EP0003946A1 - Appareil de radiologie compact - Google Patents

Appareil de radiologie compact Download PDF

Info

Publication number
EP0003946A1
EP0003946A1 EP79870004A EP79870004A EP0003946A1 EP 0003946 A1 EP0003946 A1 EP 0003946A1 EP 79870004 A EP79870004 A EP 79870004A EP 79870004 A EP79870004 A EP 79870004A EP 0003946 A1 EP0003946 A1 EP 0003946A1
Authority
EP
European Patent Office
Prior art keywords
rings
anode
cathode
ray tube
metallic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP79870004A
Other languages
German (de)
English (en)
Inventor
Joseph Defechereux
Roger Gosselin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Balteau SA
Original Assignee
Balteau SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Balteau SA filed Critical Balteau SA
Publication of EP0003946A1 publication Critical patent/EP0003946A1/fr
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/16Vessels; Containers; Shields associated therewith
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G1/00X-ray apparatus involving X-ray tubes; Circuits therefor
    • H05G1/02Constructional details
    • H05G1/04Mounting the X-ray tube within a closed housing
    • H05G1/06X-ray tube and at least part of the power supply apparatus being mounted within the same housing
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G1/00X-ray apparatus involving X-ray tubes; Circuits therefor
    • H05G1/08Electrical details
    • H05G1/10Power supply arrangements for feeding the X-ray tube
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G1/00X-ray apparatus involving X-ray tubes; Circuits therefor
    • H05G1/08Electrical details
    • H05G1/10Power supply arrangements for feeding the X-ray tube
    • H05G1/12Power supply arrangements for feeding the X-ray tube with dc or rectified single-phase ac or double-phase

Definitions

  • the present invention relates to a portable, compact and lightweight radiology device.
  • An X-ray machine uses an X-ray tube as a source of penetrating radiation for the examination of various objects, including the human body.
  • a tube is supplied with high voltage, generally obtained from the network. distribution of electrical power of alternative voltage and by means of a transformer, voltage booster.
  • the devices In the use of X-ray devices for the inspection of hydrocarbon or gas transport networks, frames or pressure tanks, for example, the devices must be handled on construction sites and one of the difficulties of their construction is to make them as compact and light as possible while retaining the performance they must provide.
  • One of the ways that has been used to build lighter devices is to power them with a high frequency.
  • a transformer is all the lighter as the frequency is higher, so that it is possible to save weight on the transformers.
  • a frequency changer is provided upstream of the transformer primary.
  • a disadvantage of this system is that the X-ray tubes cannot withstand the problem of being supplied at high frequency without problems, due to phenomena of dielectric fatigue in the envelope of the tube, already severely stressed by the high electric field which prevails around the tube.
  • X-ray tubes are generally fed symmetrically to the earth.
  • a tube which operates at a voltage of 30C kV is supplied in such a way that the cathode and the anode are respectively subjected to voltages of 150 kV of opposite polarity. This makes isolation from earth easier, but makes it more difficult to cool the anode since the latter is brought to a high voltage.
  • the tube could be powered by applying full voltage to the cathode, then the anode could be grounded, so that cooling would be greatly facilitated.
  • mounting with an anode to earth allows the shielding material, generally lead, to be placed directly in contact with the anode, which again allows a significant weight gain for a given degree of shielding against leakage radiation. .
  • the difficulty in making a light portable device is transferred on the one hand to the construction of the tube and on the other hand to the high voltage generator.
  • the tube it is known to use a so-called cascade construction method for constructing X-ray tubes supporting voltages greater than one million volts.
  • the cascade tube comprises an envelope formed by an assembly of glass rings, with ground edges, separated by metal discs.
  • the different disks are powered by voltage sources or by a divi voltage generator, for example a resistive divider.
  • the high voltage generator if you want to use a high frequency to make the transformer as light as possible, the construction of it becomes very difficult because it is not possible to avoid that the winding secondary of this transformer has a high capacity.
  • the higher the frequency the higher the current delivered by this transformer on its own capacity, sometimes being considerably higher than the current delivered in the load.
  • a voltage multiplier circuit can be used which makes it possible to obtain high voltages from a transformer delivering a lower voltage.
  • a conventional multiplier circuit as described by Cockroft and Walton comprising for example four voltage doubling stages, one could obtain a no-load voltage of the order of 360 kV from a peak voltage of some 45 kV at the secondary of the power transformer.
  • a device in a compact device it is necessary to design, for this device, an embodiment compatible with a compact cascade X-ray tube while preserving a distribution terminal of the electric field in the tube.
  • the invention solves the problem of producing a compact and low-weight radiology device, suitable as a portable device in industrial radiology. It also solves the problem of economically manufacturing an X-ray tube, of the cascade type, which is sealed against high vacuum.
  • the illustrated embodiment is that of a radiology device with a nominal voltage of 300 kV.
  • the X-ray tube 10 of generally cylindrical shape comprises an anode 1 mounted on a circular plate 4 at one end of the tube and a cathode 5 mounted on a circular plate 6 at the other end of the tube.
  • the anode is connected to earth. It contains a tungsten tablet 2 and is provided with cooling channels 3 traversed by a circulation of water in order to cool the tablet 2.
  • the cylindrical envelope of the tube consists of a succession of metallic cylindrical rings 7 to 7 "" alternating with cylindrical ceramic rings 8 to 8 “', the rings being joined to each other by tight connection.
  • the plates 4 and 6 are welded to the terminal metal rings.
  • the metal ring 7 is connected to the anode and the intermediate rings 7 ', 7 ", 7"' are connected to increasing electrical potentials.
  • control electrodes 9', 9 ", 9” ', 9 “” having the function of protecting the inner wall of the ceramic rings 8, 8', 8 ", 8” 'against stray electrons which would create a danger of piercing.
  • the control electrodes extend so as to practically overlap. The number of rings will depend on the total tension on the tube 10.
  • the invention provides a practical and economical manufacturing process. Indeed, if the use of ceramics has a certain number of advantages both from the mechanical point of view and from the dielectric point of view, the construction of a determined ceramic part requires the creation of complicated and expensive tools. In addition, the development of a given X-ray tube requires a large number of tests, and it is thus necessary to carry out many expensive tools for experimental tubes.
  • the X-ray tube is constructed using ceramic cuffs 8 provided with metal flanges 7 sealed at one end.
  • the annular control electrodes 9 are welded to the inner wall of the flanges.
  • the desired number of ceramic sleeves are stacked, metal flanges up and the flanges are brazed to the bottom edge of the ceramic cuff it supports, thereby forming the cylindrical shell of the tube.
  • At the ends of the assembly are then welded on one side the plate carrying the cathode and on the other side, the plate carrying the anode.
  • the waterproof X-ray tube is thus constructed simply and economically.
  • the sealed tube is then ready to be mounted in a tank with the high voltage generator device and the cathode heating device.
  • FIG. 2 shows an embodiment of the assembly of an apparatus mounted in a tank 12.
  • the tube 10 is fixed in this tank by the flange 11 which has the anode 1.
  • the high voltage generator device comprises a supply transformer 20, the primary of which is to be connected to a voltage source, preferably at high frequency, and a voltage multiplier device 30 connected to the secondary of the transformer 20.
  • the voltage multiplier device 30 comprises several stages of voltage doublers in series each consisting of capacitors and diodes in a circuit described by Cochckroft and Wallon. According to the invention, the capacitors are arranged in a double toroidal configuration coaxially surrounding the cylindrical envelope of the tube 10.
  • the capacitors 13, 13 ', 13 “, 13'” are arranged around the tube 10 and the capacitors 14, 14 ' , 14 ", 14 '” are arranged around the capacitors 13 to 13 “', providing an annular space 16 between the two coaxial assemblies 16 in which the rectifier diodes 15 are arranged.
  • the junction points between the capacitors of the interior assembly 13 are connected to the metal rings of the tube 10.
  • the capacitors 14-14 "' are charged at each alternation of the voltage supplied by the supply transformer 20 and they discharge at the next alternation in the capacitors 13-13"'. At the junction points of the capacitors 13-13 "'there are gradually increasing continuous high potentials from the anode to the cathode.
  • the supply transformer 20 is advantageously produced in the form of a ring.
  • a primary winding 18 on which are arranged wafers 19 which, put in series, constitute the high voltage winding. This construction method makes it possible to obtain, all things being equal, a low secondary capacity.
  • the tube can be heated by any known device.
  • the device comprises a conductive bar 21 which passes through the tank according to a diameter and two toroidal cores 22 and 23, provided with excitation windings which constitute the primary of a transformer.
  • the bar 21 together with the tank constitute a secondary closed on itself.
  • the bar 21 constitutes the primary of a second transformer and the winding 25 surrounding the core 24 feeds the filament of the cathode 5.
  • a current flows in the bar 21, it creates a flow in the toroidal core 24 and this flow induced in the secondary winding 25 the heating current of the filament of the cathode 5.
  • a particularly compact and light radiology device can thus be produced which avoids the drawbacks of the various previous embodiments while presenting the combined advantages of these embodiments.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • X-Ray Techniques (AREA)

Abstract

Appareil de radiologie comprenant un tube à rayons X et un générateur de haute tension conçus pour rendre l'ensemble compact et léger. Le tube, de type cascade, a son enveloppe cylindrique constituée par l'assemblage, par liaison étanche, d'un nombre voulu d'anneaux cylindriques métalliques (7-7" ") alignés en alternance avec des anneaux cylindriques diélectriques (8-8" '), les extrémités de l'assem- hlage étant fermées par des plateaux soudés portant l'un (6), la cathode et l'autre (4), l'anode..La surface intérieure des anneaux métallique- est garnie d'électrodes de contrôle annulaires (9'-9" "). Les anneaux métalliques intermédiaires sont reliés à des potentiels électriques éleves croissant de l'anode vers la cathode. Ces potentiels électriques élevés croissant de l'anode vers la cathode. Ces potentiels électriques eleves croissants'sont avantageusement prélevés sur un dispositif générateur de haute tension (20, 30) monté en une configuration toroidale entourant coaxialement le tube à rayons X, formant avec celui-ci un ensemble particulièrement compact. (Figure 2).

Description

  • La présente invention concerne un appareil de radiologie portable, compact et léger.
  • Un appareil de radiologie utilise un tube à rayons X comme source de rayonnement pénétrant pour l' examen de divers objets, y compris le corps humain. Un tel tube est alimenté en tension élevée, généralement obtenue au départ du réseau de. distribution d'énergie électrique deitension alternative et par l'intermédiaire d'un transformateur,.élévateur de tension. Dans l'utilisation des appareils à rayons X pour l'inspection de réseaux de transport d'hydrocarbures ou de gaz, de charpentes ou de réservoirs sous pression, par exemple, les appareils doivent être manipulés sur chantiers et une des difficultés de leur construction est de les rendre aussi compacts et légers que possible tout en conservant les performances qu'ils doivent assurer.
  • Un des moyens qui a été utilisé pour construire des appareils plus légers est de les alimenter avec une fréquence élevée. A puissance égale, un transformateur est d'autant plus léger que la fréquence est plus élevée, de sorte qu'il est possible de gagner du poids sur les transformateurs. Pour ce faire, un changeur de fréquence est prévu en amont du primaire du transformateur. Un inconvénient de ce système est que les tubes à rayons X ne supportent pas sans problème d'être alimentés à fréquence élevée, à cause de phénomènes de fatigue diélectrique dans l'enveloppe du tube, déjà durement sollicité par le champ électrique élevé qui règne autour du tube.
  • Un autre moyen utilisé pour alléger les appareils à rayons X portables est de mettre l'anode du tube à rayons X directement à la terre. En effet, ce qui limite la puissance d'un appareil à rayons X, en première approximation, est la capacité de refroidissement de l' anode. Pour des raisons d'isolement, les tubes à rayons X sont généralement alimentés symétriquement par rapport à la terre. Par exemple, un tube qui fonctionne sous une tension de 30C kV, est alimenté de façon telle que la cathode et l'anode soient respectivement soumises à des tensions de 150 kV de polarité opposées. Cela rend plus facile l'isolement par rapport à la terre, mais rend plus difficile le refroidissement de l'anode puisque cette dernière est portée à une tension élevée. Si on pouvait alimenter le tube en appliquant la pleine tension à la cathode, l'anode pourrait dès lors être mise à la terre, de sorte que le refroidissement s'en trouverait considérablement facilité. De plus, le montage avec anode à la terre permet de placer le matériau de blindage, généralement du plomb, directement au contact de l'anode, ce qui permet encore un gain de poids important pour un degré donné de blindage contre les radiations de fuite.
  • Dans ce cas, la difficulté pour réaliser un appareil portable léger se trouve reportée d'une part sur la construction du tube et d'autre part sur le générateur de haute tension. En ce qui concerne le tube, il est connu d'utiliser un mode de construction dit en cascade, pour construire des tubes à rayons X supportant des tensions supérieures au million de volts. Le tube cascade comporte une enveloppe formée par un assemblage d'anneaux en verre, à bords rodés, séparés par des disques métalliques. Les différents disques sont alimentés par des sources de tension ou par l'intermédiaire d'un diviseur de tension, par exemple un diviseur résistif.
  • Ce mode de construction ne peut cependant être appliqué aux appareils à rayons X industriels portables car l'ensemble ne peut être facilement étanche a vide, ce qui nécessite de prévoir habituellement une pempe pour entretenir le vide permanent.
  • En ce qui concerne le générateur de haute tension, si l'on veut utiliser une fréquence élevée pour rendre le transformateur aussi léger que possible, la construction de celui-ci devient très difficile car il n'est pas possible d'éviter que le bobinage secondaire de ce transformateur présente une capacité élevée. Plus haute est la fréquence, plus le courant débité par ce transformateur sur sa propre capacité devient élevé, au peint d'être parfois considérablement supérieur au courant débité dans la charge.
  • Pour limiter le courant débité par le transformateur, on peut utiliser un circuit multiplicateur de tension qui permet d'obtenir des tensions élevées à partir d'un transformateur délivrant une tension moins élevée. Avec un circuit multiplicateur classique tel que décrit par Cockroft et Walton, comportant par exemple quatre étages doubleurs de tension, on pourrait obtenir une tension à vide de l'ordre de 360 kV à partir d'une tension de crête de quelque 45 kV au secondaire du transformateur d'alimentation. Mais pour utiliser un tel dispositif dans un appareil compact il est nécessaire de concevoir, pour ce dispositif, un mode de réalisation compatible avec un tube à rayons X cascade compact tout en préservant une borne distribution du champ électrique dans le tube.
  • Ainsi donc, pour pouvoir réaliser de façon économique un appareil de radiologie industrielle portable, il était nécessaire de concevoir un nouveau mode de construction du tube à rayons X et un dispositif générateur de haute tension compatible avec ce tube compact. En outre, il était nécessaire de concevoir le tube à rayons X et le dispositif générateur de haute tension en sorte de favoriser au maximum la distribution régulière du champ électrique le long de l'axe du tube.
  • L'invention, telle que caractérisée dans les revendications, résout le problème de la réalisation d'un appareil de radiologie compact et de faible poids, convenant comme appareil portable en radiologie irdus- trielle. Elle résout également le problème de la fabrication économique d'un tube à rayons X, de type cascade, étanche au vide poussé.
  • Les avantages résultant de l'invention sont essentiellement qu'elle élimine les inconvénients des réalisations d'appareils à rayons X connues sans en sacrifier les avantages et qu'elle peut être mise en oeuvre sans nécessiter d'outillages compliqués et coûteux.
  • Un exemple de mode d'exécution de l'invention est décrit dans ce qui suit avec référence aux dessins annexés.
    • La figure 1 est une vue en coupe longitudinale d'un tube à rayons X suivant l'invention;
    • la figure 2 montre en coupe axiale un appareil de radiologie réalisé suivant l'invention.
  • Le mode de réalisation illustré est celui d'un appareil de radiologie d'une tension nominale de 300 kV. Le tube à rayons X 10; de forme générale cylindrique comporte une anode 1 montée sur un plateau circulaire 4 à une extrémité du tube et une cathode 5 montée sur un plateau circulaire 6 à l'autre extrémité du tube. L'anode est reliée à la terre. Elle contient une pastille de tungstène 2 et est pourvue de canaux de refroidissement 3 parcourus par une circulation d'eau afin de refroidir la pastille 2.
  • L'enveloppe cylindrique du tube est constituée d'une succession d'anneaux cylindriques métalliques 7 à 7"" alternant avec des anneaux cylindriques en céramique 8 à 8"', les anneaux étant unis les uns aux autres par liaison étanche. Les plateaux 4 et 6 sont soudés sur les anneaux métalliques terminaux.
    L'anneau métallique 7 est connecté à l'anode et les anneaux intermédiaires 7', 7", 7"' sont reliés à des potentiels électriques croissants.
  • Aux anneaux métalliques 7' à 7"" sont fixéesdes électrodes annulaires de contrôle 9', 9", 9"' , 9"" ayant pour fonction de protéger la paroi intérieure des anneaux de céramique 8, 8', 8", 8"' contre les électrons vagabonds qui y créeraient un danger de per- oement. Les électrodes de contrôle s'étendent en sorte de pratiquement se recouvrir. Le nombre d'anneaux sera fonction de la tension totale sur le tube 10.
  • Pour construire ce tube, l'invention propose un procédé de fabrication pratique et économique. En effet, si l'utilisation de la céramique présente un certain nombre d'avantages tant du point de vue mécanique que du point de vue diélectrique, la construction d'une pièce déterminée en céramique nécessite de créer des outillages compliqués et coûteux. De plus, la mise au point d'un tube à rayons X donné impose un grand nombre d'essais, et l'on est ainsi amené à réaliser de nombreux outillages coûteux pour les tubes expérimentaùx.
  • Suivant l'invention, le tube à rayons X est construit en utilisant des manchettes en céramique 8 pourvues de collerettes métalliques 7 scellées à une extrémité. Les électrodes annulaires de contrôle 9 sont soudées sur la paroi intérieure des collerettes. Le nombre voulu de manchettes de céramique sont empilées, collerettes métalliques vers le haut et les collerettes sont brasées au bord inférieur de la manchette en céramique qu'elle supporte, pour former ainsi l'enveloppe cylindrique du tube. Aux extrémités de l'assemblage sont ensuite soudés d'un côté le plateau portant la cathode et de l'autre côté, le plateau portant l'anode. Le tube à rayons X étanche est ainsi construit simplement et économiquement.
  • Le tube étanche est alors prêt à être monté dans une cuve avec le dispositif générateur de haute tension et le dispositif de chauffage de la cathode.
  • La figure 2 montre un mode d'exécution de l'ensemble d'un appareil monté dans une cuve 12. Le tube 10 est fixé dans cette cuve par la bride 11 que présente l'anode 1.
  • Le dispositif générateur de haute tension comprend un transformateur d'alimentation 20 dont le primaire est à raccorder à une source de tension, de préférence à haute fréquence, et un dispositif multiplicateur de tension 30 connecté au secondaire du transformateur 20. Le dispositif multiplicateur de tension 30 comprend plusieurs étages doubleurs de tension en série constitués chacun de condensateurs et de diodes en un montage décrit par Cochckroft et Wallon. Suivant l'invention, les condensateurs sont disposés en une double configuration toroidale entourant coaxialement l'enveloppe cylindrique du tube 10. Les condensateurs 13, 13', 13", 13 '" sont disposés autour du tube 10 et les condensateurs 14, 14', 14", 14 '" sont disposés autour des condensateurs 13 à 13"' en ménageant entre les deux ensembles coaxiaux un espace annulaire 16 dans lequel sont disposés les diodes redresseuses 15. Les points de jonction entre les condensateurs de l'ensemble intérieur 13 sont connectés aux anneaux métalliques du tube 10. Les condensateurs 14-14"' se chargent à chaque alternance de la tension fournie par le transformateur d'alimentation 20 et ils se déchargent à l'alternance suivante dans les condensateurs 13-13"'. Aux points de jonction des condensateurs 13-13"' existent des potentiels élevés continus progressivement croissants de l'anode vers la cathode.
  • Le transformateur d'alimentation 20 est avantageusement réalisé sous la forme d'un anneau. Sur un noyau toroidal 17 est bobiné un enroulement primaire 18 sur lequel sont disposées des galettes 19 qui, mises en série, constituent l'enroulement haute tension. Ce mode de construction permet d'obtenir, toutes choses égales, une capacité secondaire faible.
  • Le chauffage du tube peut se faire par l'intermédiaire d'un dispositif connu quelconque. Dans un mode de réalisation suivant l'invention, le dispositif comprend une barre conductrice 21 qui traverse la cuve suivant un diamètre et deux noyaux toroldaux 22 et 23, pourvus d'enroulements d'excitation qui constituent le primaire d'un transformateur. La barre 21 conjointement avec la cuve constituent un secondaire fermé sur lui-même. La barre 21 constitue le primaire d'un second transformateur et l'enroulement 25 entourant le noyau 24 alimente le filament de la cathode 5. Lorsqu'un courant circule dans la barre 21, il crée un flux dans le noyau toroldal 24 et ce flux induit dans l'enroulement secondaire 25 le courant de chauffage du filament de la cathode 5.
  • Suivant l'invention peut ainsi être réalisé un appareil de radiologie particulièrement compact et léger qui évite les inconvénients des diverses formes de réalisation antérieures tout en présentant les avantages combinés de ces réalisations.

Claims (4)

1. Appareil de radiologie comprenant un tube à rayons X contenant une cathode émettrice et une anode reliée à la terre, un dispositif de chauffage de la cathode et un générateur de haute tension, caractérisé en ce que le tube à rayons X est constitué de plusieurs anneaux cylindriques métalliques (7-7"") alignés axialement et séparés par des anneaux cylindriques en matériau diélectrique (8-8"'), les différents anneaux étant assemblés par liaison étanche, les anneaux métal- ligues intermédiaires étam: connectés à des potentiels électriques élevés croissant de l'anode vers la cathode; de plusieurs électrodes de contrôle de forme annulaire (9'-9"'' ) fixées sur les anneaux cylindriques métalliques et alignées coaxialement en sorte de pratiquement se recouvrir; d'un plateau circulaire (6) portant la cathode, ce plateau étant soudé à l'anneau cylindrique métallique à une extrémité de l'assemblage; et d'un plateau circulaire (4) portant l'anode, ce plateau étant soudé à l'anneau cylindrique métallique à l'autre extrémité de l'assemblage.
2. Appareil selon la revendication 1, dans lequel le générateur de haute tension comprend un dispositif multiplicateur de tension disposé en une double configuration toroldele coaxiale au tube à rayons X.
3. Appareil selon la revendication 1, dans lequel le générateur de haute tension comprend uhn transformateur d'alimentation disposé en une configuration toroïdale coaxiale à l'anode du tube à rayons X.
4. Procédé de fabrication d'un tube à rayons X, de type cascade, caractérisé par les phases suivantes:
(a) sélection d'un nombre voulu de manchettes annulaires en matériau diélectrique pourvues chacune d'une collerette annulaire métallique scellée à une extrémité,
(b) soudage d'une électrode de contrôle annulaire sur la paroi intérieure de chaque collerette,
(c) empilage du nombre voulu de manchettes avec leurs collerettes toutes tournées dans le même sens et brasage de chaque collerette au bors de la manchette juxtaposée, et
(d) soulage aux deux extrémités de l'assemblage de deux plateaux, l'un portant la cathode et l'autre portant l'anode.
EP79870004A 1978-02-22 1979-02-21 Appareil de radiologie compact Withdrawn EP0003946A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
BE6046357 1978-02-22
BE6046357A BE864224A (fr) 1978-02-22 1978-02-22 Appareil a rayons x avec alimentation et tube de type cascade

Publications (1)

Publication Number Publication Date
EP0003946A1 true EP0003946A1 (fr) 1979-09-05

Family

ID=3874767

Family Applications (1)

Application Number Title Priority Date Filing Date
EP79870004A Withdrawn EP0003946A1 (fr) 1978-02-22 1979-02-21 Appareil de radiologie compact

Country Status (2)

Country Link
EP (1) EP0003946A1 (fr)
BE (1) BE864224A (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2579401A1 (fr) * 1985-03-22 1986-09-26 Thomson Cgr Ensemble generateur haute tension et dispositif radiogene
EP0381580A1 (fr) * 1989-02-02 1990-08-08 General Electric Cgr S.A. Dispositif d'alimentation haute tension pour tube à rayons X
FR2655231A1 (fr) * 1989-11-24 1991-05-31 Gen Electric Cgr Bloc haute tension pour tube a rayons x avec cuve de refroidissement integree au circuit secondaire.
FR2680938A1 (fr) * 1991-09-03 1993-03-05 Gen Electric Cgr Bloc radiogene avec dispositif d'alimentation haute tension integre dans la gaine.

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1662891A (en) * 1921-01-14 1928-03-20 Mutscheller Arthur Combined vacuum tube and transformer
US1963051A (en) * 1932-05-14 1934-06-12 Philips Nv Incandescible cathode discharge tube having a gaseous filling
FR874899A (fr) * 1940-04-30 1942-08-28 Thomson Houston Comp Francaise Perfectionnements à la construction des dispositifs à décharge électrique et analogues
FR957141A (fr) * 1950-02-16
FR1145237A (fr) * 1955-02-14 1957-10-23 Thomson Houston Comp Francaise Perfectionnements aux tubes à rayons x
US2923845A (en) * 1955-12-13 1960-02-02 Gen Electric Electron flow device
DE1564340A1 (de) * 1966-07-30 1969-07-17 Mueller C H F Gmbh Einkesselgenerator zur Erzeugung von beispielsweise Roentgenstrahlen
GB1259311A (fr) * 1968-03-20 1972-01-05

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR957141A (fr) * 1950-02-16
US1662891A (en) * 1921-01-14 1928-03-20 Mutscheller Arthur Combined vacuum tube and transformer
US1963051A (en) * 1932-05-14 1934-06-12 Philips Nv Incandescible cathode discharge tube having a gaseous filling
FR874899A (fr) * 1940-04-30 1942-08-28 Thomson Houston Comp Francaise Perfectionnements à la construction des dispositifs à décharge électrique et analogues
FR1145237A (fr) * 1955-02-14 1957-10-23 Thomson Houston Comp Francaise Perfectionnements aux tubes à rayons x
US2923845A (en) * 1955-12-13 1960-02-02 Gen Electric Electron flow device
DE1564340A1 (de) * 1966-07-30 1969-07-17 Mueller C H F Gmbh Einkesselgenerator zur Erzeugung von beispielsweise Roentgenstrahlen
GB1259311A (fr) * 1968-03-20 1972-01-05

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2579401A1 (fr) * 1985-03-22 1986-09-26 Thomson Cgr Ensemble generateur haute tension et dispositif radiogene
EP0198741A1 (fr) * 1985-03-22 1986-10-22 General Electric Cgr S.A. Ensemble générateur haute tension et dispositif radiogène
US4720844A (en) * 1985-03-22 1988-01-19 Thomson-Cgr High-voltage generating assembly and an X-ray device
EP0381580A1 (fr) * 1989-02-02 1990-08-08 General Electric Cgr S.A. Dispositif d'alimentation haute tension pour tube à rayons X
FR2643534A1 (fr) * 1989-02-02 1990-08-24 Gen Electric Cgr Dispositif d'alimentation haute tension pour tube a rayons x
US5003452A (en) * 1989-02-02 1991-03-26 General Electric Cgr S.A. High-voltage supply device for an x-ray tube
FR2655231A1 (fr) * 1989-11-24 1991-05-31 Gen Electric Cgr Bloc haute tension pour tube a rayons x avec cuve de refroidissement integree au circuit secondaire.
EP0430755A1 (fr) * 1989-11-24 1991-06-05 General Electric Cgr S.A. Bloc haute tension pour tube à rayons X avec cuve de refroidissement intégrée au circuit secondaire
US5060253A (en) * 1989-11-24 1991-10-22 General Electric Cgr S.A. High-voltage block for an X-ray tube, the block including a cooling tank integrated with its secondary circuit
FR2680938A1 (fr) * 1991-09-03 1993-03-05 Gen Electric Cgr Bloc radiogene avec dispositif d'alimentation haute tension integre dans la gaine.
EP0531190A1 (fr) * 1991-09-03 1993-03-10 General Electric Cgr S.A. Bloc radiogène avec dispositif d'alimentation haute tension intégré dans la gaine
US5303283A (en) * 1991-09-03 1994-04-12 General Electric Cgr S.A. X-ray unit with high-voltage power supply device integrated into the casing

Also Published As

Publication number Publication date
BE864224A (fr) 1978-06-16

Similar Documents

Publication Publication Date Title
AU648814B2 (en) Electrostatic particle generator having linear axial and radial fields
EP0381580B1 (fr) Dispositif d'alimentation haute tension pour tube à rayons X
EP0248689A1 (fr) Klystron à faisceaux multiples
EP0995345B1 (fr) Dispositif d'excitation d'un gaz par plasma d'onde de surface
EP0239466B1 (fr) Circuit de sortie pour klystron, et klystron comportant un tel circuit de sortie
EP0430755B1 (fr) Bloc haute tension pour tube à rayons X avec cuve de refroidissement intégrée au circuit secondaire
EP0600759B1 (fr) Machine électromagnétique à induction linéaire à répartition de flux magnétique optimisée et utilisation
EP0003946A1 (fr) Appareil de radiologie compact
WO1994023552A1 (fr) Generateur impulsionnel de rayons x
EP0531190B1 (fr) Bloc radiogène avec dispositif d'alimentation haute tension intégré dans la gaine
FR2675629A1 (fr) Cathode pour tube a rayons x et tube ainsi obtenu.
EP0531189B1 (fr) Dispositif et bloc d'alimentation haute tension pour tube à rayons X.
WO1986003881A1 (fr) Aimant solenoidal sans fer
BE1013646A6 (fr) Tube accelerateur de particules contenant des condensateurs d'un multiplicateur de tension.
WO1989008950A1 (fr) Generateur d'impulsions electriques du type a inductance saturable
FR2987288A1 (fr) Tete d'un dispositif de decharge electrohydraulique par fil explose
FR2672730A1 (fr) Dispositif convertisseur de modes et diviseur de puissance pour tube hyperfrequence et tube hyperfrequence comprenant un tel dispositif.
BE656619A (fr)
EP0221921B1 (fr) Aimant solenoidal sans fer
BE424982A (fr)
FR2517117A1 (fr) Tube electronique muni d'un systeme de refroidissement
BE396165A (fr)
JPH06284757A (ja) 同軸円筒型熱電子発電器
FR2563390A1 (fr) Dispositifs amplificateurs et oscillateurs micro-ondes
FR2628268A1 (fr) Appareil de multiplication de tension a couplage de flux magnetique

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): CH DE FR GB IT NL SE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn
RIN1 Information on inventor provided before grant (corrected)

Inventor name: GOSSELIN, ROGER

Inventor name: DEFECHEREUX, JOSEPH