EP0000396B1 - Process for the preparation of flame retardant polycarbonates - Google Patents

Process for the preparation of flame retardant polycarbonates Download PDF

Info

Publication number
EP0000396B1
EP0000396B1 EP78100379A EP78100379A EP0000396B1 EP 0000396 B1 EP0000396 B1 EP 0000396B1 EP 78100379 A EP78100379 A EP 78100379A EP 78100379 A EP78100379 A EP 78100379A EP 0000396 B1 EP0000396 B1 EP 0000396B1
Authority
EP
European Patent Office
Prior art keywords
mol
acid chloride
polycarbonates
diphenols
aromatic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP78100379A
Other languages
German (de)
French (fr)
Other versions
EP0000396A1 (en
Inventor
Dieter Dr. Margotte
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bayer AG
Original Assignee
Bayer AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer AG filed Critical Bayer AG
Publication of EP0000396A1 publication Critical patent/EP0000396A1/en
Application granted granted Critical
Publication of EP0000396B1 publication Critical patent/EP0000396B1/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/04Aromatic polycarbonates
    • C08G64/06Aromatic polycarbonates not containing aliphatic unsaturation
    • C08G64/14Aromatic polycarbonates not containing aliphatic unsaturation containing a chain-terminating or -crosslinking agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/04Aromatic polycarbonates
    • C08G64/06Aromatic polycarbonates not containing aliphatic unsaturation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S260/00Chemistry of carbon compounds
    • Y10S260/24Flameproof

Definitions

  • the present invention relates to the production of aromatic polycarbonates with an average molecular weight between 10,000 and 100,000 by the known two-phase interface process from diphenols, preferably from halogen-free diphenols, using chain terminators, characterized in that aromatic monosulfonic acid chlorides in amounts of 2 mol -% to 20 mol%, preferably in amounts of 2.5 mol% to 10 mol%, based on moles of the diphenols used.
  • the present invention also relates to the aromatic polycarbonates obtained by the process according to the invention.
  • the polycarbonates obtained according to the invention have improved flame resistance.
  • the improvement of the flame-retardant properties of the aromatic thermoplastic polycarbonates has already been attempted and achieved in various ways, although disadvantages with other polycarbonate properties have to be accepted occasionally.
  • halogen phenols can also be used as flame-retardant chain terminators.
  • aromatic monosulfonic acid chlorides can be used for the process according to the invention, for example unsubstituted and substituted benzenesulfonic acid chlorides, unsubstituted and substituted naphthalenesulfonic acid chlorides, unsubstituted and substituted anthracene sulfonic acid chlorides and unsubstituted and substituted phenanthrene sulfonic acid chlorides.
  • substituents are understood to mean, for example, alkyl, cycloalkyl, aryl or halogen.
  • Suitable benzenesulfonic acid chlorides according to the invention are those of the formula I. wherein R, to R 5 are the same or different and are H, alkyl, preferably C, to C 4 , cycloalkyl, preferably C 5 to C 6 , aryl, preferably C 6 to C 16 , or halogen, preferably chlorine or bromine.
  • the production of polycarbonates by the phase interface process is known.
  • the polycarbonates are obtained by reacting diphenols, in particular dihydroxydiarylalkanes or -cycloalkanes with phosgene, in addition to the unsubstituted dihydroxydiarylalkanes or -cycloalkanes, those whose aryl radicals are substituted in the o-position to the phenolic hydroxyl groups are also suitable.
  • the polycarbonates produced by the phase interface process can also be branched in a known manner.
  • the known catalysts such as triethylamine and the usual solvents, reaction temperatures and amounts of alkali from the two-phase interface process are also common.
  • Suitable diphenols are, for example, hydroquinone, resorcinol, 4,4'-dihydroxydiphenyl, bis (hydroxyphenyl) alkanes, such as, for example, C 1 -C 8 -alkylene or.
  • a-bis (hydroxyphenyl) diisopropylbenzenes and the corresponding ring-alkylated or ring-halogenated compounds are suitable, for example phenol A), bis (4-hydroxy-3,5-dibromophenyl) propane-2,2 (tetrabromobisphenol A), bis (4-hydroxy-3,5-dimethyl-phenyl) propane-2,2 tetramethylbisphenol A), bis - (4 - hydroxy - 3 - methyl - phenyl) - propane - 2,2, bis - (4 - hydroxy - phenyl) cyclohexane-1,1 (bisphenol Z) as well as based on trinuclear bisphenols like a, a - bis - (4
  • the polycarbonates from halogen-free diphenols are preferred.
  • the flame-retardant polycarbonates produced according to the invention are distinguished by an improved flame resistance compared to the conventional polycarbonates terminated with monofunctional phenols. In this way, the polycarbonates according to the invention achieve better fire ratings or considerably shorter afterburning times, depending on the molecular weight or chain regulator content.
  • Approx. 454 parts of 4,4'-dihydroxydiphenyl-2,2-propane and 9.5 parts of p-tert-butylphenol are suspended in 1.5 l of water.
  • the oxygen is removed from the reaction mixture by stirring for 15 min.
  • nitrogen is passed through the reaction mixture.
  • 355 parts of 45% sodium hydroxide solution and 1000 parts of methylene chloride are added.
  • the mixture is cooled to 25 ° C. While maintaining this temperature by cooling, 237 parts of phosgene are removed over a period of 120 min. admitted.
  • An additional amount of 75 parts of a 45% sodium hydroxide solution is added after 15-30 minutes or after the phosgene uptake has begun.
  • a solution is prepared from 3.192 kg of 2,2-bis (4-hydroxyphenyl) propane (bisphenol A) (14 mol), 2.53 kg of 45% strength aqueous sodium hydroxide solution and 15 l of distilled water. After adding 34 kg of methylene chloride, 80.8 g. Benzenesulfonic acid chloride (3.27 mol%), dissolved in 1 kg of methylene chloride, added at room temperature. At 20-25 ° C, 2.64 kg of phosgene are introduced. By adding a further 26.3 kg of 6.5% sodium hydroxide solution during the phosgenation, the pH is kept at 13-14. Then 15 ml of triethylamine are added and stirring is continued for 30 minutes.
  • the fire behavior was measured according to UL Bull 94, test rod thickness 1/16 "on tempered test rods (130'C, 2 days).
  • the afterburn times after the 2nd flame exposure are determined with the stopwatch; Average of 5 different measurements.

Description

Gegenstand der vorliegenden Erfindung ist die Herstellung von aromatischen Polycarbonaten mit mittlerem Molekulargewicht zwischen 10 000 und 100 000 nach dem bekannten Zweiphasengrenzflächenverfahren aus Diphenolen, bevorzugt aus halogenfreien Diphenolen, unter verwendung von kettenabbrechern, dadurch gekennzeichnet, daß man als Kettenabbrecher aromatische Monosulfonsäurechloride in Mengen von 2 Mol-% bis 20 Mol%, vorzugsweise in Mengen von 2,5 Mol-% bis 10 Mol-%, bezogen auf Mole der eingesetzten Diphenole, verwendet.The present invention relates to the production of aromatic polycarbonates with an average molecular weight between 10,000 and 100,000 by the known two-phase interface process from diphenols, preferably from halogen-free diphenols, using chain terminators, characterized in that aromatic monosulfonic acid chlorides in amounts of 2 mol -% to 20 mol%, preferably in amounts of 2.5 mol% to 10 mol%, based on moles of the diphenols used.

Gegenstand der vorliegenden Erfindung sind außerdem die nach dem erfindungsgemäßen Verfahren erhalten aromatischen Polycarbonate.The present invention also relates to the aromatic polycarbonates obtained by the process according to the invention.

Die erfindungsgemäß erhaltenen Polycarbonate haben eine verbesserte Flammwidrigkeit. Die Verbesserung der flammhemmenden Eigenschaften der aromatischen thermoplastischen Polycarbonate ist bereits auf verschiedene Weise versucht und auch erreicht worden, wobei allerdings gelegentlich Nachteile bei anderen Polycarbonateigenschaften in Kauf genommen werden mußten.The polycarbonates obtained according to the invention have improved flame resistance. The improvement of the flame-retardant properties of the aromatic thermoplastic polycarbonates has already been attempted and achieved in various ways, although disadvantages with other polycarbonate properties have to be accepted occasionally.

Gemäß DT-OS 1720 812 können auch Halogenphenole als flammfestmachende Kettenabbrecher eingesetzt werden. Nachteilig ist hierbei jedoch der für viele Anwendungszwecke nicht ausreichende Flammschutz.According to DT-OS 1720 812, halogen phenols can also be used as flame-retardant chain terminators. The disadvantage here, however, is that the flame retardant is not sufficient for many applications.

Für das erfindungsgemäße Verfahren können grundsätzlich alle aromatischen Monosulfonsäurechloride verwendet werden, also beispielsweise unsubstituierte und substituierte Benzolsulfonsäurechloride, unsubstituierte und substituierte Naphthalinsulfonsäurechloride, unsubstituierte und substituierte Anthracensulfonsäurechloride und unsubstituierte und substituierte Phenanthrensulfonsäurechloride.In principle, all aromatic monosulfonic acid chlorides can be used for the process according to the invention, for example unsubstituted and substituted benzenesulfonic acid chlorides, unsubstituted and substituted naphthalenesulfonic acid chlorides, unsubstituted and substituted anthracene sulfonic acid chlorides and unsubstituted and substituted phenanthrene sulfonic acid chlorides.

Als Substituenten sind in diesem Zusammenhang beispielsweise Alkyl, Cycloalkyl, Aryl oder Halogen zu verstehen.In this context, substituents are understood to mean, for example, alkyl, cycloalkyl, aryl or halogen.

Erfindungsgemäß geeignete Benzolsulfonsäurechloride sind die der Formel I

Figure imgb0001
worin R, bis R5 gleich oder verschieden sind und H, Alkyl, vorzugsweise C, bis C4, Cycloalkyl, vorzugsweise C5 bis C6, Aryl, vorzugsweise C6 bis C16, oder Halogen, vorzugsweise Chlor oder Brom sind.Suitable benzenesulfonic acid chlorides according to the invention are those of the formula I.
Figure imgb0001
wherein R, to R 5 are the same or different and are H, alkyl, preferably C, to C 4 , cycloalkyl, preferably C 5 to C 6 , aryl, preferably C 6 to C 16 , or halogen, preferably chlorine or bromine.

Erfindungsgemäß geeignete aromatische Monosulfonsäurechloride sind beispielsweise

  • Benzolsutfonsäurechlorid
  • 2-Methylbenzolsulfonsäurechlorid
  • 4-Methylbenzolsulfonsäurechlorid
  • 2,4-Dimethylbenzolsulfonsäurechlorid
  • 4-Äthylbenzolsulfonsäurechlorid
  • 2-Äthylbenzolsulfonsäurechlorid
  • 2-Chlorbenzolsulfonsäurechlorid
  • 3-Chlorbenzolsulfonsäurechlorid
  • 4-Chlorbenzolsulfonsäurechlorid
  • 2,5-Dichlorbenzolsulfonsäurechlorid
  • 3,4-Dichlorbenzolsulfonsäurechlorid
  • 2-Methyl-5-chlorbenzolsulfonsäurechlorid
  • 3-Chlor-4-methylbenzolsulfonsäurechlorid.
  • Diphenyl-4'-sulfonsäurechlorid
  • 3-Methyl-diphenyl-4-sulfonsäurechlorid
  • 3,4'-Dimethyldiphenyl-4-sulfonsäurechlorid
  • 4'-Chlordiphenyl-4-sulfonsäurechlorid
Aromatic monosulfonic acid chlorides suitable according to the invention are, for example
  • Benzenesulfonic acid chloride
  • 2-methylbenzenesulfonic acid chloride
  • 4-methylbenzenesulfonic acid chloride
  • 2,4-dimethylbenzenesulfonic acid chloride
  • 4-ethylbenzenesulfonic acid chloride
  • 2-ethylbenzenesulfonyl chloride
  • 2-chlorobenzenesulfonic acid chloride
  • 3-chlorobenzenesulfonic acid chloride
  • 4-chlorobenzenesulfonic acid chloride
  • 2,5-dichlorobenzenesulfonic acid chloride
  • 3,4-dichlorobenzenesulfonic acid chloride
  • 2-methyl-5-chlorobenzenesulfonic acid chloride
  • 3-chloro-4-methylbenzenesulfonic acid chloride.
  • Diphenyl-4'-sulfonic acid chloride
  • 3-methyl-diphenyl-4-sulfonic acid chloride
  • 3,4'-dimethyldiphenyl-4-sulfonic acid chloride
  • 4'-chlorodiphenyl-4-sulfonic acid chloride

Bevorzugt finden folgende Sulfonsäurechloride Anwendung:

  • Benzolsulfonsäurechlorid
  • 4-Methylbenzolsulfonsäurechlorid
  • 4-Chlorbenzolsulfonsäurechlorid
  • 3,4-Dichlorbenzolsulfonsäurechlorid
  • Diphenyl-4-sulfonsäurechlorid
  • Naphthalin-2-sulfonsäurechlorid
The following sulfonic acid chlorides are preferably used:
  • Benzenesulfonic acid chloride
  • 4-methylbenzenesulfonic acid chloride
  • 4-chlorobenzenesulfonic acid chloride
  • 3,4-dichlorobenzenesulfonic acid chloride
  • Diphenyl-4-sulfonic acid chloride
  • Naphthalene-2-sulfonic acid chloride

Die Herstellung von Polycarbonaten nach dem Phasengrenzflächenverfahren ist bekannt. Man erhält die Polycarbonate durch Umsetzung von Diphenolen, insbesondere von Dihydroxydiarylalkanen bzw. -cycloalkanen mit Phosgen, wobei neben den unsubstituierten Dihydroxydiarylalkanen bzw. -cycloalkanen auch solche geeignet sind, deren Arylreste in o-Stellung zu den phenolischen Hydroxylgruppen substituiert sind. Die nach dem Phasengrenzflächenverfahren hergestellten Polycarbonate können in bekannter Weise auch verzweigt sein.The production of polycarbonates by the phase interface process is known. The polycarbonates are obtained by reacting diphenols, in particular dihydroxydiarylalkanes or -cycloalkanes with phosgene, in addition to the unsubstituted dihydroxydiarylalkanes or -cycloalkanes, those whose aryl radicals are substituted in the o-position to the phenolic hydroxyl groups are also suitable. The polycarbonates produced by the phase interface process can also be branched in a known manner.

Die bekannten Katalysatoren wie beispielsweise Triäthylamin sowie die üblichen Lösungsmittel, Reaktionstemperaturen und Alkalimengen des Zweiphasengrenzflächenverfahrens sind ebenfalls geläufig. Die erfindungsgemäß hergestellten Polycarbonate haben mittlere Molekulargewichte (Mw = Gewichtsmittel) zwischen 10 000 und 100 000, vorzugsweise zwischen 20 000 und 80 000, die aus der relativen Viskosität der Polycarbonate (gemessen in CH2CI2bei 25°C und einer Konzentration von 0,5 Gew. %) ermittelt werden können.The known catalysts such as triethylamine and the usual solvents, reaction temperatures and amounts of alkali from the two-phase interface process are also common. The polycarbonates produced according to the invention have average molecular weights (M w = weight average) between 10,000 and 100,000, preferably between 20,000 and 80,000, based on the relative viscosity of the polycarbonates (measured in CH 2 Cl 2 at 25 ° C. and a concentration of 0.5% by weight) can be determined.

Geeignete Diphenole sind z.B. Hydrochinon, Resorcin, 4,4'-Dihydroxydiphenyl, Bis- (hydroxyphenyl) alkane, wie beispielsweise C1―C8-Alkylen-bzw. C2―C8-Alkylidenbisphenole, Bis-(hydroxyphenyl)-cycloalkane wie beispielsweise C5―C6-Cycloalkylen-bzw. C5―C6-Cycloalkyliden-bisphenole, Bis-(hydroxyphenyl)-sulfide, -äther, -ketone, -sulfoxide oder - sulfone. Ferner a,a-Bis-(hydroxyphenyl)-diiso- propylbenzole sowie die entsprechenden kernalkylierten bzw. kernhalogenierten Verbindungen. Geeignet sind beispielsweise Polycarbonate auf Basis von Bis-(4-hydroxy-phenyl)-propan-2,2 (Bisphenol A), Bis-(4-hydroxy-3,5-dichlor-phenyl)-propan-2,2 (Tetrachlorbisphenol A), Bis-(4-hydroxy-3,5-dibromphenyl)-propan-2,2 (Tetrabrombisphenol A), Bis-(4-hydroxy-3,5-dimethyl-phenyl)-propan-2,2 Tetramethylbisphenol A), Bis - (4 - hydroxy - 3 - methyl - phenyl) - propan - 2,2, Bis - (4 - hy - droxy-phenyl)-cyclohexan-1,1 (Bisphenol Z) sowie auf Basis von Dreikernbisphenolen wie a,a - Bis - (4 - hydroxy - phenyl) - p -diiso - propylbenzol.Suitable diphenols are, for example, hydroquinone, resorcinol, 4,4'-dihydroxydiphenyl, bis (hydroxyphenyl) alkanes, such as, for example, C 1 -C 8 -alkylene or. C 2 ―C 8 alkylidene bisphenols, bis (hydroxyphenyl) cycloalkanes such as C 5― C 6 cycloalkylene or. C 5 -C 6 -cycloalkylidene bisphenols, bis (hydroxyphenyl) sulfides, ethers, ketones, sulfoxides or sulfones. Furthermore, a, a-bis (hydroxyphenyl) diisopropylbenzenes and the corresponding ring-alkylated or ring-halogenated compounds. Polycarbonates based on bis- (4-hydroxyphenyl) propane-2,2 (bisphenol A) and bis- (4-hydroxy-3,5-dichlorophenyl) propane-2,2 (tetrachlorobis) are suitable, for example phenol A), bis (4-hydroxy-3,5-dibromophenyl) propane-2,2 (tetrabromobisphenol A), bis (4-hydroxy-3,5-dimethyl-phenyl) propane-2,2 tetramethylbisphenol A), bis - (4 - hydroxy - 3 - methyl - phenyl) - propane - 2,2, bis - (4 - hydroxy - phenyl) cyclohexane-1,1 (bisphenol Z) as well as based on trinuclear bisphenols like a, a - bis - (4-hydroxy-phenyl) -p -diiso-propylbenzene.

Weitere für die Herstellung von Polycarbonaten geeignete Diphenole sind in den US-Patenten 3 028 265, 2 999 835, 3 148 172, 3 271 368, 2 991 273, 3 271 367, 3 280 078, 3 014 891, 2 999 846 sowie den deutschen Offenlegungsschriften 2 063 050 (Le A 13 359), 2 063 052 (Le A 13 425), 2 211 957 (Le A 14 240) und 2 211 956 (Le A 14 249) beschreiben.Further diphenols suitable for the production of polycarbonates are described in US Pat. Nos. 3,028,265, 2,999,835, 3,148,172, 3,271,368, 2,991,273, 3,271,367, 3,280,078, 3,014,891, 2,999,846 and German published publications 2 063 050 (Le A 13 359), 2 063 052 (Le A 13 425), 2 211 957 (Le A 14 240) and 2 211 956 (Le A 14 249).

Erfindungsgemäß bevorzugt sind die Polycarbonate aus halogenfreien Diphenolen.According to the invention, the polycarbonates from halogen-free diphenols are preferred.

Die erfindungsgemäß hergestellten flammhemmenden Polycarbonate zeichnen sich durch eine im Vergleich zu den herkömmlichen mit monofunktionellen Phenolen abgebrochenen Polycarbonaten verbesserte Flammwidrigkeit aus. So erreichen, die erfindungsgemäßen Polycarbonate je nach Molekulargewicht bzw. Kettenreglergehalt bessere Brandeinstufungen bzw. erheblich kürzere Nachbrennzeiten.The flame-retardant polycarbonates produced according to the invention are distinguished by an improved flame resistance compared to the conventional polycarbonates terminated with monofunctional phenols. In this way, the polycarbonates according to the invention achieve better fire ratings or considerably shorter afterburning times, depending on the molecular weight or chain regulator content.

Der Erfindungsgegenstand soll durch die folgenden Beispiele näher erläutert werden.The subject matter of the invention is to be explained in more detail by the following examples.

I. VergleichsversucheI. Comparative tests 1. Polycarbonat mit p-tert.-Butylphenol als Kettenabbrecher1. Polycarbonate with p-tert-butylphenol as a chain terminator

Ca. 454 Teile 4,4'-Dihydroxydiphenyl-2,2-propan und 9,5 Teile p-tert-Butylphenol werden in 1,5 1 Wasser suspendiert. In einem 3-Halskolben, ausgestattet mit Rührer und Gaseinleitungsrohr, wird der Sauerstoff aus der Reaktionsmischung entfernt, indem unter Rühren 15 min. lang Stickstoff durch die Reaktionsmischung geleitet wird. Dann werden 355 Teile 45%iger Natronlauge und 1000 Teile Methylenchlorid zugegeben. Die Mischung wird auf 25°C abgekühlt. Unter Aufrechterhaltung dieser Temperatur durch Kühlen werden 237 Teile Phosgen während einer Zeitdauer von 120 min. zugegeben. Eine zusätzliche Menge von 75 Teilen einer 45%igen Natronlauge wird nach 15-30 Minuten zugegeben bzw. nachdem die Phosgenaufnahme begonnen hat.Approx. 454 parts of 4,4'-dihydroxydiphenyl-2,2-propane and 9.5 parts of p-tert-butylphenol are suspended in 1.5 l of water. In a 3-necked flask equipped with a stirrer and gas inlet tube, the oxygen is removed from the reaction mixture by stirring for 15 min. nitrogen is passed through the reaction mixture. Then 355 parts of 45% sodium hydroxide solution and 1000 parts of methylene chloride are added. The mixture is cooled to 25 ° C. While maintaining this temperature by cooling, 237 parts of phosgene are removed over a period of 120 min. admitted. An additional amount of 75 parts of a 45% sodium hydroxide solution is added after 15-30 minutes or after the phosgene uptake has begun.

Zu der entstandenen Lösung werden 1,6 Teile Triäthylamin zugegeben und die Mischung weitere 15 Minuten gerührt. Eine hochviskose Lösung wird erhalten, deren Viskosität durch Zugabe von Methylenchlorid reguliert wird. Die wäßrige Phase wird abgetrennt. Die organische Phase wird mit Wasser salzund alkalifrei gewaschen. Das Polycarbonat wird aus der gewaschenen Lösung isoliert und getrocknet. Das Polycarbonat hat eine relative Viskosität von 1,30, gemessen in einer 0,5%igen Lösung von Methylenchlorid bei 20/25°C. Das entspricht ungefähr einem Molekulargewicht von 32 000. Das so gewonnene Polycarbonat wird extrudiert und granuliert.1.6 parts of triethylamine are added to the resulting solution and the mixture is stirred for a further 15 minutes. A highly viscous solution is obtained, the viscosity of which is regulated by adding methylene chloride. The aqueous phase is separated off. The organic phase is washed with water free of salt and alkali. The polycarbonate is isolated from the washed solution and dried. The polycarbonate has a relative viscosity of 1.30, measured in a 0.5% solution of methylene chloride at 20/25 ° C. This corresponds approximately to a molecular weight of 32,000. The polycarbonate obtained in this way is extruded and granulated.

2. Ein aromatisches Polycarbonat auf Basis von 97,7 Mol-% Bisphenol A und 2,3 Mol-% 4,4' - Dihydroxy - 3,3'-5,5' - tetrachlordiphenyl - propan - 2,2 (Tetrachlorbisphenol A) mit einer relativen Viskosität von ηrel = 1,33, MLs = 34 000, hergestellt gemäß Beispiel 1.2. An aromatic polycarbonate based on 97.7 mol% bisphenol A and 2.3 mol% 4,4 '- dihydroxy - 3,3'-5,5' - tetrachlorodiphenyl - propane - 2,2 (tetrachlorobisphenol A ) with a relative viscosity of ηrel = 1.33, M Ls = 34,000, produced according to Example 1.

3. Polycarbonat gemäß DT-OS 1 720 812: Ein Polycarbonat aus Bisphenol A mit 3,27 Mol- % 1,3,5-Tribromphenol als Kettenregler, mit einer relativen Viskosität von ηrel = 1,32, hergestellt gemäß Beispiel 1.3. Polycarbonate according to DT-OS 1 720 812: a polycarbonate made from bisphenol A with 3.27 mol% 1,3,5-tribromophenol as a chain regulator, with a relative viscosity of η rel = 1.32, produced according to example 1.

11. Erfindungsgemäß hergestellte Polycarbonate11. Polycarbonates produced according to the invention

4. Aus 3,192 kg 2,2-Bis-(4-hydroxyphenyl)-propan (Bisphenol A) (14 Mol), 2,53 kg 45%iger wäßriger Natronlauge und 15 I destilliertem Wasser wird eine Lösung hergestellt. Nach Zugabe von 34 kg Methylenchlorid werden unter Rühren 80,8 g. Benzolsulfonsäurechlorid (3,27 Mol-%), in 1 kg methylenchlorid gelöst, bei Raumtemperatur zugefügt. Bei 20-25°C werden 2,64 kg Phosgen eingeleitet. Durch Zugabe weiterer 26,3 kg 6,5%iger Natronlauge während der Phosgenierung wird der pH-Wert bei 13-14 gehalten. Anschließend werden 15 ml Triäthylamin zugesetzt und 30 Minuten nachgerührt. Dann wird die obere wäßrige Phase abgetrennt, die organische Phase angesäuert und elektrolytfrei gewaschen. Anschließend wird das Methylenchlorid abgedampft und das Polycarbonat bei 110°C 8 Stunden getrocknet. Die relative Viskosität beträgt ηrel = 1,32.4. A solution is prepared from 3.192 kg of 2,2-bis (4-hydroxyphenyl) propane (bisphenol A) (14 mol), 2.53 kg of 45% strength aqueous sodium hydroxide solution and 15 l of distilled water. After adding 34 kg of methylene chloride, 80.8 g. Benzenesulfonic acid chloride (3.27 mol%), dissolved in 1 kg of methylene chloride, added at room temperature. At 20-25 ° C, 2.64 kg of phosgene are introduced. By adding a further 26.3 kg of 6.5% sodium hydroxide solution during the phosgenation, the pH is kept at 13-14. Then 15 ml of triethylamine are added and stirring is continued for 30 minutes. Then the upper aqueous phase is separated off, the organic phase is acidified and washed free of electrolytes. The methylene chloride is then evaporated off and the polycarbonate is dried at 110 ° C. for 8 hours. The relative viscosity is η rel = 1.32.

5. Ein Polycarbonat auf Basis von Bisphenol A, hergestellt gemäß Beispiel 4 unter Verwendung von 3,4 Mol-% 3,4-Dichlorbenzolsulfonsäurechlorid mit einer relativen Viskosität von 1,29.5. A polycarbonate based on bisphenol A, prepared according to Example 4 using 3.4 mol% of 3,4-dichlorobenzenesulfonic acid chloride with a relative viscosity of 1.29.

6. Ein Polycarbonat auf Basis von Bisphenol A, hergestellt gemäß Beispiel 4 unter Verwendung von 3,27 Mol-% Naphthalin-2-sulfonsäurechlorid mit einer relativen Viskosität von 1,31.6. A polycarbonate based on bisphenol A, prepared according to Example 4 using 3.27 mol% of naphthalene-2-sulfonic acid chloride with a relative viscosity of 1.31.

7. Ein Polycarbonat auf Basis von Bisphenol A mit 3,27 Mol-% 3,4-Dichlorbenzolsulfonsäurechlorid mit einer relativen Viskosität von 1,30, hergestellt gemäß Beispiel 4.

Figure imgb0002
7. A polycarbonate based on bisphenol A with 3.27 mol% of 3,4-dichlorobenzenesulfonic acid chloride with a relative viscosity of 1.30, prepared according to Example 4.
Figure imgb0002

Die Messung des Brandverhaltens nach UL Bull 94, Prüfstabdicke 1/16" erfolgte an getemperten Prüstäben (130'C, 2 Tage).The fire behavior was measured according to UL Bull 94, test rod thickness 1/16 "on tempered test rods (130'C, 2 days).

Die Nachbrennzeiten nach der 2. Beflammung sind mit der Stoppuhr ermittelt; Mittelwert aus 5 verschiedenen Messungen.The afterburn times after the 2nd flame exposure are determined with the stopwatch; Average of 5 different measurements.

Claims (4)

1. A process for the preparation of aromatic polycarbonates, with average molecular weights of between 10,000 and 100,000, from diphenols by the known two-phase interface process, using chain stoppers, characterised in that aromatic mono-sulphonic acid chlorides are used as chain stoppers in amounts of from 2 mol % to 20 mol %, relative to the number of mols of diphenols used.
2. A process according to Claim 1, characterised in that the aromatic monosulphonic acid chlorides are used in amounts of from 2.5 mol % to 10 mol %, relative to the number of mols of diphenols used.
3. A process according to Claims 1 and 2, characterised in that the diphenols used are halogen-free.
4. Aromatic polycarbonates, obtained according to the process of claims 1, 2 and 3.
EP78100379A 1977-07-19 1978-07-12 Process for the preparation of flame retardant polycarbonates Expired EP0000396B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE2732556 1977-07-19
DE19772732556 DE2732556A1 (en) 1977-07-19 1977-07-19 METHOD FOR MANUFACTURING FLAME RETARDANT POLYCARBONATES

Publications (2)

Publication Number Publication Date
EP0000396A1 EP0000396A1 (en) 1979-01-24
EP0000396B1 true EP0000396B1 (en) 1980-07-23

Family

ID=6014277

Family Applications (1)

Application Number Title Priority Date Filing Date
EP78100379A Expired EP0000396B1 (en) 1977-07-19 1978-07-12 Process for the preparation of flame retardant polycarbonates

Country Status (5)

Country Link
US (1) US4188475A (en)
EP (1) EP0000396B1 (en)
JP (1) JPS5421497A (en)
DE (2) DE2732556A1 (en)
IT (1) IT1106182B (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5625110A (en) * 1978-12-18 1981-03-10 Bristol Myers Co Antibacterial
US4469860A (en) * 1981-09-28 1984-09-04 General Electric Company Aromatic polycarbonate resin end capped with hydroxy arylene sulfonate
US4403087A (en) * 1981-09-28 1983-09-06 General Electric Company Polycarbonates chain terminated with sulfonic acid salt containing phenols
DE3150273A1 (en) * 1981-12-18 1983-06-30 Bayer Ag, 5090 Leverkusen METHOD FOR PRODUCING POLYCARBONATES WITH SULFONANILIDE END GROUPS
DE3225884A1 (en) * 1982-07-10 1984-01-12 Bayer Ag, 5090 Leverkusen METHOD FOR PRODUCING POLYCARBONATES WITH N-ALKYLPERFLUORALKYLSULFONAMIDE END GROUPS
WO1984004312A1 (en) * 1983-05-04 1984-11-08 Gen Electric Composition comprising flame retardant end-capped polycarbonate
IT1214645B (en) * 1985-12-19 1990-01-18 Enichem Polimeri BRANCHED POLYCARBONATES CONTAINING BINUCLEAR AROMATIC COMPOUNDS.
WO1999019883A1 (en) 1997-10-15 1999-04-22 The Dow Chemical Company Electronically-conductive polymers
US20080014446A1 (en) * 2004-10-07 2008-01-17 General Electric Company Window shade and a multi-layered article, and methods of making the same
US7557153B2 (en) * 2005-10-31 2009-07-07 Sabic Innovative Plastics Ip Bv Ionizing radiation stable thermoplastic composition, method of making, and articles formed therefrom
US7528212B2 (en) * 2005-11-18 2009-05-05 Sabic Innovative Plastics Ip B.V. Ionizing radiation stable thermoplastic composition, method of making, and articles formed therefrom
US20080081892A1 (en) * 2006-09-29 2008-04-03 General Electric Company Thermoplastic compositions, methods of making, and articles formed therefrom
US8771829B2 (en) * 2008-09-25 2014-07-08 Sabic Innovative Plastics Ip B.V. Flame retardant thermoplastic polymer composition, method of manufacture, and articles formed therefrom
US20100280159A1 (en) * 2008-09-25 2010-11-04 Christianus Johannes Jacobus Maas Flame retardant thermoplastic composition and articles formed therefrom
US8445568B2 (en) * 2008-09-25 2013-05-21 Sabic Innovative Plastics Ip B.V. Flame retardant thermoplastic composition and articles formed therefrom
WO2012145406A2 (en) 2011-04-18 2012-10-26 Holtec International, Inc. Autonomous self-powered system for removing thermal energy from pools of liquid heated by radioactive materials, and methods of the same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB964711A (en) 1960-03-31 1964-07-22 Teikoku Jinzo Kenshi Kk Modified polyesters and the method of preparation thereof
US3177179A (en) * 1960-05-31 1965-04-06 Dow Chemical Co Chain terminated polycarbonates
US3240756A (en) * 1961-03-02 1966-03-15 Allied Chem Continuous addition of phenolic chain terminator in bisphenol polycarbonate production by emulsion polymerization
US3398120A (en) * 1963-07-16 1968-08-20 Hooker Chemical Corp Polyesters of diacid halide, alkyl bisphenol and glycol
US3933734A (en) * 1973-12-28 1976-01-20 General Electric Company Flame retardant polycarbonate composition
US4020045A (en) * 1976-02-26 1977-04-26 The Dow Chemical Company Process for controlling the molecular weight of aromatic polycarbonates

Also Published As

Publication number Publication date
JPS5421497A (en) 1979-02-17
DE2860055D1 (en) 1980-11-13
IT7850325A0 (en) 1978-07-17
EP0000396A1 (en) 1979-01-24
IT1106182B (en) 1985-11-11
JPS6228809B2 (en) 1987-06-23
DE2732556A1 (en) 1979-02-01
US4188475A (en) 1980-02-12

Similar Documents

Publication Publication Date Title
EP0000396B1 (en) Process for the preparation of flame retardant polycarbonates
DE2500092A1 (en) BRANCHED, HIGH MOLECULAR, THERMOPLASTIC POLYCARBONATE
DE2842005A1 (en) POLYCARBONATES WITH ALKYLPHENYL END GROUPS, THEIR PRODUCTION AND THEIR USE
EP0082383B1 (en) Process for preparing polycarbonates containing sulfone anilide end groups
EP0013904B1 (en) Process for the preparation of polycarbonates
DE3443090A1 (en) AROMATIC POLYESTERS WITH DIMETHYLMALEINIMID END GROUPS, THEIR PRODUCTION AND USE
EP0078943A1 (en) Process for the production of polycarbonates with an ageing performance
DE2246106C2 (en) High molecular weight polycarbonates containing s-triazine rings
EP0075772B1 (en) Process for the isolation of polycarbonates based on 4,4'-dihydroxydiphenyl sulphones
DE2253072A1 (en) FLAME-RESISTANT POLYCARBONATE CONTAINING PERFLUORALKANESULFONATE
EP0065728B1 (en) Copolyester carbonates and their mixture with known polycarbonates to make thermoplastic mouldings
EP0001823A2 (en) Use of esters of boric acid to stabilize phosphite-free polycarbonates, and the obtained stabilized polycarbonate moulding compositions
EP0099990B1 (en) Process for the preparation of polycarbonates containing n-alkylperfluoroalkyl sulfon amide end groups
EP0000753B1 (en) Process for the preparation of polycarbonates and the polycarbonates obtained
DE2644437A1 (en) USE OF FERROCENE AND ITS DERIVATIVES AS FLAME RETARDERS IN POLYCARBONATE MOLDING COMPOUNDS
EP0029111B1 (en) Thermoplastic aromatic copolycarbonates, process for their preparation from 2,2-bis(4-hydroxyphenyl)-1,1,1,3,3,3-hexafluor propane and their use
DE3513715A1 (en) Polycarbonates containing dichloromaleimide terminal groups, their preparation and modification
EP0423562B1 (en) Polycarbonates with improved dimensional stability under heat
DE3903487A1 (en) METHOD FOR PRODUCING A WEATHERPROOF POLYCARBONATE
DE4004566C2 (en) New polycarbonate resin and manufacturing process
EP0207413B1 (en) Tetra(hydroxyaryl)-bis-quinoxalines, their preparation and their use as branching agents in thermoplastic polycarbonates
DE2052378C3 (en) Halogen-containing high molecular weight aromatic polyester carbonates, process for their preparation and their use
EP0071125A1 (en) Non halogenated flame-retardant polycarbonates
DE2315888A1 (en) Flame resistant, halogenated aromatic polycarbonate - useful as flame retardant in halogen-free polycarbonates
DE2711184A1 (en) METHOD OF MANUFACTURING COLOR FELLER POLYCARBONATE

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): DE FR GB NL

17P Request for examination filed
GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): DE FR GB NL

REF Corresponds to:

Ref document number: 2860055

Country of ref document: DE

Date of ref document: 19801113

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19840702

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19840703

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19870731

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19880712

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19890201

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19890331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19890401

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT