EP0000702B1 - Process for forming a flow-resistant resist mask of radioation-sensitive material - Google Patents

Process for forming a flow-resistant resist mask of radioation-sensitive material Download PDF

Info

Publication number
EP0000702B1
EP0000702B1 EP78100337A EP78100337A EP0000702B1 EP 0000702 B1 EP0000702 B1 EP 0000702B1 EP 78100337 A EP78100337 A EP 78100337A EP 78100337 A EP78100337 A EP 78100337A EP 0000702 B1 EP0000702 B1 EP 0000702B1
Authority
EP
European Patent Office
Prior art keywords
resist
mask
hardening agent
layer
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP78100337A
Other languages
German (de)
French (fr)
Other versions
EP0000702A1 (en
Inventor
George Tein-Chu Chiu
Edward Carmine Fredericks
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
International Business Machines Corp
Original Assignee
International Business Machines Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by International Business Machines Corp filed Critical International Business Machines Corp
Publication of EP0000702A1 publication Critical patent/EP0000702A1/en
Application granted granted Critical
Publication of EP0000702B1 publication Critical patent/EP0000702B1/en
Expired legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/40Treatment after imagewise removal, e.g. baking

Definitions

  • the invention relates to a method for producing a flow-resistant mask from radiation-sensitive resist material.
  • resist masks in the manufacture of integrated circuits using radiation-sensitive layers containing various organic polymers is known.
  • Layers of a radiation sensitive material are applied to a support, exposed to light or other activating radiation such as electron beams or X-rays in an imagewise pattern and developed into a visible image by removing the more soluble portions of the layer in a developer solution.
  • the resist pattern is cured in a conventional manner at an elevated temperature.
  • the thermoplastic polymer materials in the resist flow at temperatures above their glass transition temperature.
  • the object of the invention is a method for producing a flow-resistant mask from radiation-sensitive resist material by curing, in which no special device is required for the curing process and in which the resist composition does not have to be modified before exposure.
  • the object of the invention is achieved by a method of the type mentioned at the outset, which is characterized in that a curing agent of the o-quinonediazide type is applied to the mask, the coated mask is heated and then the excess curing agent is removed.
  • the curing agents for use in the process according to the invention are water-soluble salts of o-quinonediazide sulfonic and carboxylic acids.
  • Compounds of this type include o-quinonediazides from the benzene, naphthalene and phenanthrene series. Examples of the compounds have the formulas given below: in which R S0 3 X or COOX and X is for example Na +, K + , Ca 2+ , Ba2 +, Li + or NH 4 + .
  • the coating solutions of the hardeners are obtained in such concentrations represents that about 0.5 to 10 wt .-% of the curing agent, based on the total weight of the solution is present. Concentrations below 0.5% by weight may cause insufficient hardening to prevent the resist from flowing when heated. Also, no particular advantages are obtained using amounts greater than 10% by weight, and the presence of such amounts can cause crater or bubble formation in the resist mask pattern caused by gas evolution during heating.
  • the concentrations should be kept in a range of about 0.5 to 1.5% by weight in order to avoid crater formation in these continuous areas.
  • the solvent system or the hardening agent is water-based, so that attack of the resist layer by the coating solution is avoided. It has been found that the resist layer is better wetted by the coating solution and, consequently, a more uniform coating of the curing agent is obtained when a mixture of water with alcohols with 2 to 4 carbon atoms, for example with ethanol, propanol or butanol, is used.
  • the proportions of water and alcohol are chosen in such a way that sufficient solubility of the hardening agent is obtained and at the same time an attack by the solvent on the resist system is avoided.
  • surfactants can be added in amounts of about 0.01 to 1% by weight to improve wetting. Examples of useful surfactants are sodium lauryl sulfate, fluorocarbon based surfactants, sodium palmitate and polymethacrylic acid solutions.
  • the curing agent is applied to the resist mask by conventional methods, for example by dipping, spraying or spinning, to obtain a continuous layer over the resist mask and the base.
  • a layer ceiling of approximately 40 nm is required as a minimum in order to obtain a continuous coating on the surface and the side walls of the resist image.
  • a layer thickness of approximately 50 to 100 nm is preferred.
  • the desired layer thickness can be obtained in the spinning technique by varying the spinning speed. The spinning time is chosen so that a large part of the solvent is removed by evaporation.
  • the resist compositions which can be cured by the process according to the invention can be either positive or negative resist materials.
  • Negative resist materials are those that, when irradiated, crosslink and become less soluble.
  • Examples of negative resist materials are sensitized polyvinyl cinnamate polymer compositions described, for example, in U.S. Patent 2,732,301 and sensitized, partially cyclized poly-cis-isoprene polymer compositions described, for example, in U.S. Patent 2,852,379.
  • Examples of positive resist materials which degrade under the action of radiation and thereby become more soluble are sensitized novolak resin compositions which are described, for example, in US Pat. Nos. 3,046,118, 3,046,121, 3,201,239 and 3,666,743.
  • the resist layers are applied to a base and exposed imagewise.
  • the more soluble areas of the layer which are the exposed areas in the case of a positive resist and the unexposed areas in the case of a negative resist, are then removed with a developer solution.
  • the resulting resist mask pattern can then be treated in the process according to the invention by covering it with a layer of an o-quinonediazide curing agent. After coating, the resist mask is heated to a temperature which is sufficient to bring about a reaction of the o-quinonediazide with the resist layer to form a crosslinked outer layer, in particular on the side walls of the resist image, so that the lateral flow of the image is prevented. when the image is heated to temperatures above the glass transition temperatures of the polymer portion of the resist layer.
  • the residue of the curing agent which remains on the base at the edges of the resist mask can be easily removed by rinsing with water.
  • the resulting resist mask shows hardly any lateral flow of the images.
  • the hardened resist image retains its dimensions during subsequent treatments of the exposed areas of the substrate, for example when etching with hot acids or with a reactive gas plasma, during ion implantation or a metal vapor deposition process in which the resist layer is heated to higher temperatures.
  • a mask pattern of a positive photoresist was formed on the surface of a cleaned, metal-coated silicon semiconductor wafer: the resist composition consisted of a phenol formaldehyde novolak resin and the 2-diazo-1-oxo-naphthalene-5-sulfonic acid ester of dihydroxybenzophenone.
  • the Resist was applied to the metal surface by spinning at 4000 revolutions per minute, cured to a dry layer thickness of approximately 2.2 ⁇ m for 20 minutes at approximately 85 ° C. and then imagewise exposed to actinic radiation and developed with an aqueous alkaline developer solution to expose the Remove areas.
  • a 1% by weight solution of the sodium salt of 2-diazo-1-oxide-naphthalene-5-sulfonic acid in a mixture of water and isopropanol in a volume ratio was applied to the resist mask and the wafer by spinning at 3000 revolutions per minute within one minute 50:50 applied.
  • the coating thickness was about 50 nm.
  • the coated wafer was then cured in an oven under nitrogen for 20 minutes at a temperature of 210 ° C ⁇ 5 ° C, and then the residue of the curing agent was removed by flushing with deionized water for 5 minutes .
  • the curing agent prevented the resist images from flowing sideways, and the dimensional changes of the images were small ( ⁇ 0.508 11m).
  • the exposed areas of the metal layer were then etched by placing the wafer in a reactive gas plasma.
  • the removal of the resist mask was uniform and the resist had a smooth surface after the metal etching process.
  • This method enables the use of a thinner resist mask without attacking the parts of the metal layer lying under the mask during the plasma etching process.
  • resist layers on comparison wafers which were only post-cured in the usual way or contained a peroxide additive in the composition, showed a rough surface with holes after the plasma etching.
  • a mask pattern of a positive photoresist with a thickness of about 1.5 11 m was formed on a silicon wafer, the surface of which was coated with a thermal oxide, as indicated in Example 1.
  • the resist mask was coated using a solution of the sodium salt of 1-diazo-2-oxide-naphthalene-4-sulfonic acid in deionized water. Approximately 4 to 6 ml of the solution, which was filtered through a 0.5 J.Lm filter, was spun onto the resist images at a spinning speed of 3500 revolutions per minute within 1 minute. The wafer was then cured in an oven under a nitrogen atmosphere for 20 minutes at a temperature of 210 ° C ⁇ 5 ° C.
  • Photomicrographs of the resist image showed that flowing of the resist image was essentially avoided.
  • resist images on control wafers which had not been subjected to the curing process according to the invention, showed a strong flow after curing at 210 ° C.
  • Resist images which had been treated with peroxides such as Lupersol 101 (2,5-dimethyl-2,5-di (tert-butyl-peroxy) hexane or polymethacrylic acid solutions in deionized water and post-cured for 20 minutes at 210 ° C) also showed strong tiling and were deformed.
  • silicon semiconductor wafers the surface of which was covered with a thermal oxide, were coated with a resist layer by spinning at 6000 revolutions per minute, which consisted of a partially cyclized poly-cis-isoprene polymer and 2. 6-bis (p-azido-benzylidene) -4-methylcyclohexane existed as a sensitizer.
  • the layer was precured at 90 ° C for 20 minutes and then imagewise exposed to ultraviolet light for 1 minute.
  • the exposed wafers were developed in a solvent at room temperature for 4 minutes to remove the unexposed areas and blown dry with nitrogen.
  • the wafer was then split in half and one half was washed with an aqueous solution containing 4.3% by weight of the sodium salt of 2-diazo-1-oxide-naphthalene-5-sulfonic acid and 0.1% by weight. -% polymethacrylic acid coated.
  • the other half was used for the control measurement.
  • Both halves of the wafer were cured in a nitrogen atmosphere in an oven at 180 ° C for 30 minutes.
  • the treated resist image showed a significantly improved dimensional stability of the image after curing.
  • the resist image on the untreated half was severely melted. Similar results were obtained with another wafer, one half of which was treated and the other half of which was not treated, and both halves had been cured under nitrogen at 210 ° C for 30 minutes.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Photosensitive Polymer And Photoresist Processing (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Description

Die Erfindung betrifft ein Verfahren zur Herstellung einer fliessbeständigen Maske aus strahlungsempfindlichem Resistmaterial.The invention relates to a method for producing a flow-resistant mask from radiation-sensitive resist material.

Die Ausbildung von Resistmasken bei der Herstellung integrierter Schaltkreise unter Verwendung strahlungsempfindlicher Schichten mit einem Gehalt an verschiedenen organischen Polymeren ist bekannt. Schichten aus einem strahlungsempfindlichen Material werden auf eine Unterlage aufgetragen, Licht oder einer anderen aktivierenden Strahlung wie Elektronenstrahlen oder Röntgenstrahlen in einem bildmässigen Muster ausgesetzt und zu einem sichtbaren Bild entwickelt durch Entfernen der löslicheren Anteile der Schicht in einer Entwicklerlösung. Um die Eigenschaften der zurückbleibenden Teile der Resistschicht zu verbessern, beispielsweise der Adhäsion zu verschiedenen Unterlagen, ihre Widerstandsfähigkeit gegen chemischen und/ oder thermischen Abbau, wird das Resistmuster in üblicher Weise bei einer erhöhten Temperatur nachgehärtet. Die thermoplastischen Polymermaterialien in dem Resist fliessen bei Temperaturen, die über deren Glasübergangstemperatur liegen. Diese Tendenz zum Fliessen deformiert das Resistbildmuster, und bei den hochaufgelösten Mustern, welche beispielsweise zur Herstellung integrierter Schaltkreise erforderlich sind, kann diese Verformung zu Dimensionsänderungen oder sogar zum Zusammenfliessen der feinen Linien führen. Eine solche Verformung kann auch stattfinden, wenn das Resistbild während eines Prozesschritts, durchgeführt am Substrat, erhitzt wird, beispielsweise bei Anwendung heisser Ätzlösungen, Ionenimplantation oder Plasmaätzen. Um diesen Nachteil zu beseitigen, wurden dem Photoresist freie Radikalbildner einverleibt, wie beispielsweise in der deutschen Offenlegungsschrift 2 518 480 beschrieben ist. Mit diesem Verfahren werden zwar Resistmasken mit verbesserter chemischer und thermischer Beständigkeit erhalten, gleichzeitig wird jedoch auch die Strahlungsempfindlichkeit der Resistmaterialien herabgesetzt, so dass längere Belichtungszeiten erforderlich sind. In der US-Patentschrift 3 920 483 wird ein Resisthärtungsprozess zur Anwendung vor der lonenimplantation beschrieben, bei dem die Resistmaske einer Hochfrequenz-Gasplasmaoxidation unterworfen wird, um die Dicke der Photoresistschicht herabzusetzen und das Fliessen des Resists während der lonenimplantation zu begrenzen.The formation of resist masks in the manufacture of integrated circuits using radiation-sensitive layers containing various organic polymers is known. Layers of a radiation sensitive material are applied to a support, exposed to light or other activating radiation such as electron beams or X-rays in an imagewise pattern and developed into a visible image by removing the more soluble portions of the layer in a developer solution. In order to improve the properties of the remaining parts of the resist layer, for example the adhesion to various substrates, their resistance to chemical and / or thermal degradation, the resist pattern is cured in a conventional manner at an elevated temperature. The thermoplastic polymer materials in the resist flow at temperatures above their glass transition temperature. This tendency to flow deforms the resist pattern, and in the high-resolution patterns, which are required, for example, for the production of integrated circuits, this deformation can lead to dimensional changes or even to the confluence of the fine lines. Such deformation can also take place if the resist image is heated during a process step carried out on the substrate, for example when using hot etching solutions, ion implantation or plasma etching. In order to overcome this disadvantage, free radical formers were incorporated into the photoresist, as described, for example, in German Offenlegungsschrift 2,518,480. With this method, resist masks with improved chemical and thermal resistance are obtained, but at the same time the radiation sensitivity of the resist materials is reduced, so that longer exposure times are required. U.S. Patent No. 3,920,483 describes a resist curing process for use prior to ion implantation in which the resist mask is subjected to high frequency gas plasma oxidation to reduce the thickness of the photoresist layer and limit the flow of the resist during ion implantation.

Aufgabe der Erfindung ist ein Verfahren zur Herstellung einer fliessbeständigen Maske aus strahlungsempfindlichem Resistmaterial durch Härten, bei dem keine besondere Einrichtung für den Härtungsprozess erforderlich ist und bei dem die Resistzusammensetzung vor der Belichtung nicht modifiziert zu werden braucht.The object of the invention is a method for producing a flow-resistant mask from radiation-sensitive resist material by curing, in which no special device is required for the curing process and in which the resist composition does not have to be modified before exposure.

Die Aufgabe der Erfindung wird gelöst durch ein Verfahren der eingangs genannten Art, das dadurch gekennzeichnet ist, dass auf die Maske ein Härtungsmittel vom o-Chinondiazidtyp aufgetragen, die beschichtete Maske erhitzt und dann das überschüssige Härtungsmittel entfernt wird.The object of the invention is achieved by a method of the type mentioned at the outset, which is characterized in that a curing agent of the o-quinonediazide type is applied to the mask, the coated mask is heated and then the excess curing agent is removed.

Vorteilhafte Ausführungsformen der Erfindung sind in den Unteransprüchen niedergelegt.Advantageous embodiments of the invention are laid down in the subclaims.

Die Härtungsmittel zur Anwendung in dem erfindungsgemässen Verfahren sind wasserlösliche Salze der o-Chinondiazidsulfon- und Carbonsäuren. Verbindungen dieser Art schliessen o-Chinondiazide der Benzol-, Naphthalin- und Phenanthren-Reihe ein. Beispiele der Verbindungen haben die nachfolgend angegebenen Formeln:

Figure imgb0001
Figure imgb0002
in denen R S03X oder COOX und X beispielsweise Na+, K+, Ca2+, Ba2+, Li+ oder NH4 + ist.The curing agents for use in the process according to the invention are water-soluble salts of o-quinonediazide sulfonic and carboxylic acids. Compounds of this type include o-quinonediazides from the benzene, naphthalene and phenanthrene series. Examples of the compounds have the formulas given below:
Figure imgb0001
Figure imgb0002
in which R S0 3 X or COOX and X is for example Na +, K + , Ca 2+ , Ba2 +, Li + or NH 4 + .

Beispiele spezieller Verbindungen sind:Examples of special connections are:

Das Natriumsalz der Benzo)-2,1-diazo-oxid-4-sulfonsäure, das Natriumsalz der Naphthalin-1,2-diazo-oxid-4-sulfonsäure, das Kaliumsalz der Naphthalin-1,2-diazo-oxid-4-carbonsäure, das Natriumsalz der Naphthalin-2,1-diazo-oxid-5-sulfonsäure, das Natriumsalz der 1,2-Diazo-phenan- throl-(2)-x-sulfonsäure.The sodium salt of benzo) -2,1-diazo-oxide-4-sulfonic acid, the sodium salt of naphthalene-1,2-diazo-oxide-4-sulfonic acid, the potassium salt of naphthalene-1,2-diazo-oxide-4- carboxylic acid, the sodium salt of naphthalene-2,1-diazo-oxide-5-sulfonic acid, the sodium salt of 1,2-diazo-phenanthrol- (2) -x-sulfonic acid.

Die Beschichtungslösungen der Härtungsmittel werden in solchen Konzentrationen hergestellt, dass etwa 0,5 bis 10 Gew.-% des Härtungsmittels, bezogen auf das Gesamtgewicht der Lösung vorhanden ist. Konzentrationen unter 0,5 Gew.-% bewirken unter Umständen eine nicht ausreichende Härtung zur Verhinderung des Resistfliessens beim Erhitzen. Es werden auch keine besonderen Vorteile erhalten bei Anwendung von Mengen, die grösser als 10 Gew.-% sind, und die Anwesenheit solcher Mengen kann zu Krater-oder Blasenbildung, verursacht durch die Gasentwicklung während des Erhitzens, in dem Resistmaskenmuster führen.The coating solutions of the hardeners are obtained in such concentrations represents that about 0.5 to 10 wt .-% of the curing agent, based on the total weight of the solution is present. Concentrations below 0.5% by weight may cause insufficient hardening to prevent the resist from flowing when heated. Also, no particular advantages are obtained using amounts greater than 10% by weight, and the presence of such amounts can cause crater or bubble formation in the resist mask pattern caused by gas evolution during heating.

In der Praxis sollten die Konzentrationen, wenn Resistschichtflächen ohne Muster grösser als 0,508x0,508 mm vorhanden sind, in einem Bereich von etwa 0,5 bis 1,5 Gew.-% gehalten werden, um die Kraterbildung in diesen durchgehenden Bereichen zu vermeiden.In practice, if resist layer areas without patterns are larger than 0.508x0.508 mm, the concentrations should be kept in a range of about 0.5 to 1.5% by weight in order to avoid crater formation in these continuous areas.

Das Lösungsmittelsystem oder das Härtungsmittel ist auf wässriger Basis, damit ein Angriff der Resistschicht durch die Beschichtungslösung vermieden wird. Es wurde gefunden, dass die Resistschicht durch die Beschichtungslösung besser benetzt wird und demzufolge ein einheitlicherer Überzug des Härtungsmittels erhalten wird, wenn eine Mischung von Wasser mit Alkoholen mit 2 bis 4 Kohlenstoffatomen, beispielsweise mit Äthanol, Propanol oder Butanol verwendet wird. Die Anteile von Wasser und Alkohol werden so gewählt, dass eine ausreichende Löslichkeit des Härtungsmittels erhalten und gleichzeitig ein Angriff des Lösungsmittels auf das Resistsystem vermieden wird. Anstelle oder zusätzlich zu den Alkoholen können zur Verbesserung der Benetzung oberflächenaktive Mittel in Mengen von etwa 0,01 bis 1 Gew.-% zugesetzt werden. Beispiele brauchbarer oberflächenaktiver Mittel sind Natriumlaurylsulfat, oberflächenaktive Mittel auf Fluorkohlenwasserstoffbasis, Natriumpalmitat und Polymethacrylsäurelösungen.The solvent system or the hardening agent is water-based, so that attack of the resist layer by the coating solution is avoided. It has been found that the resist layer is better wetted by the coating solution and, consequently, a more uniform coating of the curing agent is obtained when a mixture of water with alcohols with 2 to 4 carbon atoms, for example with ethanol, propanol or butanol, is used. The proportions of water and alcohol are chosen in such a way that sufficient solubility of the hardening agent is obtained and at the same time an attack by the solvent on the resist system is avoided. Instead of or in addition to the alcohols, surfactants can be added in amounts of about 0.01 to 1% by weight to improve wetting. Examples of useful surfactants are sodium lauryl sulfate, fluorocarbon based surfactants, sodium palmitate and polymethacrylic acid solutions.

Das Härtungsmittel wird auf die Resistmaske mittels konventioneller Verfahren, beispielsweise durch Tauchen, Sprühen oder Verspinnen aufgetragen unter Erhalt einer kontinuierlichen Schicht über der Resistmaske und der Unterlage. Eine Schichtdecke von etwa 40 nm ist als Minimum erforderlich, um einen kontinuierlichen Überzug auf der Oberfläche und den Seitenwänden des Resistbildes zu erhalten. Eine Schichtdicke von etwa 50 bis 100 nm wird bevorzugt. Die gewünschte Schichtdicke kann bei der Technik des Verspinnens durch Variation der Spinngeschwindigkeit erhalten werden. Die Spinnzeit wird so gewählt, dass ein Grossteil des Lösungsmittels durch Verdampfen entfernt wird.The curing agent is applied to the resist mask by conventional methods, for example by dipping, spraying or spinning, to obtain a continuous layer over the resist mask and the base. A layer ceiling of approximately 40 nm is required as a minimum in order to obtain a continuous coating on the surface and the side walls of the resist image. A layer thickness of approximately 50 to 100 nm is preferred. The desired layer thickness can be obtained in the spinning technique by varying the spinning speed. The spinning time is chosen so that a large part of the solvent is removed by evaporation.

Die Resistzusammensetzungen, welche mit dem erfindungsgemässen Verfahren gehärtet werden können, können entweder positiv oder negativ arbeitende Resistmaterialien sein. Negative Resistmaterialien sind solche, die, wenn sie bestrahlt werden, vernetzen und weniger löslich werden. Beispiele negativer Resistmaterialien sind sensibilisierte Polyvinylcinnamat-Polymerzusammensetzungen, die beispielsweise in der US-Patentschrift 2 732 301 beschrieben sind und sensibilisierte, teilcyclisierte Poly-cis-isopren-Polymerzusammensetzungen, die beispielsweise in der US-Patentschrift 2 852 379 beschrieben sind. Beispiele positiver Resistmaterialien, welche unter Einwirkung von Strahlung abgebaut und dadurch mehr löslich werden, sind sensibilisierte Novolakharzzusammensetzungen, die beispielsweise in den US-Patentschriften 3 046 118, 3 046 121, 3 201 239 und 3 666 743 beschrieben sind.The resist compositions which can be cured by the process according to the invention can be either positive or negative resist materials. Negative resist materials are those that, when irradiated, crosslink and become less soluble. Examples of negative resist materials are sensitized polyvinyl cinnamate polymer compositions described, for example, in U.S. Patent 2,732,301 and sensitized, partially cyclized poly-cis-isoprene polymer compositions described, for example, in U.S. Patent 2,852,379. Examples of positive resist materials which degrade under the action of radiation and thereby become more soluble are sensitized novolak resin compositions which are described, for example, in US Pat. Nos. 3,046,118, 3,046,121, 3,201,239 and 3,666,743.

Die Resistschichten werden auf eine Unterlage aufgetragen und bildmässig belichtet. Anschliessend werden die löslicheren Bereiche der Schicht, die im Falle eines positiven Resists die belichteten Bereiche und im Falle eines negativen Resists die nichtbelichteten Bereiche sind, mit einer Entwicklerlösung entfernt. Das resultierende Resistmaskenmuster kann dann in dem erfindungsgemässen Verfahren behandelt werden, indem es mit einer Schicht eines o-Chinondiazid-Härtungsmittels bedeckt wird. Nach dem Beschichten wird die Resistmaske auf eine Temperatur erhitzt, die ausreichend ist, um eine Reaktion des o-Chinondiazids mit der Resistschicht herbeizuführen unter Ausbildung einer vernetzten äusseren Schicht, insbesondere an den Seitenwänden des Resistbildes, so dass das seitliche Fliessen des Bildes verhindert wird, wenn das Bild auf Temperaturen erhitzt wird, die über den Glasübergangstemperaturen des Polymeranteils der Resistschicht liegen. Es werden Temperaturen in einem Bereich von etwa 110 bis 210°C und eine inerte Atmosphäre, beispielsweise Stickstoffatmosphäre angewendet. Eine Härtung in einem Ofen wird bevorzugt, weil weniger Krater in relativ grossen Resistschichtbereichen ohne Muster ausgebildet werden im Vergleich zur Härtung der Resistschicht auf einer Heizplatte. Härtungszeiten von 10 bis etwa 30 Minuten sind ausreichend, um die Härtung zu Ende zu führen.The resist layers are applied to a base and exposed imagewise. The more soluble areas of the layer, which are the exposed areas in the case of a positive resist and the unexposed areas in the case of a negative resist, are then removed with a developer solution. The resulting resist mask pattern can then be treated in the process according to the invention by covering it with a layer of an o-quinonediazide curing agent. After coating, the resist mask is heated to a temperature which is sufficient to bring about a reaction of the o-quinonediazide with the resist layer to form a crosslinked outer layer, in particular on the side walls of the resist image, so that the lateral flow of the image is prevented. when the image is heated to temperatures above the glass transition temperatures of the polymer portion of the resist layer. Temperatures in a range from approximately 110 to 210 ° C. and an inert atmosphere, for example a nitrogen atmosphere, are used. Curing in an oven is preferred because fewer craters are formed in relatively large areas of the resist layer without a pattern compared to curing the resist layer on a hot plate. Hardening times of 10 to about 30 minutes are sufficient to complete the hardening.

Nachdem die Härtung zu Ende geführt wurde, kann der Rückstand des Härtungsmittels, welches auf der Unterlage an den Rändern der Resistmaske zurückbleibt, durch Spülen mit Wasser leicht entfernt werden. Die resultierende Resistmaske zeigt kaum seitliches Fliessen der Bilder. Das gehärtete Resistbild behält seine Dimensionen bei nachfolgenden Behandlungen derfreigelegten Bereiche der Unterlage, beispielsweise beim Ätzen mit heissen Säuren oder mit einem reaktiven Gasplasma, bei der Ionenimplantation oder einem Metallaufdampfverfahren, bei denen die Resistschicht auf höhere Temperaturen erhitzt wird.After the curing has been completed, the residue of the curing agent which remains on the base at the edges of the resist mask can be easily removed by rinsing with water. The resulting resist mask shows hardly any lateral flow of the images. The hardened resist image retains its dimensions during subsequent treatments of the exposed areas of the substrate, for example when etching with hot acids or with a reactive gas plasma, during ion implantation or a metal vapor deposition process in which the resist layer is heated to higher temperatures.

Die Erfindung wird anhand der nachfolgenden Ausführungsbeispiele näher erläutert.The invention is explained in more detail using the following exemplary embodiments.

Beispiel 1example 1

Ein Maskenmuster aus einem positiven Photoresist wurde auf der Oberfläche eines gereinigten, mit Metall beschichteten Siliciumhalbleiterwafers ausgebildet: Die Resistzusammensetzung bestand aus einem Phenolformaldehyd-Novolakharz und dem 2-Diazo-1-oxo-naphthalin-5-sulfonsäureester des Dihydroxybenzophenons. Der Resist wurde durch Verspinnen bei 4000 Umdrehungen pro Minute auf die Metalloberfläche aufgetragen, zu einer Trockenschichtdicke von etwa 2,2 µm 20 Minuten lang bei etwa 85°C gehärtet und dann bildmässig mit aktinischer Strahlung belichtet und mit einer wässrigen alkalischen Entwicklerlösung entwickelt, um die belichteten Bereiche zu entfernen. Auf die Resistmaske und den Wafer wurde durch Verspinnen bei 3000 Umdrehungen pro Minute innerhalb einer Minute eine 1 Gew.-%ige Lösung des Natriumsalzes der 2-Diazo-1-oxid-naphthalin-5-sulfonsäure in einer Mischung aus Wasser und Isopropanol im Volumenverhältnis 50:50 aufgetragen. Die Beschichtungsdicke betrug etwa 50 nm. Der beschichtete Wafer wurde dann in einem Ofen unter Stickstoff 20 Minuten lang bei einer Temperatur von 210°C ± 5°C gehärtet, und dann wurde der Rückstand des Härtungsmittels durch ein 5 Minuten dauerndes Spülen mit deionisiertem Wasser entfernt. Das Härtungsmittel verhinderte ein seitliches Fliessen der Resistbilder, und die Dimensionsänderungen der Bilder waren klein (≤0,508 11m).A mask pattern of a positive photoresist was formed on the surface of a cleaned, metal-coated silicon semiconductor wafer: the resist composition consisted of a phenol formaldehyde novolak resin and the 2-diazo-1-oxo-naphthalene-5-sulfonic acid ester of dihydroxybenzophenone. The Resist was applied to the metal surface by spinning at 4000 revolutions per minute, cured to a dry layer thickness of approximately 2.2 μm for 20 minutes at approximately 85 ° C. and then imagewise exposed to actinic radiation and developed with an aqueous alkaline developer solution to expose the Remove areas. A 1% by weight solution of the sodium salt of 2-diazo-1-oxide-naphthalene-5-sulfonic acid in a mixture of water and isopropanol in a volume ratio was applied to the resist mask and the wafer by spinning at 3000 revolutions per minute within one minute 50:50 applied. The coating thickness was about 50 nm. The coated wafer was then cured in an oven under nitrogen for 20 minutes at a temperature of 210 ° C ± 5 ° C, and then the residue of the curing agent was removed by flushing with deionized water for 5 minutes . The curing agent prevented the resist images from flowing sideways, and the dimensional changes of the images were small (≤0.508 11m).

Die freigelegten Bereiche der Metallschicht wurden dann geätzt, indem der Wafer in ein reaktives Gasplasma gegeben wurde. Die Abtragung der Resistmaske war einheitlich, und der Resist wies nach dem Metallätzverfahren eine glatte Oberfläche auf. Durch dieses Verfahren wird die Anwendung einer dünneren Resistmaske möglich, ohne dass ein Angriff auf die unter der Maske liegenden Teile der Metallschicht während des Plasmaätzprozesses stattfindet. Im Gegensatz dazu zeigten Resistschichten auf Vergleichswafern, die nur in üblicher Weise nachgehärtet waren oder einen Peroxidzusatz in der Zusammensetzung enthielten, nach dem Plasmaätzen eine rauhe Oberfläche mit Löchern.The exposed areas of the metal layer were then etched by placing the wafer in a reactive gas plasma. The removal of the resist mask was uniform and the resist had a smooth surface after the metal etching process. This method enables the use of a thinner resist mask without attacking the parts of the metal layer lying under the mask during the plasma etching process. In contrast, resist layers on comparison wafers, which were only post-cured in the usual way or contained a peroxide additive in the composition, showed a rough surface with holes after the plasma etching.

Die Anwendung des Härtungsmittels in Konzentrationen im Bereich von 2,5 bis 5 Gew.-% gemäss Beispiel 1 führte zu einer normalen Härtung des Photoresistmusters, aber grosse, 0,508x1,27 mm Resistbereiche ohne Muster zeigten Krater, welche offensichtlich durch das Bersten eingeschlossener Gasblasen verursacht wurden, die während des Härtungsverfahrens gebildet worden waren. Bei Anwendung einer Härtungsmittelkonzentration von 0,25 Gew.-%, bei der nur kleine Änderungen in der Bildgrösse verursacht wurden, zeigte sich eine beachtliche Verdünnung der schmalen (etwa 2,54 11m) Resistlinien. Die optimale Härtungsmittelkonzentration sollte deshalb so gewählt werden, dass das Fliessen auf ein Minimum herabgesetzt wird und gleichzeitig eine Kraterbildung in dem speziellen zu behandelnden Resistmuster vermieden wird. Konzentrationen von etwa 0,5 bis 1,25 Gew.-% ergaben gute Gesamtergebnisse für integrierte Schaltkreismuster.The use of the curing agent in concentrations in the range of 2.5 to 5% by weight according to Example 1 led to normal curing of the photoresist pattern, but large, 0.508 × 1.27 mm resist areas without a pattern showed craters which were evidently due to the bursting of enclosed gas bubbles caused during the curing process. When using a hardener concentration of 0.25% by weight, in which only small changes in the image size were caused, a considerable thinning of the narrow (about 2.54 11 m) resist lines was shown. The optimal hardener concentration should therefore be selected so that the flow is reduced to a minimum and at the same time crater formation in the special resist pattern to be treated is avoided. Concentrations of about 0.5 to 1.25% by weight gave good overall results for integrated circuit patterns.

Beispiel 2Example 2

Ein Maskenmuster aus einem positiven Photoresist mit einer Dicke von etwa 1,5 11m wurde, wie in Beispiel 1 angegeben, auf einem Siliciumwafer, dessen Oberfläche mit einem thermischen Oxid beschichtet war, ausgebildet. Die Resistmaske wurde beschichtet unter Verwendung einer Lösung des Natriumsalzes der 1-Diazo-2- oxid-naphthalin-4-sulfonsäure in deionisiertem Wasser. Ungefähr 4 bis 6 ml der Lösung, welche durch ein 0,5 J.Lm Filter filtriert war, wurde innerhalb 1 Minute auf die Resistbilder mit einer Spinngeschwindigkeit von 3500 Umdrehungen pro Minute aufgesponnen. Der Wafer wurde dann in einem Ofen unter Stickstoffatmosphäre 20 Minuten lang bei einer Temperatur von 210°C ± 5°C gehärtet. Mikrophotographien des Resistbildes zeigten, dass ein Fliessen des Resistbildes im wesentlichen vermieden wurde. Im Gegensatz dazu zeigten Resistbilder auf Kontrollwafern, welche dem erfindungsgemässen Härtungsverfahren nicht unterworfen worden waren, ein starkes Fliessen nach einem Härten bei 210°C. Resistbilder, welche mit Peroxiden wie Lupersol 101 (2,5-Dimethyl-2,5-di(tert-butyl-peroxy)-hexan oder Polymethacrylsäurelösungen in deionisiertem Wasser behandelt und 20 Minuten bei 210°C nachgehärtet worden waren, zeigten auch starkes Fliesen und waren deformiert.A mask pattern of a positive photoresist with a thickness of about 1.5 11 m was formed on a silicon wafer, the surface of which was coated with a thermal oxide, as indicated in Example 1. The resist mask was coated using a solution of the sodium salt of 1-diazo-2-oxide-naphthalene-4-sulfonic acid in deionized water. Approximately 4 to 6 ml of the solution, which was filtered through a 0.5 J.Lm filter, was spun onto the resist images at a spinning speed of 3500 revolutions per minute within 1 minute. The wafer was then cured in an oven under a nitrogen atmosphere for 20 minutes at a temperature of 210 ° C ± 5 ° C. Photomicrographs of the resist image showed that flowing of the resist image was essentially avoided. In contrast, resist images on control wafers, which had not been subjected to the curing process according to the invention, showed a strong flow after curing at 210 ° C. Resist images which had been treated with peroxides such as Lupersol 101 (2,5-dimethyl-2,5-di (tert-butyl-peroxy) hexane or polymethacrylic acid solutions in deionized water and post-cured for 20 minutes at 210 ° C) also showed strong tiling and were deformed.

Beispiel 3Example 3

Um die Anwendung des erfindungsgemässen Verfahrens auf negativ arbeitende Resistmaterialien zu zeigen, wurden Siliciumhalbleiterwafer, deren Oberfläche mit einem thermischen Oxid bedeckt war, mittels Verspinnen bei 6000 Umdrehungen pro Minute mit einer Resistschicht beschichtet, welche aus einem teilweise cyclisierten Poly-cis-isoprenpolymeren und 2,6-Bis-(p-azido-benzyliden)-4-methylcyclohexan als Sensibilisator bestand. Die Schicht wurde 20 Minuten lang bei 90°C vorgehärtet und dann 1 Minute lang mit ultraviolettem Licht bildweise belichtet. Die belichteten Wafer wurden 4 Minuten lang bei Zimmertemperatur in einem Lösungsmittel entwickelt, um die nichtbelichteten Bereiche zu entfernen und mit Stickstoff trockengeblasen. Der Wafer wurde dann in zwei Hälften geteilt, und eine Hälfte wurde mit einer wässrigen Lösung mit einem Gehalt an 4,3 Gew.-% des Natriumsalzes der 2-Diazo-1-oxid-naphthalin-5-sulfonsäure und 0,1 Gew.-% Polymethacrylsäure beschichtet. Die andere Hälfte wurde zur Kontrollmessung verwendet. Beide Waferhälften wurden 30 Minuten in einer Stickstoffatmosphäre in einem Ofen bei 180°C gehärtet. Das behandelte Resistbild zeigte nach der Härtung eine wesentliche verbesserte Dimensionsstabilität des Bildes. Das Resistbild auf der nichtbehandelten Hälfte war stark zerflossen. Ähnliche Ergebnisse wurden mit einem anderen Wafer erhalten, dessen eine Hälfte behandelt und die andere Hälfte nicht behandelt war und beide Hälften 30 Minuten lang unter Stickstoff bei 210°C gehärtet worden waren.In order to demonstrate the application of the method according to the invention to negative-working resist materials, silicon semiconductor wafers, the surface of which was covered with a thermal oxide, were coated with a resist layer by spinning at 6000 revolutions per minute, which consisted of a partially cyclized poly-cis-isoprene polymer and 2. 6-bis (p-azido-benzylidene) -4-methylcyclohexane existed as a sensitizer. The layer was precured at 90 ° C for 20 minutes and then imagewise exposed to ultraviolet light for 1 minute. The exposed wafers were developed in a solvent at room temperature for 4 minutes to remove the unexposed areas and blown dry with nitrogen. The wafer was then split in half and one half was washed with an aqueous solution containing 4.3% by weight of the sodium salt of 2-diazo-1-oxide-naphthalene-5-sulfonic acid and 0.1% by weight. -% polymethacrylic acid coated. The other half was used for the control measurement. Both halves of the wafer were cured in a nitrogen atmosphere in an oven at 180 ° C for 30 minutes. The treated resist image showed a significantly improved dimensional stability of the image after curing. The resist image on the untreated half was severely melted. Similar results were obtained with another wafer, one half of which was treated and the other half of which was not treated, and both halves had been cured under nitrogen at 210 ° C for 30 minutes.

Es wurde ein Härtungsverfahren für Resistmasken beschrieben, für welches keine besonderen Apparaturen oder Zusätze zu der Resistschicht vor Ausbildung der Resistmaske erforderlich sind.A curing process for resist masks has been described, for which no special apparatus or additives to the resist layer are required before the resist mask is formed.

Claims (7)

1. Method of making a flow resistant mask of radiation-sensitive resist material on a substrate, characterized in that a hardening agent of the orthoquinone diazide type is applied to the mask, that the coated mask is heated and the excess hardening agent is then removed.
2. Method as claimed in claim 1, characterized in that water soluble salts of orthoquinone diazide sulfonic acid or carbon acid are applied as hardening agents.
3. Method as claimed in claims 1 and 2, characterized in that as hardening agents orthoquinone diazide compounds of the general formulas
Figure imgb0005
Figure imgb0006
are applied where R is S03X or COOX, and where X is selected from the group consisting of Na+, K+, Ca2+, Ba2+, Li+ or N H4 +.
4. Method as claimed in claims 1 to 3, characterized in that the hardening agent is applied to the mask in the form of an aqueous or aqueous-alcoholic solution with a content of 0.5 to 10 percent by weight.
5. Method as claimed in anyone or several of claims 1 to 4, characterized in that the hardening agent is applied to the mask in a layer thickness of 50 to 100 nm.
6. Method as claimed in anyone or several of claims 1 to 5, characterized in that the coated mask is heated to a temperature between 110 and 210°C.
7. Method as claimed in anyone or several of claims 1 to 6, characterized in that the hardening agent is applied to a mask of a positive acting or a negative acting, radiation-sensitive resist material.
EP78100337A 1977-08-08 1978-07-10 Process for forming a flow-resistant resist mask of radioation-sensitive material Expired EP0000702B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US822468 1977-08-08
US05/822,468 US4125650A (en) 1977-08-08 1977-08-08 Resist image hardening process

Publications (2)

Publication Number Publication Date
EP0000702A1 EP0000702A1 (en) 1979-02-21
EP0000702B1 true EP0000702B1 (en) 1981-10-07

Family

ID=25236122

Family Applications (1)

Application Number Title Priority Date Filing Date
EP78100337A Expired EP0000702B1 (en) 1977-08-08 1978-07-10 Process for forming a flow-resistant resist mask of radioation-sensitive material

Country Status (4)

Country Link
US (1) US4125650A (en)
EP (1) EP0000702B1 (en)
JP (1) JPS5429574A (en)
DE (1) DE2861132D1 (en)

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4187331A (en) * 1978-08-24 1980-02-05 International Business Machines Corp. Fluorine plasma resist image hardening
US4259369A (en) * 1979-12-13 1981-03-31 International Business Machines Corporation Image hardening process
DE3022362A1 (en) * 1980-06-14 1981-12-24 Hoechst Ag, 6000 Frankfurt LIGHT-SENSITIVE COPYING MATERIAL AND METHOD FOR THE PRODUCTION THEREOF
US4343876A (en) * 1980-11-21 1982-08-10 E. I. Du Pont De Nemours And Company Dot-enlargement process for photopolymer litho masks
JPS5844715A (en) * 1981-09-11 1983-03-15 Fujitsu Ltd Forming method for minute pattern
US4439516A (en) * 1982-03-15 1984-03-27 Shipley Company Inc. High temperature positive diazo photoresist processing using polyvinyl phenol
GB2121197A (en) * 1982-05-26 1983-12-14 Philips Electronic Associated Plasma-etch resistant mask formation
DE3325022A1 (en) * 1983-07-11 1985-01-24 Hoechst Ag, 6230 Frankfurt METHOD FOR PRODUCING NEGATIVE COPIES BY MEANS OF A MATERIAL BASED ON 1,2-CHINONDIAZIDES
US4568631A (en) * 1984-04-30 1986-02-04 International Business Machines Corporation Process for delineating photoresist lines at pattern edges only using image reversal composition with diazoquinone
KR930010248B1 (en) * 1984-09-14 1993-10-15 가부시끼가이샤 히다찌세이사꾸쇼 Process for pattern forming
US4596763A (en) * 1984-10-01 1986-06-24 American Hoechst Corporation Positive photoresist processing with mid U-V range exposure
GB2170015A (en) * 1985-01-11 1986-07-23 Philips Electronic Associated Method of manufacturing a semiconductor device
CA1282273C (en) * 1985-03-19 1991-04-02 International Business Machines Corporation Method of creating patterned multilayer films for use in production of semiconductor circuits and systems
US4782008A (en) * 1985-03-19 1988-11-01 International Business Machines Corporation Plasma-resistant polymeric material, preparation thereof, and use thereof
US4908298A (en) * 1985-03-19 1990-03-13 International Business Machines Corporation Method of creating patterned multilayer films for use in production of semiconductor circuits and systems
US4981909A (en) * 1985-03-19 1991-01-01 International Business Machines Corporation Plasma-resistant polymeric material, preparation thereof, and use thereof
US4777111A (en) * 1985-06-03 1988-10-11 Fairmount Chemical Company, Inc. Photographic element with diazo contrast enhancement layer and method of producing image in underlying photoresist layer of element
US4672021A (en) * 1985-06-03 1987-06-09 Fairmount Chemical Company Contrast enhancement layer composition with naphthoquinone diazide, indicator dye and polymeric binder
WO1987003387A1 (en) * 1985-11-27 1987-06-04 Macdermid, Incorporated Thermally stabilized photoresist images
US4762768A (en) * 1986-01-29 1988-08-09 Macdermid, Incorporated Thermally stabilized photoresist images
US4701390A (en) * 1985-11-27 1987-10-20 Macdermid, Incorporated Thermally stabilized photoresist images
US4737425A (en) * 1986-06-10 1988-04-12 International Business Machines Corporation Patterned resist and process
US4806455A (en) * 1987-04-03 1989-02-21 Macdermid, Incorporated Thermal stabilization of photoresist images
DE3800176A1 (en) * 1988-01-07 1989-07-20 Bosch Gmbh Robert CONTROL DEVICE FOR AN INTERNAL COMBUSTION ENGINE AND METHOD FOR SETTING PARAMETERS OF THE DEVICE
US6503693B1 (en) * 1999-12-02 2003-01-07 Axcelis Technologies, Inc. UV assisted chemical modification of photoresist
DE10101734C2 (en) * 2001-01-16 2003-04-24 Osram Opto Semiconductors Gmbh Method for forming an etching mask on a substrate
US6605413B1 (en) * 2001-03-29 2003-08-12 Advanced Micro Devices, Inc. Chemical treatment to strengthen photoresists to prevent pattern collapse
US7314691B2 (en) * 2004-04-08 2008-01-01 Samsung Electronics Co., Ltd. Mask pattern for semiconductor device fabrication, method of forming the same, method for preparing coating composition for fine pattern formation, and method of fabricating semiconductor device
US9659824B2 (en) 2015-04-28 2017-05-23 International Business Machines Corporation Graphoepitaxy directed self-assembly process for semiconductor fin formation
US9563122B2 (en) 2015-04-28 2017-02-07 International Business Machines Corporation Method to harden photoresist for directed self-assembly processes
US10781504B2 (en) * 2016-08-08 2020-09-22 Mt2, Llc Method for the treatment of metallic particles and objects contaminated with metallic particles

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3278305A (en) * 1963-07-12 1966-10-11 Gevaert Photo Prod Nv Photochemical cross-linking of polymers
GB1136544A (en) * 1966-02-28 1968-12-11 Agfa Gevaert Nv Photochemical cross-linking of polymers
US3459708A (en) * 1967-01-18 1969-08-05 Chevron Res Phenol-aldehyde wood bonding adhesives incorporating organic hydroperoxides and having improved curing rates
US3660097A (en) * 1969-11-28 1972-05-02 Polychrome Corp Diazo-polyurethane light-sensitive compositions
US3711287A (en) * 1971-05-19 1973-01-16 Eastman Kodak Co Photoresist compositions
SU451978A1 (en) * 1973-02-19 1974-11-30 Предприятие П/Я А-7850 Positive photoresist
US3920483A (en) * 1974-11-25 1975-11-18 Ibm Method of ion implantation through a photoresist mask
JPS53115301A (en) * 1977-03-17 1978-10-07 Toppan Printing Co Ltd Method of treating hard film of water soluble photoresist pattern

Also Published As

Publication number Publication date
JPS5649452B2 (en) 1981-11-21
EP0000702A1 (en) 1979-02-21
DE2861132D1 (en) 1981-12-17
JPS5429574A (en) 1979-03-05
US4125650A (en) 1978-11-14

Similar Documents

Publication Publication Date Title
EP0000702B1 (en) Process for forming a flow-resistant resist mask of radioation-sensitive material
DE2447225C2 (en) Process for peeling off positive photoresist
EP0394741B1 (en) Process for producing etch resistant structures
EP0023662B1 (en) Heat-resistent positive photoresists and process for the preparation of heat-resistent relief structures
EP0082463B1 (en) Process for producing relief images
EP0002795B1 (en) Process for the fabrication of masks for lithographic processes using a photoresist
DE2655455C2 (en) Method for producing a mask and lacquer structure for use in the method
DE2518451A1 (en) A MATERIAL CREATING A METAL IMAGE
CH619055A5 (en)
EP0689941A1 (en) Hydrophilized support material and recording material produced therewith
EP0164620A2 (en) Positively acting light-sensitive coating solution
DE2628467A1 (en) PROCESS FOR CREATING A POSITIVE PAINT IMAGE
DE2459156C3 (en) Method for producing a photoresist mask on a semiconductor substrate
EP0146834A2 (en) Positive photoresist developer
EP0057738A2 (en) Process for the formation and the filling of holes in a layer applied to a substrate
DE10361257B4 (en) Process for the production of fine patterns
EP0222297A2 (en) Baking lacquer for lithographic printing plates
EP0143437A2 (en) Process for the production of resist images and dry resist film for this process
DE4317925C2 (en) Method of manufacturing a semiconductor device
DE2539690A1 (en) PROCESS FOR DEVELOPING RESIST FILMS
EP0220645B1 (en) Photosensitive positive composition and photoresist material prepared therewith
DE2743763A1 (en) POSITIVE PAINT MATERIAL AND METHOD OF MANUFACTURING A PAINT MASK
EP0474010B1 (en) Developer composition for irradiated radiation-sensitive positive and negative working, as well as reversible reprographic layers and process for developing such layers
EP0355015B1 (en) Process for developing positively acting photoresists
EP0226741B1 (en) Process for producing a positive photoresist

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): DE FR GB

17P Request for examination filed
GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): DE FR GB

REF Corresponds to:

Ref document number: 2861132

Country of ref document: DE

Date of ref document: 19811217

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19840704

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19840718

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19890710

GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19900330

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19900403

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT