EP0002923B1 - Glasartige Legierungen aus einem oder mehreren Übergangsmetallen der Eisengruppe, einem oder mehreren hochwarmfesten Metallen und Bor - Google Patents

Glasartige Legierungen aus einem oder mehreren Übergangsmetallen der Eisengruppe, einem oder mehreren hochwarmfesten Metallen und Bor Download PDF

Info

Publication number
EP0002923B1
EP0002923B1 EP19780300851 EP78300851A EP0002923B1 EP 0002923 B1 EP0002923 B1 EP 0002923B1 EP 19780300851 EP19780300851 EP 19780300851 EP 78300851 A EP78300851 A EP 78300851A EP 0002923 B1 EP0002923 B1 EP 0002923B1
Authority
EP
European Patent Office
Prior art keywords
atom percent
tungsten
molybdenum
boron
glassy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP19780300851
Other languages
English (en)
French (fr)
Other versions
EP0002923A1 (de
Inventor
Ranjan Ray
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Allied Corp
Original Assignee
Allied Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=27505946&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0002923(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from US05/866,675 external-priority patent/US4133679A/en
Priority claimed from US05/866,670 external-priority patent/US4133681A/en
Priority claimed from US05/866,671 external-priority patent/US4133682A/en
Priority claimed from US05/881,213 external-priority patent/US4210443A/en
Application filed by Allied Corp filed Critical Allied Corp
Publication of EP0002923A1 publication Critical patent/EP0002923A1/de
Application granted granted Critical
Publication of EP0002923B1 publication Critical patent/EP0002923B1/de
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C45/00Amorphous alloys
    • C22C45/04Amorphous alloys with nickel or cobalt as the major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C45/00Amorphous alloys
    • C22C45/008Amorphous alloys with Fe, Co or Ni as the major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C45/00Amorphous alloys
    • C22C45/02Amorphous alloys with iron as the major constituent

Definitions

  • the invention relates to glassy alloys containing low boron content and molybdenum and/or tungsten in conjunction with at least one other metal of the group cobalt, iron and nickel.
  • glassy alloys consisting essentially of about 60 to 90 atom percent of at least one element of iron, nickel, cobalt, vanadium and chromium, about 10 to 30 atom percent of at least one element of phosphorus, boron and carbon and about 0.1 to 15 atom percent of at least one element of aluminum, silicon, tin, germanium, indium, antimony and beryllium. Up to about one-fourth of the metal may be replaced by elements which commonly alloy with iron and nickel, such as molybdenum, titanium, manganese, tungsten, zirconium, hafnium and copper. Chen et al.
  • wires of glassy alloys having the general formula T ; X ; , where T is a transition metal and X is an element selected from the group consisting of phosphorus, boron, carbon, aluminum, silicon, tin, germanium, indium, beryllium and antimony, and where "i” ranges from about 70 to 87 atom percent and "j” ranges from about 13 to 30 atom percent.
  • iron-chromium glassy alloys consisting essentially of about 1 to 40 atom percent chromium, 7 to 35 atom percent of at least one of carbon, boron and phosphorus and the balance iron. Up to about 40 atom percent of at least one of nickel and cobalt, up to 20 atom percent of at least one of molybdenum, zirconium, titanium and manganese and up to about 10 atom percent of at least one of vanadium, niobium, tungsten, tantalum and copper may also be employed.
  • Elements useful for improving mechanical properties include molybdenum, zirconium, titanium, vanadium, niobium, tantalum, tungsten, copper and manganese, while elements effective for improving the heat resistance include molybdenum, zirconium, titanium, vanadium, niobium, tantalum and tungsten.
  • French specification 2,281,434 relates to amorphus i.e. glassy alloys containing mixtures of metalloids and metals including alloys containing both phosphorus and boron.
  • French specification 2,317,370 also discloses alloys containing molybdenum or tungsten and at least 15% of metalloid in a glassy alloy.
  • substantially totally glassy alloys containing a low boron content as a first component, plus molybdenum or tungsten as a second component in conjunction with one of the metals cobalt, iron and nickel are provided.
  • the glassy alloys of the invention consist essentially of about 5 to 12 atom percent boron, one only of the members selected from the group of 20 to 6Q percent molybdenum and 13 to 40 atom percent tungsten and the balance essentially one of the group iron, cobalt and nickel.
  • glassy alloys containing all three of the metals cobalt, iron and nickel with the above specified boron and second component molybdenum, tungsten and mixtures thereof are provided wherein each of the metals cobalt, iron and nickel is present in an amount of at least about 5 atom percent, plus incidental impurities.
  • the alloys of the invention evidence hardness values of at least about 1000 Kg/mm 3 , ultimate tensile strengths of at least about 2275 MPa (330 Kpsi) and crystallization temperatures of at least about 445°C.
  • the glassy alloys of the invention consist essentially of (I) about 5 to 12 atom percent boron together with (II) one only of the group consisting of molybdenum (about 20 to 60 wt%) and tungsten (about 13 to 40 wt%) with the balance being one of the group iron, cobalt and nickel or (III) glassy alloys containing at least 5 atom percent of all three metals, cobalt, iron and nickel in amounts of at least 5 atom percent wherein the amount of molybdenum, tungsten or mixtures thereof, is used in lesser quantities of about 5 to 15 atom percent together with boron in specified amounts of 5 to 12 atom percent.
  • the boron is present in amounts of 8 to 10 atom percent and the molybdenum and tungsten as component II in amounts of 30 to 50 atom percent and as component III in amounts of 8 to 12 atom percent.
  • glassy alloys of the invention include
  • the glassy metal alloys of the invention comprise three components: the first component is boron in amounts of from about 5 to about 12 atom percent; the second component is a refractory metal of the group molybdenum in amounts of 20 to 60 atom percent and tungsten in amounts of from about 13 to 40 atom percent; and the third component comprising the balance of the alloy is selected from the group cobalt, iron and nickel.
  • the low boron content, the refractory metal content and the third component are interdependent.
  • rapidly quenched ribbons are not totally glassy. Rather, the rapidly quenched ribbons contain crystalline phases, which may comprise a substantial fraction of the material, depending on specific composition.
  • the rapidly quenched ribbons containing crystalline phases or mixtures of both glassy and crystalline phases have inferior mechanical properties, i.e., low tensile strength, and are brittle.
  • such ribbons having thicknesses up to 38 11m (0.0015 inch), will fracture if bent to a radius of curvature less than 100 times the thickness.
  • compositions containing such low metalloid content do not form glassy alloys at the usual quench rates.
  • compositions containing such low metalloid content form brittle glassy alloys. If the alloys do not contain these metals in the respective proportions then, in general, the alloys do not form fully glassy ductile ribbons.
  • rapidly quenched ribbons are substantially totally glassy and possess superior mechanical properties, i.e., high tensile strength and ductility.
  • glassy ribbons of the invention can be bent without fracture to a radius of curvature about 10 times the thickness.
  • alloying elements include the transition metal elements (Groups IB to VIIB and VIII, Rows 4, 5 and 6 of the Periodic Table, other than the elements mentioned above) and metalloid elements (carbon, silicon, aluminum, and phosphorus), the amounts, as already made clear must not be such as to interfere with the essential components of the alloy.
  • Thermal stability is an important property in certain applications. Thermal stability is characterized by the time-temperature behavior of an alloy, and may be determined in part by differential thermal analysis (DTA). Glassy alloys with similar crystallization behavior as observed by DTA may exhibit different embrittlement behavior upon exposure to the same heat treatment cycle.
  • DTA measurement crystallization temperatures T e can be accurately determined by heating a glassy alloy (at about 20° to 50°C/min) and noting whether excess heat is evolved over a limited temperature range (crystallization temperature) or whether excess heat is absorbed over a particular temperature range (glass transition temperature). In general, the glass transition temperature is near the lowest, or first, crystallization temperature T el and, as is conventional, is the temperature at which the viscosity ranges from about 10 12 to 10 13 Pas (10 13 to 10 14 poise).
  • the glassy alloys of the invention are formed by quenching an alloy melt of the appropriate composition at a rate of at least about 10 5 °C/sec.
  • An alloy melt of the appropriate composition at a rate of at least about 10 5 °C/sec.
  • a variety of techniques are available, as is well-known in the art, for fabricating rapidly-quenched continuous filament.
  • a particular composition is selected, powders of the requisite elements (or of materials that decompose to form the elements) in the desired proportions are melted and homogenized, and the molten alloy is rapidly quenched on a chill surface, such as a rapidly rotating cylinder.
  • the alloys of the invention are substantially totally glassy, as determined by X-ray diffraction.
  • glass as used herein, means a state of matter in which the component atoms are arranged in a disorderly array; that is, there is no long range order.
  • Such a glassy alloy material gives rise to broad, diffuse diffraction peaks when subjected to electromagnetic radiation in the X-ray region (about 0.01 to 50 A wavelength). This is in contrast to crystalline material, in which the component atoms are arranged in an orderly array, giving rise to sharp diffractions peaks.
  • substantially totally glassy means a state of matter having crystalline and amorphous phases, the amorphous phase constituting at least about 80 percent of the combined phases. Thermal stability of the alloys improves as the degree of amorphousness thereof approaches 100%. Accordingly, totally glassy alloys, possessing a single, amorphous phase constituting 100% of the component atoms are preferred.
  • the glassy alloys of the invention evidence hardness values of at least about 1000 kg/mm 2 , ultimate tensile strengths of at least about 2413 MPa(350 Kpsi) and crystallization temperatures of at least about 445°C.
  • Preferred alloy compositions consist essentially of about 50 to 65 atom percent of one of the iron group metals of iron, cobalt and nickel, about 13 to 35 atom percent of the remaining two iron group metals, about 8 to 12 atom percent of at least one of molybdenum and tungsten and about 8 to 10 atom percent boron.
  • the alloys having such preferred compositions are especially capable of being fabricated as good quality, ductile ribbons exhibiting high tensile strength.
  • the high mechanical strength and high thermal stability of the glassy alloys of the invention render them suitable for use as reinforcement in composites for high temperature applications.
  • Alloys were prepared from constituent elements of high purity (99.9%). The elements with a total weight of 30 g were melted by induction heater in a quartz crucible under vacuum of 133 mPa (10- 3 Torr). The molten alloy was held at 150° to 200°C above the liquidus temperature for 10 min and allowed to become completely homogenized before it was slowly cooled to the solid state at room temperature. The alloy was fractured and examined for complete homogenity.
  • the chill substrate used in the present work was beryllium-copper alloy in a heat-treated condition having moderately high strength and thermal conductivity.
  • the substrate material contained 0.4 to 0.7 wt% beryllium, 2.4 to 2.7 wt% cobalt and copper as balance.
  • the substrate was kept rotating at a surface speed of 20.3 m/s (4000 ft/min).
  • the substrate and the crucible were contained inside a vacuum chamber evacuated to 133 mPa (10- 3 Torr).
  • the melt was spun as a molten jet by applying argon pressure of 34.5 kPa (5 psi) over the melt.
  • the molten jet impinged vertically onto the internal surface of the rotating substrate.
  • the chill-cast ribbon was maintained in good contact with the substrate by the centrifugal force acting on the ribbon against the surface.
  • the ribbon was ejected off the substrate by nitrogen gas at 207 kPa (30 psi), two- thirds circumferential length away from the point of jet impingement.
  • the vacuum chamber was maintained under a dynamic vacuum of 2.7 kPa (20 Torr).
  • the substrate surface was polished with 320 grit emery paper and cleaned and dried with acetone prior to the start of the casting operation.
  • the as-cast ribbons were found to have good edges and surfaces.
  • the ribbons had the following dimensions: 25.4 to 30.5,um (0.0001 to 0.0012 inch) thickness and 381 pm to 508!1m (0.015 to 0.020 inch) width
  • the degree of glassiness was determined by X-ray diffraction. A cooling rate of at least about 10 5 °C/sec was attained by the quenching process.
  • Hardness was measured by the diamond pyramid tehcnique using a Vickers-type indenter, consisting of a diamond in the form of a square-base pyramid with an included angle of 136° between opposite faces. Loads of 100 g were applied. Crystallization temperature was measured by differential thermal analysis at a scan rate of about 20°C/min. Ultimate tensile strength was measured on an Instron machine using ribbons with unpolished edges. The gauge length of the specimens was 25.4 mm (1 inch) and the cross-head speed was 8.46,ums/s (0.02 in/min).
  • Table V sets forth compositions outside the scope of the invention and the results of structural analysis by X-ray diffraction in chill cast ribbons of these compositions prepared as above, and the brittleness of the ribbons.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Continuous Casting (AREA)
  • Glass Compositions (AREA)

Claims (10)

1. Im wesentlichen vollständig glasartige Legierung der hier definierten Art, die Molybdän oder Wolfram und ein Nichtmetall enthält, dadurch gekennzeichnet, daß die Legierung im wesentlichen aus (I) 5 bis 12 Atomprozent Bor und entweder (11) mindestens einer der Komponenten 20 bis 60 Atomprozent Molybdän und 13 bis 40 Atomprozent Wolfram, Rest im wesentlichen eins der Elemente Kobalt, Eisen und Nickel; oder (111) mindestens einer der Komponenten 5 bis 15 Atomprozent Molybdän, Wolfram oder ein Gemisch derselben, Rest im wesentlichen Eisen, Kobalt und Nickel in einer Menge von je mindestens 5 Atomprozent; besteht.
2. Glasartige Legierung nach Anspruch 1 dadurch gekennzeichnet, daß das Bor in einer Menge von 8 bis 10 Atomprozent vorhanden ist und daß das Molybdän und das Wolfram in dem Anteil 11 in Mengen von 30 bis 50 Atomprozent bzw 30 bis 40 Atomprozent und das Molybdän und das Wolfram in dem Anteil 111 in Mengen von 8 bis 12 Atomprozent vorhanden sind.
3. Glasartige Legierung nach Anspruch 1, die sie im wesentlichen aus 5 bis 12 Atomprozent Bor, mindestens einer der Komponenten 30 bis 60 Atomprozent Molybdän und 20 bis 35 Atomprozent Wolfram, Rest im wesentlichen Nickel, besteht.
4. Glasartige Legierung nach Anspruch 3, welche die Zusammensetzung Ni57Mo35B8 oder Ni55Mo35B10 oder Ni50Mo40B10 oder Ni45Mo45B10 oder Ni42MosoBs oder Ni70W22B8 oder Ni70W20B10 oder Ni60W30B10 hat.
5. Im wesentlichen vollständig glasartige Legierung nach Anspruch 1, die im wesentlichen aus 5 bis 12 Atomprozent Bor, mindestens einer der Komponenten 25 bis 40 Atomprozent Molybdän und 13 bis 25 Atomprozent Wolfram, Rest im wesentlichen Eisen, besteht.
6. Glasartige Legierung nach Anspruch 5, welche die Zusammensetzung Fe60Mo30B10 oder Fe55Mo35B1o oder Fe77W15B8 oder Fe77W13B10 hat.
7. Im wesentlichen vollständig glasartige Legierung nach Anspruch 1, die im wesentlichen aus 5 bis 12 Atomprozent Bor, mindestens einer der Komponenten 20 bis 50 Atomprozent Molybdän und 15 bis 40 Atomprozent Wolfram, Rest im wesentlichen Kobalt, besteht.
8. Glasartige Legierung nach Anspruch 7, welche die Zusammensetzung Co66Mo26B8 oder Co55Mo35B10 oder Co50Mo40B10 oder Co70W20B10 oder Co60W30B10 hat.
9. Im wesentlichen vollständig glasartige Legierung nach Anspruch 1, die im wesentlichen aus 5 bis 10 Atomprozent Bor, 5 bis 15 Atomprozent wenigstens einer der Komponenten Molybdän und Wolfram, Rest im wesentlichen Eisen, Kobalt und Nickel in einer Menge von je mindestens 5 Atomprozent besteht.
10. Glasartige Legierung nach Anspruch 9, die im wesentlichen aus 8 bis 10 Atomprozent Bor, 8 bis 12 Atomprozent mindestens einer der Komponenten Molybdän und Wolfram. 50 bis 65 Atomprozent eines Metalls der Eisengruppe und 13 bis 35 Atomprozent der übrigen zwei Metalle der Eisengruppe besteht.
EP19780300851 1978-01-03 1978-12-18 Glasartige Legierungen aus einem oder mehreren Übergangsmetallen der Eisengruppe, einem oder mehreren hochwarmfesten Metallen und Bor Expired EP0002923B1 (de)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
US866671 1978-01-03
US05/866,675 US4133679A (en) 1978-01-03 1978-01-03 Iron-refractory metal-boron glassy alloys
US05/866,670 US4133681A (en) 1978-01-03 1978-01-03 Nickel-refractory metal-boron glassy alloys
US866675 1978-01-03
US05/866,671 US4133682A (en) 1978-01-03 1978-01-03 Cobalt-refractory metal-boron glassy alloys
US881213 1978-02-27
US05/881,213 US4210443A (en) 1978-02-27 1978-02-27 Iron group transition metal-refractory metal-boron glassy alloys
US866670 1986-05-27

Publications (2)

Publication Number Publication Date
EP0002923A1 EP0002923A1 (de) 1979-07-11
EP0002923B1 true EP0002923B1 (de) 1981-11-11

Family

ID=27505946

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19780300851 Expired EP0002923B1 (de) 1978-01-03 1978-12-18 Glasartige Legierungen aus einem oder mehreren Übergangsmetallen der Eisengruppe, einem oder mehreren hochwarmfesten Metallen und Bor

Country Status (3)

Country Link
EP (1) EP0002923B1 (de)
JP (1) JPS6053733B2 (de)
DE (1) DE2861328D1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020190229A1 (en) 2019-03-19 2020-09-24 Afyon Kocatepe Universitesi Rektorlugu Nickel-based bulk metallic glass alloys containing high amount of refractory metal and boron

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3856513A (en) * 1972-12-26 1974-12-24 Allied Chem Novel amorphous metals and amorphous metal articles
US4365994A (en) * 1979-03-23 1982-12-28 Allied Corporation Complex boride particle containing alloys
US6689234B2 (en) 2000-11-09 2004-02-10 Bechtel Bwxt Idaho, Llc Method of producing metallic materials
EP1749113A4 (de) * 2004-05-06 2009-04-15 Battelle Energy Alliance Llc Verfahren zur bildung einer gehärteten oberfläche auf einem substrat
CN103189539B (zh) * 2010-10-20 2016-10-12 株式会社中山制钢所 高延展性、高耐腐蚀性且耐滞后破坏性优异的Ni基非晶态合金
JP5640820B2 (ja) * 2011-03-02 2014-12-17 新日鐵住金株式会社 液相拡散接合用の合金
JP5875254B2 (ja) * 2011-05-19 2016-03-02 株式会社中山アモルファス 耐食性、通電性に優れたアモルファス合金およびその用途
JP5691897B2 (ja) * 2011-07-07 2015-04-01 新日鐵住金株式会社 液相拡散接合用のNi系合金
US11195798B2 (en) 2014-07-25 2021-12-07 Intel Corporation Tungsten alloys in semiconductor devices
EP3321382B1 (de) * 2016-11-11 2020-01-01 The Swatch Group Research and Development Ltd Co-basierte hochfeste amorphe legierung und verwendung davon

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1505841A (en) * 1974-01-12 1978-03-30 Watanabe H Iron-chromium amorphous alloys
GB1476589A (en) * 1974-08-07 1977-06-16 Allied Chem Amorphous metal alloys
SE431101B (sv) * 1975-06-26 1984-01-16 Allied Corp Amorf metallegering
US4152146A (en) * 1976-12-29 1979-05-01 Allied Chemical Corporation Glass-forming alloys with improved filament strength
US4152144A (en) * 1976-12-29 1979-05-01 Allied Chemical Corporation Metallic glasses having a combination of high permeability, low magnetostriction, low ac core loss and high thermal stability

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020190229A1 (en) 2019-03-19 2020-09-24 Afyon Kocatepe Universitesi Rektorlugu Nickel-based bulk metallic glass alloys containing high amount of refractory metal and boron
EP3942085A4 (de) * 2019-03-19 2022-01-26 Afyon Kocatepe Universitesi Rektorlugu Nickelbasierte metallische glaslegierungen mit hohem gehalt an hochschmelzendem metall und bor

Also Published As

Publication number Publication date
DE2861328D1 (en) 1982-01-14
EP0002923A1 (de) 1979-07-11
JPS6053733B2 (ja) 1985-11-27
JPS5497515A (en) 1979-08-01

Similar Documents

Publication Publication Date Title
US4052201A (en) Amorphous alloys with improved resistance to embrittlement upon heat treatment
US4067732A (en) Amorphous alloys which include iron group elements and boron
EP0018096B1 (de) Borhaltige Legierungen von Übergangsmetallen worin eine Dispersion einer ultrafeinen kristallinen Metallphase vorhanden ist, sowie Verfahren zur Herstellung dieser Legierungen, Verfahren zur Herstellung eines Gegenstandes aus einem glasartigen Metall
US4133679A (en) Iron-refractory metal-boron glassy alloys
US3989517A (en) Titanium-beryllium base amorphous alloys
US4133682A (en) Cobalt-refractory metal-boron glassy alloys
EP0096551B1 (de) Amorphe Legierungen auf Eisenbasis mit hoher Dauerschwingfestigkeit
US4439236A (en) Complex boride particle containing alloys
US4576653A (en) Method of making complex boride particle containing alloys
US4154283A (en) Production of improved metal alloy filaments
US4221592A (en) Glassy alloys which include iron group elements and boron
US4050931A (en) Amorphous metal alloys in the beryllium-titanium-zirconium system
EP0002909B1 (de) Amorphe Legierungen und daraus bestehende Fasern
EP0002923B1 (de) Glasartige Legierungen aus einem oder mehreren Übergangsmetallen der Eisengruppe, einem oder mehreren hochwarmfesten Metallen und Bor
US4255189A (en) Low metalloid containing amorphous metal alloys
US4210443A (en) Iron group transition metal-refractory metal-boron glassy alloys
US4059441A (en) Metallic glasses with high crystallization temperatures and high hardness values
US4133681A (en) Nickel-refractory metal-boron glassy alloys
US4400208A (en) Process for the production of iron, phosphorus, carbon and chromium based amorphous metal alloys, and the alloys obtained
EP0470599A1 (de) Hochfeste Legierungen auf Magnesiumbasis
EP0093487B1 (de) Legierung auf Nickelbasis
US4137075A (en) Metallic glasses with a combination of high crystallization temperatures and high hardness values
US4473402A (en) Fine grained cobalt-chromium alloys containing carbides made by consolidation of amorphous powders
JPS601944B2 (ja) 改良されたフィラメント強度を有するガラス質金属合金
US4854980A (en) Refractory transition metal glassy alloys containing molybdenum

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): BE CH DE FR GB IT NL SE

17P Request for examination filed
ITF It: translation for a ep patent filed
GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): BE CH DE FR GB IT NL SE

REF Corresponds to:

Ref document number: 2861328

Country of ref document: DE

Date of ref document: 19820114

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: ALLIED CORPORATION

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: VACUUMSCHMELZE GMBH

Effective date: 19820706

PLBN Opposition rejected

Free format text: ORIGINAL CODE: 0009273

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: OPPOSITION REJECTED

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19830930

Year of fee payment: 6

27O Opposition rejected

Effective date: 19830817

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19841212

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19841213

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19841231

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19850215

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19871219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19871231

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19871231

Year of fee payment: 10

BERE Be: lapsed

Owner name: ALLIED CHEMICAL CORP.

Effective date: 19871231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19881218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Effective date: 19881231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19890701

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19890831

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19890901

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

EUG Se: european patent has lapsed

Ref document number: 78300851.9

Effective date: 19880912