EP0008037B1 - Device for tension control in a continuous rolling mill - Google Patents
Device for tension control in a continuous rolling mill Download PDFInfo
- Publication number
- EP0008037B1 EP0008037B1 EP79102628A EP79102628A EP0008037B1 EP 0008037 B1 EP0008037 B1 EP 0008037B1 EP 79102628 A EP79102628 A EP 79102628A EP 79102628 A EP79102628 A EP 79102628A EP 0008037 B1 EP0008037 B1 EP 0008037B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- regulating
- rolling
- stages
- speed
- theoretical value
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B37/00—Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
- B21B37/48—Tension control; Compression control
- B21B37/52—Tension control; Compression control by drive motor control
Definitions
- the invention relates to a device for controlling the tensile force transmitted in the rolling stock in a rolling mill containing m stands, with a speed controller on each stand and with a control device superimposed on the speed controller on at least m-1 stands for adjusting the roll speeds of the stands in succession in the rolling direction and each a computing circuit assigned to the control devices for calculating the actual value of the controlled variable from the respective drive, acceleration and deformation torque.
- DE-A-2541 071 describes a device of this type which is intended to make it possible to set the speed ratios required for a defined tensile stress in the rolling stock in a short time and in a simple manner.
- the tensile stress in front of and behind each stand, to which a tension differential control device is assigned, is determined from the drive torque, the acceleration torque and the deformation torque in the roll gap.
- One of the stands takes on the function of a guide stand, which essentially determines the rolling speed in the street.
- tensile stresses deviating from the nominal value occur in front of and behind the guide scaffold, which result from the sum of the torque errors of the other scaffolds. This disadvantage becomes all the more serious the larger the number of scaffolding on a street.
- the invention is therefore based on the object of providing a device of the type mentioned at the beginning with which a rolling mill can be operated with an even distribution of the tensile stresses or moments regardless of the number of stands.
- this object is achieved in that such a control device is assigned to each of the stands to stabilize the speed behavior of the rolling mill and a common correction controller is superimposed on these control devices, to which the output signal of one of the control devices is fed as an input variable and from its output signal from the setpoint the tensile force on the drive side of the respectively associated and possibly preceding stand and from further rolling parameters, the setpoint for the control devices is formed in one computing element in each case.
- Fig. 1 the work rolls 5 of a roll stand including an associated DC drive motor 6 and a speed controller 7 with a downstream actuator 8 are shown schematically.
- a tachometer generator 9 coupled to the motor supplies an output signal which is proportional to the speed and which is compared with a setpoint n * .
- an additional speed setpoint dn * is fed to the comparison point.
- a current transformer 10 which supplies a voltage proportional to the armature current i a , and a sensor 11 are provided, the output voltage ⁇ of which is proportional to the flux in the field winding 13.
- F E denotes the tensile force acting in the rolling stock 12 in the rolling direction on the entry side of the stand and
- F A denotes the tensile force on the exit side.
- a control device 24 shown in FIG. 2 has the task of comparing the train-related actual torque value with the associated setpoint value and forming the additional speed setpoint value ⁇ n * from the deviation.
- the actual value of the train-related torque is determined by means of a computing circuit 14.
- the drive torque Ma ⁇ ⁇ i a is composed of the acceleration torque Mb and the rolling torque Mw, which in turn is the sum of the deformation moments Mh and Hv of the horizontal and vertical rollers, and the torque Mz caused by the tensile stress.
- the acceleration torque Mb can be derived from the speed n and the deformation moments Mh and Mv result from the rolling forces Fh and Fv measured by means of rolling force transducers by multiplication by a factor Kh or Kv corresponding to the lever arm of the rolling forces.
- the factor Kh can be determined for universal stands based on the roll gap geometry and is specified by hand.
- the lever arm factor Kh is calculated in a balancing circuit for duo scaffolds.
- Kv on the other hand, depends on various non-detectable influencing variables and is therefore determined with the aid of the adjustment circuit and then stored.
- the arithmetic circuit 14 accordingly receives the measured values i a , ⁇ , n and Fh as well as the variables Fv and Kh, if necessary corresponding stress, which is formed by means of a differentiating element 17, and the stresses proportional to the deformation moments, which result from the rolling force signals Fh and Fv by means of a multiplier 19 hzw. of a multiplier 20 are formed, are subtractively applied to the summing element.
- the differential voltage at the output of the summing element 16 which is proportional to the moment Mz, is fed to a comparison point 21. If the scaffolding is a duo, switches 18 and 22 assume the position shown in dashed lines.
- an integrator 23 connected downstream of the comparison point changes the lever arm factor until the product Fh-Kh and the product ⁇ ⁇ i a minus the acceleration torque Mb are of the same magnitude.
- the lever arm factor Kh calculated in this way is saved for the rest of the stitch in the second stand before the tapping.
- the switches 18 and 22 assume the position shown for determining the lever arm factor Kv.
- the difference between the output signal Mz of the summing element 16 and a torque setpoint Mz * is fed to the control device 24.
- the torque setpoint is determined by means of a computing element 28 from the specific train a * specified by the helmsman, the roll cross sections A, the roll diameter dw and a correction variable.
- the speed correction value A n * supplied by the control device 24 is during the tapping phase of each stand of the speed control of the following or all subsequent drives - in the example shown as ⁇ n 2 'of the speed control on stand 2 - and after the tapping in the following stand via a reversing amplifier 25 the speed control of the own drive - in the example as ⁇ n * 1 of the speed control on stand 1 - supplied.
- a switch 26 is provided for switching, which must briefly assume the intermediate position shown so that the output signal of the control device is reset to zero.
- the actuation signal for switch 26 is conveniently E; derived from the change in the output voltage of the rolling force transducers at the time of tapping.
- a continuous roll train is shown schematically, which includes, for example, four stands.
- the stands including the drive and the speed controller are shown schematically by the rollers 1 to 4.
- a computing circuit 14 and a regulating device 24 are assigned to each scaffold, which are designated in this figure with 1.14 to 4.14 and with 1.24 to 4.24, respectively, according to their assignment to the respective scaffold.
- the speed correction value .DELTA.n * 4 of the control device 4.24 of the last stand forms the input variable for a correction controller 27 superimposed on all control devices 24 in the exemplary embodiment shown.
- the setpoint Mz * of the torque dependent on the train is in each case in a computing element 1.28 to 4.28 from the output variable of the correction controller, which, for example, in FIG.
- Fig. 3 the specific tensile stresses o, the entry and exit moments M E , M A and the correction moments M kA , M kE are entered, which occur between or on the individual stands. While the entry and exit moments on each stand are opposite to each other, the correction moments act in the same direction.
- the setpoint Mz * for the train-dependent torque on the respective scaffold is the difference between the setpoint M E * of the entry torque and the sum of the setpoint M A * of the exit torque , the corrected setpoint M kA * of the exit torque and the corrected setpoint M kE * the entry torque.
- the first scaffolding applies and for the second scaffold In an analogous manner, the corresponding sizes for the third and, if necessary, each further scaffold are to be used. At the last stand m the value for MA "* is zero.
- the correction controller 27 intervenes on the target values of the specific train (N / mm 2 ), which takes into account the probability that the train error components are larger where the larger cross sections are rolled.
- the controller 27 influences the target values of the tensile forces.
- the output variable of the controller is then a corrected longitudinal tensile force setpoint F k *.
- the setpoint value influences the rolling torques of all stands until the desired speed control of the road is reached, i.e. here, for example, the speed of the drive on the last stand is kept constant at the value that was obtained at the time the last control device was released .
- This state means that the output voltage of the last control device m.24 is regulated to zero. Since the correction controller 27 intervenes only via the control devices 24, these cannot run to the stop.
- the already existing speed correction variable ⁇ n * m at the output of the control device for the last stand serves as the difference between the speed setpoint and the actual speed value for the correction controller.
- FIGS. 4 to 6 Further details of the mode of operation can be seen in FIGS. 4 to 6.
- the lever arm factor K of the rolling force for stand 1 is determined, as explained in connection with FIG. 2.
- the determination of the lever arm factor is ended as soon as the output voltage M z1 of the arithmetic circuit 1.14 has become zero.
- the lever arm factor is saved for the rest of the stitch.
- the control device 1.24 With the tapping in the frame 2 (FIG. 5), the control device 1.24 becomes effective, at whose actual value input the output voltage M z1 of the arithmetic circuit 1.14 is present and whose setpoint input receives an initially constant setpoint Mz * .
- the output voltage ⁇ n * of the control device 1.24 is fed via a proportional element 1.29 with storage behavior to the speed controller of the drive on the second stand as an additional speed setpoint ⁇ n * 2 '. If the rule adjustment of the control device 1.24 is reached, the relationship applies
- the additional speed setpoint .DELTA.n * 2 is expediently not only fed to the speed controller of the following stand (shown in dashed lines), but also to the speed controllers of the other subordinate stands to accelerate the setting of the final speed relations.
- the proportional member 1.29 is switched to “save”, the output signal of the control device 1.24 is briefly set to zero and the output of the proportional member is then switched to the speed controller on the stand 1 via the reversing amplifier 25 as ⁇ n * (Self-adjustment for scaffold 1).
- the additional speed setpoint .DELTA.n * 2 is further specified to the speed controller on stand 2 from memory 1.29. This additional speed setpoint remains superimposed when the control device 2.24 is switched to self-adjustment and the additional speed setpoint ⁇ n * 2 is specified by tapping the rolling stock in stand 4.
- the additional setpoint .DELTA.n * 2 of the control device 2.24 which acted on the speed controller of the tower 3 until the tapping in the tower 4, is also further specified for the tower 3 as a stored value .DELTA.n * 3 ', while the output of 2.24 after zeroing is switched to the speed controller of stand 2 with the opposite sign as ⁇ n * 2 .
- This procedure guarantees a smooth transition to self-adjustment.
- the penultimate, mill-guiding stand is first operated at a fixed speed. With the release of the last control device 4.24, the scaffolding-free operation begins. It therefore becomes the overriding correction at the same time controller 27 released, which, as already explained, now takes over the speed control of the road with the participation of all scaffolding instead of a control scaffold.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Control Of Metal Rolling (AREA)
Abstract
Description
Die Erfindung betrifft eine Vorrichtung zur Regelung der im Walzgut übertragenen Zugkraft in einer m Gerüste enthaltenden Walzstraße, mit einem Drehzahlregler an jedem Gerüst und mit je einer, dem Drehzahlregler an mindestens m-1 Gerüsten überlagerten Regeleinrichtung zur Verstellung der Walzendrehzahlen der in Walzrichtung aufeinanderfolgenden Gerüste und je einer den Regeleinrichtungen zugeordneten Rechenschaltung zur Berechnung des Istwertes der Regelgröße aus dem jeweiligen Antriebs-, Beschleunigungs- und Verformungsmoment. In der DE-A-2541 071 ist eine derartige Einrichtung beschrieben, die es ermöglichen soll, die für eine definierte Zugspannung im Walzgut erforderlichen Drehzahlrelationen kurzfristig und in einfacher Weise einzustellen. Die Zugspannung vor und hinter jedem Gerüst, dem eine Zugspannungs-Differenz-Regeleinrichtung zugeordnet ist, wird hierbei aus dem Antriebsmoment, dem Beschleunigungsmoment und dem Verformungsmoment im Walzspalt ermittelt. Eines der Gerüste übernimmt die Funktion eines Leitgerüstes, das im wesentlichen die Walzgcschwindigkeit in der Straße bestimmt. Es ist jedoch nicht auszuschließen, daß vor und hinter dem Leitgerüst vom Sollwert abweichende Zugspannungen auftreten, die aus der Summe der Momentenfehler der übrigen Gerüste resultieren. Dieser Nachteil wird um so schwerwiegender, je größer die Anzahl der Gerüste einer Straße ist.The invention relates to a device for controlling the tensile force transmitted in the rolling stock in a rolling mill containing m stands, with a speed controller on each stand and with a control device superimposed on the speed controller on at least m-1 stands for adjusting the roll speeds of the stands in succession in the rolling direction and each a computing circuit assigned to the control devices for calculating the actual value of the controlled variable from the respective drive, acceleration and deformation torque. DE-A-2541 071 describes a device of this type which is intended to make it possible to set the speed ratios required for a defined tensile stress in the rolling stock in a short time and in a simple manner. The tensile stress in front of and behind each stand, to which a tension differential control device is assigned, is determined from the drive torque, the acceleration torque and the deformation torque in the roll gap. One of the stands takes on the function of a guide stand, which essentially determines the rolling speed in the street. However, it cannot be ruled out that tensile stresses deviating from the nominal value occur in front of and behind the guide scaffold, which result from the sum of the torque errors of the other scaffolds. This disadvantage becomes all the more serious the larger the number of scaffolding on a street.
Der Erfindung liegt daher die Aufgabe zugrunde, eine Einrichtung der eingangs genannten Art zu schaffen, mit der eine Walzstraße unabhängig von der Anzahl der Gerüste mit gleichmäßiger Verteilung der Zugspannungen bzw. Momente betrieben werden kann.The invention is therefore based on the object of providing a device of the type mentioned at the beginning with which a rolling mill can be operated with an even distribution of the tensile stresses or moments regardless of the number of stands.
Gemäß der Erfindung wird diese Aufgabe dadurch gelöst, daß zur Stabilisierung des Drehzahlverhaltens der Walzstraße jedem der Gerüste eine derartige Regeleinrichtung zugeordnet und diesen Regeleinrichtungen ein gemeinsamer Korrekturregler überlagert ist, dem als Eingangsgröße das Ausgangssignal einer der Regeleinrichtungen zugeführt ist und aus dessen Ausgangssignal, aus dem Sollwert der Zugkraft auf der Antriebsseite des jeweils zugehörigen und des gegebenenfalls vorhergehenden Gerüstes und aus weiteren Walzparametern in je einem Rechenglied der Sollwert für die Regeleinrichtungen gebildet ist.According to the invention, this object is achieved in that such a control device is assigned to each of the stands to stabilize the speed behavior of the rolling mill and a common correction controller is superimposed on these control devices, to which the output signal of one of the control devices is fed as an input variable and from its output signal from the setpoint the tensile force on the drive side of the respectively associated and possibly preceding stand and from further rolling parameters, the setpoint for the control devices is formed in one computing element in each case.
Dadurch wird vermieden, daß die Summe der Momentenfehler zu einer stetigen Veränderung der Drehzahl und damit der Walzgeschwindigkeitführt.This avoids that the sum of the torque errors leads to a constant change in the speed and thus the rolling speed.
An Hand eines in der Zeichnung dargestellten Ausführungsbeispiels wird die Erfindung im folgenden erläutert.The invention is explained below using an exemplary embodiment shown in the drawing.
In Fig. 1 sind die Arbeitswalzen 5 eines Walzgerüstes einschließlich eines zugehörigen Gleichstromantriebsmotors 6 und eines Drehzahlreglers 7 mit nachgeschaltetem Stellglied 8 schematisch dargestellt. Ein mit dem Motor gekuppelter Tachogenerator 9 liefert ein der Drehzahl proportionales Ausgangssignal, das mit einem Sollwert n* verglichen wird. Zur Erzielung der richtigen Drehzahlrelationen zwischen den Antrieben mehrerer Gerüste einer Walzstraße wird dem Vergleichspunkt ein Drehzahl-Zusatzsollwert d n* zugeführt. Ferner sind ein Stromwandler 10, der eine dem Ankerstrom ia proportionale Spannung liefert, und ein Fühler 11 vorgesehen, dessen Ausgangsspannung Φ dem Fluß in der Feldwicklung 13 proportional ist. Mit FE ist die im Walzgut 12 in Walzrichtung wirkende Zugkraft auf der Eintrittsseite des Gerüstes und mit FA die Zugkraft auf der Austrittsseite bezeichnet.In Fig. 1, the work rolls 5 of a roll stand including an associated
Eine in Fig. 2 dargestellte Regeleinrichtung 24 hat die Aufgabe, den zugbedingten Momenten-Istwert mit dem zugehörigen Sollwert zu vergleichen und aus der Abweichung den Drehzahl-Zusatzsollwert Δn* zu bilden. Der Istwert des zugbedingten Momentes wird mittels einer Rechenschaltung 14 ermittelt.A
Das Antriebsmoment Ma = Φ · ia setzt sich aus dem Beschleunigungsrnoment Mb und dem Walzmoment Mw, das seinerseits die Summe aus den Verformungsmomenten Mh und Hv der Horizontal- bzw. Vertikalwalzen ist, und dem durch die Zugspannung verursachten Moment Mz zusammen.The drive torque Ma = Φ · i a is composed of the acceleration torque Mb and the rolling torque Mw, which in turn is the sum of the deformation moments Mh and Hv of the horizontal and vertical rollers, and the torque Mz caused by the tensile stress.
Es ist also:
Das Beschleunigungsmoment Mb läßt sich aus der Drehzahl n ableiten und die Verformungsmomente Mh und Mv ergeben sich aus den mittels Walzkraftaufnehmern gemessenen Walzkräften Fh und Fv durch Multiplikation mit einem dem Hebelarm der Walzkräfte entsprechenden Faktor Kh bzw. Kv. Der Faktor Kh läßt sich für Universalgerüste auf Grund der Walzspaltgeometrie bestimmen und wird von Hand vorgegeben. Für Duo-Gerüste wird der Hebelarmfaktor Kh in einer Abgleichschaltung berechnet. Der Faktor Kv ist dagegen von verschiedenen, nicht erfaßbaren Einflußgrößen abhängig und wird daher mit Hilfe der Abgleichschaltung ermittelt und anschließend gespeichert. Die Rechenschaltung 14 erhält dementsprechend die Meßwerte ia, Φ, n und Fh sowie gegebenenfalls die Größen Fv und Kh. Die dem Antriebsmoment Ma proportionale Ausgangsspannung eines Multiplizierers 15 ist entsprechend der für Mz aufgestellten Momentenbilanz einem Summierglied 16 additiv zugeführt, während die dem Beschleunigungsmoment Mb entsprechende Spannung, die mittels eines Differenziergliedes 17 gebildet ist, und die den Verformungsmomenten proportionalen Spannungen, die aus den Walzkraftsignalen Fh und Fv mittels eines Multiplizierers 19 hzw. eines Multiplizierers 20 gebildet sind, subtraktiv an dem Summierglied anstehen. Zur Ermittlung des Faktors Kh bzw. Kv wird die Differenzspannung am Ausgang des Summiergliedes 16, die dem Moment Mz proportional ist, einem Vergleichspunkt 21 zugeführt. Falls es sich um ein Duo-Gerüst handelt, nehmen die Schalter 18 und 22 die gestrichelt dargestellte Stellung ein.The acceleration torque Mb can be derived from the speed n and the deformation moments Mh and Mv result from the rolling forces Fh and Fv measured by means of rolling force transducers by multiplication by a factor Kh or Kv corresponding to the lever arm of the rolling forces. The factor Kh can be determined for universal stands based on the roll gap geometry and is specified by hand. The lever arm factor Kh is calculated in a balancing circuit for duo scaffolds. The factor Kv, on the other hand, depends on various non-detectable influencing variables and is therefore determined with the aid of the adjustment circuit and then stored. The
Nach dem Anstrich im ersten Gerüst der Straße verändert ein dem Vergleichspunkt nachgeschalteter Integrator 23 den Hebelarmfaktor so lange, bis das Produkt Fh - Kh und das Produkt Φ · ia abzüglich des Beschleunigungsmomentes Mb betragsmäßig gleich groß sind. Der so berechnete Hebelarmfaktor Kh wird für den Rest des Stiches noch vor dem Anstich im zweiten Gerüst gespeichert.After painting in the first scaffold of the road, an
Für ein Universalgerüst nehmen die Schalter 18 und 22 zur Ermittlung des Hebelarmfaktors Kv die eingezeichnete Stellung ein.For a universal scaffold, the
Bei der Berechnung von Kv werden gleichzeitig Ungenauigkeiten des von Hand eingegebenen Faktors Kh weitgehend kompensiert. Bei allen folgenden Gerüsten der Walzstraße läuft der selbsttätige Abgleich des Hebelarmfaktors Kh bei Duo- bzw. Kv bei Universalgerüsten mit anschließender Speicherung in gleicher Weise ab, jedoch unter zusätzlicher Berücksichtigung des auf der Eintrittsseite herrschenden Zuges FE. Das zugehörige, dem Vergleichspunkt 21 in Fig. 2 zugeführte eintrittsseitige zJgbeding- te Moment ME entspricht im ausgeregelten Zustand dem austrittsseitigen Anteil des Zugkraftsollwertes, der der vorangehenden Regeleinrichtung und damit dem vorausgehenden Gerüst vorgegeben wird, multipliziert mit dem Walzenradius des Gerüstes, für das gerade der Hebelarmfaktor berechnet wird. Die Berechnung läuft in jedem Fall so schnell ab, daß sie vor dem Einlaufen des Walzgutes in das nächste Gerüst beendet ist.When calculating Kv, inaccuracies in the manually entered factor Kh are largely compensated for. For all subsequent stands of the rolling mill, the automatic adjustment of the lever arm factor Kh for duo or Kv for universal stands with subsequent storage takes place in the same way, but with additional consideration of the train F E on the entry side. The associated, the
Die Differenz aus dem Ausgangssignal Mz des Summiergliedes 16 und einem Momentensollwert Mz* wird der Regeleinrichtung 24 zugeführt. Der Momentensollwert wird mittels je eines Rechengliedes 28 aus dem vom Steuermann vorgegebenen spezifischen Zug a*, den Walzenquerschnitten A, dem Walzendurchmesser dw und einer Korrekturgröße ermittelt. Der von der Regeleinrichtung 24 gelieferte Drehzahlkorrekturwert A n* wird während der Anstichphase jedes Gerüstes der Drehzahlregelung des folgenden oder aller folgenden Antriebe - im dargestellten Beispiel als Δ n 2' der Drehzahlregelung am Gerüst 2 - und nach dem Anstich im folgenden Gerüst über einen Umkehrverstärker 25 der Drehzahlregelung des eigenen Antriebes - im Beispiel als Δ n*1 der Drehzahlregelung am Gerüst 1 - zugeführt. Zur Umschaltung ist ein Schalter 26 vorgesehen, der jeweils kurzzeitig die gezeichnete Zwischenstellung einnehmen muß, damit das Ausgangssignal der Regeleinrichtung auf Null zurückgestellt wird. Das Betätigungssignal für den Schalter 26 wird zweckmäßigerweisE; aus der Änderung der Ausgangsspannung der Walzkraftaufnehmer im Anstichzeitpunkt abgeleitet.The difference between the output signal Mz of the
In Fig. 3 ist eine kontinuierliche Walzenstraße schematisch dargestellt, die beispielsweise vier Gerüste umfaßt. Die Gerüste einschließlich des Antriebes und des Drehzahlreglers sind durch die Walzen 1 bis 4 schematisch wiedergegeben. Jedem Gerüst sind eine Rechenschaltung 14 und eine Regeleinrichtung 24 zugeordnet, die in dieser Figur entsprechend ihrer Zuordnung zu dem jeweiligen Gerüst mit 1.14 bis 4.14 bzw. mit 1.24 bis 4.24 bezeichnet sind. Der Drehzahlkorrekturwert Δ n*4 der Regeleinrichtung 4.24 des letzten Gerüstes bildet im dargestellten Ausführungsbeispiel die Eingangsgröße für einen allen Regeleinrichtungen 24 überlagerten Korrekturregler 27. Der Sollwert Mz* des vom Zug abhängigen Momentes wird in je einem Rechenglied 1.28 bis 4.28 aus der Ausgangsgröße des Korrekturreglers, die beispielsweise in Fig. 3 den Korrektur-Sollwert σK* der spezifischen, auf die Flächeneinheit bezogenen Zugspannung darstellt, und aus den für das jeweilige Gerüst gültigen Größer;, nämlich dem Sollwert σE*, σA* der spezifischen Zugspannung auf der Eintritts- bzw. Austrittsseite, dem ein- und austrittsseitigen Querschnitt A des Walzgutes und dem Durchmesser dw cei Walzen berechnet.In Fig. 3, a continuous roll train is shown schematically, which includes, for example, four stands. The stands including the drive and the speed controller are shown schematically by the
In Fig. 3 sind die spezifischen Zugspannungen o, die ein- und austrittsseitigen Momente ME, MA und die Korrekturrnomente MkA, MkE eingetragen, die sich zwischen bzw. an den einzelnen Gerüsten einstellen. Während das Eintritts- und das Austrittsmoment an jedem Gerüst einander entgegengerichtet sind, wirken die Korrekturmomente in derselben Richtung. Der Sollwert Mz* für das zugabhängige Moment am jeweiligen Gerüst ergibt sich als Differenz aus dem Sollwert ME * des Eintrittsmomentes und aus der Summe aus dem Sollwert MA* des Austrittsmomentes, dem korrigierten Sollwert MkA* des Austrittsmomentes und dem korrigierten Sollwert MkE * des Eintrittsrnomentes. Dabei gilt für das erste Gerüst
In dem bisher beschriebenen Ausführungsbeispiel greift der Korrekturregler 27 auf die Sollwerte des spezifischen Zuges (N/mm2) ein, was der Wahrscheinlichkeit Rechnung trägt, daß die Zugfehleranteile dort größer sind, wo die größeren Querschnitte gewalzt werden. Statt dessen kann auch eine Ausführung gewählt werden, bei der der Regler 27 die Sollwerte der Zugkräfte beeinflußt. Die Ausgangsgröße des Reglers ist dann ein korrigierter Längszugkraftsollwert Fk *. In the exemplary embodiment described so far, the
Es gilt dann abweichend:
Diese Ausführung des Korrektureingriffes bringt Vorteile, bei konstanter absoluter Fehlerverteilung in der Straße.This execution of the correction intervention brings advantages with constant absolute error distribution in the street.
In beiden Fällen werden über die Sollwertvorgabe die Walzmomente aller Gerüste so lange beeinflußt, bis die gewünschte Geschwindigkeitsführung der Straße erreicht ist, d. h. beispielsweise hier die Drehzahl des Antriebes am letzten Gerüst auf dem Wert konstant gehalten wird, der sich zum Freigabezeitpunkt der letzten Regeleinrichtung ergeben hat. Dieser Zustand bedeutet, daß die Ausgangsspannung der letzten Regeleinrichtung m.24 auf Null geregelt wird. Da der Korrekturregler 27 nur über die Regeleinrichtungen 24 eingreift, können diese nicht an den Anschlag laufen. Als Differenz aus Drehzahlsollwert und Drehzahlistwert für den Korrekturregler dient die bereits vorhandene Drehzahlkorrekturgröße Δ n*m am Ausgang der Regeleinrichtung für das letzte Gerüst.In both cases, the setpoint value influences the rolling torques of all stands until the desired speed control of the road is reached, i.e. here, for example, the speed of the drive on the last stand is kept constant at the value that was obtained at the time the last control device was released . This state means that the output voltage of the last control device m.24 is regulated to zero. Since the
Weitere Einzelheiten der Arbeitsweise gehen aus den Fig. 4 bis 6 hervor. Während der Anstichphase im Gerüst 1, d. h. während der Zeit vom Anstich des Walzgutanfanges im Gerüst 1 bis zum Anstich im Gerüst 2 (Fig. 4) ist das vom Zug abhängige Moment Mz1 =0, weil ME1=MA1=0. Während der Anstichphase wird der Hebelarmfaktor K der Walzkraft für Gerüst 1 bestimmt, wie in Verbindung mit Fig. 2 erläutert.Further details of the mode of operation can be seen in FIGS. 4 to 6. During the tapping phase in
Die Ermittlung des Hebelarmfaktors ist beendet, sobald die Ausgangsspannung Mz1 der Rechenschaltung 1.14 zu Null geworden ist. Für den Rest des Stiches wird der Hebelarmfaktor gespeichert.The determination of the lever arm factor is ended as soon as the output voltage M z1 of the arithmetic circuit 1.14 has become zero. The lever arm factor is saved for the rest of the stitch.
Mit dem Anstich im Gerüst 2 (Fig. 5) wird die Regeleinrichtung 1.24 wirksam, an deren Istwerteingang die Ausgangsspannung Mz1 der Rechenschaltung 1.14 ansteht und deren Sollwerteingang einen zunächst konstanten Sollwert Mz*, erhält. Die Ausgangsspannung Δ n* der Regeleinrichtung 1.24 wird über ein Proportionalglied 1.29 mit Speicherverhalten dem Drehzahlregler des Antriebes am zweiten Gerüst als Drehzahl-Zusatzsollwert Δ n* 2' zugeführt. Wenn der Regelabgleich der Regeleinrichtung 1.24 erreicht ist, gilt die BeziehungWith the tapping in the frame 2 (FIG. 5), the control device 1.24 becomes effective, at whose actual value input the output voltage M z1 of the arithmetic circuit 1.14 is present and whose setpoint input receives an initially constant setpoint Mz * . The output voltage Δ n * of the control device 1.24 is fed via a proportional element 1.29 with storage behavior to the speed controller of the drive on the second stand as an additional speed setpoint Δ n * 2 '. If the rule adjustment of the control device 1.24 is reached, the relationship applies
Folglich ist bei Gerüst 1 Mz*i = - MA1, weil das eingangsseitige Moment MEl vor dem Gerüst 1 stets Null ist.Consequently, Mz * i = - M A1 for
Zweckmäßigerweise wird der Drehzahl-Zusatzsollwert Δ n*2' nicht nur dem Drehzahlregler des folgenden Gerüstes zugeführt (gestrichelt dargestellt), sondern zur beschleunigten Einstellung der endgültigen Drehzahlrelationen auch den Drehzahlreglern der übrigen, nachgeordneten Gerüste.The additional speed setpoint .DELTA.n * 2 'is expediently not only fed to the speed controller of the following stand (shown in dashed lines), but also to the speed controllers of the other subordinate stands to accelerate the setting of the final speed relations.
Während der Anstichphase im Gerüst 2 wird in der gleichen Weise wie in Verbindung mit Fig. 5 beschrieben der zugehörigen Hebelarmfaktor ermittelt und gespeichert. Anschließend stellt sich am Ausgang der Rechenschaltung 2.14 der Momenten-Istwert MZ2=MEZ ein, da MA2 noch gleich Null ist.During the piercing phase in the
Mit dem Anstich des Walzgutes 12 im Gerüst 3 wird das Proportionalglied 1.29 auf »Speichern« geschaltet, das Ausgangssignal der Regeleinrichtung 1.24 kurzfristig auf Null gesetzt und der Ausgang des Proportionalgliedes anschließend über den Umkehrverstärker 25 als Δ n*, auf den Drehzahlregler am Gerüst 1 geschaltet (Eigenverstellung für Gerüst 1). Der Drehzahl-Zusatzsollwert Δ n*2' wird dem Drehzahlregler am Gerüst 2 weiterhin aus dem Speicher 1.29 vorgegeben. Dieser Drehzahl-Zusatzsollwert bleibt additiv überlagert, wenn mit dem Anstich des Walzgutes im Gerüst 4 die Regeleinrichtung 2.24 auf Eigenverstellung umgeschaltet wird und den Drehzahl-Zusatzsollwert Δ n*2 vorgibt. Der Zusatzsollwert Δ n*2 der Regeleinrichtung 2.24, der bis zum Anstich im Gerüst 4 auf den Drehzahlregler von Gerüst 3 wirkte, wird dabei ebenfalls dem Gerüst 3 weiter als gespeicherter Wert Δ n*3' vorgegeben, während der Ausgang von 2.24 nach vorherigem Nullsetzen mit umgekehrtem Vorzeichen als Δ n*2 auf den Drehzahlregler von Gerüst 2 geschaltet wird.When the rolling
Dieser Ablauf bietet die Gewähr für einen stoßfreien Übergang auf Eigenverstellung.This procedure guarantees a smooth transition to self-adjustment.
Wie bereits in der Erläuterung der Umschaltung der Regeleinrichtung 2.24 auf Eigenverstellung angedeutet, wiederholen sich an allen weiteren Gerüsten die in Verbindung mit dem Gerüst 2 beschriebenen Vorgänge. Der Ablauf am Gerüst 4 bzw. am letzten Gerüst m unterscheidet sich von diesen Vorgängen lediglich dadurch, daß dieses Gerüst nach Abschluß der Berechnung des zugehörigen Hebelarmfaktors sofort auf Eigenverstellung geschaltet wird und daß im dargestellten Ausführungsbeispiel der Drehzahl-Zusatzsollwert Δ n*4 bzw. Δ n*m, wie in Verbindung mit Fig. 3 bereits dargelegt, dem allen Gerüsten gemeinsamen Korrekturregler 27 zugeführt ist.As already indicated in the explanation of the switchover of the control device 2.24 to self-adjustment, the processes described in connection with the
Wie aus der Beschreibung hervorgeht, wird zunächst jeweils das vorletzte, Walzgut führende Gerüst drehzahlstarr betrieben. Mit der Freigabe der letzten Regeleinrichtung 4.24 beginnt der leitgerüstfreie Betrieb. Es wird deshalb zum gleichen Zeitpunkt der übergeordnete Korrekturregler 27 freigegeben, der wie bereits dargelegt von nun an unter Beteiligung aller Gerüste an Stelle eines Leitgerüstes die Geschwindigkeitsführung der Straße übernimmt.As can be seen from the description, the penultimate, mill-guiding stand is first operated at a fixed speed. With the release of the last control device 4.24, the scaffolding-free operation begins. It therefore becomes the overriding correction at the
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AT79102628T ATE1133T1 (en) | 1978-08-03 | 1979-07-24 | DEVICE FOR ADJUSTING THE TENSION IN A MULTISTAND ROLLING MILL. |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE2834102A DE2834102C2 (en) | 1978-08-03 | 1978-08-03 | Device for regulating the tensile force transmitted in the rolling stock in a rolling train containing m stands |
DE2834102 | 1978-08-03 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0008037A1 EP0008037A1 (en) | 1980-02-20 |
EP0008037B1 true EP0008037B1 (en) | 1982-06-02 |
Family
ID=6046144
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP79102628A Expired EP0008037B1 (en) | 1978-08-03 | 1979-07-24 | Device for tension control in a continuous rolling mill |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP0008037B1 (en) |
AT (1) | ATE1133T1 (en) |
DE (1) | DE2834102C2 (en) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2915942A1 (en) * | 1979-04-20 | 1980-10-30 | Schloemann Siemag Ag | TENSION CONTROL IN CONTINUOUS ROLLING MILLS |
FR2483268A1 (en) * | 1980-05-28 | 1981-12-04 | Jeumont Schneider | METHOD AND DEVICE FOR THE ROLLING WITHOUT CCONTRAINTE OF METALS |
DE3369256D1 (en) * | 1983-07-04 | 1987-02-26 | Siemens Ag | Circuit arrangement to regulate the tensile force transferred between the housings of a multiple housing mill train |
DE3533120A1 (en) * | 1985-09-17 | 1987-03-19 | Kocks Technik | ROLLING MILL FOR ROLLING PIPE OR ROD-SHAPED GOODS |
KR950009138B1 (en) * | 1987-10-09 | 1995-08-16 | 가부시끼가이샤 히다찌 세이사꾸쇼 | Control device for plate meterial hot rolling equipment |
DE3903589A1 (en) * | 1989-02-07 | 1990-08-09 | Siemens Ag | Method for controlling a tensile force transmitted in the rolling stock in a continuous rolling train with m stands, and the circuit arrangement for carrying out the method |
DE59003705D1 (en) * | 1990-02-02 | 1994-01-13 | Siemens Ag | Process for controlling a continuous, multi-stand rolling mill. |
WO1992000817A1 (en) * | 1990-07-06 | 1992-01-23 | The Broken Hill Proprietary Company Limited | Interstand tension control |
AT398713B (en) * | 1991-11-11 | 1995-01-25 | Gfm Fertigungstechnik | METHOD AND DEVICE FOR REGULATING A LOW-FORCE LOW-STRONG ROLLING GOODS FLOW THROUGH A CONTINUOUS ROLLING MILL |
DE4141230A1 (en) * | 1991-12-13 | 1993-06-24 | Siemens Ag | ROLLING PLAN CALCULATION METHOD |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3515959A (en) * | 1967-04-19 | 1970-06-02 | Gen Electric | Plural motor proportional speed control using pulse responsive speed controls |
DE2045987A1 (en) * | 1970-09-17 | 1972-03-23 | Ingbuero F Kaltwalztechnik H W | Cold strip mill control - based on strip tension regulation |
US3740983A (en) * | 1972-02-29 | 1973-06-26 | Westinghouse Electric Corp | Automatic gauge control system for tandem rolling mills |
US3807208A (en) * | 1972-07-31 | 1974-04-30 | Westinghouse Electric Corp | Interstand tension-compression control system |
AU475854B2 (en) * | 1972-09-06 | 1976-09-02 | Mitsubishi Electric Corporation | System for controlling rolling mills |
DE2541071C3 (en) * | 1975-09-15 | 1984-07-12 | Siemens AG, 1000 Berlin und 8000 München | Device for regulating the tensile force transmitted in the rolling stock in a multi-stand continuous rolling mill |
JPS5270968A (en) * | 1975-12-10 | 1977-06-13 | Tokyo Shibaura Electric Co | Method of controlling tandem rolling machines |
US4011743A (en) * | 1976-04-20 | 1977-03-15 | Westinghouse Electric Corporation | Stand speed reference circuit for a continuous tandem rolling mill |
FR2354154A1 (en) * | 1976-06-11 | 1978-01-06 | Jeumont Schneider | STRAIN-FREE LAMINATION PROCESS OF METALS AND DEVICE FOR IMPLEMENTING THIS PROCESS |
-
1978
- 1978-08-03 DE DE2834102A patent/DE2834102C2/en not_active Expired
-
1979
- 1979-07-24 AT AT79102628T patent/ATE1133T1/en not_active IP Right Cessation
- 1979-07-24 EP EP79102628A patent/EP0008037B1/en not_active Expired
Also Published As
Publication number | Publication date |
---|---|
DE2834102C2 (en) | 1982-11-18 |
DE2834102A1 (en) | 1980-02-14 |
ATE1133T1 (en) | 1982-06-15 |
EP0008037A1 (en) | 1980-02-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0572442B1 (en) | Control system for a hot and/or cold rolling process | |
DE2200293C2 (en) | ||
EP0008037B1 (en) | Device for tension control in a continuous rolling mill | |
DE102010013387A1 (en) | Control device and method for a rolling mill | |
EP1833624A1 (en) | Operating method for a rolling train and corresponding devices | |
DE1602126A1 (en) | Process for the continuous control of the correction device for the workpiece profile during the rolling process | |
DE2541071C3 (en) | Device for regulating the tensile force transmitted in the rolling stock in a multi-stand continuous rolling mill | |
DE2942810C2 (en) | Device for regulating the force transmitted in the rolling stock between two successive stands of a continuous rolling train | |
DE2713053A1 (en) | PROCESS FOR REGULATING THE TENSION BETWEEN THE ROLLING STANDS IN A ROLLING MILL | |
EP0734795B1 (en) | Method for feedforward thickness control in rolling of foils | |
DE1957595A1 (en) | Rolling stock thickness control device | |
EP0618021B1 (en) | Method and device for hydraulic roll-gap control | |
EP0130231B1 (en) | Circuit arrangement to regulate the tensile force transferred between the housings of a multiple housing mill train | |
DE19520955C2 (en) | Control arrangement for unwinding devices for webs | |
WO1999024183A1 (en) | Process and device for rolling a rolled strip with a variable thickness | |
DE2643686C3 (en) | Arrangement for regulating the thickness of the rolling stock in a rolling tanning plant | |
EP3231522B1 (en) | Robust strip tension control | |
DE3925104A1 (en) | Appts. for regulating strip feed from coil into cold rolling stand - using signals relating to rate of rotation of feed-off coil and change in radius of coil | |
DE3903589A1 (en) | Method for controlling a tensile force transmitted in the rolling stock in a continuous rolling train with m stands, and the circuit arrangement for carrying out the method | |
DE2440235C2 (en) | ||
DE1290234B (en) | Device for controlling the thickness of the rolled material in hot rolling mills | |
EP0998990B1 (en) | Method and device for controlling the width of a metal strip | |
EP3568243B1 (en) | Method for tension control | |
DE3205589C2 (en) | Device for regulating the tension of the rolling stock in a tandem hot rolling mill | |
EP0439663B1 (en) | Method of controlling a continuous multistand rolling mill |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Designated state(s): AT BE CH FR GB SE |
|
17P | Request for examination filed | ||
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Designated state(s): AT BE CH FR GB SE |
|
REF | Corresponds to: |
Ref document number: 1133 Country of ref document: AT Date of ref document: 19820615 Kind code of ref document: T |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 19921022 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 19930618 Year of fee payment: 15 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 19930623 Year of fee payment: 15 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 19930716 Year of fee payment: 15 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 19930723 Year of fee payment: 15 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 19930727 Year of fee payment: 15 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Effective date: 19930731 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Effective date: 19940724 Ref country code: AT Effective date: 19940724 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Effective date: 19940725 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Effective date: 19940731 |
|
BERE | Be: lapsed |
Owner name: SIEMENS A.G. BERLIN UND MUNCHEN Effective date: 19940731 |
|
EUG | Se: european patent has lapsed |
Ref document number: 79102628.9 Effective date: 19950210 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 19940724 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Effective date: 19950331 |
|
EUG | Se: european patent has lapsed |
Ref document number: 79102628.9 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |