EP0000441A1 - Einrichtung zur Energiegewinnung aus der Energie von Wellen - Google Patents

Einrichtung zur Energiegewinnung aus der Energie von Wellen Download PDF

Info

Publication number
EP0000441A1
EP0000441A1 EP78300129A EP78300129A EP0000441A1 EP 0000441 A1 EP0000441 A1 EP 0000441A1 EP 78300129 A EP78300129 A EP 78300129A EP 78300129 A EP78300129 A EP 78300129A EP 0000441 A1 EP0000441 A1 EP 0000441A1
Authority
EP
European Patent Office
Prior art keywords
chamber
waves
forward wall
distance
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP78300129A
Other languages
English (en)
French (fr)
Inventor
George William Moody
John Linley Wilson
Stephen Hugh Salter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SECRETARY ENERGY BRIT
UK Secretary of State for Energy
Original Assignee
SECRETARY ENERGY BRIT
UK Secretary of State for Energy
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SECRETARY ENERGY BRIT, UK Secretary of State for Energy filed Critical SECRETARY ENERGY BRIT
Publication of EP0000441A1 publication Critical patent/EP0000441A1/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B13/00Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
    • F03B13/12Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy
    • F03B13/14Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy
    • F03B13/141Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy with a static energy collector
    • F03B13/142Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy with a static energy collector which creates an oscillating water column
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/30Energy from the sea, e.g. using wave energy or salinity gradient

Definitions

  • This invention relates to devices for extracting energy from waves.
  • An example of a device adapted to generate electricity from energy extracted from waves is provided by the buoy device invented by Yoshio Masuda and described in British Patent Specification No. 1,014,196, in which the oscillation of a column of water in a chamber is arranged to drive air through an air turbine.
  • a breakwater is another example of a device intended to extract energy from waves but so as to provide calmer regions on its leeward side.
  • a device adapted to be partially submerged in a liquid and extract energy from waves thereon, wherein that portion of the device adapted to be below the surface of the liquid is of asymmetric shape in a vertical plane aligned in a direction of propagation of the incoming waves, and the device is adapted to be held by means for inhibiting movement of the device in the liquid so that in operation waves generated by the device itself are substantially unidirectional and in a direction towards the incoming waves.
  • the device may be of buoyant construction, and adapted to be held below its natural level of floatation in the liquid by mooring means so as to inhibit said movement of the device.
  • the device may be of non-buoyant construction and adapted to be held by a submerged support means which may include the sea bed.
  • the device may be held by being adapted for incorporation in a barrier means arranged to be incident to incoming waves, for example a coastal sea wall.
  • the asymmetric shape may be provided by having the front of the device upon which the waves are intended to be incident, arranged so as to be immersed less deeply in the liquid than the rear of the device.
  • the asymmetric shape may be provided by closing the bottom of the chamber, and providing a port means at the incoming wave side of the chamber positioned so as to be immersed in the liquid.
  • a stationary partially submerged device which has a symmetrical underwater shape in a vertical plane aligned in the direction of incoming waves will have a theoretical maximum power absorption of about 50% of the energy of the incoming waves, the remaining wave energy being lost and distributed equally between reflected and transmitted waves.
  • the energy absorption efficiency of the device is increased. This is because a device which generates and radiates waves preferentially in a certain direction when in forced oscillation will also absorb that frequency preferentially from the same direction, so that theoretically in an idealised condition there will be no reflected and transmitted waves through which energy may be lost. In practice, however, this condition is unlikely to be realised but energy extraction efficiencies above 50% should be attainable by devices incorporating the invention.
  • the device shown has a forward buoyancy tank 10 and a rear buoyancy tank 11 for supporting the device in a liquid 13 (e.g. seawater), the forward buoyancy tank 10 being immersed less deeply in the liquid 13 than the rear buoyancy tank 11.
  • the forward and rear buoyancy tanks 10 and 11 respectively define between them the front and rear walls of a chamber 14 in which a column of the liquid 13 oscillates as indicated by the arrows as a result of wave motion of the incoming waves in the direction of arrow 'B'.
  • the chamber 14 has a roof 15 with an air outlet 16 having a non-return valve 17 . , and an air inlet 18 having a non-return valve 19.
  • the air inlet 18 is connected at its other end to the rear wall 20 of the device where it is protected against spray by a shroud 21.
  • the rear wall 20 and a cover 25 define a duct 26 for air between the aft buoyancy tank 11 and the roof 15 as described in Offenlegungsschrift 27 37 143, to interconnect the air discharged from adjacent chambers 14.
  • An orifice 27 in the cover 25 directs air from the duct 26 through an air turbine 28 which is arranged to drive an electric generator 29.
  • FIG. la As shown in Figure la several chambers 14 having side walls 24 are connected in parallel by the duct 26 to drive the single air turbine 28, the generator 29 of Figure 1 being omitted for clarity.
  • the device is held as shown in Figure 1b, to which reference is made by mooring means in the form of cables 22 each attached at one end to a respective winding gear 23 (only two are shown) on the device, and to a respective anchorage 24 in the sea bed to inhibit movement of the device.
  • the cables 22 are kept taut by constructing the device to have excess buoyancy and hauling on the cables 22 with the winding gear 23 to pull the device downwardly below its natural floatation level in the liquid 13 to a required mean depth of immersion.
  • Such cables 22 may be supplied by British Ropes Limited, Doncaster, England.
  • the chamber 14 is closed at the bottom by a baseplate 30 which defines a front entry port 31 for the chamber 14 below the buoyancy tank 10.
  • the device shown in Figure 2 is identical to that shown in Figures 1 and la, and its asymmetric underwater shape increases its energy absorption efficiency in the same way compared with a device having a symmetric underwater shape.
  • the device of Figure 2 may be held by mooring means (not shown) similar to those described in relation to Figure 1b.
  • a non-buoyant device may be used as shown in Figure 3, to which reference is now made, for applications where tidal movement is relatively limited.
  • the device of Figure 3 is similar in most respects to the device of Figure 2 except that the use of buoyancy tanks has been dispensed with to provide the non-buoyant construction required.
  • the device is provided with a solid forward wall 40, a solid rear partition 41, and a solid base portion 43, which define the corresponding portions of a chamber 14 similar to that of Figure 2.
  • An air inlet 48 having a non-return valve 49 extends from the chamber 14 through the rear partition 41, a boss 50 extending in the duct 26, and the rear wall 20 where the air inlet 48 is protected by a shroud 51.
  • the boss 50 is also shown in fragmentary sectional view in Figure 3a to which reference can be made.
  • the base portion 43 has a rounded corner 52 at a front entry port 31 to the chamber 14, and is shown resting on a submerged surface 53, such as the sea bed, to present the device at the required partially submerged depth in the liquid 13.
  • the device of Figure 3 is essentially the same as the device of Figure 2 and extracts energy from waves on the liquid 13 in an identical manner.
  • cables may be attached to the device of Figure 3 to retain it in its required position on the submerged surface 53, and weights (not shown) provided to increase the inertia of the device.
  • the invention may also be incorporated in a barrier as shown in Figure 4, to which reference is now made, for installations subject to relatively limited tidal movement.
  • Figure 4 a portion of a coastal sea wall 59 of ferro-concrete construction is shown, and is shaped to provide the essential features of a device similar to that of Figure 3 for extracting energy from incoming waves on the sea 13.
  • the device of Figure 4 has a forward wall 60, a rear wall 61, and a base portion 63, which define the corresponding portions of a chamber 14 having a front entry port 31 similar to that of Figures 2 and 3.
  • An air inlet 65 having a non-return valve 66 extends upwardly from the chamber 14 to the top of the device where it is protected from spray by a shroud 67.
  • the device has a duct 26 into which air from the chamber 14 enters through the outlet 16 and non-return valve 17-in a similar manner to that described in relation to Figures 1 to 3.
  • the duct 26 is shown unpressurised, but may be arranged to be pressurised as described in Offenlegungsschrift 27 37 143.
  • the device of Figure 4 is essentially the same as the devices of Figures 2 and 3 and extracts energy from the incoming waves in an identical manner.
  • the device of Figure 4 may be of considerable length broadside to the incident waves, and arranged as a multiplicity of chambers 14, as shown in Figure 5 to which reference is now made.
  • sets of three chambers 14a, 14b, 14c are shown connected by a common duct 26 to a single orifice 27 and air turbine 28 along the length of the device, the generator 29 of Figure 4 being omitted for clarity.
  • the chambers 14a and 14b, and 14b and 14c are separated by side walls 70 below the duct 26 but the chambers 14c and 14a are separated by side walls 71 which extend into the duct 26 to separate the air flow in one set of chambers 14a, 14b, 14c from that in another set.
  • a similar arrangement of sets of chambers 14 may be used in relation to the devices of Figures 1 to 3, and it will be understood that a set of chambers 14 may comprise more than three chambers 14, or two such chambers 14.
  • the devices of Figures 1 to 5 may be provided with means for changing the resonant frequency of the liquid 13 in the chamber 14, for example as described in UK Application No. 19199/77, to optimise the device for maximum energy absorption efficiency over a range of incoming wave frequencies.
  • asymmetric underwater shapes may be used in accordance with the invention, and asymmetric underwater shapes may be incorporated in alternative devices for extracting energy from wavepower to those shown in the Figures, for example a breakwater.
  • a breakwater might be provided by the devices shown in the Figures but with the air turbine 28 and electric generator 29 dispensed with and the dimensions of the orifice 27 selected to maximise the energy loss as air is driven therethrough.
  • the devices shown in Figures 1 to 3 may be made from materials conventionally used by those skilled in the art of designing devices for extracting energy from wavepower depending on the chemical properties of the liquid and the forces to which the device is likely to be subjected in use (e.g. metals, or ferro-concrete). Although alternative materials can be used for the device of Figure 4, ferro-concrete is likely to be the preferred material.
  • the invention may also be incorporated in devices having alternative means for rectifying the air discharged from adjacent chambers before the air is directed to an air turbine, and also in devices having alternative means of deriving mechanical power from the oscillations of a column of liquid in a chamber of the device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)
  • Extraction Or Liquid Replacement (AREA)
EP78300129A 1977-07-08 1978-07-07 Einrichtung zur Energiegewinnung aus der Energie von Wellen Withdrawn EP0000441A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB2884977 1977-07-08
GB28849/77A GB1601467A (en) 1977-07-08 1977-07-08 Devices for extracting energy from wave power

Publications (1)

Publication Number Publication Date
EP0000441A1 true EP0000441A1 (de) 1979-01-24

Family

ID=10282153

Family Applications (1)

Application Number Title Priority Date Filing Date
EP78300129A Withdrawn EP0000441A1 (de) 1977-07-08 1978-07-07 Einrichtung zur Energiegewinnung aus der Energie von Wellen

Country Status (9)

Country Link
US (1) US4198821A (de)
EP (1) EP0000441A1 (de)
JP (1) JPS5419035A (de)
AU (1) AU3778378A (de)
DE (1) DE2857156A1 (de)
FR (1) FR2444170A1 (de)
GB (1) GB1601467A (de)
IE (1) IE47550B1 (de)
NL (1) NL7815018A (de)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0053458A2 (de) * 1980-12-01 1982-06-09 Secretary of State for Energy in Her Britannic Majesty's Gov. of the United Kingdom of Great Britain and Northern Ireland Wellenenergieumwandler
WO1987003045A1 (en) * 1985-11-14 1987-05-21 Boenke Knut Apparatus for converting the energy in ocean waves into useful energy
GB2250321A (en) * 1990-10-18 1992-06-03 Sec Dep For Energy The Wave power apparatus
DE19515138A1 (de) * 1995-04-25 1996-10-31 Marcus Dr Fedder Wellenkraftwerk
WO2010038169A2 (en) * 2008-10-03 2010-04-08 Ridas Matonis Energetically self-sufficient marine building-city and system for using tidal and stream power for generation of electricity
DE102011100756B3 (de) * 2011-05-06 2012-08-02 Voith Patent Gmbh Turbinenanlage zum Nutzen von Energie aus Meereswellen
DE102011114512B3 (de) * 2011-09-29 2012-12-27 Voith Patent Gmbh Turbinenanlage zum Ausnutzen von Energie aus dem Meer
US8388301B2 (en) 2006-12-04 2013-03-05 Voith Patent Gmbh Turbine system for utilizing the energy of oceanic waves
DE102013000989B3 (de) * 2013-01-22 2013-12-19 Universität Siegen Luftturbine zum Ausnutzen von Energie aus dem Meer
EP2995807A1 (de) * 2014-09-12 2016-03-16 RSE s.r.l. System zur Erzeugung von elektrischer Energie aus Wellenbewegung
DE102018007648A1 (de) * 2018-09-21 2020-03-26 Jian Hong Zhang Wellenkraftwerk
WO2022149929A1 (ko) 2021-01-08 2022-07-14 연세대학교 산학협력단 스테로이드 설파타제 억제제를 포함하는 항바이러스성 약학적 조성물

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4253032A (en) * 1978-12-13 1981-02-24 Lochner Johannes P A Utilization of wave motion
NO145548C (no) * 1979-04-19 1982-04-14 Kvaerner Brug Kjoleavdelning Boelgekraftverk
JPS56561A (en) * 1979-06-13 1981-01-07 Meidensha Electric Mfg Co Ltd Wave generating equipment utilizing air vortex
US4340821A (en) * 1980-06-19 1982-07-20 Slonim David Meir Apparatus for harnessing wave energy
NO153542C (no) * 1981-10-02 1986-04-09 Kvaerner Brug Kjoleavdelning V|skeb¯lgeenergiabsorbator.
US4774855A (en) * 1982-08-17 1988-10-04 Vickers Shipbuilding And Engineering Limited Apparatus for providing an electrical generator with a constant rotational speed from a variable speed input
ES518197A0 (es) * 1982-12-14 1984-04-16 Munoz Saiz Manuel Sistema de aprovechamiento de la energia de las olas.
JPS60119379A (ja) * 1983-11-30 1985-06-26 Kaiyo Kagaku Gijutsu Center 防波堤用共鳴室型空気タ−ビン方式波力発電装置
JPS6128497A (ja) * 1984-07-20 1986-02-08 Masao Kanazawa 水中・水底への空気注入装置
JPH0229258Y2 (de) * 1986-08-29 1990-08-06
GB2314124B (en) 1996-06-10 2000-10-18 Applied Res & Tech Wave energy converter
EP1131557A1 (de) * 1999-09-14 2001-09-12 Giuseppe Zingale Modularer schwimmender wellenbrecher zur umwandlung von wellenenergie
GB2411928B (en) * 2004-03-08 2006-09-27 Orecon Ltd Wave energy device
US20060230756A1 (en) * 2005-04-19 2006-10-19 Jaroslav Duda Equipment utilizing see waves motion for drive of pumps, or drive of other energy producing tools
FR2896277B1 (fr) * 2006-01-18 2008-04-11 Michel Dessaigne Installation maremotrice a colonne d'air pour la production d'electricite
GB0715569D0 (en) * 2007-08-09 2007-09-19 Turner Gordon H Wave power conversion
US20100171313A1 (en) * 2009-01-08 2010-07-08 Glen Edward Cook Under the bottom ocean wave energy converter
US7830032B1 (en) * 2009-08-28 2010-11-09 Breen Joseph G Generating power from natural waves in a body of water
WO2013034636A1 (en) * 2011-09-06 2013-03-14 Electric Waves, S.L. Caisson breakwater module
WO2013095162A1 (en) 2011-12-20 2013-06-27 Windflow Technology Limited Power generating system and hydraulic control system
CN102536611A (zh) * 2012-02-10 2012-07-04 华北电力大学 一种高效海浪发电装置
JP6547753B2 (ja) * 2013-10-16 2019-07-24 オーシャンリンクス・リミテッド 海岸保全及び波エネルギー発電システム

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR761818A (fr) * 1932-12-20 1934-03-28 Dispositif pour l'utilisation de l'énergie de la mer
FR993678A (fr) * 1949-08-23 1951-11-05 Installation pour l'utilisation de l'énergie des vagues
FR1049067A (fr) * 1952-01-12 1953-12-28 Electricite De France Procédé et dispositif pour le contrôle de l'énergie de la houle
DE2507330A1 (de) * 1974-02-20 1975-08-21 Ricafranca Romulo M Verfahren und vorrichtung zur erzeugung elektrischer energie aus der wellenbewegung des meeres
FR2278943A1 (fr) * 1974-07-19 1976-02-13 Goncalves David Agnelo Procede de conversion de l'energie mecanique de l'ondulation des mers en force motrice utilisable comme energie naturelle
FR2346571A1 (fr) * 1976-03-31 1977-10-28 Wavepower Ltd Dispositif pour extraire de l'energie du mouvement de l'eau notamment des vagues et courants marins
GB1492427A (en) * 1975-03-27 1977-11-16 Fukada H Apparatus for generating electric power by wave energy and dissipating waves
DE2737143A1 (de) * 1976-08-18 1978-02-23 Secretary Energy Brit Einrichtung zur energiegewinnung aus der energie von wellen

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1791239A (en) * 1919-09-04 1931-02-03 Chester H Braselton Power-generating mechanism
US3200255A (en) * 1960-02-10 1965-08-10 Ichiro Kanda Ocean wave electric generator
US4123185A (en) * 1977-06-06 1978-10-31 Hagen Alf R Floating breakwater and energy collecting system

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR761818A (fr) * 1932-12-20 1934-03-28 Dispositif pour l'utilisation de l'énergie de la mer
FR993678A (fr) * 1949-08-23 1951-11-05 Installation pour l'utilisation de l'énergie des vagues
FR1049067A (fr) * 1952-01-12 1953-12-28 Electricite De France Procédé et dispositif pour le contrôle de l'énergie de la houle
DE2507330A1 (de) * 1974-02-20 1975-08-21 Ricafranca Romulo M Verfahren und vorrichtung zur erzeugung elektrischer energie aus der wellenbewegung des meeres
FR2278943A1 (fr) * 1974-07-19 1976-02-13 Goncalves David Agnelo Procede de conversion de l'energie mecanique de l'ondulation des mers en force motrice utilisable comme energie naturelle
GB1492427A (en) * 1975-03-27 1977-11-16 Fukada H Apparatus for generating electric power by wave energy and dissipating waves
FR2346571A1 (fr) * 1976-03-31 1977-10-28 Wavepower Ltd Dispositif pour extraire de l'energie du mouvement de l'eau notamment des vagues et courants marins
DE2737143A1 (de) * 1976-08-18 1978-02-23 Secretary Energy Brit Einrichtung zur energiegewinnung aus der energie von wellen

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0053458A2 (de) * 1980-12-01 1982-06-09 Secretary of State for Energy in Her Britannic Majesty's Gov. of the United Kingdom of Great Britain and Northern Ireland Wellenenergieumwandler
EP0053458A3 (en) * 1980-12-01 1983-12-21 The Secretary Of State For Energy In Her Britannic Majesty's Government Of The United Kingdom Of Great Britain Device for extracting energy from waves
WO1987003045A1 (en) * 1985-11-14 1987-05-21 Boenke Knut Apparatus for converting the energy in ocean waves into useful energy
GB2250321A (en) * 1990-10-18 1992-06-03 Sec Dep For Energy The Wave power apparatus
US5191225A (en) * 1990-10-18 1993-03-02 The Secretary Of State For Energy In Her Britannic Majesty's Government Of The United Kingdom Of Great Britain And Northern Ireland Wave power apparatus
ES2048068A2 (es) * 1990-10-18 1994-03-01 Secretary Energy Brit Aparato para generar energia por accion de las olas.
GB2250321B (en) * 1990-10-18 1994-03-23 Sec Dep For Energy The Wave power apparatus
DE19515138A1 (de) * 1995-04-25 1996-10-31 Marcus Dr Fedder Wellenkraftwerk
DE19515138C2 (de) * 1995-04-25 1998-07-30 Marcus Dr Fedder Wellenkraftwerk
US8388301B2 (en) 2006-12-04 2013-03-05 Voith Patent Gmbh Turbine system for utilizing the energy of oceanic waves
WO2010038169A3 (en) * 2008-10-03 2011-03-31 Ridas Matonis Energetically self-sufficient marine building-city and system for using tidal and stream power for generation of electricity
WO2010038169A2 (en) * 2008-10-03 2010-04-08 Ridas Matonis Energetically self-sufficient marine building-city and system for using tidal and stream power for generation of electricity
DE102011100756B3 (de) * 2011-05-06 2012-08-02 Voith Patent Gmbh Turbinenanlage zum Nutzen von Energie aus Meereswellen
WO2012152378A1 (de) 2011-05-06 2012-11-15 Voith Patent Gmbh Turbinenanlage zum nutzen von energie aus meereswellen
DE102011114512B3 (de) * 2011-09-29 2012-12-27 Voith Patent Gmbh Turbinenanlage zum Ausnutzen von Energie aus dem Meer
DE102013000989B3 (de) * 2013-01-22 2013-12-19 Universität Siegen Luftturbine zum Ausnutzen von Energie aus dem Meer
WO2014114389A1 (de) 2013-01-22 2014-07-31 Voith Patent Gmbh Luftturbine zum ausnutzen von energie aus dem meer
EP2995807A1 (de) * 2014-09-12 2016-03-16 RSE s.r.l. System zur Erzeugung von elektrischer Energie aus Wellenbewegung
DE102018007648A1 (de) * 2018-09-21 2020-03-26 Jian Hong Zhang Wellenkraftwerk
WO2022149929A1 (ko) 2021-01-08 2022-07-14 연세대학교 산학협력단 스테로이드 설파타제 억제제를 포함하는 항바이러스성 약학적 조성물

Also Published As

Publication number Publication date
JPH0151673B2 (de) 1989-11-06
FR2444170A1 (fr) 1980-07-11
AU3778378A (en) 1980-01-10
IE781371L (en) 1979-01-08
DE2857156A1 (de) 1980-02-07
GB1601467A (en) 1981-10-28
NL7815018A (nl) 1979-10-31
US4198821A (en) 1980-04-22
IE47550B1 (en) 1984-04-18
JPS5419035A (en) 1979-02-13

Similar Documents

Publication Publication Date Title
US4198821A (en) Devices for extracting energy from wave power
US3200255A (en) Ocean wave electric generator
CA2564703C (en) Configurations and methods for wave energy extraction
US4172689A (en) Wave power generator
US4594853A (en) Wave powered generator
EP0037408B1 (de) Wellenenergieapparat
US4858434A (en) Wave-activated power generator
KR100549736B1 (ko) 해수의 수직운동으로부터 에너지를 변환하는 장치
US4258269A (en) Wave power generator
EP2410170A1 (de) Schwimmfähiger Wellenenergiewandler und Verfahren zur Verbesserung der Effizienz eines schwimmfähigen Wellenenergiewandlers
US7726123B2 (en) Wave energy device
US4139984A (en) Device for deriving power from wave energy
US4741157A (en) Wave-activated power generating apparatus having a backwardly open duct
EP2021622A1 (de) Wellenenergiegenerator
US4216655A (en) Wave-operated power plant
US4189918A (en) Devices for extracting energy from wave power
KR20110053260A (ko) 유체 동력 발생기
KR101554872B1 (ko) 부유식 방파제
CN110651086A (zh) 波浪捕获和衰减结构
WO2018191779A1 (en) "wave energy converter"
JPWO2007037401A1 (ja) 可動物体型波力エネルギー変換装置の遊水室構造
US4242009A (en) Apparatus for automatically and selectively discharging saline water
US4048801A (en) Process and device for harnessing wave energy
GB2108590A (en) Liquid wave energy absorber
JP2001020844A (ja) 津波発電方法

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): DE FR NL

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn
32 Conversion
RIN1 Information on inventor provided before grant (corrected)

Inventor name: SALTER, STEPHEN HUGH

Inventor name: MOODY, GEORGE WILLIAM

Inventor name: WILSON, JOHN LINLEY