EP0004215A1 - Source hyperfréquence multimode, et antenne monopulse comportant une telle source - Google Patents

Source hyperfréquence multimode, et antenne monopulse comportant une telle source Download PDF

Info

Publication number
EP0004215A1
EP0004215A1 EP79400100A EP79400100A EP0004215A1 EP 0004215 A1 EP0004215 A1 EP 0004215A1 EP 79400100 A EP79400100 A EP 79400100A EP 79400100 A EP79400100 A EP 79400100A EP 0004215 A1 EP0004215 A1 EP 0004215A1
Authority
EP
European Patent Office
Prior art keywords
plane
opening
multimode
microwave source
source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP79400100A
Other languages
German (de)
English (en)
Other versions
EP0004215B1 (fr
Inventor
François Salvat
Jean Bouko
Claude Coquio
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales SA
Original Assignee
Thomson CSF SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thomson CSF SA filed Critical Thomson CSF SA
Publication of EP0004215A1 publication Critical patent/EP0004215A1/fr
Application granted granted Critical
Publication of EP0004215B1 publication Critical patent/EP0004215B1/fr
Expired legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q25/00Antennas or antenna systems providing at least two radiating patterns
    • H01Q25/04Multimode antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/06Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using refracting or diffracting devices, e.g. lens
    • H01Q19/08Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using refracting or diffracting devices, e.g. lens for modifying the radiation pattern of a radiating horn in which it is located

Definitions

  • the present invention belongs to the field of multimode microwave sources, and to that of so-called monopulse antennas which include such sources.
  • phase operation the angular deviation signals are obtained by comparing the phase between two diagrams having the same amplitude law. It should also be noted that it is possible to switch from one operating mode to another by through a coupler system so that in the following description, only the case of amplitude exploitation will be considered.
  • the diagrams used are represented mathematically by orthogonal functions, which leads to the decoupling of the corresponding channels.
  • the various radiation characteristics of these diagrams characteristics which intervene directly in the performance of the system are not a priori independent, but are linked by stress relationships depending on the structure of the antenna. These characteristics are the gain and the level of the side lobes in sum track and difference tracks, the slope in the vicinity of the axis and the gain of the main lobes in difference tracks.
  • the problem posed amounts to seeking an optimization between the factors which have been cited, while respecting between them the hierarchy imposed by the functions of the system considered.
  • the conventional antenna structures have shown their limits in the case of monopulse techniques.
  • the conventional monopulse technique has also shown its limits in the application to telecommunications antennas by tropospheric diffusion, where one performs the diversity between the "sum” and "difference" channels.
  • multimode sources which have been used in antennas also called multimodes.
  • a multimode source also called moder is capable by the structure which is given to it of generating direct propagative modes with phases and controllable amplitudes allowing to obtain a desired illumination in its opening.
  • a moderator is a structure formed by waveguides comprising discontinuities intended to generate higher modes.
  • Such a structure makes it possible to obtain independent control of the sum and difference diagrams in the E plane and in the H plane. However, such a control is not done simultaneously in the E and H planes but successively in the E then H planes.
  • FIG. 1 The structure of FIG. 1 is made up of two plane moderators ME1 and ME2 placed side by side and separated by a common vertical partition. Each of these moders is excited by two pairs of guides 1, 10 and 2.20 which receive the fundamental mode, and which each lead into a 3.30 guide of length L1 between the planes PO and P1.
  • the plane PO is what is called a discontinuity plane at the level of which are formed higher, propagative or evanescent modes, the length L1 and the dimensions of the guides 3.30 being such that only the desired modes, in this case for example, the odd modes H11 and E11 and the even modes H12 and E12, propagate until the opening of moder E thus constituted, that is to say ie the plane P 1 , the fundamental excitation mode being the H10 mode.
  • the horizontal strips extend beyond the plane P2, in a guide 7 having the shape of a horn, of length L3.
  • the set comprised between the planes P1 and P3 constitutes superimposed plane moders H, the plane P2 being the plane of discontinuity where the higher modes are formed.
  • the opening of the mixed structure, which is in the plane P3, radiates according to a global law of illumination produces partial laws of illumination obtained in the vertical plane and in the horizontal plane.
  • Multimode sources conforming to that which has just been described are used in antennas, yet they have the drawback of having a large longitudinal bulk which is troublesome in the production of certain antennas for which the increase in performance mainly in bandwidth, increases inertia detrimental to the functioning of servo-mechanisms.
  • the object of the present invention is the definition of a multimode source which escapes the drawbacks mentioned above and which has a much smaller footprint than the source of the prior art.
  • the multimode structure comprises a waveguide element forming a cavity ending in a horn, at least four supply waveguides, distributed so as to form at least two pairs of horizontal guides and two pairs of vertical guides and at least two bars or metal strips arranged in the radiating opening of the structure.
  • the reduction in the length of the moderator according to the invention removes this constraint and makes it possible to produce the multimode performance antenna.
  • This reduction in size with a reduced weight is particularly advantageous for the construction of Cassegrain type antennas mounted on turrets where increased inertia problems arise due to the limitation of the space available between the reflector and the site axis. .
  • Such a moder mainly comprises a waveguide 12 forming a cavity extending by a horn 13, the mouth of which constitutes the radiant opening of the moderator.
  • the total length of the moderator thus defined is equal to L and the dimensions of its rectangular opening are, a for the large dimension and b for its small dimension, here vertical.
  • a number of feed guides are provided, four in this case identified by 9, 10, 90, 100. The distribution of these guides is identical to that of the feed guides of the mixed structure of FIG. 1.
  • the guides 9 and 10 are adjacent to each other by a common vertical wall 11. They are arranged in an upper horizontal plane, while the guides 90 and 100 adjacent by a vertical wall 110, are arranged in a lower horizontal plane .
  • the guides constitute the power supply for a plane moder H.
  • These guides can be grouped two by two vertically constituting excitation guides 9.90 and 10.100 of two plane moders E.
  • the feed guides open into the cavity 12, in a plane ⁇ 1, which is a discontinuity plane at the level of which higher modes of the excitation mode transmitted by the guides are formed, excitation mode which is generally the fundamental mode .
  • the length L of the moderator according to the invention is chosen so that the phasing of the modes H10 and EH12 takes place on the opening 16 for the central frequency.
  • the EH12 mode conveniently represents the E12 and H12 modes, created in the plane of discontinuity ⁇ 1, from the fundamental H10 excitation mode. These modes E12 and H12 have the same cut-off frequency and the same phase speed and their superposition can be considered as a single mode.
  • T ' 1 and T' 3 respectively represent the amplitudes relating to the H10 and EH12 modes.
  • FIG. 4 shows the structure of the moderator according to the invention in the plane E
  • FIG. 5 the law of illumination obtained in the opening 16 in the plane E.
  • the resulting amplitude of field 19 is the sum of the amplitude of mode E12, curve 17, representing the function cos 2 and the amplitude of the fundamental mode H10, curve 18.
  • FIG. 6 represents the moderator in the plane H, perpendicular to the plane E with necessary elements taken from FIG. 2.
  • T1 and T3 respectively represent the amplitudes relating to the fundamental mode H10 and to the mode H30 generated in the mouth of the horn 13 by the bars 14 and 15.
  • the mode H30 is already generated in the plane of discontinuity ⁇ 2 at the junction of the straight guide 12 and horn 13, but it is then evanescent. It becomes propagative in the cornet, beyond a plane identified by ⁇ 3, but with a very low level.
  • the bars In making the moderator, the bars must have a relatively small diameter, less than one tenth of the wavelength. As for the location of the bars, we can admit that we have:
  • the bars can be replaced by metal strips without modifying the results. If their width is close to 3/4 their presence does not mismatch the horn. In any case, in order to avoid a mismatching of the horn due to the presence of the bars, provision is made in this case for a second pair of bars 14 - 15 identical to the first but located ⁇ / 4 behind in the mouth of the horn.
  • FIG. 7 shows the illumination on the opening in the absence of the bars or lamellae while FIG. 8 shows this illumination when the bars or lamellae are present.
  • Curve 20 gives the resulting amplitude of the field in the opening of the moderator in the plane H.
  • the opening illumination laws are as follows: or expression in which is the mode ratio in plane E.
  • the bandwidth is greater than that obtained with a conventional multimode source.
  • the bandwidth obtained is of the order of 15% against approximately 7%. This is due to the fact that the upper mode is generated in the very opening of the moder, the phasing being constant whatever the frequency.
  • the flared shape of the horn in plane H gives a quadratic phase to the law of illumination resulting in a primary diagram having a constant opening in the band of frequencies to be covered.
  • phase center in plane E is located on the opening of the horn raised in the de_Harming zone.
  • this phase center is in the plane of the bars. This leads to an illumination of the optical system used which gives maximum gain and minimum side lobes.

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Aerials With Secondary Devices (AREA)
  • Waveguide Aerials (AREA)

Abstract

Source hyperfréquence multimode mixte plan E, plan H constituée par une structure multimode plan E en cornet (13) dans l'ouverture de laquelle sont disposés parallélement au champ électrique, des barreaux (14, 15) ou des lamelles métalliques (141, 151). Les barreaux ou lamelles constituent des discontinuités au niveau desquelles est généré un mode impair du type H30, l'ensemble de la source devenant aussi une structure multimode plan H. Application à la réalisation d'antennes multimodes dans lesquelles les sources primaires sont d'un encombrement réduit.

Description

  • La présente invention appartient au domaine des sources hyperfréquences multimodes, et à celui des antennes dites monopulse qui comportent de telles sources.
  • Dans des antennes monopulse,, plusieurs diagrammes de rayonnement sont mis en oeuvre simultanément et leurs formes interviennent directement dans les performances globales du système radar utilisant de telles antennes. Les techniques monopuls exploitent en effet simultanément plusieurs diagrammes issus du même aérien ; en exploitation dite d'amplitude par exemple, on distingue d'une part un diagramme à symétrie paire ou diagramme somme servant de référence et d'autre part, des diagrammes à symétrie impaire ou diagramme "différence" donnant des signaux d'écarts en site et gisement par rapport à l'axe de l'antenne.
  • En exploitation dite de "phase", les signaux d'écarts angulaires sont obtenus par la comparaison de la phase entre deux diagrammes possédant la même loi d'amplitude. Il faut d'ailleurs noter qu'il est possible de passer d'un mode d'exploitation à l'autre par l'intermédiaire d'un système de coupleurs de sorte que dans la suite de la description, seul le cas de l'exploitation d'amplitude sera considéré.
  • Dans ces divers modes d'exploitation, les diagrammes mis en oeuvre sont représentés mathématiquement par des fonctions orthogonales ce qui entraîne le découplage des voies correspondantes. Par contre, les diverses caractéristiques de rayonnement de ces diagrammes, caractéristiques qui interviennent directement dans les performances du système ne sont pas indépendantes a priori, mais sont liées par des relations de contraintes dépendant de la structure de l'antenne. Ces caractéristiques sont le gain et le niveau des lobes latéraux en voie somme et voies différence, la pente au voisinage de l'axe et le gain des lobes principaux en voies différence.
  • Pour une structure d'antenne donnée, le problème posé revient à rechercher une optimisation entre les facteurs qui ont été cités, tout en respectant entre eux la hiérarchie imposée par les fonctions du système considéré. On en déduit que toute structure possède un domaine d'optimisation mais précisément les structures classiques d'antenne ont montré leurs limites dans le cas des techniques monopulse. De fait,;il s'est avéré impossible dans les antennes monopulse classiques de contrôler de façon indépendante les diagrammes somme et les diagrammes différence, d'effectuer un contrôle correct de la forme de la loi d'illumination de la source primaire, qui est important, principalement dans la construction d'antennes à faible bruit pour la radioastronomie et les télécommunications spatiales. La technique monopulse classique a également montré ses limites dans l'application aux antennes de télécommunications par diffusion troposphérique, où l'on effectue la diversité entre les voies "somme" et "différence".
  • Pour remédier à ces limitations, on a développé ce qui a été appelé les sources multimodes qui ont été utilisées dans les antennes appelées également multimodes.
  • Une source multimode appelée également modeur est capable par la structure qui lui est donnée d'engendrer des modes propagatifs directs avec des phases et des amplitudes contrôlables permettant d'obtenir une illumination désirée dans son ouverture.
  • De façon générale un modeur est une structure formée de guides d'ondes comportant des discontinuités destinées à engendrer des modes supérieurs.
  • Une étude de tels modeurs peut être trouvée, entre autres, dans le brevet français 1 290 275, dont on prendra la figure 1, qui concerne une structure multimode mixte constituée par la réunion d'un modeur plan E et d'un modeur plan H, comme figure 1, représentative de l'art antérieur.
  • Une telle structure permet d'obtenir le contrôle indépendant des diagrammes somme et différence dans le plan E et dans le plan H. Toutefois un tel contrôle ne se fait pas simultanément dans les plans E et H mais successivement dans les plans E puis H.
  • La structure de la figure 1 est constituée par deux modeurs plans ME1 et ME2 placés côte à côte et séparés par une cloison verticale commune. Chacun de ces modeurs est excité par deux couples de guides 1, 10 et 2,20 qui reçoivent le mode fondamental, et qui débouchent chacun dans un guide 3,30 de longueur L1 entre les plans PO et P1. Le plan PO est ce qu'on appelle un plan de discontinuité au niveau duquel se forment des modes supérieurs, propagatifs ou évanescents, la longueur L1 et les dimensions des guides 3,30 étant telles que seuls les modes désirés, en l'occurrence par exemple, les modes impairs H11 et E11 et les modes pairs H12 et E12, se propagent jusqu'à l'ouverture du modeur E ainsi constitué, c'est-à-dire le plan P1, le mode fondamental d'excitation étant le mode H10.
  • A partir du plan P1, on trouve des modeurs plan H, qui vont réaliser les lois de répartition désirées dans le plan horizontal sans déformer les lois de répartition réalisées dans le plan vertical par les modeurs E, ME1 et ME2.
  • Des lamelles métalliques 4,40, 5,50, 6,60 disposées horizontalement dans un guide 8,80 de longueur L2 prolongeant les guides 3 et 30 au delà du plan P1, définissent 4 couples de guides plats horizontaux, adjacents par leur petit côté, qui sont excités selon les lois de répartition définies par les modeurs.ME1 et ME2. Les lamelles horizontales se prolongent au delà du plan P2, dans un guide 7 ayant la forme d'un cornet, de longueur L3.
  • L'ensemble compris entre les plans P1 et P3 constitue des modeurs plans H superposés, le plan P2 étant le plan de discontinuité où se forment les modes supérieurs. L'ouverture de la structure mixte, qui se trouve dans le plan P3,rayonne suivant une loi globale d'illumination produit des lois d'illumination partielles obtenues dans le plan vertical et dans le plan horizontal.
  • Des sources multimodes conformes à celle qui vient d'être décrite sont utilisées dans des antennes, pourtant elles présentent l'inconvénient d'avoir un encombrement longitudinal important gênant dans la réalisation de certaines antennes pour lesquelles l'accroissement des performances principalement en bande passante, entraîne une augmentation de l'inertie préjudiciable au fonctionnement des servo-mécanismes.
  • La présente invention a pour objet la définition d'une source multimode qui échappe aux inconvénients rappelés ci-dessus et qui présente un encombrement nettement moindre que la source de l'art antérieur.
  • Suivant l'invention, la structure multimode comprend un élément de guide d'onde formant cavité se terminant en cornet, au moins quatre guides d'onde d'alimentation, répartis de façon à former au moins deux couples de guides horizontaux et deux couples de guides verticaux et au moins deux barreaux ou lamelles métalliques disposées dans l'ouverture rayonnante de la structure.
  • Une telle structure, dont les dimensions longitudinales sont nettement inférieures à celle d'une structure de l'art antérieur présente l'avantage d'avoir une bande passante de fonctionnement plus large.
  • D'autres avantages et caractéristiques de l'invention apparaîtront au cours de la description qui suit d'un exemple de réalisation, donné à l'aide des figures qui représentent en plus de la figure 1 illustrant une réalisation de l'art antérieur :
    • - la figure 2, une structure mixte de modeur plan E et plan H suivant l'invention ;
    • - la figure 3, une variante dans laquelle on utilise des lamelles ;
    • - la figure 4, une représentation du modeur dans le plan E ;
    • - la figure 5, la loi d'illumination du modeur dans le plan E ;
    • - la figure 6, une représentation du modeur dans le plan H ;
    • - la figure 7, la loi d'illumination du modeur dans le plan H en l'absence de barreaux ;
    • - la figure 8, la loi d'illumination du modeur dans le plan H en présence des barreaux.
  • Dans l'introduction à la présente description, on a en se rapportant à une réalisation d'un modeur mixte plan E, plan H relevant de l'art antérieur, indiqué les inconvénients qu'un tel modeur présente dans l'utilisation qui doit en être faite comme source primaire d'une antenne multimode pour laquelle on demande un accroissement des performances, principalement en bande passante. Dans ce cas, le modeur de par ses dimensions et son poids, principalement lorsque l'endroit de son implantation est déjà prévu, nécessite un déplacement du réflecteur d'antenne dans un sens tel, que l'inertie de l'ensemble tend à augmenter qui agit de façon préjudiciable sur les servo-mécanismes en particulier..
  • La diminution de la longueur du modeur selon l'invention supprime cette contrainte et permet de réaliser l'antenne multimode à performances. Cette diminution d'encombrement avec un poids réduit est particulièrement intéressante pour la construction d'antennes de type Cassegrain montées sur tourelles où se posent des problèmes accrus d'inertie dus à la limitation de l'espace disponible entre le réflecteur et l'axe site.
  • En se reportant à la figure 2, on va décrire la structure d'un modeur mixte plan E, plan H conforme à l'invention.
  • Un tel modeur comprend principalement un guide d'onde 12 formant cavité se prolongeant par un cornet 13 dont l'embouchure constitue l'ouverture rayonnante du modeur. La longueur totale du modeur ainsi défini est égale à L et les dimensions de son ouverture rectangulaire sont, a pour la grande dimension et b pour sa petite dimension, ici verticale. Un certain nombre de guides d'alimentation sont prévus, quatre en l'occurrence repérés par 9, 10, 90, 100. La répartition de ces guides est identique à celle des guides d'alimentation de la structure mixte de la figure 1. Les guides 9 et 10 sont adjacents l'un à l'autre par une paroi commune verticale 11. Ils sont disposés dans un plan horizontal supérieur, alors que les guides 90 et 100 adjacents par une paroi verticale 110, sont disposés dans un plan horizontal inférieur.
  • Groupés de la sorte, les guides constituént l'alimentation d'un modeur plan H.
  • Ces guides peuvent être groupés deux à deux verticalement constituant des guides d'excitation 9,90 et 10,100 de deux modeurs plan E.
  • Dans le plan de l'ouverture 16 ou plan π sont disposés, dans l'exemple décrit deux barreaux métalliques à une distance c l'un de l'autre inférieure à la dimension a toutefois. On notera que les barreaux cylindriques mentionnés peuvent être remplacés par les lamelles, 140, 150 telles que dessinées sur la figure 3.
  • Les guides d'alimentation débouchent dans la cavité 12, dans un plan π1, qui est un plan de discontinuité au niveau duquel se forment des modes supérieurs du mode d'excitation transmis par les guides, mode d'excitation qui est généralement le mode fondamental.
  • Le fonctionnement du modeur mixte décrit à l'appui de la figure 2 va être étudié dans ce qui suit.
  • On notera toutefois dès l'abord, que dans le plan E, la source décrite fonctionne comme un modeur plan E, classique, c'est-à-dire de l'art antérieur.
  • On reprendra, mais de façon simplifiée, l'expression mathématique des champs obtenus sur l'ouverture rayonnante, telle que déjà donnée dans le brevet cité dans l'introduction ou dans d'autres articles déjà parus.
  • La longueur L du modeur suivant l'invention est choisie de façon que la mise en phase des modes H10 et EH12, se fasse sur l'ouverture 16 pour la fréquence centrale. On rappellera que le mode EH12 représente d'une manière commode les modes E12, et H12,créés dans le plan de discontinuité π1, à partir du mode fondamental H10 d'excitation. Ces modes E12 et H12 ont même fréquence de coupure et même vitesse de phase et leur superposition peut être considérée comme un mode unique.
  • Le champ sur l'ouverture 16 en voie somme est de la forme :
    Figure imgb0001
    et en voie différence :
    Figure imgb0002
    T'1 et T'3 représentent respectivement les amplitudes relatives aux modes H10 et EH12.
  • Pour faciliter la compréhension de ce qui précède, on a représenté figure 4 la structure du modeur suivant l'invention dans le plan E, et figure 5 la loi d'illumination obtenue dans l'ouverture 16 dans le plan E. L'amplitude résultante du champ 19 est la somme de l'amplitude du mode E12, courbe 17, représentant la fonction cos 2
    Figure imgb0003
    et de l'amplitude du mode fondamental H10, courbe 18.
  • A l'aide des figures 6, 7 et 8 on va expliquer le fonctionnement du modeur suivant l'invention, en plan H.
  • La figure 6 représente le modeur dans le plan H, perpendiculaire au plan E avec des éléments nécessaires tirés de la figure 2. On y voit en particulier l'ensemble des guides d'alimentation 9 et 10, adjacents l'un à l'autre par la paroi 11, situé dans un plan horizontal que l'on a appelé supérieur._
  • Le champ sur l'ouverture en voie somm est de la forme
    Figure imgb0004
    et en voie différence
    Figure imgb0005
  • T1 et T3 représentent respectivement les amplitudes relatives au mode fondamental H10 et au mode H30 généré dans l'embouchure du cornet 13 par les barreaux 14 et 15. En fait, le mode H30 est déjà généré dans le plan de discontinuité π2 à la jonction du guide droit 12 et du cornet 13, mais il est alors évanescent. Il devient propagatif dans le cornet, au delà d'un plan repéré par π3, mais avec un niveau très faible.
  • Il est intéressant de déterminer le rapport de mode
    Figure imgb0006
    dans l'expression du champ sur l'ouverture en voie somme.
  • Les conditions aux limites, imposent que le champ électrique E soit nul sur les barreaux. Si on pose
    Figure imgb0007
    c étant la distance séparant les deux barreaux 14 et 15, on aura la valeur du champ SH du point
    Figure imgb0008
    c'est-à-dire au centre de l'ouverture, soit ::
    Figure imgb0009
    on en déduit :
    Figure imgb0010
  • La loi d'illumination sur l'ouverture s'écrit alors :
    Figure imgb0011
  • En jouant sur l'écartement des barreaux 14 et 15, on modifie le rapport de mode α et par conséquent la loi d'illumination dans l'ouverture.
  • Dans la réalisation du modeur, les barreaux doivent avoir un diamètre relativement faible, inférieur au dixième de la longueur d'onde. Quant à l'emplacement des barreaux on peut admettre que l'on a :
    Figure imgb0012
  • On peut remplacer les barreaux par des lamelles métalliques sans modifier les résultats. Si leur largeur est voisine de 3/4 leur présence ne désadapte pas le cornet. De toute façon, pour éviter une désadaptation du cornet due à la présence des barreaux, on prévoit dans ce cas de disposer un second couple de barreaux 14 - 15 identiques aux premiers mais situés à λ/4 derrière dans l'embouchure du cornet.
  • La figure 7 montre l'illumination sur l'ouverture en l'absence des barreaux ou des lamelles tandis que la figure 8 montre cette illumination lorsque les barreaux ou lamelles sont présents. La courbe 20 donne l'amplitude résultante du champ dans l'ouverture du modeur dans le plan H.
  • On peut déduire de ce qui précède, le fonctionnement du modeur mixte complet.
  • Les lois d'illumination sur l'ouverture sont les suivantes :
    Figure imgb0013
    Figure imgb0014
    Figure imgb0015
    ou encore
    Figure imgb0016
    Figure imgb0017
    Figure imgb0018
    expression dans lesquelles
    Figure imgb0019
    est le rapport de mode dans le plan E.
  • On a ainsi décrit une structure de modeur mixte plan E, plan H qui présente un encombrement longitudinal inférieur à celui du modeur mixte de l'art antérieur, constitué par un modeur plan E, une transition et un modeur plan H. L'encombrement longitudinal se trouve réduit d'environ 2,5 à 3 fois par rapport au modeur de l'art antérieur. Dans le modeur suivant l'invention de plus et au contraire du modeur suivant l'art antérieur, le contrôle des lois d'illumination dans les deux plans est fait simultanément.
  • L'examen des expressions précédentes, montre que dans le plan E, la bande passante n'est pas modifiée par rapport à celle d'une source multimode classique, telle - que celle de l'art antérieur ; elle est de l'ordre de 10 %.
  • En plan H, la bande passante est supérieure à celle obtenue avec une source multimode classique. La bande passante obtenue est de l'ordre de 15 % contre 7 % à peu près. Ceci est dû à ce que le mode supérieur est généré dans l'ouverture même du modeur, la mise en phase étant constante quelle que soit la fréquence.
  • De plus, la forme évasée du cornet en plan H, donne une phase quadratique à la loi d'illumination se traduisant par un diagramme primaire ayant une ouverture constante dans la bande des fréquences à couvrir.
  • Des mesures expérimentales ont montré par ailleurs que le centre de phase en plan E se trouve sur l'ouverture du cornet relevé en zone de_ Franhauffer. En plan H, ce centre de phase se trouve dans le plan des barreaux. Ceci conduit à une illumination du système optique utilisé qui donne un gain maximum et des lobes latéraux minimum.
  • On a ainsi décrit une structure de modeur mixte plan E et plan H de dimensions réduites et performances accrues dans laquelle les modeurs E et H sont confondus.

Claims (10)

1. Source hyperfréquence multimode comportant une structure multimode plan E réalisant la fonction dite E, une transition et une structure multimode plan H, réalisant la fonction dite H, l'ouverture de la structure plan H constituant l'ouverture de la source hyperfréquence multimode, alimentée à l'entrée de la structure plan E par un groupement de guides d'ondes excités dans le mode fondamental, la source présentant une dimension longitudinale somme des dimensions des éléments qui la constituent et produisant dans sont ouverture des lois d'illumination plan E, plan H contrôlables indépendamment mais successivement, caractérisée en ce que la structure multimode plan E se termine en cornet évasé avec une ouverture dans laquelle on dispose, parallèlement au champ électrique au moins deux obstacles du genre barreau ou lamelle métallique, au niveau desquels se crée un mode supérieur impair propagatif du type H30, cette structure multimode plan E constituant ainsi une structure mixte plan E, plan H de longueur réduite, dans l'ouverture de laquelle les lois d'illumination plan E, plan H sont contrôlables indépendamment mais simultanément.
2. Source hyperfréquence multimode suivant la revendication 1, caractérisée en ce que sa dimension longitudinale est celle d'une structure plan E.
3. Source hyperfréquence multimode suivant la revendication 1, caractérisée en ce que le mode impair du type H30 étant excité dans l'ouverture même de la source, la mise en phase est constante quelle que soit la fréquence et la bande passante est augmentée.
4. Source hyperfréquence suivant la revendication 3, caractérisée en ce que la bande passante est de l'ordre de 15 %.
5. Source hyperfréquence suivant la revendication 1, caractérisée en ce que les barreaux introduits dans l'ouverture de la source parallèlement au champ électrique de l'onde émise sont disposés symétriquement par rapport à l'axe de l'ouverture et sont séparés par une distance c inférieure à la longueur de l'ouverture telle que 0 < a - c <
Figure imgb0020
.
6. Source hyperfréquence suivant l'une des revendications 1 ou 5, caractérisée en ce qu'un deuxième couple de barreaux située à λ/4 en amont du premier permet l'adaptation de la source.
7. Source hyperfréquence suivant l'une des revendications 1, 5 ou 6, caractérisée en ce que les lamelles introduites dans l'ouverture de la source ont une largeur de l'ordre de λ/4.
8. Source hyperfréquence multimode suivant la revendication 1, caractérisée en ce que l'ouverture pyramidale de la structure donne une loi de phase quadratique stabilisant l'ouverture des diagrammes de rayonnement en plan H.
9. Source hyperfréquence multimode suivant la revendication 1, caractérisée en ce que les centres de phase coïncident en plan E et en plan H.
10. Antenne multimode comportant comme source primaire, une source hyperfréquence multimode de faible encombrement, suivant les revendications 1 à 9.
EP79400100A 1978-02-24 1979-02-16 Source hyperfréquence multimode, et antenne monopulse comportant une telle source Expired EP0004215B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR7805337 1978-02-24
FR7805337A FR2418551A1 (fr) 1978-02-24 1978-02-24 Source hyperfrequence multimode et antenne comportant une telle source

Publications (2)

Publication Number Publication Date
EP0004215A1 true EP0004215A1 (fr) 1979-09-19
EP0004215B1 EP0004215B1 (fr) 1986-05-28

Family

ID=9205012

Family Applications (1)

Application Number Title Priority Date Filing Date
EP79400100A Expired EP0004215B1 (fr) 1978-02-24 1979-02-16 Source hyperfréquence multimode, et antenne monopulse comportant une telle source

Country Status (4)

Country Link
US (1) US4241353A (fr)
EP (1) EP0004215B1 (fr)
DE (1) DE2967598D1 (fr)
FR (1) FR2418551A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1986003344A1 (fr) * 1984-11-19 1986-06-05 Hughes Aircraft Company Conception d'antenne a rapport eleve de gain/surface/produit
GB2171561A (en) * 1985-02-24 1986-08-28 Philips Electronic Associated Antenna
EP1993166A1 (fr) * 2007-05-14 2008-11-19 Saab AB Dispositif d'antenne

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2477785A1 (fr) * 1980-03-07 1981-09-11 Thomson Csf Source hyperfrequence multimode et antenne comportant une telle source
FR2498820A1 (fr) * 1981-01-23 1982-07-30 Thomson Csf Source hyperfrequence bi-bande et antenne comportant une telle source
DE3381303D1 (de) * 1983-06-18 1990-04-12 Ant Nachrichtentech Viertornetzwerk fuer mikrowellenantennen mit monopulsnachfuehrung.
US4764775A (en) * 1985-04-01 1988-08-16 Hercules Defense Electronics Systems, Inc. Multi-mode feed horn
US4712110A (en) * 1985-12-26 1987-12-08 General Dynamics, Pomona Division Five-port monopulse antenna feed structure with one dedicated transmit port
US6452561B1 (en) * 2001-03-28 2002-09-17 Rockwell Collins, Inc. High-isolation broadband polarization diverse circular waveguide feed
WO2020180220A1 (fr) * 2019-03-04 2020-09-10 Saab Ab Alimentation d'antenne multimodale bibande

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH257862A (de) * 1942-06-23 1948-10-31 Lorenz C Ag Mit Trichter versehener Hohlraumresonator.
US2825062A (en) * 1945-07-09 1958-02-25 Chu Lan Jen Antenna
FR2021758A1 (fr) * 1968-10-28 1970-07-24 Hughes Aircraft Co
US3701163A (en) * 1971-11-09 1972-10-24 Us Navy Multi-mode, monopulse feed system
DE2626926A1 (de) * 1976-06-16 1977-12-29 Licentia Gmbh Verfahren zur steuerbaren strahlschwenkung bei reflektorantennen

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH257862A (de) * 1942-06-23 1948-10-31 Lorenz C Ag Mit Trichter versehener Hohlraumresonator.
US2825062A (en) * 1945-07-09 1958-02-25 Chu Lan Jen Antenna
FR2021758A1 (fr) * 1968-10-28 1970-07-24 Hughes Aircraft Co
US3701163A (en) * 1971-11-09 1972-10-24 Us Navy Multi-mode, monopulse feed system
DE2626926A1 (de) * 1976-06-16 1977-12-29 Licentia Gmbh Verfahren zur steuerbaren strahlschwenkung bei reflektorantennen

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
INTERNATIONAL JOURNAL OF ELECTRONICS 1969, vol. 26, no. 6, LONDRES (GB), K.G. NAIR et al.: "Effect of conducting grills on the E-plane radiation patterns of E-plane sectoral horns", pages 561-572. *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1986003344A1 (fr) * 1984-11-19 1986-06-05 Hughes Aircraft Company Conception d'antenne a rapport eleve de gain/surface/produit
GB2171561A (en) * 1985-02-24 1986-08-28 Philips Electronic Associated Antenna
EP1993166A1 (fr) * 2007-05-14 2008-11-19 Saab AB Dispositif d'antenne
US7710339B2 (en) 2007-05-14 2010-05-04 Saab Ab Antenna device

Also Published As

Publication number Publication date
EP0004215B1 (fr) 1986-05-28
DE2967598D1 (en) 1986-07-03
FR2418551B1 (fr) 1981-12-31
US4241353A (en) 1980-12-23
FR2418551A1 (fr) 1979-09-21

Similar Documents

Publication Publication Date Title
FR2939971A1 (fr) Ensemble d&#39;excitation compact pour la generation d&#39;une polarisation circulaire dans une antenne et procede d&#39;elaboration d&#39;un tel ensemble d&#39;excitation
EP3073569B1 (fr) Matrice de butler compacte, formateur de faisceaux bidimensionnel planaire et antenne plane comportant une telle matrice de butler
EP2194602B1 (fr) Antenne à partage de sources et procède d&#39;élaboration d&#39;une antenne à partage de sources pour l&#39;élaboration de multi-faisceaux
CA2869652C (fr) Repartiteur de puissance comportant un coupleur en te dans le plan e, reseau rayonnant et antenne comportant un tel reseau rayonnant
EP0057121B1 (fr) Source hyperfréquence bi-bande et antenne comportant une telle source
EP2688142B1 (fr) Antenne d&#39;émission et de réception multifaisceaux à plusieurs sources par faisceau, système d&#39;antennes et système de télécommunication par satellite comportant une telle antenne
FR2552938A1 (fr) Dispositif rayonnant a structure microruban perfectionnee et application a une antenne adaptative
FR2904478A1 (fr) Dispositif de transduction orthomode a compacite optimisee dans le plan de maille, pour une antenne
EP0004215A1 (fr) Source hyperfréquence multimode, et antenne monopulse comportant une telle source
EP0117803B1 (fr) Source hyperfréquence à large bande du type cornet, et antenne comportant une telle source
EP3435480B1 (fr) Antenne intégrant des lentilles à retard à l&#39;intérieur d&#39;un répartiteur à base de diviseurs à guide d&#39;ondes à plaques parallèles
EP3664214B1 (fr) Eléments rayonnants à accès multiples
EP0035929B1 (fr) Source hyperfréquence multimode et antenne comportant une telle source
FR3044832A1 (fr) Architecture d&#39;antenne active a formation de faisceaux hybride reconfigurable
FR2613140A1 (fr) Antenne cornet parallelepipedique a repartition du champ d&#39;ouverture linearisee en deux polarisations
EP0020196B1 (fr) Antenne réseau hyperfréquence du type disque avec son dispositif d&#39;alimentation, et application aux radars d&#39;écartométrie
EP0048190A1 (fr) Antenne réseau non dispersive, et son application à la réalisation d&#39;une antenne à balayage électronique
FR2538959A1 (fr) Lentille hyperfrequence bi-bande, son procede de fabrication et antenne radar bi-bande de poursuite
EP0407258B1 (fr) Distributeur d&#39;énergie hyperfréquence pouvant rayonner directement
FR2470457A1 (fr) Antenne a reseau a fentes avec distribution d&#39;amplitude dans une petite ouverture circulaire
EP0093058B1 (fr) Dispositif d&#39;excitation d&#39;une source de révolution rainurée hyperfréquence bi-bande
FR2803694A1 (fr) Antenne a cavite resonante ayant un faisceau conforme selon un diagramme de rayonnement predetermine
FR2739226A1 (fr) Source hyperfrequence multimode directive et son application a une antenne radar monopulse
FR2690789A1 (fr) Antenne radar en réseau linéaire ou plan non dispersif alimenté par un guide à lame centrale entre deux plans de masse.
FR2890790A1 (fr) Antenne radar multifaisceau a plusieurs lignes de propagation rayonnant directement a partir d&#39;un guide ouvert

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): DE GB IT NL SE

17P Request for examination filed
GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE GB IT NL SE

ITF It: translation for a ep patent filed

Owner name: JACOBACCI & PERANI S.P.A.

REF Corresponds to:

Ref document number: 2967598

Country of ref document: DE

Date of ref document: 19860703

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19900228

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19910901

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19940121

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19940124

Year of fee payment: 16

Ref country code: GB

Payment date: 19940124

Year of fee payment: 16

EAL Se: european patent in force in sweden

Ref document number: 79400100.8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19950216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19950217

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19950216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19951101

EUG Se: european patent has lapsed

Ref document number: 79400100.8