EP0000753B1 - Process for the preparation of polycarbonates and the polycarbonates obtained - Google Patents

Process for the preparation of polycarbonates and the polycarbonates obtained Download PDF

Info

Publication number
EP0000753B1
EP0000753B1 EP78100539A EP78100539A EP0000753B1 EP 0000753 B1 EP0000753 B1 EP 0000753B1 EP 78100539 A EP78100539 A EP 78100539A EP 78100539 A EP78100539 A EP 78100539A EP 0000753 B1 EP0000753 B1 EP 0000753B1
Authority
EP
European Patent Office
Prior art keywords
polycarbonates
polycarbonate
parts
mol
bis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP78100539A
Other languages
German (de)
French (fr)
Other versions
EP0000753A1 (en
Inventor
Wolfgang Dr. Alewelt
Dieter Dr. Margotte
Claus Dr. Wulff
Hugo Dr. Vernaleken
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bayer AG
Original Assignee
Bayer AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer AG filed Critical Bayer AG
Publication of EP0000753A1 publication Critical patent/EP0000753A1/en
Application granted granted Critical
Publication of EP0000753B1 publication Critical patent/EP0000753B1/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/20General preparatory processes
    • C08G64/22General preparatory processes using carbonyl halides
    • C08G64/24General preparatory processes using carbonyl halides and phenols

Definitions

  • the present invention relates to a process for the preparation of aromatic polycarbonates according to the phase interface process from diphenols, which is characterized in that the catalysts used are N-ethylpyrrolidine, N-ethylpiperidine, N-ethylmorpholine, N-isopropylpiperidine or N-isopropylmorpholine in amounts of 0.01 mol% to 10 mol%, based on moles of diphenols used.
  • the present invention also relates to the polycarbonates obtainable according to the process, which are notable for high light transmission and low yellowing tendency even after higher temperatures.
  • the color stabilization of aromatic polycarbonates has hitherto preferably been carried out by adding additives, in particular phosphites (cf. DE-AS-1 128 653, DE-AS 2 140 207 and DE-OS 2 255 639), optionally in combination with other additives, for example with oxetane compounds (DE-OS 2 510 463).
  • additives in particular phosphites (cf. DE-AS-1 128 653, DE-AS 2 140 207 and DE-OS 2 255 639), optionally in combination with other additives, for example with oxetane compounds (DE-OS 2 510 463).
  • the method according to the invention uses a completely different principle, in that it uses the above-mentioned catalysts as catalysts in polycarbonate production by the two-phase interfacial polycondensation process (cf. DE-PS 959 497, DE-PS 1046311 and DE-PS 2 410 716) .
  • N-methylpiperazine is used only with poor success as a catalyst for the production of polycarbonates. (Compare column 1, line 69 to column 2, line 27).
  • polyamines including cyclic polyamines such as N, N-diethylpiperazine, are used for the production of polycarbonates.
  • cyclic polyamines such as N, N-diethylpiperazine
  • N-alkyl morpholines can be used as catalysts for the production of polycarbonates.
  • special N-alkylmorpholines lead to polycarbonates with improved thermal stability compared to the catalysts also mentioned in these references, such as, for example, triethylamine.
  • GB-PS 1072161 (see in particular page 2, lines 28 ff) describes the preparation of polycarbonates from di- ( ⁇ -trihalogen-a-hydroxyethoxy) alkanes, it being possible, inter alia, to use N-methylmorpholine as the tertiary base.
  • N-methylmorpholine is not suitable as a catalyst according to the present invention.
  • from 0.01 to 10 mol% preferably from 0.05 to 5 mol% and in particular from 0.05 to 2 mol%, based on moles of diphenols used, are used on the catalysts mentioned at the outset.
  • N-ethylpiperidine is particularly suitable.
  • the high molecular weight polycarbonates are produced according to the invention by the phase interface process.
  • Diphenols in particular dihydroxydiarylalkanes or -cycloalkanes, for which, in addition to the unsubstituted dihydroxydiarylalkanes or -cycloalkanes, those which are substituted in the o-position to the phenolic hydroxyl groups are also suitable in the aqueous-alkaline phase, and one is used for the Added suitable polycarbonate solvent.
  • phosgene is introduced at a temperature between 0 and 100 ° C and a pH between 9 and 14. The polycondensation takes place after the phosgenation.
  • the catalysts suitable according to the invention can be added either before introducing phosgene or after introducing phosgene before polycondensation.
  • the phosgene introduction times are between 1 and 60 minutes, the post-condensation between 2 and 120 minutes.
  • the organic polymer solution is separated off and washed free of electrolytes with water.
  • the polycarbonate can then be removed by evaporation of the solvent or by precipitation with non-solvents, e.g. Methanol or gasoline can be isolated.
  • the polycarbonates produced by the process according to the invention can also be branched in a known manner.
  • Suitable diphenols are, for example, hydroquinone, resorcinol, 4,4'-dihydroxydiphenyl, bis- (hydroxyphenyl) alkanes, such as, for example, C1-CS-alkylene- or C 2 -C 8 -alkylidene bisphenols, bis- (hydroxyphenyl) cycloalkanes, for example Cs-Cs-cycloalkylene or C 5 -C 6 -cycloalkylidene bisphenols, bis - (hydroxyphenyl) sulfides, ethers, ketones, sulfoxides or sulfones.
  • ⁇ , ⁇ '- bis - (hydroxyphenyl) - diisopropylbenzenes and the corresponding nuclear alkylated or nuclear halogenated compounds Polycarbonates based on bis (4-hydroxyphenyl) propane-2,2 (bisphenol A), bis (4-hydroxy-3,5-dichlorophenyl) propane-2,2 (tetrachlorobisphenol A), bis are preferred - (4-hydroxy-3,5-dibromophenyl) propane - 2,2 (tetrabromobisphenol A), bis - (4-hydroxy-3,5-dimethylphenyl) propane - 2,2 (tetramethylbisphenol A), bis - ( 4-hydroxy-3-methyl-phenyl) -propane-2,2, bis - (4-hydroxyphenyl) -cyclohexane-1,1 (bisphenol Z) and based on trinuclear bisphenols such as a, a '- bis - (4 - hydroxy-phenyl) - diis
  • the catalyst (see examples) is added to the resulting solution and the mixture is stirred for a further 15 minutes.
  • a highly viscous solution is obtained, the viscosity of which is regulated by adding methylene chloride.
  • the aqueous phase is separated off.
  • the organic phase is washed free of salt and alkali with water.
  • Polycarbonate is isolated from the washed-out solution and dried.
  • the polycarbonate has a relative viscosity of 1.30-1.31, measured in a 0.5% solution of methylene chloride at 20 ° C. This corresponds approximately to a molecular weight of 34,000.
  • the polycarbonate thus obtained is extruded and granulated.
  • the reaction temperature is 72 ° C; the concentration of OH ions in the aqueous reaction phase is 0.08%.
  • the average residence time is 1.4 minutes.
  • the emulsion flowing out of the pump-around reactor is fed with additional sodium hydroxide solution to increase the OH concentration to 0.3 to 0.35%.
  • the oligocarbonate is condensed in a reaction tube as described in DE-OS 1 920 302 or US Pat. No. 3,674,740.
  • the average residence time is 4 minutes; the temperature 83 ° C.
  • the aqueous reaction phase contains 0.32% OH ⁇ and 0.51% C0 3 ; There is no evidence of bisphenol.
  • the polycarbonate solution is washed free of electrolytes, evaporated and isolated using an evaporation extruder.
  • the polycarbonate has a relative viscosity of 1.30 to 1.31, measured in a 0.5% solution of methylene chloride at 20 ° C. This corresponds approximately to a molecular weight of 34,000.
  • the polycarbonates were processed into test specimens.
  • the test specimens are annealed at 140 ° C in a drying cabinet.
  • the light transmission was measured according to DIN 5033 and DIN 4646 using a spectrophotometer.
  • the drop in light transmission at 420 nm in the course of the heat treatment is a measure of the increasing discoloration of the test specimen.

Description

Gegenstand der vorliegenden Erfindung ist ein Verfahren zur Herstellung von aromatischen Polycarbonaten nach dem Phasengrenzflächenverfahren aus Diphenolen, das dadurch gekennzeichnet, ist, daß man als Katalysatoren N-Ethylpyrrolidin, N-Ethylpiperidin, N-Ethylmorpholin, N-Isopropylpiperidin oder N-Isopropylmorpholin in Mengen von 0,01 Mol-% bis 10 Mol-%, bezogen auf Mole an eingesetzten Diphenolen, verwendet.The present invention relates to a process for the preparation of aromatic polycarbonates according to the phase interface process from diphenols, which is characterized in that the catalysts used are N-ethylpyrrolidine, N-ethylpiperidine, N-ethylmorpholine, N-isopropylpiperidine or N-isopropylmorpholine in amounts of 0.01 mol% to 10 mol%, based on moles of diphenols used.

Gegenstand der vorliegenden Erfindung sind außerdem die verfahrensgemäß erhältlichen Polycarbonate, die sich durch hohe Lichttransmission und geringe Vergilbungstendenz auch nach höherer Temperaturbelastung auszeichnen.The present invention also relates to the polycarbonates obtainable according to the process, which are notable for high light transmission and low yellowing tendency even after higher temperatures.

Die Farbstabilisierung von aromatischen Polycarbonaten erfolgte bisher vorzugsweise durch den Zusatz von Additiven, insbesondere von Phosphiten (vgl. DE-AS - 1 128 653, DE-AS 2 140 207 und DE-OS 2 255 639) gegebenenfalls in Kombination mit anderen Additiven wie beispielsweise mit Oxetanverbindungen (DE-OS 2 510 463).The color stabilization of aromatic polycarbonates has hitherto preferably been carried out by adding additives, in particular phosphites (cf. DE-AS-1 128 653, DE-AS 2 140 207 and DE-OS 2 255 639), optionally in combination with other additives, for example with oxetane compounds (DE-OS 2 510 463).

Gegenüber diesen Methoden zur Farbstabilisierung von Polycarbonaten benutzt die erfindungsgemäße Methode ein völlig anderes Prinzip, indem sie als Katalysatoren bei der Polycarbonatherstellung nach dem Zweiphasengrenzflächenpolykondensationsverfahren (vgl. DE-PS 959 497 DE-PS 1046311 und DE-PS 2 410 716) die eingangs genannten verwendet.Compared to these methods for color stabilization of polycarbonates, the method according to the invention uses a completely different principle, in that it uses the above-mentioned catalysts as catalysts in polycarbonate production by the two-phase interfacial polycondensation process (cf. DE-PS 959 497, DE-PS 1046311 and DE-PS 2 410 716) .

Gemäß US-PS 3 220 975 wird N-Methylpiperazin nur mit schlechtem Erfolg als Katalysator für die Herstellung von Polycarbonaten eingesetzt. (Vergleiche Spalte 1, Zeile 69 bis Spalte 2, Zeile 27).According to US Pat. No. 3,220,975, N-methylpiperazine is used only with poor success as a catalyst for the production of polycarbonates. (Compare column 1, line 69 to column 2, line 27).

Gemäß japanischer Auslegeschrift Nr. 11447/1972 (siehe Chem. Zentralblatt Nr. 32 vom. 4.8.1965, Seite 10098, Nr. 2837) werden Polyamine, unter anderem auch cyclische Polyamine wie N,N-Diethylpiperazin für die Polycarbonatherstellung eingesetzt. Der Einsatz der erfindungsgemäßen Katalysatoren is darin weder vorbeschrieben noch nahegelegt.According to Japanese Patent Application No. 11447/1972 (see Chem. Zentralblatt No. 32 of 4.8.1965, page 10098, No. 2837), polyamines, including cyclic polyamines such as N, N-diethylpiperazine, are used for the production of polycarbonates. The use of the catalysts according to the invention is neither previously described nor suggested.

Gemäß DE-AS 21 01 700 und gemäß DE-OS 23 05 144 können N-Alkyl-morpholine als Katalysatoren für die Polycarbonatherstellung eingesetzt werden. Es war jedoch daraus nicht zu entnehmen, daß spezielle N-Alkylmorpholine gegenüber den in diesen Literaturstellen ebenfalls genannten Katalysatoren wie beispielsweise Triethylamin zu Polycarbonaten mit verbesserter thermischer Beständigkeit führen.According to DE-AS 21 01 700 and DE-OS 23 05 144, N-alkyl morpholines can be used as catalysts for the production of polycarbonates. However, it could not be inferred from this that special N-alkylmorpholines lead to polycarbonates with improved thermal stability compared to the catalysts also mentioned in these references, such as, for example, triethylamine.

GB-PS 1072161 (siehe insbesondere Seite 2, Zeilen 28 ff) beschreibt die Herstellung von Polycarbonaten aus Di-(ß-trihalogen-a-hydroxyethoxy)-alkanen, wobei unter anderem N-Methyl-morpholin als tertiäre Base verwendet werden kann. Abgesehen von dem äquimolaren Einsatz der tertiären Basen, also abgesehen von der unterschiedlichen Menge an tertiärer Base, verglichen mit der Katalysatormenge gemäß vorliegender Erfindung, hat sich gezeigt, daß N-Methylmorpholin als Katalysator gemäß vorliegender Erfindung nicht geeignet ist.GB-PS 1072161 (see in particular page 2, lines 28 ff) describes the preparation of polycarbonates from di- (β-trihalogen-a-hydroxyethoxy) alkanes, it being possible, inter alia, to use N-methylmorpholine as the tertiary base. Apart from the equimolar use of the tertiary bases, that is to say apart from the different amount of tertiary base compared to the amount of catalyst according to the present invention, it has been shown that N-methylmorpholine is not suitable as a catalyst according to the present invention.

Erfindungsgemäß werden von 0,01 bis 10 Mol-%, vorzugsweise von 0,05 bis 5 Mol-% und insbesondere von 0,05 bis 2 Mol-%, bezogen auf Mole an eingesetzten Diphenolen, an den eingangs genannten katalysatoren eingesetzt.According to the invention, from 0.01 to 10 mol%, preferably from 0.05 to 5 mol% and in particular from 0.05 to 2 mol%, based on moles of diphenols used, are used on the catalysts mentioned at the outset.

Besonders geeignet ist: N-Ethylpiperidin.N-ethylpiperidine is particularly suitable.

Die erfindungsgemäße Herstellung der hochmolekularen Polycarbonate erfolgt nach dem Phasengrenzflächenverfahren. Dazu werden Diphenole, insbesondere Dihydroxydiarylalkane bzw. -cycloalkane, wobei neben den unsubstituierten Dihydroxydiarylalkanen bzw. -cycloalkanen auch solche geeignet sind, die in o-Stellung zu den phenolischen Hydroxylgruppen substituiert sind, in wäßrig-alkalischer Phase gelöst, und es wird ein für das Polycarbonat geeignetes Lösungsmittel zugefügt. Dann wird bei einer Temperatur zwischen 0 und 100°C und einem pH-Wert zwischen 9 und 14 Phosgen eingeleitet. Nach dem Phosgenieren erfolgt die Polykondensation. Die Zugabe der erfindungsgemäß geeigneten Katalysatoren kann sowohl vor dem Phosgeneinleiten wie auch nach dem Phosgeneinleiten vor der Polykondensation erfolgen. Die Phosgeneinleitungszeiten betragen zwischen 1 und 60 Minuten, die Nachkondensation zwischen 2 und 120 Minuten. Zur Isolierung der fertigen Polycarbonate wird die organische Polymerlösung abgetrennt und mit Wasser elektrolytfrei gewaschen. Anschließend kann das Polycarbonat durch Abdampfen des Lösungsmittels oder durch Ausfällen mit Nichtlösungsmitteln, wie z.B. Methanol oder Benzin isoliert werden. Die nach dem erfindungsgemäßen Verfahren hergestellten Polycarbonate können in bekannter Weise auch verzweigt sein.The high molecular weight polycarbonates are produced according to the invention by the phase interface process. Diphenols, in particular dihydroxydiarylalkanes or -cycloalkanes, for which, in addition to the unsubstituted dihydroxydiarylalkanes or -cycloalkanes, those which are substituted in the o-position to the phenolic hydroxyl groups are also suitable in the aqueous-alkaline phase, and one is used for the Added suitable polycarbonate solvent. Then phosgene is introduced at a temperature between 0 and 100 ° C and a pH between 9 and 14. The polycondensation takes place after the phosgenation. The catalysts suitable according to the invention can be added either before introducing phosgene or after introducing phosgene before polycondensation. The phosgene introduction times are between 1 and 60 minutes, the post-condensation between 2 and 120 minutes. To isolate the finished polycarbonates, the organic polymer solution is separated off and washed free of electrolytes with water. The polycarbonate can then be removed by evaporation of the solvent or by precipitation with non-solvents, e.g. Methanol or gasoline can be isolated. The polycarbonates produced by the process according to the invention can also be branched in a known manner.

Die erfindungsgemäß erhältlichen Polycarbonate haben mittlere Molekulargewichte (Mw = Gewichtsmittel) zwischen 10.000 und 200.000, vorzugsweise zwischen 20.000 und 100.000, die aus der relativen Viskosität der Polycarbonate (gemessen in Methylenchlorid bei 25°C und einer Konzentration von 0,5 Gew.-%) ermittelt werden können.The polycarbonates obtainable according to the invention have average molecular weights (M w = weight average) between 10,000 and 200,000, preferably between 20,000 and 100,000, which are based on the relative viscosity of the polycarbonates (measured in methylene chloride at 25 ° C. and a concentration of 0.5% by weight ) can be determined.

Geeignete Diphenole sind z.B. Hydrochinon, Resorcin, 4,4'-Dihydroxydiphenyl, Bis-(hydroxyphenyl)-alkane, wie beispielsweise C1-CS-Alkylen- bzw. C2―C8-Alkylidenbisphenole, Bis-(hydroxyphenyl)-cycloalkane wie beispielsweise Cs-Cs-Cycloalkylen- bzw. C5―C6-Cycloalkyliden - bisphenole, Bis - (hydroxyphenyl) - sulfide, -ether, -ketone, -sulfoxide oder -sulfone. Ferner α,α' - Bis - (hydroxyphenyl) - diisopropylbenzole sowie die entsprechenden kernalkylierten bzw. kernhalogenierten Verbindungen. Bevorzugt sind Polycarbonate auf Basis Bis - (4 - hydroxyphenyl) - propan - 2,2 (Bisphenol A), Bis - (4-hydroxy - 3,5 - dichlor - phenyl) - propan - 2,2 (Tetrachlorbisphenol A), Bis - (4 - hydroxy - 3,5-dibromophenyl) - propan - 2,2 (Tetrabrombisphenol A), Bis - (4 - hydroxy - 3,5 - dimethylphenyl) - propan - 2,2 (Tetramethylbisphenol A), Bis - (4 - hydroxy - 3 - methyl - phenyl) - propan-2,2, Bis - (4 - hydroxyphenyl) - cyclohexan - 1,1 (Bisphenol Z) sowie auf Basis von Dreikernbisphenolen wie a,a' - Bis - (4 - hydroxy - phenyl)-p - diisopropylbenzol.Suitable diphenols are, for example, hydroquinone, resorcinol, 4,4'-dihydroxydiphenyl, bis- (hydroxyphenyl) alkanes, such as, for example, C1-CS-alkylene- or C 2 -C 8 -alkylidene bisphenols, bis- (hydroxyphenyl) cycloalkanes, for example Cs-Cs-cycloalkylene or C 5 -C 6 -cycloalkylidene bisphenols, bis - (hydroxyphenyl) sulfides, ethers, ketones, sulfoxides or sulfones. Furthermore, α, α '- bis - (hydroxyphenyl) - diisopropylbenzenes and the corresponding nuclear alkylated or nuclear halogenated compounds. Polycarbonates based on bis (4-hydroxyphenyl) propane-2,2 (bisphenol A), bis (4-hydroxy-3,5-dichlorophenyl) propane-2,2 (tetrachlorobisphenol A), bis are preferred - (4-hydroxy-3,5-dibromophenyl) propane - 2,2 (tetrabromobisphenol A), bis - (4-hydroxy-3,5-dimethylphenyl) propane - 2,2 (tetramethylbisphenol A), bis - ( 4-hydroxy-3-methyl-phenyl) -propane-2,2, bis - (4-hydroxyphenyl) -cyclohexane-1,1 (bisphenol Z) and based on trinuclear bisphenols such as a, a '- bis - (4 - hydroxy-phenyl) -p-diisopropylbenzene.

Weitere für die Herstellung von Polycarbonaten geeignete Diphenole sind in den US-Patenten 3 028 265, 2 999 835, 3 148 172,3271 386, 2 991 273,3271 367, 3280078, 3014891, 2 999 846 sowie den deutschen Offenlegungsschriften 2 063 050, 2 063 052, 2211 957 und 2211 956 beschrieben.Further diphenols suitable for the production of polycarbonates are described in US Pat. Nos. 3,028,265, 2,999,835, 3,148,172,3271,386, 2,991,273,3271,367, 32,80078, 3014,891, 2,999,846 and German Offenlegungsschriften 2,063,050 , 2 063 052, 2211 957 and 2211 956.

Die in den folgenden Beispielen verwendeten Ausgangsmaterialien werden wie folgt charakterisiert (Teile = Gew. Teile):The starting materials used in the following examples are characterized as follows (parts = parts by weight):

1. Verfahren 1: (Phosgenierung in Methylenchlorid) Diskontinuierliche Herstellung eines Polycarbonats1. Method 1: (Phosgenation in methylene chloride) batch production of a polycarbonate

456 Teile 2,2-Bis-(4-hydroxyphenyl)-propan und 9,5 Teile p.-tert.-Butylphenol werden in 1,5 I Wasser suspendiert. In einem 3-Halskolben ausgestattet mit Rührer und Gaseinleitungsrohr, wird der Sauerstoff aus der Reaktionsmischung entfernt, indem unter Rühren 15 Min. lang Stickstoff durch die Reaktionsmischung geleitet wird. Dann werden 355 Teile 45%ige Natronlauge und 1000 Teile Methylenchlorid zugegeben. Die Mischung wird auf 25°C abgekühlt. Unter Aufrechterhaltung dieser Temperatur durch Kühlen werden 237 Teile Phosgen während einer Zeitdauer von 60 Min. zugegeben. Eine zusätzliche Menge von je 75 Teilen einer 45%igen Natronlauge wird nach 15 und 30 Min. zugegeben, nachdem die Phosgenaufnahme begonnen hat, Zu der entstandenen Lösung wird der, Katalysator (siehe Beispiele) zugegeben und die Mischung weitere 15 Min. gerührt. Eine hochviskose Lösung wird erhalten, deren Viskosität durch Zugabe von Methylenchlorid reguliert wird. Die wäßrige Phase wird abgetrennt. Die organische Phase wird mit Wasser salz- und alkalifrei gewashcen. Polycarbonat wird aus der ausgewaschenen Lösung isoliert und getrocknet. Das Polycarbonat hat eine relative Viskosität von 1,30-1,31, gemessen in einer 0,5%igen Lösung von Methylenchlorid bei 20°C. Das entspricht ungefähr einem Molekulargewicht von 34.000. Das so gewonnene Polycarbonat wird extrudiert und granuliert.456 parts of 2,2-bis (4-hydroxyphenyl) propane and 9.5 parts of p.-tert-butylphenol are suspended in 1.5 l of water. In a 3-neck flask equipped with a stirrer and gas inlet tube, the oxygen is removed from the reaction mixture by passing nitrogen through the reaction mixture with stirring for 15 minutes. Then 355 parts of 45% sodium hydroxide solution and 1000 parts of methylene chloride are added. The mixture is cooled to 25 ° C. While maintaining this temperature by cooling, 237 parts of phosgene are added over a period of 60 minutes. An additional amount of 75 parts of a 45% sodium hydroxide solution is added after 15 and 30 minutes after the phosgene has started. The catalyst (see examples) is added to the resulting solution and the mixture is stirred for a further 15 minutes. A highly viscous solution is obtained, the viscosity of which is regulated by adding methylene chloride. The aqueous phase is separated off. The organic phase is washed free of salt and alkali with water. Polycarbonate is isolated from the washed-out solution and dried. The polycarbonate has a relative viscosity of 1.30-1.31, measured in a 0.5% solution of methylene chloride at 20 ° C. This corresponds approximately to a molecular weight of 34,000. The polycarbonate thus obtained is extruded and granulated.

2. Verfahren 2: (Phosgenierung in Chlorbenzol) Kontinuierliche Herstellung eines Polycarbonats2. Method 2: (Phosgenation in chlorobenzene) Continuous production of a polycarbonate

In einem Umpumpreaktor mit 4,25 I Reaktionsvolumen, wie in DE-AS 2410716 beschrieben, werden folgende Lösungen eingepumpt:

Figure imgb0001
The following solutions are pumped into a pump-around reactor with a reaction volume of 4.25 l, as described in DE-AS 2410716:
Figure imgb0001

Die Reaktionstemperatur beträgt 72°C; die Konzentration der OH-Ionen in der wäßrigen Reaktionsphase 0,08%. Die mittlere Verweilzeit beträgt 1,4 Min.The reaction temperature is 72 ° C; the concentration of OH ions in the aqueous reaction phase is 0.08%. The average residence time is 1.4 minutes.

Der aus dem Umpumpreaktor abfließenden Emulsion wird zur Erhöhung der OH-Konzentration auf 0,3 bis 0,35% weitere Natronlauge zugeführt. Die Aufkondensation des Oligocarbonats wird in einem Reaktionsrohr, wie es in DE-OS 1 920 302 bzw. US-PS 3 674 740 beschrieben, durchgeführt. Die mittlere Verweilzeit beträgt 4 Min.; die Temperatur 83°C.The emulsion flowing out of the pump-around reactor is fed with additional sodium hydroxide solution to increase the OH concentration to 0.3 to 0.35%. The oligocarbonate is condensed in a reaction tube as described in DE-OS 1 920 302 or US Pat. No. 3,674,740. The average residence time is 4 minutes; the temperature 83 ° C.

Die wäßrige Reaktionsphase enthält 0,32% OH― und 0,51 % C03; Bisphenol ist nicht nachzuweisen.The aqueous reaction phase contains 0.32% OH― and 0.51% C0 3 ; There is no evidence of bisphenol.

Die Polycarbonatlösung, deren Feststoffgehalt 15,1% beträgt, wird elektrolytfrei gewaschen, eingedampft und über einen Ausdampfextruder isoliert. Das Polycarbonat hat eine relative Viskosität von 1,30 bis 1,31, gemessen in einer 0,5%igen Lösung von Methylenchlorid bei 20°C. Das entspricht ungefähr einem Molekulargewicht von 34.000.The polycarbonate solution, the solids content of which is 15.1%, is washed free of electrolytes, evaporated and isolated using an evaporation extruder. The polycarbonate has a relative viscosity of 1.30 to 1.31, measured in a 0.5% solution of methylene chloride at 20 ° C. This corresponds approximately to a molecular weight of 34,000.

Folgende Katalysatoren werden zur Herstellung von Polycarbonat eingesetzt:

  • Beispiel 1 (Vergleichsversuch): 1,6 Teile Triethylamin, Verfahren 1.
  • Beispiel 2 (Vergleichsversuch): 0,575 Teile Triethylamin, Verfahren 2.
  • Beispiel 3: 1,8 teile N-Ethylpiperidin, Verfahren 1.
  • Beispiel 4: 0,31 Teile N-Isopropylpiperidin, Verfahren 2.
  • Beispiel 5: 1,8 Teile N-Ethylmorpholin, Verfahren 1.
  • Beispiel 6: 1,0 Teile N-Ethylpyrolidin, Verfahren 1.
  • Beispiel 7: 0,46 Teile N-Isopropylmorpholin, Verfahren 2.
  • Beispiel 8 (Vergleichsversuch): Ein Polycarbonat aus 95 Mol % Bisphenol A und 5 Mol % tetrabrombisphenol A, hergestellt nach dem Verfahren 1 mit 1,5 Teilen Triethylamin mit einer rel. Viskosität von 1,32.
  • Beispiel 9: Polycarbonat aus Beispiel 8, hergestellt nach dem Verfahren 1, mit 0,6 Teilen N-Ethylpiperidin.
The following catalysts are used to manufacture polycarbonate:
  • Example 1 (comparative test): 1.6 parts of triethylamine, method 1.
  • Example 2 (comparative test): 0.575 parts of triethylamine, method 2.
  • Example 3: 1.8 parts N-ethylpiperidine, Method 1.
  • Example 4: 0.31 part of N-isopropylpiperidine, Method 2.
  • Example 5: 1.8 parts of N-ethylmorpholine, method 1.
  • Example 6: 1.0 part N-ethyl pyrolidine, method 1.
  • Example 7: 0.46 parts of N-isopropylmorpholine, method 2.
  • Example 8 (comparative experiment): A polycarbonate composed of 95 mol% bisphenol A and 5 mol% tetrabromobisphenol A, produced by process 1 with 1.5 parts triethylamine with a rel. Viscosity of 1.32.
  • Example 9: Polycarbonate from Example 8, produced by process 1, with 0.6 part of N-ethylpiperidine.

Die Polycarbonate wurden zu Prüfkörpern verarbeitet. Die Prüfkörper werden bei 140°C im Trockenschrank getempert. Mit Hilfe eines Spektralphotometers wurde die Lichttransmission nach DIN 5033 und DIN 4646 gemessen. Der Abfall der Lichttransmission bei 420 nm im Verlauf der Wärmebehandlung ist ein Maß für die zunehmende Verfärbung des Prüfkörpers.The polycarbonates were processed into test specimens. The test specimens are annealed at 140 ° C in a drying cabinet. The light transmission was measured according to DIN 5033 and DIN 4646 using a spectrophotometer. The drop in light transmission at 420 nm in the course of the heat treatment is a measure of the increasing discoloration of the test specimen.

TABELLETABLE

Lichttransmission der Polycarbonatprüfstäbe bei 420 nm und einer Schichdicke von 4 mm nach Temperung bei 140°C.

Figure imgb0002
Light transmission of the polycarbonate test rods at 420 nm and a layer thickness of 4 mm after tempering at 140 ° C.
Figure imgb0002

Claims (2)

1. Process for the production of aromatic polycarbonates according to the phase boundary process from diphenols, characterised in that N-ethyl-pyrrolidine, N-ethylpiperidine, N-ethylmorpholine, N-isopropyl- piperidine or N-isopropylmorpholine are used as catalysts in amounts of from 0.01 mol % to 10 mol %, relative to the mols of diphenols employed.
2. Process according to claim 1, characterised in that N-ethylpiperidine is used.
EP78100539A 1977-08-09 1978-07-28 Process for the preparation of polycarbonates and the polycarbonates obtained Expired EP0000753B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19772735775 DE2735775A1 (en) 1977-08-09 1977-08-09 PROCESS FOR THE PRODUCTION OF POLYCARBONATE
DE2735775 1977-08-09

Publications (2)

Publication Number Publication Date
EP0000753A1 EP0000753A1 (en) 1979-02-21
EP0000753B1 true EP0000753B1 (en) 1980-12-10

Family

ID=6015937

Family Applications (1)

Application Number Title Priority Date Filing Date
EP78100539A Expired EP0000753B1 (en) 1977-08-09 1978-07-28 Process for the preparation of polycarbonates and the polycarbonates obtained

Country Status (7)

Country Link
US (1) US4346210A (en)
EP (1) EP0000753B1 (en)
JP (1) JPS6053049B2 (en)
BR (1) BR7805075A (en)
DE (2) DE2735775A1 (en)
IT (1) IT1106867B (en)
SU (1) SU1020006A3 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4233345A1 (en) * 1992-10-05 1994-04-07 Bayer Ag Process for the preparation of polycarbonates and polyestercarbonates
DE19728805A1 (en) * 1997-07-05 1999-01-07 Bayer Ag Process for the production of polycarbonate
DE19744693A1 (en) * 1997-10-10 1999-04-15 Bayer Ag Production of thermoplastic copolycarbonates useful for moldings resistant to chemicals
US5973103A (en) * 1998-10-22 1999-10-26 General Electric Company Continuous interfacial method for preparing aromatic polycarbonates

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3014891A (en) 1961-12-26 Resinous compositions
DE1007996B (en) 1955-03-26 1957-05-09 Bayer Ag Process for the production of thermoplastics
DE959497C (en) 1955-03-27 1957-03-07 Bayer Ag Process for the production of thermoplastics
US3275601A (en) * 1956-01-04 1966-09-27 Bayer Ag Manufacture of polycarbonates using tertiary amines, quaternary amines and salts thereof as catalysts
DE1046311B (en) 1956-04-06 1958-12-11 Bayer Ag Process for the production of polycarbonates
US2991273A (en) 1956-07-07 1961-07-04 Bayer Ag Process for manufacture of vacuum moulded parts of high molecular weight thermoplastic polycarbonates
US3148172A (en) 1956-07-19 1964-09-08 Gen Electric Polycarbonates of dihydroxyaryl ethers
US2999846A (en) 1956-11-30 1961-09-12 Schnell Hermann High molecular weight thermoplastic aromatic sulfoxy polycarbonates
US3028265A (en) 1957-05-06 1962-04-03 Gen Electric Reinforced synthetic enamel coating for electrical conductor
US2999835A (en) 1959-01-02 1961-09-12 Gen Electric Resinous mixture comprising organo-polysiloxane and polymer of a carbonate of a dihydric phenol, and products containing same
US3220975A (en) * 1959-03-19 1965-11-30 Eastman Kodak Co Tri-isoamylamine catalyst in a process for preparing a polycarbonate
NL253031A (en) 1959-06-27
US3271368A (en) 1963-05-02 1966-09-06 Borg Warner Sulfonate-thiocarbonate copolymers
DE1300274B (en) 1963-05-22 1969-07-31 Hoechst Ag Process for the production of high molecular weight polymers on the basis of di- [beta-trihalogen-alpha-hydroxyaethoxy] alkanes
US3280078A (en) 1963-09-26 1966-10-18 Union Carbide Corp Polyethylenically unsaturated polycarbonate polymers
US3527734A (en) 1965-06-07 1970-09-08 Union Carbide Corp Preparation of cylobutanediol polycarbonates by direct phosgenation
US3428600A (en) * 1965-06-18 1969-02-18 Union Carbide Corp Carbonate polymer synthesis
US3674740A (en) 1969-04-22 1972-07-04 Bayer Ag Process of producing polycarbonate
DE2063050C3 (en) 1970-12-22 1983-12-15 Bayer Ag, 5090 Leverkusen Saponification-resistant polycarbonates, processes for their production and their use
DE2063052A1 (en) 1970-12-22 1972-07-13 Bayer Saponification-resistant polycarbonates
CH554908A (en) * 1971-01-15 1974-10-15 Basf Ag PROCESS FOR THE CONTINUOUS MANUFACTURING OF HIGH MOLECULAR, LINEAR POLYCARBONATES.
US4073769A (en) * 1971-08-11 1978-02-14 Bayer Aktiengesellschaft Esters of phosphorous acid
DE2140207C3 (en) * 1971-08-11 1975-11-27 Farbenfabriken Bayer Ag, 5090 Leverkusen Stabilized aromatic polycarbonate
DE2211956A1 (en) 1972-03-11 1973-10-25 Bayer Ag PROCESS FOR THE PREPARATION OF SEAP-STABLE BLOCK COPOLYCARBONATES
DE2211957C2 (en) 1972-03-11 1982-07-01 Bayer Ag, 5090 Leverkusen High molecular weight random copolycarbonates
DE2305144C2 (en) * 1973-02-02 1982-05-06 Basf Ag, 6700 Ludwigshafen Process for the continuous production of polycarbonates
DE2410716B2 (en) * 1974-03-06 1977-02-10 Bayer Ag, 5090 Leverkusen PROCESS FOR THE PRODUCTION OF AROMATIC POLYCARBONATE USING THE METHOD OF PHASE INTERFACE CONDENSATION
DE2447349A1 (en) 1974-10-04 1976-04-15 Bayer Ag PROCESS FOR THE PRODUCTION OF ALIPHATIC POLYCARBONATES AND ALIPHATICAROMATIC COPOLYCARBONATES
US4025489A (en) * 1975-01-27 1977-05-24 Mobay Chemical Corporation Utilization of bisphenol-A from the alkaline phase generated in the production of polycarbonates
DE2510463C2 (en) 1975-03-11 1986-04-03 Bayer Ag, 5090 Leverkusen Stabilizer mixtures and use of stabilizer mixtures to stabilize polycarbonates

Also Published As

Publication number Publication date
BR7805075A (en) 1979-04-10
SU1020006A3 (en) 1983-05-23
DE2735775A1 (en) 1979-02-22
US4346210A (en) 1982-08-24
DE2860295D1 (en) 1981-02-19
JPS5430293A (en) 1979-03-06
IT7850631A0 (en) 1978-08-07
JPS6053049B2 (en) 1985-11-22
IT1106867B (en) 1985-11-18
EP0000753A1 (en) 1979-02-21

Similar Documents

Publication Publication Date Title
EP0006579B1 (en) Polycarbonates with double bonds cross-linkable by uv light, process for preparing same, process for their modification and the products obtained thereby
DE2500092A1 (en) BRANCHED, HIGH MOLECULAR, THERMOPLASTIC POLYCARBONATE
EP0143906B1 (en) Process for preparing stabilized polycarbonate moulded articles by vented injection moulding or vented extrusion moulding
EP0000732B1 (en) Blends of reticulated polyarylsulfones and polycarbonates and their application during the manufacture of extruded films
EP0013904B1 (en) Process for the preparation of polycarbonates
EP0000396B1 (en) Process for the preparation of flame retardant polycarbonates
DE3002762A1 (en) METHOD FOR THE PRODUCTION OF HETEROCYCLIC-AROMATIC OLIGOCARBONATES WITH DIPHENOL CARBONATE END GROUPS AND THE USE THEREOF FOR THE PRODUCTION OF THERMOPLASTIC, HIGH-MOLECULAR HETEROCYCLIC-AROMATIC COBOLATE
DE2746141A1 (en) THERMOPLASTIC POLYCARBONATES CONTAINING AROMATIC KETO GROUPS AND THEIR USE FOR THE MANUFACTURING OF MODIFIED POLYCARBONATES
EP0082383B1 (en) Process for preparing polycarbonates containing sulfone anilide end groups
EP0078943A1 (en) Process for the production of polycarbonates with an ageing performance
DE2246106C2 (en) High molecular weight polycarbonates containing s-triazine rings
DE2254918A1 (en) BRANCHED AROMATIC POLYCARBONATE
EP0000753B1 (en) Process for the preparation of polycarbonates and the polycarbonates obtained
EP0414083B1 (en) Stabilized polycarbonates
DE4227372A1 (en) Polycarbonate prodn. by continuous interfacial polycondensation from phosgene di:phenol(s) etc. - uses special reactor system with at least 2 minutes between 1st addn. of more alkali and addn. of chain cleavage agent e.g. phenol@
EP0023571A1 (en) Process for preparing polycarbonates, the polycarbonates obtainable thereby and their use
EP0075772B1 (en) Process for the isolation of polycarbonates based on 4,4'-dihydroxydiphenyl sulphones
EP0001823A2 (en) Use of esters of boric acid to stabilize phosphite-free polycarbonates, and the obtained stabilized polycarbonate moulding compositions
DE4239131C2 (en) Process for the production of polycarbonates
DE3120594A1 (en) NEW COPOLYESTER CARBONATES AND THEIR BLENDING WITH KNOWN POLYCARBONATES TO THERMOPLASTIC MOLDS
DE2321055A1 (en) FLAME-RESISTANT POLYCARBONATE MOLDING COMPOUNDS
EP0432580B1 (en) Two-stage process for the preparation of polycarbonates based on particular dihydroxydiphenylalcanes
EP0025928B1 (en) Process for preparing aromatic polycarbonates by the interfacial process
EP0029111B1 (en) Thermoplastic aromatic copolycarbonates, process for their preparation from 2,2-bis(4-hydroxyphenyl)-1,1,1,3,3,3-hexafluor propane and their use
EP0099990A1 (en) Process for the preparation of polycarbonates containing N-alkylperfluoroalkyl sulfon amide end groups

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed
AK Designated contracting states

Designated state(s): DE FR GB NL

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): DE FR GB NL

REF Corresponds to:

Ref document number: 2860295

Country of ref document: DE

Date of ref document: 19810219

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19960618

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19960627

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19960719

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19960731

Year of fee payment: 19

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970728

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980201

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19970728

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980331

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19980201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980401

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT