EP0000715B1 - Method for manufacturing cadmium sulfide-copper sulfide solar cells and solar cells manufactured by this method - Google Patents

Method for manufacturing cadmium sulfide-copper sulfide solar cells and solar cells manufactured by this method Download PDF

Info

Publication number
EP0000715B1
EP0000715B1 EP78100452A EP78100452A EP0000715B1 EP 0000715 B1 EP0000715 B1 EP 0000715B1 EP 78100452 A EP78100452 A EP 78100452A EP 78100452 A EP78100452 A EP 78100452A EP 0000715 B1 EP0000715 B1 EP 0000715B1
Authority
EP
European Patent Office
Prior art keywords
grid
cover glass
heat
sulfide layer
support
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP78100452A
Other languages
German (de)
French (fr)
Other versions
EP0000715A1 (en
Inventor
Gerhard Dipl.-Ing. Bilger
Gert Dr.-Ing. Hewig
Fritz Dipl.-Phys. Pfisterer
Hans-Werner Dipl.-Ing. Schock
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP0000715A1 publication Critical patent/EP0000715A1/en
Application granted granted Critical
Publication of EP0000715B1 publication Critical patent/EP0000715B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/04Detergent materials or soaps characterised by their shape or physical properties combined with or containing other objects
    • C11D17/041Compositions releasably affixed on a substrate or incorporated into a dispensing means
    • C11D17/047Arrangements specially adapted for dry cleaning or laundry dryer related applications
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0328Inorganic materials including, apart from doping materials or other impurities, semiconductor materials provided for in two or more of groups H01L31/0272 - H01L31/032
    • H01L31/0336Inorganic materials including, apart from doping materials or other impurities, semiconductor materials provided for in two or more of groups H01L31/0272 - H01L31/032 in different semiconductor regions, e.g. Cu2X/CdX hetero-junctions, X being an element of Group VI of the Periodic System
    • H01L31/03365Inorganic materials including, apart from doping materials or other impurities, semiconductor materials provided for in two or more of groups H01L31/0272 - H01L31/032 in different semiconductor regions, e.g. Cu2X/CdX hetero-junctions, X being an element of Group VI of the Periodic System comprising only Cu2X / CdX heterojunctions, X being an element of Group VI of the Periodic System
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/0488Double glass encapsulation, e.g. photovoltaic cells arranged between front and rear glass sheets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the invention relates to a method for producing solar cells with a pn thin-film heterojunction from an electrically conductive base applied to a carrier, a cadmium sulfide layer vapor-deposited thereon and a copper sulfide layer chemically produced thereon, onto which an electrically conductive grid is placed, which is covered, heat-sealed and pressed with a cover glass which is provided with a heat-sealing adhesive on the side facing the grating, the carrier with the base, with the cadmium sulfide layer and with the copper sulfide layer being produced as a prefabricated component.
  • Cadmium sulfide solar cells have a lower efficiency than the known silicon single-crystal solar cells, but they have the considerable advantage that they can be manufactured much more cheaply. It is known to produce a semiconductor photo element from a thin silicon single crystal with p- and n-type zones, which is then or the like by enveloping with a casting resin. is encapsulated. Cadmium sulfide solar cells, which belong to the so-called thin-film solar cells, have a polycrystalline semiconductor layer which is evaporated onto an electrically conductive base, usually a metallic support, so that their production is considerably cheaper.
  • the invention is based on the object of further improving the method for producing cadmium sulfide solar cells of the type mentioned at the outset in order to obtain a favorable efficiency and at the same time to produce a self-contained, encapsulated cell.
  • This object is achieved in that the prefabricated lower part is heat-sealed and pressed with a prefabricated upper part which consists of the cover glass, the heat-sealing adhesive and the grid, which is sealed onto the cover glass in the form of a film with the aid of the heat-sealing adhesive, after which the heat sealing is carried out and pressing the upper part and the lower part out of the foil, the grid is etched out.
  • the heat seal adhesive used in this training has several functions. First, it has the function of holding the copper foil on the upper part and then establishing the connection to the lower part, at the same time obtaining an encapsulated cell. This has the advantage that the grid is etched out of the film while it is held by the upper part, so that the risk of deformation or damage is further reduced, so that the possible efficiency is obtained with greater certainty.
  • the lower part contains a glass plate, on which, preferably using an adhesion promoter, a base made of silver or zinc is applied, onto which the cadmium sulfide layer is evaporated.
  • a glass plate in the lower part has the advantage that not only the mechanical strength is increased, but also that uniform thermal expansions of the entire cell are ensured, so that destruction or damage by thermal stresses is not to be expected, even if this is particularly true for terrestrial application certain solar cell is set up in areas where, for example, very large differences between the day and night temperatures occur.
  • the heat seal adhesive is applied in liquid form and then dried in vacuo and, if appropriate, thereafter in the atmosphere.
  • first drying under vacuum, all gases and vapors that may interfere with the electrical properties of the solar cell are removed, an adhesive layer is created, which then enables heat sealing and whose thickness is somewhat thicker than the thickness of the grid.
  • subsequent drying to be carried out under atmospheric conditions leads to an appropriate oxidation of the heat seal adhesive layer in some cases.
  • a thin gold layer is applied galvanically before the upper part and lower part are joined onto the grid in order to achieve a barrier-free contact.
  • a solar cell is produced according to the method according to the invention, in which the cover glass with the grid and the base plate with the base are laterally offset from one another in such a way that on one side one of the base and on the other side one of the Contact formed by the grid is exposed.
  • Such a solar cell is very easy to connect to other solar cells, since the necessary contacts are created and freely accessible.
  • a large cover glass is provided as the upper part with a plurality of electrically conductive grids arranged in a row, each of which is assigned a lower part, which are arranged so offset to the grids that the documents are on one side with the grating assigned to the adjacent lower part are in contact and that on one side of the cover glass an edge of the outer grid is exposed as a contact, while on the other side an edge of the base of the outer lower part is exposed as a contact.
  • a large cover glass is provided with several rows of grids and accordingly with several rows of lower parts. This results in a very efficient production, the somewhat simple upper part taking up a larger area, while the lower parts are designed as individually manufactured elements which are of a size which is favorable for the application of the cadmium sulfide layer.
  • the solar cell shown in Fig. 1 has a prefabricated lower part 1 and a prefabricated upper part 2, which are assembled into a self-contained cell in a subsequent operation.
  • the lower part 1 has a base plate 3, which preferably consists of a substrate glass. This glass is ultrasonically cleaned in a solvent before an adhesion-promoting layer 4 is applied on one side, for which vapor-deposited chromium (Cr) is preferably used. A layer 5 of silver (Ag) is also applied to this adhesion promoter by vapor deposition. This vapor deposition of both the adhesion promoter and the silver takes place at approximately 400 ° C., which on the one hand leads to water vapor being released and on the other hand to good crystallization of the silver layer 5, which is advantageous for the subsequent operations.
  • a base plate 3 which preferably consists of a substrate glass. This glass is ultrasonically cleaned in a solvent before an adhesion-promoting layer 4 is applied on one side, for which vapor-deposited chromium (Cr) is preferably used.
  • Cr chromium
  • a layer 5 of silver (Ag) is also applied to this adhesion promoter by vapor deposition. This vapor deposition
  • a layer of cadmium sulfide (CdS) of approximately 3011 is evaporated onto the layer 5 made of silver. This vapor deposition takes place in the device shown in FIG. 4, which will be explained later.
  • the previously prefabricated lower part 1 is kept at a temperature of 200 °.
  • the cadmium sulfide layer 6 is roughened using an aqueous hydrochloric acid (HCl) to reduce reflection and to etch out grain boundaries.
  • a copper sulfide (Cu 2S) layer 7 is then produced on the cadmium sulfide layer 6, which is done by a chemical reaction by briefly immersing the lower part in a monovalent copper ion solution for about 5 to 10 seconds. This copper sulfide layer should have an order of magnitude of 0.2 ⁇ thickness.
  • a copper (Cu) layer 8 which has a thickness of 30 to 100 ⁇ , is also evaporated onto the copper sulfide layer 7. Subsequently, the lower part is heated at about 180 ° under atmosphere, which makes it possible to fill in vacancies due to copper diffusing into the copper sulfide layer and to form a copper oxide layer (Cu z O). With this operation, the manufacture of the lower part 1 is finished. As can be seen from FIG. 1, the layers 6, 7 and 8 are applied in such a way that an edge strip 9 of the base 5 made of silver remains free in FIG. 1 on the right, which can later be used as a contact.
  • the upper part 2 is also manufactured separately. It contains a cover glass 10, which is also cleaned with ultrasound in a solvent before further processing. On this cover glass 10, a liquid heat seal adhesive 11 with a layer thickness of 120 to 150 .mu.m is applied on one side by means of a doctor or the like. applied. In practice, an adhesive from Kömmerling, Zweimaschiner Landstrasse, 6780 Pirmasens, which has the company identification AK 543, is suitable. The cover slip 10 and the initially applied liquid heat seal adhesive 11 are in one Vacuum oven then subjected to drying at about 100 ° C for 4 to 5 hours, so that vapors and chamfers can escape from the initially liquid heat seal adhesive.
  • the heat seal adhesive 11 reduces its thickness to approximately 25% of the original application thickness of 120 to 15 ⁇ ⁇ .
  • a copper foil with a thickness of approximately 35 p is then sealed onto the cover glass 10 at approximately 170 ° to 180 °.
  • the grid 12 shown in FIG. 1 is then etched out of this copper foil, using the technique known in the production of printed circuit boards.
  • a lacquer grid is applied using the screen printing process, which corresponds to the grid 12 that remains afterwards.
  • a layer 13 of gold is applied galvanically to the grid in order to enable a barrier-free contact.
  • the layer thickness is approximately 100 to 1000 A, preferably 250 A.
  • the now finished upper part 2 is connected to the lower part 1 in a vacuum press at approx. 170 ° to 180 °, the connection being obtained by the layer 11 of the heat seal adhesive, which has a layer thickness which is somewhat larger than the thickness of the grid 12 .
  • the grid 12 lies with its gold layer 13 on the layer 8 made of copper and establishes a secure contact, while subsequently the grid 12 penetrates into the layer 11 during heating, which also has an adhesive connection between the cover glass 10 and the layer 8 manufactures.
  • the upper part 2 is applied so offset on the lower part 1 that on the left in the drawing, i.e. A strip 14 of the grid 12, which also serves as a contact, is exposed opposite the contact strip 9.
  • a solar battery can be assembled from several of the solar cells shown in FIG. 1, the contacts of the adjacent solar cells formed by the edge strips 9 and 14 then being connected to one another.
  • a common cover glass 15 can be provided for several solar cells, as shown in FIGS. 2 and 3.
  • lower parts 1 are used which have been produced in accordance with the preceding description. These bases are appropriately manufactured in a certain size in which they can be manufactured economically.
  • the contacts between the individual solar cells are produced in the manner described for FIG. 1, which are only indicated schematically in FIG. 2. In this case, contact is made between the grid 12 and the layer 5 of silver serving as an electrically conductive base for those solar cells lying in a row. As can be seen in Fig.
  • FIG. 4 schematically shows a device with which a homogeneous layer of cadmium sulfide can be evaporated onto a lower part 1 of a solar cell.
  • a graphite furnace 16 is provided, which is surrounded by a graphite heating coil 17 to which a power supply 18 is connected.
  • the outside of the graphite heating coil 17 is surrounded by a radiation reflector 19.
  • a thermocouple 20 measuring the temperature for temperature control projects into the graphite furnace 16.
  • the graphite furnace is seated on an insulating ceramic ring 21.
  • the graphite furnace 16 has the shape of a cylinder, in which an upwardly open chamber 23 is divided by an annular collar 22, into which cadmium sulfide in powder form is filled.
  • the chamber 23 is closed at the top by a porous quartz frit 24 which is closely fitted into the cylindrical part adjoining the collar 22 to the outside.
  • the quartz frit 24 and the inner surface of the graphite furnace 16 are expediently ground.
  • the quartz frit 24 is secured in its position in a manner not shown by one or more pins.
  • the quartz frit 24 is arranged at a sufficient distance from the end of the graphite furnace 16, that is to say approximately one third of the height, so that a temperature high enough to be maintained in the region of the quartz frit is that vaporization and so that the quartz frit can be prevented from becoming impermeable.
  • thermocouple 20 adjoins the graphite furnace, which sits on the ceramic ring. This approach envelops the thermocouple 20 over a sufficient length so that it is ensured that the temperature measured by the thermocouple 20 corresponds as closely as possible to the temperature of the chamber 23.
  • a displaceable diaphragm 26 Arranged above the outlet of the graphite furnace 16 is a displaceable diaphragm 26, with which the evaporating gas from the lower part 1 of the solar cell can initially be maintained.
  • This lower part 1 rests on a support 27, which leaves a section of the size to be vaporized on the lower part 1 with cadmium sulfide.
  • a heating part 28 designed as a graphite meander is provided, which is covered by a radiation reflector 29. This heating part 28 ensures that the lower part of the solar cell maintains a temperature of approximately 200 ° C. when the cadmium sulfide is evaporated.

Description

Die Erfindung betrifft ein Verfahren zum Herstellen von Solarzellen mit p-n-Dünnschicht-Heteroübergang aus einer auf einem Träger aufgebrachten elektrisch leitenden Unterlage, einer darauf aufgedampften Cadmiumsulfid-Schicht und einer darauf chemisch erzeugten Kupfersulfid-Schicht, auf die ein elektrisch leitendes Gitter aufgelegt wird, das mit einem Deckglas, das auf der dem Gitter zugewandten Seite mit einem Heißsiegelkleber versehen wird, abgedeckt, heißversiegelt und verpreßt wird, wobei der Träger mit der Unterlage, mit der Cadmiumsulfid-Schicht und mit der Kupfersulfid-Schicht als ein vorgefertigter Bauteil hergestellt wird.The invention relates to a method for producing solar cells with a pn thin-film heterojunction from an electrically conductive base applied to a carrier, a cadmium sulfide layer vapor-deposited thereon and a copper sulfide layer chemically produced thereon, onto which an electrically conductive grid is placed, which is covered, heat-sealed and pressed with a cover glass which is provided with a heat-sealing adhesive on the side facing the grating, the carrier with the base, with the cadmium sulfide layer and with the copper sulfide layer being produced as a prefabricated component.

Cadmiumsulfid-Solarzellen haben gegenüber den bekannten Silicium-Einkristall-Solarzellen einen geringeren Wirkungsgrad, jedoch den erheblichen Vorteil, daß sie sich wesentlich preiswerter herstellen lassen. Es ist bekannt, ein Halbleiterfotoelement aus einem dünnen Silicium-Einkristall mit p- und n-leitenden Zonen herzustellen, das anschließend durch Umhüllen mit einem Gießharz o.dgl. verkapselt wird. Cadmiumsulfid-Solarzellen, die zu den sogenannten Dünnschichtsolarzellen gehören, besitzen eine polykristalline Halbleiterschicht, die auf eine elektrisch leitende Unterlage, meistens einen metallischen Träger aufgedampft ist, so daß ihre Herstellung wesentlich preiswerter ist.Cadmium sulfide solar cells have a lower efficiency than the known silicon single-crystal solar cells, but they have the considerable advantage that they can be manufactured much more cheaply. It is known to produce a semiconductor photo element from a thin silicon single crystal with p- and n-type zones, which is then or the like by enveloping with a casting resin. is encapsulated. Cadmium sulfide solar cells, which belong to the so-called thin-film solar cells, have a polycrystalline semiconductor layer which is evaporated onto an electrically conductive base, usually a metallic support, so that their production is considerably cheaper.

Es ist bekannt (Zeitschrift: THIN SOLID FILMS, vol. 45, no. 1, August 1977, Lausanne), zum Herstellen von Solarzellen mit p-n-Dünnschicht-Heteroübergang auf einem Träger aus Glas eine elektrisch leitende Unterlage aufzutragen, auf die eine Cadmiumsulfid-Schicht aufgedampft wird, auf welcher dann chemisch eine Kupfersulfid-Schicht erzeugt wird. Auf die Kupfersulfid-Schicht des vorgefertigten Unterteils wird anschließend ein Gitter aufgelegt, wonach die Solarzelle mit einem Deckglas abgedeckt wird, das auf der dem Gitter zugewandten Seite mit einem Heißsiegelkleber versehen ist, mit welchem die Solarzelle versiegelt wird. Das dabei verwendete Gitter ist ein gesondertes Bauteil, das in dieser Form gehandhabt werden muß. Dies bedeutet eine erhebliche praktische Schwierigkeit, da an dem sehr feinen Gitter sich geringfügige Deformationen oder Beschädigungen kaum vermeiden lassen. Diese Beschädigungen oder Deformationen führen zu einer verschlechterten Kontaktgabe und damit zu einer Verminderung des möglichen Wirkungsgrades, insbesondere weil dann das Gitter häufig nur pumktförmig an der Kupfersulfid-Schicht anliegt, so daß die Zahl der Kontaktstellen eingeschränkt wurde.It is known (magazine: THIN SOLID FILMS, vol. 45, no. 1, August 1977, Lausanne) to apply an electrically conductive base on which a cadmium sulfide, Layer is evaporated, on which a copper sulfide layer is then chemically generated. A grid is then placed on the copper sulfide layer of the prefabricated lower part, after which the solar cell is covered with a cover glass which is provided on the side facing the grid with a heat seal adhesive with which the solar cell is sealed. The grid used here is a separate component that must be handled in this form. This means a considerable practical difficulty, since minor deformations or damage can hardly be avoided on the very fine grid. This damage or deformation leads to poorer contact and thus to a reduction in the possible efficiency, in particular because then the grid often only abuts the copper sulfide layer in pump form, so that the number of contact points has been restricted.

Es ist auch bekannt (US-PS 3 472 690), ein als Kontaktelement dienendes Gitter für eine Solarzelle dadurch herzustellen, daß es aus einer Metallfolie herausgeätzt wird. Ein derartiges. als unabhängiges Bauteil hergestelltes Gitter kann die im vorstehenden geschilderten Schwierigkeiten bei der Herstellung einer Solarzelle nicht beseitigen.It is also known (US Pat. No. 3,472,690) to produce a grid for a solar cell serving as a contact element by etching it out of a metal foil. Such a thing. Grid produced as an independent component cannot eliminate the difficulties described above in the production of a solar cell.

Der Erfindung liegt die Aufgabe zugrunde, das Verfahren zum Herstellen von Cadmiumsulfid-Solarzellen der eingangs genannten Art weiter zu verbessern, um einen günstigen Wirkungsgrad zu erhalten und gleichzeitig eine in sich geschlossene, verkapselte Zelle herzustellen. Diese Aufgabe wird dadurch gelöst, daß der vorgefertigte Unterteil mit einem vorgefertigten Oberteil heißversiegelt und verpreßt wird, der aus dem Deckglas, dem Heißsiegelkleber und dem Gitter besteht, das in Form einer Folie mit Hilfe des Heißsiegelklebers auf das Deckglas aufgesiegelt wird, wonach vor dem Heißversiegeln und Verpressen des Oberteils und des Unterteils aus der Folie das Gitter herausgeätzt wird.The invention is based on the object of further improving the method for producing cadmium sulfide solar cells of the type mentioned at the outset in order to obtain a favorable efficiency and at the same time to produce a self-contained, encapsulated cell. This object is achieved in that the prefabricated lower part is heat-sealed and pressed with a prefabricated upper part which consists of the cover glass, the heat-sealing adhesive and the grid, which is sealed onto the cover glass in the form of a film with the aid of the heat-sealing adhesive, after which the heat sealing is carried out and pressing the upper part and the lower part out of the foil, the grid is etched out.

Der bei dieser Ausbildung verwendete Heißsiegelkleber hat mehrere Funktionen. Zunächst hat er die Funktion, die Kupferfolie an dem Oberteil zu halten und anschließend die Verbindung zu dem Unterteil herzustellen, wobei gleichzeitig eine verkapselte Zelle erhalten wird. Dabei ergibt sich der Vorteil, daß das Gitter aus der Folie herausgeätzt wird, während es von dem Oberteil gehalten ist, so daß die Gefahr von Verformungen oder Beschädigungen weiter verringert wird, so daß mit größerer Sicherheit der mögliche Wirkungsgrad erhalten wird.The heat seal adhesive used in this training has several functions. First, it has the function of holding the copper foil on the upper part and then establishing the connection to the lower part, at the same time obtaining an encapsulated cell. This has the advantage that the grid is etched out of the film while it is held by the upper part, so that the risk of deformation or damage is further reduced, so that the possible efficiency is obtained with greater certainty.

In weiterer Ausgestaltung der Erfindung wird vorgesehen, daß das Unterteil eine Glasplatte enthält, auf der vorzugsweise unter Verwendung eines Haftvermittlers eine Unterlage aus Silber oder Zink aufgebracht wird, auf die die Cadmiumsulfid-Schicht aufgedampft wird. Die Verwendung einer Glasplatte in dem Unterteil hat den Vorteil, daß nicht nur die mechanische Festigkeit erhöht wird, sondern daß auch gleichmäßige Wärmeausdehnungen der gesamten Zelle gewährleistet sind, so daß ein Zerstören oder Beschädigen durch Wärmespannungen nicht zu erwarten ist, auch wenn die insbesondere für die terrestrische Anwendung bestimmte Solarzelle in Gebieten aufgestellt wird, in denen beispielsweise sehr große Unterschiede zwischen den Tages- und Nachttemperaturen auftreten.In a further embodiment of the invention, it is provided that the lower part contains a glass plate, on which, preferably using an adhesion promoter, a base made of silver or zinc is applied, onto which the cadmium sulfide layer is evaporated. The use of a glass plate in the lower part has the advantage that not only the mechanical strength is increased, but also that uniform thermal expansions of the entire cell are ensured, so that destruction or damage by thermal stresses is not to be expected, even if this is particularly true for terrestrial application certain solar cell is set up in areas where, for example, very large differences between the day and night temperatures occur.

In weiterer vorteilhafter Ausgestaltung wird vorgesehen, daß der Heißsiegelkleber flüssig aufgetragen und anschließend im Vakuum und gegebenenfalls danach in Atmosphäre getrocknet wird. Durch das erste Trocknen unter Vakuum wird unter Abführen aller eventuell die elektrischen Eigenschaften der Solarzelle störenden Gase und Dämpfe eine Klebeschicht erzeugt, die anschließend ein Heißsiegelkleben ermöglicht und deren Dicke etwas stärker als die Dicke des Gitters ist. Die gegebenenfalls durchzuführende anschließende Trocknung unter atmosphärischen Bedingungen führt zu einer in einigen Fällen zweckmäßigen Oxidation der Heißsiegelklebeschicht.In a further advantageous embodiment it is provided that the heat seal adhesive is applied in liquid form and then dried in vacuo and, if appropriate, thereafter in the atmosphere. As a result of the first drying under vacuum, all gases and vapors that may interfere with the electrical properties of the solar cell are removed, an adhesive layer is created, which then enables heat sealing and whose thickness is somewhat thicker than the thickness of the grid. The subsequent drying to be carried out under atmospheric conditions leads to an appropriate oxidation of the heat seal adhesive layer in some cases.

In zweckmäßiger Ausgestaltung wird weiter vorgesehen, daß vor dem Zusammenfügen von Oberteil und Unterteil auf das Gitter zum Erzielen eines sperrschichtfreien Kontakts eine dünne Goldschicht galvanisch aufgetragen wird.In an expedient embodiment, it is further provided that a thin gold layer is applied galvanically before the upper part and lower part are joined onto the grid in order to achieve a barrier-free contact.

In weiterer Ausgestaltung der Erfindung wird eine Solarzelle gemäß dem erfindungsgemäßen Verfahren hergestellt, bei welcher das Deckglas mit dem Gitter und die Grundplatte mit der Unterlage derart seitlich zueinander versetzt sind, daß auf der einen Seite ein von der Unterlage und auf der anderen Seite ein von dem Gitter gebildeter Kontakt freiliegen. Eine derartige Solarzelle ist sehr einfach mit weiteren Solarzellen zu verschalten, da die notwendigen Kontakte geschaffen und frei zugänglich sind..In a further embodiment of the invention, a solar cell is produced according to the method according to the invention, in which the cover glass with the grid and the base plate with the base are laterally offset from one another in such a way that on one side one of the base and on the other side one of the Contact formed by the grid is exposed. Such a solar cell is very easy to connect to other solar cells, since the necessary contacts are created and freely accessible.

In weiterer vorteilhafter Ausgestalltung der Erfindung ist als Oberteil ein großflächiges Deckglas mit mehreren in einer Reihe angeordneten elektrisch leitenden Gittern vorgesehen, denen jeweils ein Unterteil zugeordnet ist, die derart versetzt zu den Gittern angeordnet sind, daß die Unterlagen einseitig mit dem dem benachbarten Unterteil zugeordneten Gitter in Kontakt stehen und daß an der einen Seite des Deckglases ein Rand des äußeren Gitters als Kontakt freiliegt, während auf der anderen Seite ein Rand der Unterlage des äußeren Unterteils als Kontakt freiliegt. Dadurch läßt sich in einfacher Weise eine fertig verschaltete Solarbatterie schaffen, bei der als Tragelement für mehrere Solarzellen ein einteiliges Deckglas dient. In weiterer Ausgestaltung der Erfindung kann vorgesehen werden, daß ein großflächiges Deckglas mit mehreren Reihen von Gittern und entsprechend mit mehreren Reihen von Unterteilen versehen ist. Damit wird eine sehr rationelle Fertigung erhalten, wobei das etwas einfache aufgebaute Oberteil eine größere Fläche einnimmt, während die Unterteile als einzeln hergestellte Elemente ausgeführt sind, die eine für die Aufbringung der Cadmiumsulfid-Schicht günstige Größe besitzen.In a further advantageous embodiment of the invention, a large cover glass is provided as the upper part with a plurality of electrically conductive grids arranged in a row, each of which is assigned a lower part, which are arranged so offset to the grids that the documents are on one side with the grating assigned to the adjacent lower part are in contact and that on one side of the cover glass an edge of the outer grid is exposed as a contact, while on the other side an edge of the base of the outer lower part is exposed as a contact. This makes it easy to create a fully connected solar battery, in which a one-piece cover glass serves as a supporting element for several solar cells. In a further embodiment of the invention it can be provided that a large cover glass is provided with several rows of grids and accordingly with several rows of lower parts. This results in a very efficient production, the somewhat simple upper part taking up a larger area, while the lower parts are designed as individually manufactured elements which are of a size which is favorable for the application of the cadmium sulfide layer.

Weitere Merkmale und Vorteile der Erfindung ergeben sich aus der nachfolgenden Beschreibung der in der Zeichnung dargestellten Ausführungsformen.

  • Fig. 1 zeigt eine schematische Darstellung einer nach dem erfindungsgemäßen Verfahren hergestellten erfindungsgemäßen Solarzelle, bei welcher Unterteil und Oberteil noch gegetrennt sind,
  • Fig 2 eine Seitenansicht einer aus mehreren Zellen und einem einteiligen Deckglas gebildeten Solarbatterie,
  • Fig. 3 eine Ansicht der Solarbatterie der Fig. 2 in Richtung des Pfeiles 111 und
  • Fig. 4 eine schematische Darstellung einer Einrichtung zum Aufdampfen einer Cadmiumsulfid-Schicht.
Further features and advantages of the invention result from the following description of the embodiments shown in the drawing.
  • 1 shows a schematic illustration of a solar cell according to the invention produced by the method according to the invention, in which the lower part and the upper part are still separated,
  • 2 shows a side view of a solar battery formed from a plurality of cells and a one-piece cover glass,
  • Fig. 3 is a view of the solar battery of Fig. 2 in the direction of arrow 111 and
  • Fig. 4 is a schematic representation of a device for evaporating a cadmium sulfide layer.

Die in Fig. 1 dargestellte Solarzelle besitzt einen vorgefertigten Unterteil 1 und einen vorgefertigten Oberteil 2, die in einem anschließenden Arbeitsgang zu einer in sich gekapselten Zelle zusammengefügt werden.The solar cell shown in Fig. 1 has a prefabricated lower part 1 and a prefabricated upper part 2, which are assembled into a self-contained cell in a subsequent operation.

Der Unterteil 1 besitzt eine Grundplatte 3, die vorzugsweise aus einem Substratglas besteht. Dieses Glas wird in einem Lösungsmittel mit Ultraschall gereinigt, bevor eine Haftvermittlungsschicht 4 einseitig aufgetragen wird, für die bevorzugt aufgedampftes Chrom (Cr) verwendet wird. Auf diesen Haftvermittler wird eine Schicht 5 aus Silber (Ag) ebenfalls durch Aufdampfen aufgetragen. Dieses Aufdampfen sowohl des Haftvermittlers als auch des Silbers erfolgt bei etwa 400°C, was einerseits zu einem Herauslösen von Wasserdampf und andererseits zu einer guten Auskristallisierung der Silberschicht 5 führt, was für die nachfolgenden Arbeitsgänge von Vorteil ist.The lower part 1 has a base plate 3, which preferably consists of a substrate glass. This glass is ultrasonically cleaned in a solvent before an adhesion-promoting layer 4 is applied on one side, for which vapor-deposited chromium (Cr) is preferably used. A layer 5 of silver (Ag) is also applied to this adhesion promoter by vapor deposition. This vapor deposition of both the adhesion promoter and the silver takes place at approximately 400 ° C., which on the one hand leads to water vapor being released and on the other hand to good crystallization of the silver layer 5, which is advantageous for the subsequent operations.

Auf die Schicht 5 aus Silber wird eine Schicht aus Cadmiumsulfid (CdS) von ca. 3011 aufgedampft. Dieses Aufdampfen erfolgt in der in Fig. 4 dargestellten Vorrichtung, die später noch erläutert werden wird. Dabei wird der soweit vorgefertigte Unterteil 1 auf einer Temperatur von 200° gehalten.A layer of cadmium sulfide (CdS) of approximately 3011 is evaporated onto the layer 5 made of silver. This vapor deposition takes place in the device shown in FIG. 4, which will be explained later. The previously prefabricated lower part 1 is kept at a temperature of 200 °.

Als nächstes wird die Cadmiumsulfid-Schicht 6 zur Verringerung von Reflexion und zum Herausätzen von Korngrenzen mit Hilfe einer wässrigen Salzsäure (HCI) aufgerauht. Auf der Cadmiumsulfid-Schicht 6 wird anschließend eine Kupfersulfid (Cu 2S)-Schicht 7 erzeugt, was durch eine chemische Reaktion geschieht, indem der Unterteil kurzzeitig für ca 5 bis 10 Sekunden in eine einwertige Kupfer-lonenlösung eingetaucht wird. Diese Kupfersulfid-Schicht soll eine Größenordnung von 0,2 µ Dicke besitzen.Next, the cadmium sulfide layer 6 is roughened using an aqueous hydrochloric acid (HCl) to reduce reflection and to etch out grain boundaries. A copper sulfide (Cu 2S) layer 7 is then produced on the cadmium sulfide layer 6, which is done by a chemical reaction by briefly immersing the lower part in a monovalent copper ion solution for about 5 to 10 seconds. This copper sulfide layer should have an order of magnitude of 0.2 μ thickness.

Auf die Kupfersulfid-Schicht 7 wird noch eine Kupfer (Cu)-Schicht 8 aufgedampft, die eine Dicke von 30 bis 100 Ä besitzt. Anschließend wird der Unterteil bei ca. 180° unter Atmosphäre aufgeheizt, wodurch ein Auffüllen von Leerstellen durch eindiffundierendes Kupfer in die Kupfersulfid-Schicht und eine Ausbildung einer Kupferoxydulschicht (CuzO) ermöglicht werden. Mit diesem Arbeitsgang ist die Herstellung des Unterteils 1 beendet. Wie aus Fig. 1 ersichtlich ist, sind die Schichten 6, 7 und 8 derart aufgetragen, daß in Fig. 1 rechts ein Randstreifen 9 der Unterlage 5 aus Silber freibleibt, die später als Kontakt ausgenutzt werden kann.A copper (Cu) layer 8, which has a thickness of 30 to 100 Å, is also evaporated onto the copper sulfide layer 7. Subsequently, the lower part is heated at about 180 ° under atmosphere, which makes it possible to fill in vacancies due to copper diffusing into the copper sulfide layer and to form a copper oxide layer (Cu z O). With this operation, the manufacture of the lower part 1 is finished. As can be seen from FIG. 1, the layers 6, 7 and 8 are applied in such a way that an edge strip 9 of the base 5 made of silver remains free in FIG. 1 on the right, which can later be used as a contact.

Der Oberteil 2 wird ebenfalls getrennt hergestellt. Er enthält ein Deckglas 10, das ebenfalls vor der Weiterbearbeitung mit Ultraschall in einem Lösungsmittel gereinigt wird. Auf dieses Deckglas 10 wird einseitig ein zu nächst flüssiger Heißsiegelkleber 11 mit einer Schichtdicke von 120 bis 150 µ mittels eines Rakel o.dgl. aufgetragen. In der Praxis hat sich hier ein Kleber der Firma Kömmerling, Zweibrücker Landstrasse, 6780 Pirmasens, geeignet, der die Betriebskennzeichnung AK 543 trägt. Das Deckglas 10 und der zunächst flüssig aufgetragene Heißsiegelkleber 11 werden in einem Vakuumofen anschließend bei etwa 100°C für 4 bis 5 Stunden einer Trocknung unterzogen, so daß Dämpfe und Fase aus dem zunächst flüssigen Heißsiegelkleber entweichen können. Es hat sich gezeigt, daß eine anschließende Trocknung bei einer ebenfalls erhöhten Temperatur in der Atmosphäre zu Vorteilen führen kann, wobei wahrscheinlich eine Oxidation des Heißsiegelklebers 11 erfolgt. Bei diesem Trocknungsvorgang reduziert der Heißsiegelkleber seine Dicke auf etwa 25% der ursprünglich 120 bis 15µ µ betragenden Auftragsdicke. Mit Hilfe des Heißsiegelklebers 11 wird auf dem Deckglas 10 anschließend eine Kupferfolie von einer Dicke von ca. 35 p bei etwa 170° bis 180° aufgesiegelt. Aus dieser Kupferfolie wird anschließend das in Fig. 1 dargestellte Gitter 12 herausgeätzt, wobei die bei der Herstellung von Leiterplatten bekannte Technik angewendet wird. Es wird zunächst ein Lackgitter im Siebdruckverfahren aufgetragen, das dem nachher stehenbleibenden Gitter 12 entspricht. Nachdem das Gitter 12 erstellt und der Lack wieder entfernt wurde, wird galvanisch auf das Gitter eine Schicht 13 aus Gold aufgetragen, um einen sperrschichtfreien Kontakt zu ermöglichen. Die Schichtstärke beträgt etwa 100 bis 1000 A, vorzugsweise 250 A.The upper part 2 is also manufactured separately. It contains a cover glass 10, which is also cleaned with ultrasound in a solvent before further processing. On this cover glass 10, a liquid heat seal adhesive 11 with a layer thickness of 120 to 150 .mu.m is applied on one side by means of a doctor or the like. applied. In practice, an adhesive from Kömmerling, Zweibrücker Landstrasse, 6780 Pirmasens, which has the company identification AK 543, is suitable. The cover slip 10 and the initially applied liquid heat seal adhesive 11 are in one Vacuum oven then subjected to drying at about 100 ° C for 4 to 5 hours, so that vapors and chamfers can escape from the initially liquid heat seal adhesive. It has been shown that subsequent drying at a likewise elevated temperature in the atmosphere can lead to advantages, with an oxidation of the heat seal adhesive 11 probably taking place. During this drying process, the heat seal adhesive reduces its thickness to approximately 25% of the original application thickness of 120 to 15µ µ. With the help of the heat seal adhesive 11, a copper foil with a thickness of approximately 35 p is then sealed onto the cover glass 10 at approximately 170 ° to 180 °. The grid 12 shown in FIG. 1 is then etched out of this copper foil, using the technique known in the production of printed circuit boards. First, a lacquer grid is applied using the screen printing process, which corresponds to the grid 12 that remains afterwards. After the grid 12 has been created and the lacquer has been removed again, a layer 13 of gold is applied galvanically to the grid in order to enable a barrier-free contact. The layer thickness is approximately 100 to 1000 A, preferably 250 A.

Der nunmehr fertige Oberteil 2 wird mit dem Unterteil 1 in einer Vakuumpresse bei ca. 170° bis 180° verbunden, wobei die Verbindung durch die Schicht 11 des Heißsiegelklebers erhalten wird, die eine Schichtdicke aufweist, die etwas größer als die Dicke des Gitters 12 ist. Das Gitter 12 legt sich mit seiner Goldschicht 13 an die Schicht 8 aus Kupfer an und stellt einen sicheren Kontakt her, während anschließend bei dem Aufheizen das Gitter 12 in die Schicht 11 eindringt, die außerdem noch eine haftende Verbindung zwischen dem Deckglas 10 und der Schicht 8 herstellt. Der Oberteil 2 wird dabei derart versetzt auf dem Unterteil 1 aufgebracht, das in der Zeichnung links, d.h. dem Kontaktstreifen 9 gegenüberliegend ein Streifen 14 des Gitters 12 freiliegt, der ebenfalls als Kontakt dient. Nach diesem Zusammenfügen von Oberteil und Unterteil liegt eine feste in sich geschlossene Zelle vor, die keiner weiteren Behandlung oder Verstäkung bedarf. Gegebenenfalls ist es zweckmäßig, die quer zu den Kontaktstreifen 9 und 14 verlaufenden Ränder abzudichten, was beispielsweise durch Verkleben, Verschweißen oder Verlöten der Deckplatte 10 und der Grundplatte 3 erfolgen kann.The now finished upper part 2 is connected to the lower part 1 in a vacuum press at approx. 170 ° to 180 °, the connection being obtained by the layer 11 of the heat seal adhesive, which has a layer thickness which is somewhat larger than the thickness of the grid 12 . The grid 12 lies with its gold layer 13 on the layer 8 made of copper and establishes a secure contact, while subsequently the grid 12 penetrates into the layer 11 during heating, which also has an adhesive connection between the cover glass 10 and the layer 8 manufactures. The upper part 2 is applied so offset on the lower part 1 that on the left in the drawing, i.e. A strip 14 of the grid 12, which also serves as a contact, is exposed opposite the contact strip 9. After the upper part and lower part have been joined together, there is a solid, self-contained cell that does not require any further treatment or reinforcement. If appropriate, it is expedient to seal the edges running transversely to the contact strips 9 and 14, which can be done, for example, by gluing, welding or soldering the cover plate 10 and the base plate 3.

Aus mehreren der in Fig. 1 dargestellten Solarzellen läßt sich eine Solarbatterie zusammensetzen, wobei dann die von den Randstreifen 9 und 14 gebildeten Kontakte der benachbaren Solarzellen miteinander verbunden werden.A solar battery can be assembled from several of the solar cells shown in FIG. 1, the contacts of the adjacent solar cells formed by the edge strips 9 and 14 then being connected to one another.

Um bei der Erstellung einer Solarbatterie zusätzliche Trägerelemente einzusparen, kann für mehrere Solarzellen ein gemeinsames Deckglas 15 vorgesehen werden, wie dies in Fig. 2 und 3 dargestellt ist. Dabei werden Unterteile 1 verwendet, die entsprechend der vorausgegangenen Beschreibung hergestellt wurden. Diese Unterteile werden zweckmäßig in einer bestimmten Größe hergestellt, in der sie sich wirtschaftlich fertigen lassen. Dagegen bereitet es keine größeren Schwierigkeiten, das gemeinsame Deckglas 15 großflächig herzustellen und mit einer Vielzahl von Gittern 12 in der vorstehend beschriebenen Weise zu versehen. Die Kontakte zwischen den einzelnen Solarzellen werden entsprechend der zur Fig. 1 beschriebenen Weise hergestellt, die in Fig. 2 nur schematisch angedeutet sind. Dabei wird jeweils bei denen in einer Reihe liegenden Solarzellen ein Kontakt des Gitters 12 mit der als elektrisch leitenden Unterlage dienenden Schicht 5 aus Silber hergestellt. Wie in Fig. 3 zu sehen ist, können selbstverständlich mehrere Reihen derartiger Zellen an dem gemeinsamen Deckglas befestigt werden. Die Befestigung erfolgt dann durch die Schicht 11 des Heißsiegelklebers in einem einzigen Arbeitsgang. In der Praxis ist es zweckmäßig, die Stirnseiten zwischen den Kontakten 14 und 9 sowie die Fugen zwischen den einzelnen Zellen abzudichten, was durch Vergießen mit einem Kleber o,dgl. zweckmäßig erfolgen kann. Ebenso ist ein Verlöten oder Verschweißen der Glasplatten möglich.In order to save additional support elements when creating a solar battery, a common cover glass 15 can be provided for several solar cells, as shown in FIGS. 2 and 3. In this case, lower parts 1 are used which have been produced in accordance with the preceding description. These bases are appropriately manufactured in a certain size in which they can be manufactured economically. On the other hand, there is no major difficulty in producing the common cover glass 15 over a large area and providing it with a large number of gratings 12 in the manner described above. The contacts between the individual solar cells are produced in the manner described for FIG. 1, which are only indicated schematically in FIG. 2. In this case, contact is made between the grid 12 and the layer 5 of silver serving as an electrically conductive base for those solar cells lying in a row. As can be seen in Fig. 3, several rows of such cells can of course be attached to the common cover slip. The attachment is then carried out by the layer 11 of the heat seal adhesive in a single operation. In practice, it is advisable to seal the end faces between the contacts 14 and 9 and the joints between the individual cells, which can be achieved by casting with an adhesive or the like. can be done appropriately. It is also possible to solder or weld the glass plates.

In Fig. 4 ist schematisch eine Vorrichtung dargestellt, mit welcher eine homogene Schicht Cadmiumsulfid auf ein Unterteil 1 einer Solarzelle aufgedampft werden kann. Hierzu ist ein Graphitofen 16 vorgesehen, der von einer Graphitheizwendel 17 umgeben wird, an die eine Stromzuführung 18 angeschlossen ist. Außen wird die Graphitheizwendel 17 von einem Strahlungsreflektor 19 umschlossen. In den Graphitofen 16 ragt ein die Temperatur für eine Temperaturregelung messendes Thermoelement 20 hinein. Der Graphitofen sitzt auf einem isolierenden Keramikring 21. Der Graphitofen 16 besitzt die Gestalt eines Zylinders, in welchem durch einen Ringbund 22 eine nach oben offene Kammer 23 abgeteilt ist, in die Cadmiumsulfid in pulverförmigem Zustand eingefüllt wird. Die Kammer 23 wird nach oben von einer porösen Quarzfritte 24 verschlossen, die eng in den an den Ringbund 22 nach außen anschließenden zylindrischen Teil eingepaßt ist. Hierzu werden zweckmäßigerweise die Quarzfritte 24 und die Innenfläche des Graphitofens 16 geschliffen. Um ein einwandfreies Bearbeiten zu ermöglichen, ist es zweckmäßig, die Quarzfritte 24 in ein Quarzglasröhrchen einzuschmelzen, das dann außen geschliffen wird. Die Quarzfritte 24 wird in nicht näher dargestellter Weise durch einen oder mehrere Stifte in ihrer Lage gesichert. Die Quarzfritte 24 wird in einem ausreichenden Abstand zu dem Ende des Graphitofens 16 angeordnet, d.h. in etwa auf ein Drittel der Höhe, damit im Bereich der Quarzfritte eine so hohe Temperatur aufrechterhalten wird, daß ein Zudampfen und damit Undurchlässigwerden der Quarzfritte mit Sicherheit vermieden werden kann. An den Graphitofen schließt nach unten ein zylindrischer Ansatz 25 an, der auf dem Keramikring aufsitzt. Dieser Ansatz umhüllt das Thermoelement 20 über eine ausreichende Länge, so daß dadurch sichergestellt wird, daß die von dem Thermoelement 20 gemessene Temperatur möglichst genau der Temperatur der Kammer 23 entspricht.4 schematically shows a device with which a homogeneous layer of cadmium sulfide can be evaporated onto a lower part 1 of a solar cell. For this purpose, a graphite furnace 16 is provided, which is surrounded by a graphite heating coil 17 to which a power supply 18 is connected. The outside of the graphite heating coil 17 is surrounded by a radiation reflector 19. A thermocouple 20 measuring the temperature for temperature control projects into the graphite furnace 16. The graphite furnace is seated on an insulating ceramic ring 21. The graphite furnace 16 has the shape of a cylinder, in which an upwardly open chamber 23 is divided by an annular collar 22, into which cadmium sulfide in powder form is filled. The chamber 23 is closed at the top by a porous quartz frit 24 which is closely fitted into the cylindrical part adjoining the collar 22 to the outside. For this purpose, the quartz frit 24 and the inner surface of the graphite furnace 16 are expediently ground. In order to enable perfect processing, it is advisable to melt the quartz frit 24 into a quartz glass tube, which is then ground on the outside. The quartz frit 24 is secured in its position in a manner not shown by one or more pins. The quartz frit 24 is arranged at a sufficient distance from the end of the graphite furnace 16, that is to say approximately one third of the height, so that a temperature high enough to be maintained in the region of the quartz frit is that vaporization and so that the quartz frit can be prevented from becoming impermeable. A cylindrical extension 25 adjoins the graphite furnace, which sits on the ceramic ring. This approach envelops the thermocouple 20 over a sufficient length so that it is ensured that the temperature measured by the thermocouple 20 corresponds as closely as possible to the temperature of the chamber 23.

Über dem Auslaß des Graphitofens 16 ist eine verschiebbare Blende 26 angeordnet, mit der zunächst das ausdampfende Gas von dem Unterteil 1 der Solarzelle eingehalten werden kann. Dieser Unterteil 1 liegt auf einer Auflage 27 auf, die einen Ausschnitt von der Größe freiläßt, die auf dem Unterteil 1 mit Cadmiumsulfid zu bedampfen ist. Auf der gegenüberliegenden Seite ist ein als Graphitmäander ausgebildetes Heizteil 28 vorgesehen, das von einem Strahlungsreflektor 29 abgedeckt wird. Mit diesem Heizteil 28 wird sichergestellt, daß der Unterteil der Solarzelle bei dem Aufdampfen des Cadmiumsulfides eine Temperatur von ca. 200°C einhält.Arranged above the outlet of the graphite furnace 16 is a displaceable diaphragm 26, with which the evaporating gas from the lower part 1 of the solar cell can initially be maintained. This lower part 1 rests on a support 27, which leaves a section of the size to be vaporized on the lower part 1 with cadmium sulfide. On the opposite side, a heating part 28 designed as a graphite meander is provided, which is covered by a radiation reflector 29. This heating part 28 ensures that the lower part of the solar cell maintains a temperature of approximately 200 ° C. when the cadmium sulfide is evaporated.

Claims (9)

1. A method for producing solar cells with a thin film PN heterojunction using an electrically conductive support applied upon a base, a cadmium sulfide layer vapor deposited thereon and a cuprous sulfide layer chemically produced on the said cadmium sulfide layer, upon said cuprous sulfide layer an electrically conductive grid being superimposed, said grid being covered heat-sealed and pressed with a cover glass member provided on the side facing the grid with a heat-sealing adhesive, whereby the base with the support, the cadmium sulfide layer and the cuprous sulfide layer being initially produced to form a prefabricated lower part, characterized in that said pre-fabricated lower part being heat-sealed and compressed with a pre-fabricated upper part consisting of the cover glass member, the heat-sealing adhesive and the grid, said grid being heat-sealed as a film to the cover glass member by means of the heat-sealing adhesive and then etched out of said film before the upper part and the lower part are heat-sealed and compressed.
2. A method in accordance with claim 1, characterized in that the lower part (1) comprises a glass plate (3) upon the said glass plate (3), a support (5) consisting of silver or zinc is vapor deposited at about 400°C, using preferably an adhesion promoter (4), upon said support (5) the cadmium sulfide layer (6) is vapor deposited.
3. A method in accordance with claim 1, characterized in that the heat-sealing adhesive (11) is applied in the liquid state and subsequently dried in a vacuum, which drying process may be followed by drying in air.
4. A method in accordance with claim 1 or 3, characterized in that a thin gold layer (13) is formed on the grid (12) by electrodeposition, prior to joining the upper part (2) and lower part (1), to produce a contact which is free of insulation.
5. A solar cell produced by the process according to any of claims 1 to 4, characterized in that the cover glass member (10) with the grid (12) and the base plate (3) with the support (5) are shifted laterally relative to each other so as to expose contacts (9, 14) formed on the one side by the support (5) and on the other side by the grid (12).
6. A solar cell in accordance with claim 5, characterized in that the upper part consists of a large-area cover glass member (15) with a plurality of electrically conductive grids provided thereon in one row, each of said grids is associated with one lower part (1) shifted relative to the grid in such a way that the supports (5) have one side in contact with the grid associated with the neighbouring lower part and that on one side of the cover glass an edge strip of the outer grid is exposed to serve as a contact while on the opposite side an edge strip of the support (5) of the outer lower part (1) is exposed to serve as a contact.
7. A solar cell in accordance with claim 6, characterized in that a large-area cover glass (15) is provided with several rows of grids and a corresponding number of rows of lower parts (1 ).
8. A solar cell in accordance with at least one of claims 5 to 7, characterized in that the edges of the cover glass (10, 15) and of the base plate (3) outside the area of the exposed contacts are sealed together.
EP78100452A 1977-07-21 1978-07-20 Method for manufacturing cadmium sulfide-copper sulfide solar cells and solar cells manufactured by this method Expired EP0000715B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE2732933 1977-07-21
DE2732933A DE2732933C2 (en) 1977-07-21 1977-07-21 Process for the production of thin-film solar cells with pn heterojunction

Publications (2)

Publication Number Publication Date
EP0000715A1 EP0000715A1 (en) 1979-02-21
EP0000715B1 true EP0000715B1 (en) 1981-09-02

Family

ID=6014494

Family Applications (1)

Application Number Title Priority Date Filing Date
EP78100452A Expired EP0000715B1 (en) 1977-07-21 1978-07-20 Method for manufacturing cadmium sulfide-copper sulfide solar cells and solar cells manufactured by this method

Country Status (4)

Country Link
US (1) US4283590A (en)
EP (1) EP0000715B1 (en)
AU (1) AU519312B2 (en)
DE (1) DE2732933C2 (en)

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2926754A1 (en) * 1979-07-03 1981-01-15 Licentia Gmbh SOLAR CELL ARRANGEMENT
IN152505B (en) * 1979-08-22 1984-01-28 Ses Inc
US4319258A (en) * 1980-03-07 1982-03-09 General Dynamics, Pomona Division Schottky barrier photovoltaic detector
US4400577A (en) * 1981-07-16 1983-08-23 Spear Reginald G Thin solar cells
EP0091998A1 (en) * 1982-03-08 1983-10-26 Prutec Limited Cadmium sulphide solar cells
DE3312053C2 (en) * 1983-04-02 1985-03-28 Nukem Gmbh, 6450 Hanau Method for preventing short circuits or shunts in a large-area thin-film solar cell
DE3328869A1 (en) * 1983-08-10 1985-02-28 Nukem Gmbh, 6450 Hanau PHOTOVOLTAIC CELL AND METHOD FOR PRODUCING THE SAME
DE3328899C2 (en) * 1983-08-10 1985-07-11 Nukem Gmbh, 6450 Hanau Photovoltaic cell
US4616403A (en) * 1984-08-31 1986-10-14 Texas Instruments Incorporated Configuration of a metal insulator semiconductor with a processor based gate
US4753683A (en) * 1985-09-09 1988-06-28 Hughes Aircraft Company Gallium arsenide solar cell system
US4673770A (en) * 1985-10-21 1987-06-16 Joseph Mandelkorn Glass sealed silicon membrane solar cell
IT1272665B (en) * 1993-09-23 1997-06-26 Eurosolare Spa PROCEDURE FOR THE PREPARATION OF CRYSTALLINE SILICON-BASED PHOTOVOLTAIC MODULES
JP3516156B2 (en) * 1997-12-16 2004-04-05 シャープ株式会社 Method of manufacturing solar cell and material plate for protective cover
US5972732A (en) * 1997-12-19 1999-10-26 Sandia Corporation Method of monolithic module assembly
US7507903B2 (en) * 1999-03-30 2009-03-24 Daniel Luch Substrate and collector grid structures for integrated series connected photovoltaic arrays and process of manufacture of such arrays
US8076568B2 (en) 2006-04-13 2011-12-13 Daniel Luch Collector grid and interconnect structures for photovoltaic arrays and modules
US8222513B2 (en) 2006-04-13 2012-07-17 Daniel Luch Collector grid, electrode structures and interconnect structures for photovoltaic arrays and methods of manufacture
US8138413B2 (en) 2006-04-13 2012-03-20 Daniel Luch Collector grid and interconnect structures for photovoltaic arrays and modules
US8664030B2 (en) 1999-03-30 2014-03-04 Daniel Luch Collector grid and interconnect structures for photovoltaic arrays and modules
US20090111206A1 (en) 1999-03-30 2009-04-30 Daniel Luch Collector grid, electrode structures and interrconnect structures for photovoltaic arrays and methods of manufacture
US7898053B2 (en) 2000-02-04 2011-03-01 Daniel Luch Substrate structures for integrated series connected photovoltaic arrays and process of manufacture of such arrays
US8198696B2 (en) 2000-02-04 2012-06-12 Daniel Luch Substrate structures for integrated series connected photovoltaic arrays and process of manufacture of such arrays
US7898054B2 (en) 2000-02-04 2011-03-01 Daniel Luch Substrate structures for integrated series connected photovoltaic arrays and process of manufacture of such arrays
US8729385B2 (en) 2006-04-13 2014-05-20 Daniel Luch Collector grid and interconnect structures for photovoltaic arrays and modules
US8822810B2 (en) 2006-04-13 2014-09-02 Daniel Luch Collector grid and interconnect structures for photovoltaic arrays and modules
US8884155B2 (en) 2006-04-13 2014-11-11 Daniel Luch Collector grid and interconnect structures for photovoltaic arrays and modules
US9236512B2 (en) 2006-04-13 2016-01-12 Daniel Luch Collector grid and interconnect structures for photovoltaic arrays and modules
US9006563B2 (en) 2006-04-13 2015-04-14 Solannex, Inc. Collector grid and interconnect structures for photovoltaic arrays and modules
US9865758B2 (en) 2006-04-13 2018-01-09 Daniel Luch Collector grid and interconnect structures for photovoltaic arrays and modules
DE102012107100A1 (en) 2012-08-02 2014-02-06 Dynamic Solar Systems Inc. Enhanced layered solar cell for use in control circuit of power source of e.g. portable, manually transportable apparatus, has upper side photovoltaic layer sequence connected to functional layer sequence of cell for improving current yield

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3346419A (en) * 1963-11-29 1967-10-10 James E Webb Solar cell mounting
FR1446911A (en) * 1964-09-18 1966-07-22 Ass Elect Ind Improvements to the production processes of a cadmium sulphide layer
US3480473A (en) * 1966-06-24 1969-11-25 Kewanee Oil Co Method of producing polycrystalline photovoltaic cells
US3472690A (en) * 1967-02-09 1969-10-14 Kewanee Oil Co Process of preparing a flexible rear wall photovoltaic cell
FR1562163A (en) * 1968-02-16 1969-04-04
DE2112812C2 (en) * 1971-03-17 1984-02-09 Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt Semiconductor component with lattice-shaped metal electrode and method for its production
JPS5014116Y2 (en) * 1971-06-04 1975-05-01
BE789331A (en) * 1971-09-28 1973-01-15 Communications Satellite Corp FINE GEOMETRY SOLAR CELL
FR2156924B3 (en) * 1971-10-23 1975-11-28 Licentia Gmbh
US3888697A (en) * 1971-10-23 1975-06-10 Licentia Gmbh Photocell
GB1504854A (en) * 1974-03-21 1978-03-22 Int Research & Dev Co Ltd Photodetectors and thin film photovoltaic arrays
US4083097A (en) * 1976-11-30 1978-04-11 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Method of making encapsulated solar cell modules
US4127424A (en) * 1976-12-06 1978-11-28 Ses, Incorporated Photovoltaic cell array
US4084985A (en) * 1977-04-25 1978-04-18 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Method for producing solar energy panels by automation

Also Published As

Publication number Publication date
DE2732933A1 (en) 1979-02-08
AU519312B2 (en) 1981-11-26
EP0000715A1 (en) 1979-02-21
AU3810878A (en) 1980-01-24
US4283590A (en) 1981-08-11
DE2732933C2 (en) 1984-11-15

Similar Documents

Publication Publication Date Title
EP0000715B1 (en) Method for manufacturing cadmium sulfide-copper sulfide solar cells and solar cells manufactured by this method
DE2104175C3 (en) Method of manufacturing a thermoelectric unit
EP0330895B1 (en) Method for attaching electronic components to substrates, and arrangement for carrying it out
DE2732184C2 (en) A method of manufacturing a semiconductor device
EP1040333B1 (en) Membrane for a capacitive vacuum measuring cell
DE2703831C2 (en) Process for making a thermal battery
DE4415132C2 (en) Process for shaping thin wafers and solar cells from crystalline silicon
DE2736055A1 (en) MULTI-LAYER CERAMIC SHEET AND METHOD OF MANUFACTURING A MULTI-LAYER CERAMIC SHEET
DE2314731B2 (en) Semiconductor arrangement with hump-like projections on contact pads and method for producing such a semiconductor arrangement
DE2354523C3 (en) Process for the production of electrically insulating blocking regions in semiconductor material
DE4122845C2 (en) Semiconductor photovoltaic device and manufacturing method therefor
DE6606541U (en) SEMI-CONDUCTOR ARRANGEMENT
DE4000089A1 (en) Solar cell with two semiconductor layers - has coupling electrode on main surface of first semiconductor layer, insulated from second one
DE102011104159A1 (en) METHOD FOR THE ELECTRICAL CONNECTION OF SEVERAL SOLAR CELLS AND PHOTOVOLTAIC MODULE
DE2340142C3 (en) Process for the mass production of semiconductor devices with high breakdown voltage
DE1093484B (en) Process for the production of semiconductor components, in particular pnp or npn power transistors
DE1521414C3 (en) Process for applying metal layers lying next to one another, separated from one another by a narrow gap, to a substrate
DE102021104002A1 (en) Flexible heating element, method for manufacturing such a heating element and use of a flexible heating element
EP4115158A1 (en) Temperature-sensor assembly and method for producing a temperature-sensor assembly
DE3035933A1 (en) PYROELECTRIC DETECTOR AND METHOD FOR PRODUCING SUCH A DETECTOR
EP0060427B1 (en) Sensor device for the measurement of physical quantities, as well as a process for its manufacture, and its application
DE1564444C3 (en) Semiconductor arrangement with an insulating carrier
DE19814780A1 (en) Photovoltaic solar module
DE2751393A1 (en) INTEGRATED ARRANGEMENT AND METHOD OF MANUFACTURING IT
EP1929485B1 (en) Method for the production of an electrical component having little tolerance

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): BE CH FR GB NL

17P Request for examination filed
GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): BE CH FR GB NL

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19840630

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19840711

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19840730

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19870731

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19890720

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Effective date: 19890731

Ref country code: BE

Effective date: 19890731

BERE Be: lapsed

Owner name: BLOSS WERNER H.

Effective date: 19890731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19900201

GBPC Gb: european patent ceased through non-payment of renewal fee
NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19900330

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT