X und Z die Be-deutungen haben, die bereits vorzugsweise für diese Reste genannt wurden. Zu den Säuren, die addiert werden können, gehören vorzugsweise Halogenwasserstoffsäuren, wie z.B. die Chlorwasserstoffsäure und die Bromwasserstoffsäure, insbesondere die Chlorwasserstoffsäure, ferner Phosphorsäure, Salpetersäure, Schwefelsäure, mono- und bifunktionelle Carbonsäuren und Hydroxycarbonsäuren, wie z.B. Essigsäure, Maleinsäure, Bernsteinsäure, Fumarsäure, Weinsäure, Zitronensäure, Salizylsäure, Sorbinsäure, Milchsäure, sowie Sulfonsäuren, wie z.B. p-Toluolsulfonsäure und 1,5-Naphthalindisulfonsäure.
  • Außerdem bevorzugte erfindungsgemäße Verbindungen sind Additionsprodukte aus Salzen von Metallen der II. bis IV. Haupt- und der I. und II. sowie IV. bis VIII. Nebengruppen und denjenigen N-Diazolylalkyl-halogenacetaniliden der Formel (I), in denen A, R1, R 2, R3, R4, X und Z die Bedeutungen haben, die bereits vorzugsweise für diese Reste genannt wurden. Hierbei sind Salze des Kupfers, Zinks, Mangans, Magnesiums, Zinns, Eisens und des Nickels besonders bevorzugt. Als Anionen dieser Salze kommen solche in Betracht, die sich von solchen Säuren ableiten, die zu physiologisch verträglichen Additionsprodukten führen. Besonders bevorzugte derartige Säuren sind in diesem Zusammenhang die Halogenwasserstoffsäuren, wie z.B. die Chlorwasserstoffsäure und
    die Bromwasserstoffsäure, ferner Phosphorsäure, Salpetersäure und Schwefelsäure.
  • Verwendet man 2-Ethyl-6-methyl-N-(5'-methyl-1',2',4'-oxa- diazol-3'-yl-methyl)-anilin und Chloracetylchlorid als Ausgangsstoffe, so kann der Reaktionsablauf durch das folgende Formelschema wiedergegeben werden (Verfahrensvariante a):
    Figure imgb0026
  • Verwendet man 2-Ethyl-6-methyl-chloracetanilid und 5-Brommethyl-3-methyl-1,2,4-oxadiazol als Ausgangsstoffe, so kann der Reaktionsablauf durch das folgende Formelschema wiedergegeben werden (Verfahrensvariante b):
    Figure imgb0027
  • Die bei der Durchführung des erfindungsgemäßen Verfahrens (a) als Ausgangsstoffe benötigten N-Diazolylalkyl-aniline sind durch die Formel (II) allgemein definiert. In dieser Formel stehen A,R1 ,R2 ,R3 ,R4 und X vorzugsweise für diejenigen Reste, die bereits im Zusammenhang mit der Beschreibung der erfindungsgemäßen Stoffe der Formel (I) vorzugsweise für diese Reste genannt wurden.
  • Als Beispiele für Verbindungen der Formel (II) seien im einzelnen die folgenden Verbindungen genannt:
    Figure imgb0028
    Figure imgb0029
    Figure imgb0030
    Figure imgb0031
    Figure imgb0032
    Figure imgb0033
    Figure imgb0034
    Figure imgb0035
    Figure imgb0036
    Figure imgb0037
    Figure imgb0038
    Figure imgb0039
    Figure imgb0040
    Figure imgb0041
    Figure imgb0042
    Figure imgb0043
    Figure imgb0044
    Figure imgb0045
  • Die N-Diazolylalkyl-aniline der Formel (II) sind noch nicht bekannt. Man erhält sie, wenn man Aniline der Formel
    Figure imgb0046
    in welcher
    • R1,R2 und R3 die oben angegebene Bedeutung haben, mit Diazolylalkyl-Derivaten der Formel
      Figure imgb0047
      in welcher
    • A, R 4, X und Y die oben angegebene Bedeutung haben,

    in Gegenwart eines Säurebinders und gegebenenfalls in Gegenwart eines Verdünnungsmittels umsetzt.
  • Die bei der Herstellung der N-Diazolylalkyl-aniline der Formel (II) als Ausgangsstoffe benötigten Aniline der Formel (VI) sind allgemein bekannte Verbindungen der organischen Chemie. Als Beispiele seien genannt:
    • Anilin; 2-Methylanilin; 2-Ethylanilin; 2-Isopropylanilin; 2-sek.-Butylanilin; 2-tert.-Butylanilin; 2,6-Dimethylanilin; 2,3-Dimethylanilin; 2,5-Dimethylanilin; 3,5-Dimethylanilin; 2,6-Diethylanilin; 2-Ethyl-6-methylanilin; 2,3,4-Trimethylanilin; 2,4,6-Trimethylanilin; 2,4,5-Trimethylanilin; 2-Ethyl-4,6-dimethylanilin; 2,6-Diethyl-4-methylanilin; 2,6-Diisopropyl-4-methylanilin; 2,3,5-Trimethylanilin; 2,3,6-Trimethylanilin; 2-Methyl-6-chloranilin; 2-tert.-Butyl-6-chloranilin; 2-Methoxy-6-methylanilin; 2,6-Dimethoxyanilin; 2-Methoxy-6-ethylanilin; 2,6-Diethoxyanilin.
  • Bei der Herstellung der N-Diazolylalkyl-aniline der Formel (II) können als Säurebinder alle üblichen Säureakzeptoren verwendet werden. Vorzugsweise in Betracht kommen Alkalicarbonate wie Kalium- oder Natriumcarbonat.
  • Als Verdünnungsmittel können bei der Herstellung der N-Diazolylalkyl-aniline der Formel (II) alle üblichen inerten organischen Lösungsmittel eingesetzt werden. Vorzugsweise in Betracht kommen Dimethylformamid und Toluol.
  • Die Reaktionstemperaturen können bei der Herstellung der N-Diazolylalkyl-aniline der Formel (II) nach dem obigen Verfahren innerhalb eines größeren Bereiches variiert werden. Im allgemeinen arbeitet man zwischen 0°C und 180°C, vorzugsweise zwischen 20°C und 160°C.
  • Bei der Herstellung der N-Diazolylalkyl-aniline der Formel (II) nach dem obigen Verfahren setzt man die Aniline der Formel (VI) und die Diazolylalkyl-Derivate der Formel (V) im allgemeinen in äquimolaren Mengen ein. Es ist jedoch.auch möglich, eine der Komponenten, vorzugsweise das Anilin der Formel (VI), in einem Überschuß einzusetzen. - Die Aufarbeitung und Isolierung der Reaktionsprodukte erfolgt nach üblichen Methoden (vgl. auch die Herstellungsbeispiele).
  • Die außerdem für das erfindungsgemäße Verfahren (a) als Ausgangsstoffe zu verwendenden Halogenessigsäurechloride und -bromide bzw. -anhydride sind durch die Formeln (IIIa) und (IIIb) allgemein definiert. In diesen Formeln steht Z vorzugsweise für Chlor, Brom und Jod.
  • Die Halogenessigsäurechloride und -bromide bzw. -anhydride der Formeln (IIIa) und (IIIb) sind allgemein bekannte Verbindungen der organischen Chemie. Als Beispiele seien genannt: Chloracetylchlorid, Bromacetylchlorid, Jodacetylchlorid und die entsprechenden Bromide sowie Anhydride.
  • Die bei der Durchführung des erfindungsgemäßen Verfahrens (b) als Ausgangsstoffe benötigten Halogenacetanilide sind durch die Formel (IV) allgemein definiert. In dieser Formel stehen R', ß2, R3 und Z vorzugsweise für diejenigen Reste, die bereits im Zusammenhang mit der Beschreibung der erfindungsgemäßen Stoffe der Formel (I) vorzugsweise für diese Reste genannt wurden.
  • Die Halogenacetanilide der Formel (IV) sind allgemein bekannt bzw. können sie in allgemein bekannter Art und Weise erhalten werden, indem man entsprechende Aniline mit einem Halogenessigsäurechlorid oder -bromid bzw. -anhydrid der Formeln (IIIa) bzw. (IIIb) in Gegenwart eines inerten organischen Lösungsmittels, wie beispielsweise Toluol oder Dimethylformamid, gegebenenfalls in Gegenwart eines Säurebindemittels, wie z.B. Kaliumcarbonat oderTriethylamin, bei Temperaturen zwischen 0°C und 100°C umsetzt (vergleiche auch die Herstellungsbeispiele). Als Beispiele seien die Chlor- und Bromacetanilide der oben angegebenen Aniline der Formel (VI) genannt.
  • Die außerdem für das erfindungsgemäße Verfahren (b) als Ausgangsstoffe zu verwendenden Diazolylalkyl-Derivate sind durch die Formel (V) allgemein definiert. In dieser Formel stehen A, R4 und X vorzugsweise für diejenigen Reste, die bereits im Zusammenhang mit der Beschreibung der erfindungsgemäßen Stoffe der Formel (I) vorzugsweise für diese Reste genannt wurden. Y steht vorzugsweise für Chlor, Brom, den Mesylat- und Tosylat-Rest.
  • Die Diazolyl-Derivate der Formel (V) sind bekannt (vergleiche u.a. Deutsche Offenlegungsschriften 19 15 495 und 20 54 342, die US-Patentschriften 3 211 742 und 3 264 318 sowie Bull.Soc.Chim.Belges 73, (1964)793); bzw. können sie nach den dort beschriebenen Verfahren in allgemein bekannter Art und Weise erhalten werden. Als Beispiele für Verbindungen der Formel (V) seien im einzelnen die folgenden Verbindungen genannt:
    Figure imgb0048
    Figure imgb0049
    Figure imgb0050
    Figure imgb0051
    Figure imgb0052
    Figure imgb0053
    Figure imgb0054
    Figure imgb0055
  • Als Verdünnungsmittel kommen für die erfindungsgemäße Umsetzung gemäß Verfahrensvariante (a) vorzugsweise inerte organische Lösungsmittel infrage. Hierzu gehören vorzugsweise Ketone, wie Diethylketon, insbesondere Aceton und Methylethylketon; Nitrile, wie Propionitril, insbesondere Acetonitril; Ether, wie Tetrahydrofuran oder Dioxan; aliphatische und aromatische Kohlenwasserstoffe, wie Petrolether, Benzol, Toluol oder Xylol; halogenierte Kohlenwasserstoffe, wie Methylenchlorid, Tetrachlorkohlenstoff, Chloroform oder Chlorbenzol; und Ester, wie Essigester.
  • Das erfindungsgemäße Verfahren (a) kann gegebenenfalls in Gegenwart von Säurebindern (Chlorwasserstoff-Akzeptoren) durchgeführt werden. Als solche können alle üblichen Säurebindemittel verwendet werden. Hierzu gehören vorzugsweise organische Basen, wie tertiäre Amine, beispielsweise Triethylamin, oder Pyridin, ferner anorganische Basen, wie beispielsweise Alkalihydroxide und Alkalicarbonate.
  • Die Reaktionstemperaturen können bei der Durchführung des erfindungsgemäßen Verfahrens (a) in einem größeren Bereich variiert werden. Im allgemeinen arbeitet man zwischen 0°C und 120°C, vorzugsweise zwischen 20°C und 100°C.
  • Bei der Durchführung des erfindungsgemäßen Verfahrens (a) setzt man vorzugsweise auf 1 Mol der Verbindung der Formel (II) 1 bis 1,5 Mol Halogenacetylierungsmittel und 1 bis 1,5 Mol Säurebinder ein. Die Isolierung der Verbindungen der Formel (I) erfolgt in üblicher Weise.
  • Als Verdünnungsmittel kommen für die erfindungsgemäße Umsetzung gemäß Verfahren (b) alle inerten, mit Wasser nicht mischbaren, organischen Lösungsmittel infrage. Hierzu gehören vorzugsweise Ether, wie Diethylether; aromatische Kohlenwasserstoffe, wie Benzol, Toluol oder Xylol; halogenierte Kohlenwasserstoffe, wie Methylenchlorid, Tetrachlorkohlenstoff, Chloroform oder Chlorbenzol; und Ester, wie Essigester.
  • Die erfindungsgemäße Umsetzung gemäß Verfahren (b) wird in Gegenwart eines Säurebindemittels durchgeführt. Als solche können alle üblichen Säurebindemittel verwendet werden. Hierzu gehören vorzugsweise anorganische Basen, wie beispielsweise Alkalihydroxide und Alkalicarbonate.
  • Die Reaktionstemperaturen können bei der Durchführung des erfindungsgemäßen Verfahrens (b) in einem größeren Bereich variiert werden. Im allgemeinen arbeitet man zwischen -70°C und +100°C, vorzugsweise zwischen -20°C und +80°C.
  • Bei der Durchführung des erfindungsgemäßen Verfahrens (b) setzt man vorzugsweise auf 1 Mol Halogenacetanilid der Formel (IV) 1 bis 1,5 Mol Diazolyl-alkyl-Derivat der Formel (V) ein. Die Isolierung der Verbindungen der Formel (I) erfolgt in üblicher Weise.
  • In einer bevorzugten Ausführungsform wird die erfindungsgemäße Umsetzung gemäß Verfahren (b) in einem Zweiphasensystem, wie beispielsweise wässrige Natron- oder Kalilauge/Toluol oder Methylenchlorid, gegebenenfalls uhter Zusatz von 0,1-1 Mol eines Phasen-Transfer-Katalysators, wie beispielsweise Ammonium- oder Phosphoniumverbindungen, beispielsweise seien Benzyl-dodecyl-dimethyl-ammoniumchlorid (Zephirol) und Triethyl-benzyl-ammoniumchlorid genannt, durchgeführt (vergleiche auch die Herstellungsbeispiele).
  • Sowohl die nach dem Verfahren (a) als auch die nach dem Verfahren (b) herstellbaren erfindungsgemäßen Stoffe der Formel (I) können in Säureadditions-Salze bzw. Metallsalz-Komplexe überführt werden.
  • Zur Herstellung von physiologisch verträglichen Säureadditionssalzen der Verbindungen der Formel (I) kommen vorzugsweise folgende Säuren in Frage: Die Halogenwasserstoffsäuren, wie z.B. die Chlorwasserstoffsäure und die Bromwasserstoffsäure, insbesondere die Chlorwasserstoffsäure, ferner Phosphorsäure, Salpetersäure, Schwefelsäure, mono- und bifunktionelle Carbonsäuren und Hydroxycarbonsäuren, wie z.B. Essigester, Maleinsäure, Bernsteinsäure,Fumarsäure, Weinsäure, Zitronensäure, Salizylsäure, Sorbinsäure, Milchsäure, sowie Sulfonsäuren, wie z.B. p-Toluolsulfonsäure und 1,5-Naphthalindisulfonsäure.
  • Die Säureadditions-Salze der Verbindungen der Formel (I) können in einfacher Weise nach üblichen Salzbildungsmethoden, z.B. durch Lösen einer Verbindung der Formel (I) in einem geeigneten inerten Lösungsmittel und Hinzufügen der Säure, z.B. Chlorwasserstoffsäure, erhalten werden und in bekannter Weise, z.B. durch Abfiltrieren, isoliert und gegebenenfalls durch Waschen mit einem inerten organischen Lösungsmittel gereinigt werden.
  • Zur Herstellung von Metallsalz-Komplexen der Verbindungen der Formel (I) kommen vorzugsweise Salze von Metallen der II. bis IV. Haupt- und der I. und II. sowie IV. bis VIII. Nebengruppe in Frage, wobei Kupfer, Zink, Mangan, Magnesium, Zinn, Eisen und Nickel beispielhaft genannt seien. Als Anionen der Salze kommen solche in Betracht, die sich vorzugsweise von folgenden Säuren ableiten: Halogenwasserstoffsäuren, wie z.B. die Chlorwasserstoffsäure und die Bromwasserstoffsäure, ferner Phosphorsäure, Salpetersäure und Schwefelsäure.
  • Die Metallsalz-Komplexe von Verbindungen der Formel (I) können in einfacher Weise nach üblichen Verfahren erhalten werden, so z.B. durch Lösen des Metallsalzes in Alkohol, z.B. Ethanol und Hinzufügen zur Verbindung der Formel (I). Man kann Metallsalz-Komplexe in bekannter Weise, z.B. durch Abfiltrieren, Isolieren und gegebenenfalls durch Umkristallisation reinigen.
  • Die erfindungsgemäßen Wirkstoffe beeinflussen das Pflanzenwachstum und können deshalb als Defoliants, Desiccants, Krautabtötungsmittel, Reimhemmungsmittel unu insbesondere als Unkrautvernichtungsmittel verwendet werden. Unter Unkraut im weitesten Sinne sind alle Pflanzen zu verstehen, die an Orten aufwachsen, wo sie unerwünscht sind. Ob die erfindungsgemäßen Stoffe als totale oder selektive Herbiziae wirken, hängt im wesentlichen von der angewendeten Menge ab.
  • Die erfindungsgemäßen Wirkstoffe können z.B. bei den folgenden Pflanzen verwendet werden:
    • Dikotyle Unkräute der Gattungen: Sinapis, Lepicium, Galium, Stellaria, Matricaria, Anthemis, Galinsoga, Chenopodium, Urtica, Senecio, Amaranthus, Portulaca, Xanthium, Convolvulus, Ipomoea, Polygonum, Sesbania, Ambrosia, Cirsium, Carduus, Sonchus, Solanum, Rorippa, Rotala, Lindernia, Lamium, Veronica, Abutilon, Emex, Datura, Viola, Galeopsis, Papaver, Centaurea.
    • Dicotyle Kulturen der Gattungen: Gossypium, Glycine, Beta, Daucus, Fhaseolus, Pisum, Solanüm, Linum, Ipomoea, Vicia, Nicotiana, Lycopersicon, Arachis, Brassica, Lactuca, Cucumis, Cuburbita.
    • Monokotyle Unkräuter der Gattungen: Echinochloa, Setaria, Panicum, Digitaria, Phleum, Poa, Festuca, Eleusine, Brachiaria, Lolium, Bromus, Avena, Cyperus, Sorghum, Agropyron, Cynodon, Monochoria, Fimbristylis, Sagittaria, Eleocharis, Scirpus, Paspalum, Ischaemum, Sphenoclea, Dactyloctenium, Agrostis, Alopecurus, Apera.
    • Monokotyle Kulturen der Gattungen: Oryza, Zea, Triticum, hordeum, Avena, Secale, Sorghum, Panicum, Saccharum, Ananas, Asparagus, Allium.
  • Die Verwendung der erfindungsgemäßen Wirkstoffe ist jedoch keineswegs auf diese Gattungen beschränkt, sondern erstreckt sich in gleicher Weise auch auf andere Pflanzen.
  • Die Verbindungen eignen sich in Abhängigkeit von der Konzentration zur Totalunkrautbekämpfung z.B. auf Industrie- und Gleisanlagen und auf Wegen und Plätzen mit und ohne Baumbewuchs. Ebenso können die Verbindungen zur Unkrautbekämpfung in Dauerkulturen z.B. Forst-, Ziergehölz-, Obst-, Wein-, Citrus-, Nuss-, Bananen-, Kaffee-, Tee-, Gummi-, ölpalm-, Kakao-, Beerenfrucht- und Hopfenanlagen und zur selektiven Unkrautbekämpfung in einjährigen Kulturen eingesetzt werden.
  • Die erfindungsgemäßen Wirkstoffe zeigen insbesondere neben einer sehr guten Wirkung gegen grasartige Unkräuter auch eine gute herbizide Wirkung bei breitblättrigen Unkräutern. Ein selektiver Einsatz der erfindungsgemäßen Wirkstoffe ist möglich, vorzugsweise in Mais, Erdnüssen, Rüben, Sojabohnen, Baumwolle, Reis und andere Getreidearten.
  • Die Wirkstoffe können in die üblichen'Formulierungen übergeführt werden, wie Lösungen, Emulsionen, Spritzpulver, Suspensionen, Pulver, Stäubemittel, Pasten, lösliche Pulver, Granulate, Suspensions-Emulsionskonzentrate, Wirkstoff-imprägnierte Natur- und synthetische Stoffe, Feinverkapselungen in polymeren Stoffen.
  • Diese Formulierungen werden in bekannter Weise hergestellt, z.B. durch Vermischen der Wirkstoffe mit Streckmitteln, also flüssigen Lösungsmitteln, und/oder festen Trägerstoffen, gegebenenfalls unter Verwendung von oberflächenaktiven Mitteln, also Emulgiermi.tteln und/oder Dispergiermitteln und/oder
    schaumerzeugenden Mitteln. Im Falle der Benutzung von Wasser als Streckmittel können z.B. auch organische Lösungsmittel als Hilfslösungsmittel verwendet werden. Als flüssige Lösungsmittel kommen im wesentlichen in Frage: Aromaten, wie Xylol, Toluol, oder Alkylnaphthaline, chlorierte Aromaten oder chlorierte aliphatische Kohlenwasserstoffe, wie Chlorbenzole, Chloräthylene oder Methylenchlorid, aliphatische Kohlenwasserstoffe, wie Cyclohexan oder Paraffine, z.B. Erdölfraktionen, Alkohole, wie Butanol oder Glycol sowie deren Äther und Ester, Ketone, wie Aceton, Methyläthylketon, Methylisobutylketon oder Cyclohexanon, stark polare Lösungsmittel, wie Dimethylformamid und Dimethylsulfoxid, sowie Wasser.
  • Als feste Trägerstoffe kommen in Frage:
    • z.B. natürliche Gesteinsmehle, wie Kaoline, Tonerden, Talkum, Kreide, Quarz, Attapulgit, Montmorillonit oder Diatomeenerde und synthetische Gesteinsmehle, wie hochdisperse Kieselsäure, Aluminiumoxid und Silikate; als feste Trägerstoffe für Granulate kommen in Frage: z.B. gebrochene und fraktionierte natürliche Gesteine wie Calcit, Marmor, Bims, Sepiolith, Dolomit sowie synthetische Granulate aus anorganischen und organischen Mehlen sowie Granulate aus organischem Material wie Sägemehl, Kokosnußschalen, Maiskolben und Tabakstengel; als Emulgier- und/oder schaumerzeugende Mittel kommen in Frage: z.B. nichtionogene und anionische Emulgatoren, wie Polyoxyäthylen-FettsäureEster, Polyoxyäthylen-Fettalkohol-Äther, z.B. Alkylarylpolyglykol-äther, Alkylsulfonate, Alkylsulfate, Arylsulfonate sowie Eiweißhydrolysate; als Dispergiermittel kommen in Frage: z.B. Lignin-Sulfitablaugen und Methylcellulose.
  • Es können in den Formulierungen Haftmittel wie Carboxymethylcellulose, natürliche und synthetische pulverige, körnige oder latexförmige Polymere verwendet werden, wie Gummiarabicum, Polyvinylalkohol, Polyvinylacetat.
  • Es können Farbstoffe wie anorganische Pigmente, z.B. Eisenoxid, Titanoxid, Ferrocyanblau und organische Farbstoffe, wie Alizarin-, Azol-Metallphthalocyaninfarbstoffe und Spurennährstoffe wie Salze von Eisen, Mangan, Bor, Kupfer, Kobalt, Molybdän und Zink verwendet werden.
  • Die Formulierungen enthalten im allgemeinen zwischen 0,1 und 95 Gewichtsprozent Wirkstoff, vorzugsweise zwischen 0,5 und 90 %.
  • Die erfindungsgemäßen Wirkstoffe können als solche oder in ihren Formulierungen auch in Mischung mit bekannten Herbiziden zur Unkrautbekämpfung Verwendung finden, wobei Fertigformulierung oder Tankmischung möglich ist. Auch eine Mischung mit anderen bekannten Wirkstoffen, wie Fungiziden, Insektiziden, Akariziden, Nematiziden, Schutzstoffen gegen Vogelfraß, Wuchsstoffen, Pflanzennährstoffen und Bodenstrukturverbesserungsmitteln ist möglich.
  • Die Wirkstoffe können als solche, in Form ihrer Formulierungen oder der daraus durch weiteres Verdünnen bereiteten Anwendungsformen, wie gebrauchsfertige Lösun - gen, Suspensionen, Emulsionen, Pulver, Pasten und Granulate angewandt werden. Die Anwendung geschieht in üblicher Weise, z.B. durch Gießen, Spritzen, Sprühen, Streuen.
  • Die erfindungsgemäßen Wirkstoffe können sowohl vor als auch nach dem Auflaufen der Pflanzen appliziert werden. Die Anwendung wird vorzugsweise vor dem Auflaufen der Pflanzen, also im pre-emergence-Verfahren, vorgenommen. Sie können auch vor der Saat in den Boden eingearbeitet werden.
  • Die aufgewandte Wirkstoffmenge kann in größeren Bereichen schwanken. Sie hängt im wesentlichen von der Art des gewünschten Effekts ab. Im allgemeinen liegen die Aufwandmengen zwischen 0,1 und 10 kg Wirkstoff pro ha, vorzugsweise zwischen 0,1 und 5 kg/ha.
  • In dem nachfolgenden Beispiel wird die nachstehend angegebene Verbindung als Vergleichssubstanz eingesetzt:
    Figure imgb0056
    (2,6-Diethyl)-N-methoxymethyl-chloracetanilid).
  • Beispiel A Pre-emergence-Test
  • Lösungsmittel: 5 Gewichtsteile Aceton Emulgator: 1 Gewichtsteil Alkylarylpolyglycoläther
  • Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit der angegebenen Menge Lösungsmittel, gibt die angegebene Menge Emulgator zu und verdünnt das Konzentrat mit Wasser auf die gewünschte Konzentration.
  • Samen der Testpflanzen werden in normalen Boden ausgesät und nach 24 Stunden mit der Wirkstoffzubereitung begossen. Dabei hält man die Wassermenge pro Flächeneinheit zweckmäßigerweise konstant. Die Wirkstoffkonzentration in der Zubereitung spielt keine Rolle, entscheidend ist nur die Aufwandmenge des Wirkstoffs pro Flächeneinheit. Nach drei Wochen wird der Schädigungsgrad der Pflanzen bonitiert in % Schädigung im Vergleich zur Entwicklung der unbehandelten Kontrolle. Es bedeuten:
    • 0 % = keine Wirkung (wie unbehandelte Kontrolle)
    • 100 % = totale Vernichtung
  • Wirkstoffe, Aufwandmengen und Resultate werden ermittelt.
  • Die erfindungsgemäßen Wirkstoffe 1, 2, 3 und 4 zeigen in diesem Test eine bessere selektive Wirksamkeit als die aus dem Stand der Technik bekannte Substanz (A).
  • Herstellungsbeispiele Beispiel 1
  • Figure imgb0057
    (Verfahren a) 8,7g (0,035 Mol) 2,6-Diethyl-N-(3'-methyl-1',2',4'-oxa- diazol-5'-yl-methyl)-anilln und 3g (0,037 Mol) Pyridin werden in 100 ml trockenem Tetrahydrofuran zum Sieden erhitzt. Unter Rühren werden dann 4,1g (0,036 Mol) Chloracetylchlorid zugetropft. Nach 15 Minuten wird die gesamte Reaktionsmischung im Vakuum eingeengt und mit Wasser versetzt. Die dabei ausfallenden Kristalle werden abgesaugt und aus wenig Essigester umkristallisiert. Man erhält 9,4g (83% der Theorie) 2,6-Diethyl-N-(3'-methyl-1',2',4'-oxadiazol-5'-yl-methyl)-chloracetanilid vom Schmelzpunkt 70-72°C.
  • Herstellun des Ausgangsproduktes
  • Figure imgb0058
    36,8g (0,25 Mol) 2,6-Diethylanilin, 13,8g (0,1 Mol) gepulvertes Kaliumcarbonat und 13g (0,1 Mol) 5-Chlormethyl-3-methyl-1,2,4-oxadiazol werden in 25m1 Dimethylformamid unter Rühren 5 Stunden auf 100°C erhitzt. Danach wird vom anorganischen Salz abgesaugt, das Filtrat auf 100 ml Wasser gegossen und mit Methylenchlorid extrahiert. Die organische Phase wird über Natriumsulfat getrocknet und durch Abdestillieren des Lösungsmittels im Vakuum eingeengt. Der ölige Rückstand wird im Hochvakuum destilliert. Man erhält 12,2g (50 % der Theorie) 2,6-Diethyl-N-(3'-methyl-l',2',4'-oxadiazol-5'-yl-methyl)-anilin vom Siedepunkt 145°C/0,05 mm.
  • Beispiel 2
  • Figure imgb0059
    (Verfahren a) Zu einer siedenden Mischung aus 4,6g (0,02 Mol) 2-Ethyl-6-methyl-N-(5'-methyl-1',2',4'-oxadiazol-3'-yl-methyl)-anilin und 2g (0,025 Mol) Pyridin in 100 ml trockenem Tetrahydrofuran werden 2,3g (0,02 Mol) Chloracetylchlorid langsam zugetropft. Nach 15 Minuten wird die Reaktionsmischung im Vakuum eingeengt, mit Wasser versetzt und mit Methylenchlorid extrahiert. Die organische Phase wird über Natriumsulfat getrocknet und durch Abdestillieren des Lösungsmittels im Vakuum eingeengt. Der Rückstand wird durch Anreiben mit Petrolether zur Kristallisation gebracht. Man erhält 5g (81 % der Theorie) 2-Ethyl-6-methyl-N-(5'-methyl-1',2',4'-oxadiazol-3'-yl-methyl)-chloracetanilid vom Schmelzpunkt 69-72°C.
  • Herstellung des Ausgangsproduktes
  • Figure imgb0060
    13 g (0,1 Mol) 3-Chlormethyl-5-methyl-1,2,4-oxadiazol werden unter Rühren bei 100°C in eine Mischung von 27g (0,2 Mol) 2-Ethyl-6-methyl-anilin und 13,8 g (0,1 Mol) Kaliumcarbonat getropft. Man läßt 6 Stunden bei 100°C nachrühren und gießt anschließend die Reaktionsmischung auf Wasser. Man extrahiert mit Methylenchlorid, trocknet die organische Phase über Natriumsulfat und engt durch Abdestillieren des Lösungsmittels im Vakuum ein. Der Rückstand wird im Hochvakuum destilliert. Man erhält 5,2g (22,5 % der Theorie) 2-Ethyl-6-methyl-N-(5'-methyl-1',2',4'-oxadiazol-3'-yl-methyl)-anilin vom Siedepunkt 132°C/0,2mm und einem Schmelzpunkt von 54-55°C.
  • In entsprechender Weise werden diejenigen Verbindungen erhalten, die in der Tabelle 1 formelmäßig aufgeführt sind.
    Figure imgb0061
    Figure imgb0062
    Figure imgb0063
    Figure imgb0064
    Figure imgb0065
  • Nach dem in der Anmeldung beschriebenen
    Verfahren und entsprechend den Beispielen 1 und 2 werden die in der nachstehenden Tabelle 2 formelmäßig aufgeführten Ausgangsprodukte der Formel (II) erhalten.
    Figure imgb0066
    Figure imgb0067
    Figure imgb0068
    Figure imgb0069

Claims (10)

1. N-Diazolylalkyl-halogenacetanilide der Formel
Figure imgb0070
in welcher
A für Sauerstoff, Schwefel oder die Gruppierung >NR steht, wobei
R für Wasserstoff oder Alkyl steht,
R1 für Wasserstoff, Alkyl oder Alkoxy steht,
R2 für Wasserstoff, Alkyl, Alkoxy oder Halogen steht,
R3 für Wasserstoff, Alkyl, Alkoxy oder Halogen steht,
R4 für Wasserstoff oder Alkyl steht,
X für Wasserstoff, Alkyl, Halogen, Alkoxy, Alkylthio, Halogenalkyl, Alkenyl, Alkinyl, Alkoxycarbonyl, Dialkylamino, Cyano und gegebenenfalls substituiertes Phenyl, gegebenenfalls substituiertes Phenoxy oder gegebenenfalls substituiertes Phenylthio steht,
Z für Halogen steht und
der Diazolyl-Rest über ein Kohlenstoffatom gebunden ist,

sowie deren Säureadditions-Salze und Metallsalz-Komplexe.
2. Verfahren zur Herstellung von N-Diazolylalkyl-halogenacetaniliden der Formel (I) gemäß Anspruch 1 sowie deren Säureadditions-Salzen und Metallsalz-Komplexen, dadurch gekennzeichnet, daß man
a) N-Diazolylalkyl-aniline der Formel
Figure imgb0071
in welcher
A,R1 ,R2 ,R3 ,R4
und X die oben angegebene Bedeutung haben,
mit Halogenessigsäurechloriden oder -bromiden bzw. -anhydriden der Formeln
Figure imgb0072
bzw.
Figure imgb0073
in welchen
Z die oben angegebene Bedeutung hat, in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart eines Säurebindemittels umsetzt, oder
b) Halogenacetanilide der Formel
Figure imgb0074
in welcher
R1, R2, R 3
und Z die oben angegebene Bedeutung haben, mit Diazolylalkyl-Derivaten der Formel
Figure imgb0075
in welcher
A,R4 und X die oben angegebene Bedeutung haben und
Y für Halogen, den Mesylat- oder Tosylat-Rest steht,

in Gegenwart eines Säurebinders und gegebenenfalls in Gegenwart eines organischen Verdünnungsmittels umsetzt, und gegebenenfalls anschließend eine Säure oder ein Metallsalz addiert.
3. Herbizide Mittel, gekennzeichnet durch einen Gehalt an mindestens einem N-Diazolyl-alkyl-halogenacetanilid der Formel (I) gemäß Anspruch 1 bzw. einem Säureadditionssalz oder Metallsalz-Komplex eines N-Diazolylalkyl-halogenacetanilids der Formel (I) gemäß Anspruch 1.
4. Verfahren zur Bekämpfung von Unkräutern, dadurch gekennzeichnet, daß man N-Diazolylalkyl-halogenacetanilide der Formel (I) gemäß Anspruch 1 bzw. Säureadditions-Salze oder Metallsalz-Komplexe von N-Diazolyl- alkyl-halogenacetaniliden der Formel (I) gemäß Anspruch 1 auf Unkräuter und/oder deren Lebensraum einwirken läßt.
5. Verwendung von N-Diazolylalkyl-halogenacetaniliden der Formel (I) gemäß Anspruch 1 bzw. von Säureadditions-Salzen oder Metallsalz-Komplexen von N-Diazolylalkyl-halogenacetaniliden der Formel (I) gemäß Anspruch 1 zur Bekämpfung von Unkräutern.
6. Verfahren zur Herstellung von herbiziden Mitteln, dadurch gekennzeichnet, daß man N-Diazolylalkyl-halogenacetanilide der Formel (I) gemäß Anspruch 1 bzw. Säureadditions-Salze oder Metallsalz-Komplexe von N-Diazolylalkyl-halogenacetaniliden der Formel (I) gemäß Anspruch 1 mit Streckmitteln und/oder oberflächenaktiven Mitteln vermischt.
7. N-Diazolylalkyl-aniline der Formel
Figure imgb0076
in welcher
A für Sauerstoff, Schwefel oder die Gruppierung NR steht, wobei
R für Wasserstoff oder Alkyl steht,
R für Wasserstoff, Alkyl oder Alkoxy steht,
R 2 für Wasserstoff, Alkyl, Alkoxy oder Halogen steht,
R 3 für Wasserstoff, Alkyl, Alkoxy oder Halogen steht,
R 4 für Wasserstoff oder Alkyl steht, und
X für Wasserstoff, Alkyl, Halogen, Alkoxy, Alkylthio, Halogenalkyl, Alkenyl, Alkinyl, Alkoxycarbonyl, Dialkylamino, Cyano, gegebenenfalls substituiertes Phenyl, gegebenenfalls substituiertes Phenoxy oder gegebenenfalls substituiertes Phenylthio steht,

und der Diazolyl-Rest über ein Kohlenstoffatom gebunden ist.
8. Verfahren zur Herstellung von N-Diazolylalkyl-anilinen der Formel (II) gemäß Anspruch 7, dadurch gekennzeichnet, daß man Aniline der Formel
Figure imgb0077
in welcher
R1, R2
und R 3 die oben angegebene Bedeutung haben, mit Diazolylalkyl-Derivaten der Formel
Figure imgb0078
in welcher
A,R4 und X die oben angegebene Bedeutung haben und
Y für Halogen, den Mesylat- oder Tosylat-Rest steht,

in Gegenwart eines Säurebinders und gegebenenfalls in Gegenwart eines organischen Verdünnungsmittels umsetzt.
9) 2,6-Diethyl-N-(3'-methyl-1',2',4'-oxadiazol-5'-yl- methyl)-chloracetanilid der Formel
Figure imgb0079
10) 2-Ethyl-6-methyl-N-(5'-methyl-1',2',4'-oxadiazol-3'-yl-methyl)-chloracetanilid der Formel
Figure imgb0080
EP79103468A 1978-09-28 1979-09-17 N-Diazolylalkyl-chloracetanilide, Verfahren zu ihrer Herstellung sowie ihre Verwendung als Herbizide Expired EP0010163B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT79103468T ATE538T1 (de) 1978-09-28 1979-09-17 N-diazolylalkyl-chloracetanilide, verfahren zu ihrer herstellung sowie ihre verwendung als herbizide.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE2842284 1978-09-28
DE19782842284 DE2842284A1 (de) 1978-09-28 1978-09-28 N-diazolylalkyl-halogenacetanilide, verfahren zu ihrer herstellung sowie ihre verwendung als herbizide

Publications (2)

Publication Number Publication Date
EP0010163A1 true EP0010163A1 (de) 1980-04-30
EP0010163B1 EP0010163B1 (de) 1982-01-06

Family

ID=6050735

Family Applications (1)

Application Number Title Priority Date Filing Date
EP79103468A Expired EP0010163B1 (de) 1978-09-28 1979-09-17 N-Diazolylalkyl-chloracetanilide, Verfahren zu ihrer Herstellung sowie ihre Verwendung als Herbizide

Country Status (13)

Country Link
US (2) US4338119A (de)
EP (1) EP0010163B1 (de)
JP (1) JPS5545697A (de)
AT (1) ATE538T1 (de)
AU (1) AU5126179A (de)
BR (1) BR7906163A (de)
CA (1) CA1130295A (de)
DE (2) DE2842284A1 (de)
DK (1) DK405779A (de)
ES (1) ES484522A1 (de)
IL (1) IL58321A (de)
PT (1) PT70219A (de)
ZA (1) ZA795147B (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0046497A2 (de) * 1980-08-14 1982-03-03 BASF Aktiengesellschaft N-Disubstituierte Anilinderivate, ihre Herstellung, ihre Verwendung als Mikrobizide und Mittel dafür
EP0068138A1 (de) * 1981-05-23 1983-01-05 Hoechst Aktiengesellschaft Neue Chloracetanilide, Verfahren zu ihrer Herstellung und sie enthaltende herbizide Mittel
EP0076915A2 (de) * 1981-09-03 1983-04-20 BASF Aktiengesellschaft Oxadiazolcarbonsäureamide, Verfahren zu ihrer Herstellung und diese enthaltende Fungizide
EP0590415A2 (de) * 1992-09-28 1994-04-06 Bayer Ag 1,2,4-Oxadiazolderivate zur Bekämpfung von Endoparasiten

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4696930A (en) * 1985-04-12 1987-09-29 Hoffmann-La Roche Inc. N-(heteroarylalkyl)acylanilide derivatives as antiarrhythmic agents
DK277086A (da) * 1985-07-12 1987-01-13 Hoffmann La Roche Triazolderivater
JP2588918Y2 (ja) * 1991-08-08 1999-01-20 タナシン電機株式会社 回転伝達装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2648008A1 (de) * 1976-10-23 1978-05-03 Basf Ag Acetanilide
DE2704281A1 (de) * 1977-02-02 1978-08-03 Bayer Ag N-substituierte halogenacetanilide, verfahren zu ihrer herstellung sowie ihre verwendung als herbizide
DE2742583A1 (de) * 1977-09-22 1979-04-05 Bayer Ag N-substituierte halogenacetanilide, verfahren zu ihrer herstellung sowie ihre verwendung als herbizide
EP0003540A2 (de) * 1978-02-10 1979-08-22 Bayer Ag N-Azolylalkyl-aniline sowie Verfahren zu ihrer Herstellung

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4243408A (en) * 1978-05-11 1981-01-06 Chevron Research Company Herbicidal N-triazolylmethyl-substituted alpha-haloacetanilide
US4337081A (en) * 1979-01-23 1982-06-29 Olin Corporation 5-Amido-3-trihalomethyl-1,2,4-thiadiazoles and their use as herbicides

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2648008A1 (de) * 1976-10-23 1978-05-03 Basf Ag Acetanilide
DE2704281A1 (de) * 1977-02-02 1978-08-03 Bayer Ag N-substituierte halogenacetanilide, verfahren zu ihrer herstellung sowie ihre verwendung als herbizide
DE2742583A1 (de) * 1977-09-22 1979-04-05 Bayer Ag N-substituierte halogenacetanilide, verfahren zu ihrer herstellung sowie ihre verwendung als herbizide
EP0003540A2 (de) * 1978-02-10 1979-08-22 Bayer Ag N-Azolylalkyl-aniline sowie Verfahren zu ihrer Herstellung

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0046497A2 (de) * 1980-08-14 1982-03-03 BASF Aktiengesellschaft N-Disubstituierte Anilinderivate, ihre Herstellung, ihre Verwendung als Mikrobizide und Mittel dafür
EP0046497A3 (en) * 1980-08-14 1982-03-17 Basf Aktiengesellschaft N-disubstituted aniline derivatives, their preparation, their use as microbicides, and compositions
EP0068138A1 (de) * 1981-05-23 1983-01-05 Hoechst Aktiengesellschaft Neue Chloracetanilide, Verfahren zu ihrer Herstellung und sie enthaltende herbizide Mittel
EP0076915A2 (de) * 1981-09-03 1983-04-20 BASF Aktiengesellschaft Oxadiazolcarbonsäureamide, Verfahren zu ihrer Herstellung und diese enthaltende Fungizide
EP0076915A3 (de) * 1981-09-03 1983-06-22 BASF Aktiengesellschaft Oxadiazolcarbonsäureamide, Verfahren zu ihrer Herstellung und diese enthaltende Fungizide
EP0590415A2 (de) * 1992-09-28 1994-04-06 Bayer Ag 1,2,4-Oxadiazolderivate zur Bekämpfung von Endoparasiten
EP0590415A3 (en) * 1992-09-28 1994-06-01 Bayer Ag 1,2,4-oxadiazole derivatives for controlling endoparasites
US5428047A (en) * 1992-09-28 1995-06-27 Bayer Aktiengesellschaft Use of substituted 1,2,4-oxadiazole derivatives for combating endoparasites, new substituted 1,2,4-oxadiazole derivatives, and processes for their preparation

Also Published As

Publication number Publication date
US4338119A (en) 1982-07-06
US4488895A (en) 1984-12-18
IL58321A (en) 1983-09-30
DE2842284A1 (de) 1980-04-17
PT70219A (en) 1979-10-01
AU5126179A (en) 1980-04-03
ZA795147B (en) 1980-10-29
IL58321A0 (en) 1979-12-30
ES484522A1 (es) 1980-06-16
BR7906163A (pt) 1980-05-27
JPS5545697A (en) 1980-03-31
CA1130295A (en) 1982-08-24
DE2961776D1 (en) 1982-02-25
ATE538T1 (de) 1982-01-15
DK405779A (da) 1980-03-29
EP0010163B1 (de) 1982-01-06

Similar Documents

Publication Publication Date Title
EP0300344B1 (de) Halogenierte Thiadiazolyl-oxyessig-säureamide, Verfahren und Zwischenprodukte zu ihrer Herstellung und ihre Verwendung als Herbizide
EP0000051B1 (de) N-acylmethyl-chloroacetanilide, Verfahren zu ihrer Herstellung sowie ihre Verwendung als Herbizide.
EP0010163B1 (de) N-Diazolylalkyl-chloracetanilide, Verfahren zu ihrer Herstellung sowie ihre Verwendung als Herbizide
EP0003584B1 (de) Phenoxypropionsäure-Derivate, Verfahren zu ihrer Herstellung und ihre Verwendung als Herbizide
EP0010715B1 (de) Neue, eine Oximgruppe enthaltende N-Alkylhalogenacetanilide, Verfahren zu ihrer Herstellung, sie enthaltende herbizide Mittel, ein Verfahren zur Bekämpfung von Unkräutern und ein Verfahren zur Herstellung von herbiziden Mitteln.
EP0019742A2 (de) N-(2,5-Diazolyl)alkyl-halogenacetanilide, Verfahren zu ihrer Herstellung sowie ihre Verwendung als Herbizide
EP0049416B1 (de) Substituierte 6-Halogen-tert.-butyl-1,2,4-triazin-5-one, Verfahren zu ihrer Herstellung sowie ihre Verwendung als Herbizide
EP0024017A2 (de) N-Pyrimidinylmethyl-halogenacetanilide, Verfahren zu ihrer Herstellung sowie ihre Verwendung als Herbizide; Zwischenprodukte und ihre Herstellung
EP0084774A1 (de) 3-Alken(in)yl-mercapto(amino)-4-amino-6-tert.-butyl-1,2,4-triazin-5-one, Verfahren zu ihrer Herstellung sowie ihrer Verwendung als Herbizide
EP0010166B1 (de) N-(1,2-Azolyl)alkyl-chloracetanilide, Verfahren zu ihrer Herstellung sowie ihre Verwendung als Herbizide
EP0009693B1 (de) N-(1,3-Thiazolyl)-alkyl-chloracetanilide, Verfahren zu ihrer Herstellung und ihre Verwendung als Herbicide
EP0008091A1 (de) Substituierte N-Pyrazolylmethyl-halogenacetanilide, Verfahren zu ihrer Herstellung sowie ihre Verwendung als Herbizide
EP0138085A1 (de) 2-Aryl-2-Halogenalkyloxirane
DE2919196A1 (de) N-alkinyl-halogenacetanilide, verfahren zu ihrer herstellung sowie ihre verwendung als herbizide
EP0089538B1 (de) Optisch aktive Phenoxybenzoesäure-Derivate, Verfahren zu ihrer Herstellung und ihre Verwendung als Herbizide
EP0172551A2 (de) 2,4-Bis-(alkoximinoalkyl)-cyclohexan-1,3-dione
DE3004871A1 (de) Halogenalkylamide, verfahren zu deren herstellung und deren verwendung als gegenmittel zum schutz von kulturpflanzen vor schaedigungen durch herbizide
DE2847827A1 (de) Oximether, verfahren zu ihrer herstellung sowie ihre verwendung als herbizide
DE3210598A1 (de) Halogenierte 4-pyridon-derivate, verfahren zu ihrer herstellung sowie ihre verwendung als herbizide
DE3425123A1 (de) Optisch aktive phenoxypropionsaeure-derivate
DE3035021A1 (de) 3-dimethylamino-4-methyl-6-phenyl-1, 2,4-triazin-5-one, verfahren zu ihrer herstellung sowie ihre verwendung als herbizide
DE3344201A1 (de) N-chloracetyl-enamine
DE3221215A1 (de) (pyridyloxy-phenoxy)-oximino-verbindungen, verfahren zu ihrer herstellung und ihre verwendung als herbizide
DE2931103A1 (de) Oximether, verfahren zu ihrer herstellung sowie ihre verwendung als herbizide
DE3228099A1 (de) Pyridyloxy-oximino-derivate

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed
AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT NL

ITF It: translation for a ep patent filed

Owner name: SOCIETA' ITALIANA BREVETTI S.P.A.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT NL

REF Corresponds to:

Ref document number: 538

Country of ref document: AT

Date of ref document: 19820115

Kind code of ref document: T

REF Corresponds to:

Ref document number: 2961776

Country of ref document: DE

Date of ref document: 19820225

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19840828

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19840907

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19840930

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19840930

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19841128

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19850909

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19850930

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19860917

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Effective date: 19860930

BERE Be: lapsed

Owner name: BAYER A.G.

Effective date: 19860930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19870401

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19870527

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19870602

GBPC Gb: european patent ceased through non-payment of renewal fee
REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19881118

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT