EP0000101B1 - Corps abrasif à liant résineux contenant de l'oxyde cuivreux et son procédé de fabrication - Google Patents
Corps abrasif à liant résineux contenant de l'oxyde cuivreux et son procédé de fabrication Download PDFInfo
- Publication number
- EP0000101B1 EP0000101B1 EP78300033A EP78300033A EP0000101B1 EP 0000101 B1 EP0000101 B1 EP 0000101B1 EP 78300033 A EP78300033 A EP 78300033A EP 78300033 A EP78300033 A EP 78300033A EP 0000101 B1 EP0000101 B1 EP 0000101B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- resin
- weight percent
- cuprous oxide
- abrasive
- abrasive article
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24C—ABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
- B24C11/00—Selection of abrasive materials or additives for abrasive blasts
- B24C11/005—Selection of abrasive materials or additives for abrasive blasts of additives, e.g. anti-corrosive or disinfecting agents in solid, liquid or gaseous form
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24D—TOOLS FOR GRINDING, BUFFING OR SHARPENING
- B24D3/00—Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents
- B24D3/34—Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents characterised by additives enhancing special physical properties, e.g. wear resistance, electric conductivity, self-cleaning properties
- B24D3/342—Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents characterised by additives enhancing special physical properties, e.g. wear resistance, electric conductivity, self-cleaning properties incorporated in the bonding agent
- B24D3/344—Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents characterised by additives enhancing special physical properties, e.g. wear resistance, electric conductivity, self-cleaning properties incorporated in the bonding agent the bonding agent being organic
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/20—Oxides; Hydroxides
- C08K3/22—Oxides; Hydroxides of metals
Definitions
- This invention relates to resin bonded abrasive articles and their method of manufacture and more particularly relates to resin bonded abrasive wheels.
- Resin bonded abrasive articles particularly resin bonded abrasive grinding wheels
- Such wheels are used for numerous applications including grinding, polishing and cutting.
- abrasive wheels are rotated at high speeds which makes it imperative that the wheels have sufficient physical strength and flexibility to withstand the high centrifugal forces generated during rotation and to withstand outside forces applied to the wheels during the grinding, polishing or cutting operation.
- fillers blended with the resin have also been found to increase wheel strength.
- such fillers as disclosed in U.S. Patent2,371,700 comprised certain metals or metal compounds of certain metals of groups IV, V, VI, VII and VIII of the fourth series of the periodic table of elements.
- An example of such a compound is chromium oxide.
- ferric oxide has been known as a suitable filler.
- suitable fillers disclosed in U.S. Patent 3,087,803 include chromium oxide, zirconia and titania.
- Iron sulfide is disclosed as a suitable filler in U.S. Patent 3,632,320 and trimanganese tetroxide and ferric oxide have been disclosed as suitable fillers in U.S. Patent 3,960,517.
- U.S. Patent3,820,290 discloses that potassium fluroborate, sodium flu- roaluminate, barium sulfate, iron sulfide and calcium oxide are satisfactory filler compositions.
- U.S. Patent 3,632,320 discloses that cryolite, fluorspar, zincblende, lead chloride and lead sulfide are suitable fillers.
- U.S. Patent 3,087,803 discloses that silicon dioxide and aluminium oxide may comprise suitable filler compositions.
- Magnesium oxide is suggested as an appropriate filler composition in U.S. Patents 2,294,239 and 3,208,836.
- an improved process for the manufacture of a resin bonded abrasive article manufactured by blending a curable resin with an abrasive, shaping the resulting blend and curing the resin to form a resin bonded abrasive article.
- the improvement in the process comprises incorporating from about 0.2 to about 10 weight percent of particulate cuprous oxide into the blend prior to shaping the blend.
- the invention further comprises the resin bonded abrasive article manufactured in accordance with the process which article is a resin bonded abrasive article containing from about 0.2 to about 10 weight percent of particulate cuprous oxide.
- the resin bonded abrasive article manufactured in accordance with the invention is usually in an abrasive grinding wheel which may be of any type such as a wheel for stock removal, polishing or cutoff applications.
- the resin bonded abrasive article may, however, be any abrasive article wherein the abrasive articles are bonded together with a resin.
- Other examples of such resin bonded abrasive articles include sharpening and honing stones, mounted points and segments.
- the abrasive utilized in the abrasive article may be any abrasive grit or particle known to those skilled in the art including alumina, silica, zirconia, diamond, garnet, various fused and sintered combinations of alumina, zirconia and silica, and silicon carbide.
- the abrasive in the resin bonded abrasive article generally constitutes from about 79.8 to about 95.8 weight percent of the article.
- the average particle size of the abrasive is from about 90 to about 2 500 microns and usually from about 700 to about 1 000 microns.
- the abrasive is held together or bonded by a resin which is cured after it is blended with the abrasive.
- the resin may be a curable liquid or solid resin or a combination of both liquid and solid resins.
- the curable resin is any resin which can be cured to form a solid resin having sufficient strength and adhesion to securely bond the abrasive particles.
- examples of such resins are phenolic resins and polyester resins.
- the most desirable resins are phenolic type resins including resol resins which are heat curable and novolac resins which require a curing agent such as hexamethylenetetramine or paraformaldehyde.
- the preferred resin is a combination of a heat curable liquid resol and a solid novolac resin.
- the curable liquid resin should not have a high molecular weight prior to curing to permit the resin to be blenbed with the abrasive particles.
- the curable liquid resin prior to curing should therefore have a viscosity of from between about 0.8 to a maximum of about 10,000 poise and desirably between about 10 and about 1 000 poise.
- the most desirable liquid phenolic resin is a low viscosity liquid phenolic resin with a slow rate of cure having a viscosity at 25 °C of between about 325 and 450 centipoise and a gell time of about 35 minutes at 121 °C.
- Suitable liquid resins are commercially available from Varcum Chemical Division of Reichhold Chemical Inc. under the name of Varcum 8121 and from Georgia Pacific Corporation under the name of GP5080.
- the most desirable powdered phenolic resin is a medium flow solid novolac resin containing from about 2 to about 15 weight percent, based upon weight of novolac resin, of hexamethylenetetramine.
- the resin may be any phenolic type novolac resin including those made from phenol and cresol.
- the most desirable powdered resin has a flow in millimeters of about 26 to 34. The flow is determined by heating a 10 mm diameter by 6 mm thick pallet of the resin at 125° ⁇ 1 °C for three minutes on a glass plate, tilting the plate to 65° from the horizontal and continuing to heat at 125°C j: 1 °C for twenty minutes, cooling the plate in the horizontal position and measuring the flow of distance in millimeters.
- the most desirable resin also has an apparent density of about 0.33 grams per cc and contains from about 7.2 to about 7.7 percent hexamethylenetetramine.
- the melting point of the uncured resin is from about 90 to about 97 °C.
- Suitable solid resins are commercially available from the Carborundum Company under the name N2, from Ashland Chemical Division of Ashland Corporation under the name Arophene 875, from Varcum Chemical Co., Division of Reichhold Chemicals, Inc. under the name V7608 and from Borden Chemical Company, under the name Ad5991.
- a wetting or dispersing agent is blended with the abrasive at the time of or prior to the blending of the abrasive with the liquid resin.
- Any effective agent known to those skilled in the art may be used.
- effective wetting agents are a liquid mixture of about 75 weight percent furfural and 25 weight percent cresol, colloidal silica and silanes.
- Wetting or dispersing agents may be used alone or in combination.
- Particularly effective dispersing agents are amine modified organosilanes.
- Such organosilanes preferably have the structural formula : wherein the R i , R 2 , R 3 and R 4 radicals are independently lower alkyl, lower alkoxy or amino lower alkyl provided that at least one of the radicals is lower alkoxy and at least one of the radicals is amino lower alkyl.
- Lower alkyl as used herein means an alkyl radical containing from 1 to 4 carbon atoms inclusive. Examples of lower alkyl radicals are methyl, alkyl, propyl, isopropyl, butyl, isobutyl and tert-butyl.
- Lower alkoxy used herein means an alkoxy containing from 1 to 4 carbon atoms inclusive.
- Examples of such lower alkoxy radicals are methoxy, ethoxy, propoxy and butoxy.
- Amino lower alkyl as used herein means an amine radical containing from 1 to 5 carbon atoms inclusive. Examples of such radicals are amino propyl, dimethyl amino propyl, amino ethyl and methyl amino ethyl.
- a particularly desirable silane is a lower alkylamine modified triethoxysilane.
- Suitable silanes may be commercially obtained from Union Carbide Silicone Division under the name A1100 Silane and from General Electric Company Silicones Products Division under the name SC-3901.
- amine modified organosilane is incorporated into the blend even when other additional dispersing or wetting agents are present.
- From about 0.05 to about 3 weight percent of such other agents are desirably also present, e.g. from about 0.05 to about 3 weight percent of colloidal silica dispersion (40 percent dispersion of colloidal silica in water).
- fillers such as fluorspar may be added and are desirably present in an amount of from about 5 to 25 weight percent of the total blend.
- the resin and other components of the composition are blended with the abrasive particles by any suitable mixing apparatus known to those skilled in the art.
- suitable mixing apparatus include the Lancaster type mixer having a containing drum which rotates in a direction opposite the rotation of mixing paddies, the high speed propeller type mixer, and the ball mill.
- the dispersion of the abrasive particles, resin, cuprous oxide (Cu20) and other components should be uniform.
- particulate cuprous oxide is incorporated and blended with the composition.
- the cuprous oxide has an average particle size of less than 20 microns, preferably less than 6 microns. From about 0.2 to about 10 percent, and preferably from about 0.5 to about 5 percent, cuprous oxide is added by weight of the blend.
- cuprous oxide may be added as pure cuprous oxide or may be blended with another component.
- Preblends of cuprous oxide with silicon carbide are particularly desirable, e.g. 79 weight percent C U2 0 blended with SiC having a particle size range of 5 to 30 microns and an average particle size of 15 microns.
- the blended composition is shaped.
- the shaping is usually accomplished by introducing the blend into a mould and subjecting the blend in the mould to a pressure of about 3 to about 300 kilograms per square centimeter at a temperature of from about 10 to about 100 °C and preferably at about 25 °C for from about 5 seconds to about 10 minutes.
- the article which desirably contains from about 5 to about 20 percent curable liquid resin, from about 79.8 to about 94.8 weight percent abrasive and from about 0.2 to about 10 percent cuprous oxide is then cured.
- the curing usually occurs at a temperature of from about 100 °C to about 225 °C for from about 1 to about 24 hours.
- the resulting resin bonded abrasive article is found to have excellent strength as compared with similar articles manufactured in the prior art.
- the above ingredients are blended in a mill until the blend is uniform and about 500 grams of the resulting blend is introduced with two layers of fiber glass reinforcing cloth, into an abrasive wheel mould having inside mould dimensions of 6" by 1/4" (15 cm x 0.6 cm) thick with 1" (2.5 cm) diameter central hole.
- the material in the mould is then subjected with a pressure of 3,000 psi (210 kg cm- 2 ) for 10 seconds.
- the resulting formed wheel is then dusted with zinc stearate powder and cured for 38 hours using the following sequence :
- the wheel is then unloaded from curing oven when the temperature is about 52 °C or less.
- the resulting abrasive wheel is a bonded abrasive wheel manufactured in accordance with known prior art procedures.
- Example I is repeated except that the 5 cc of the furfural-cresol liquid is eliminated and 5 cc of 40 percent suspension colloidal silica is added.
- the resulting wheel is found to have a higher burst speed, i.e. greater resistance to breaking under centrifugal force, than the grinding wheel manufactured in accordance with Example I.
- Example I is repeated except 5 cc of 1100 ami- nofunctionalorganosilane is incorporated into the blend.
- the resulting abrasive wheel is found to have a higher burst speed than the wheel manufactured in accordance with Example I.
- Example II is repeated except 5 cc of A1100 amino substituted organosilane is incorporated into the blend.
- the resulting abrasive wheel is found to have a higher burst speed than the wheels manufactured in accordance with Examples I, II and III.
- Example I is repeated except that 50 grams of a uniform mixture of 70 percent cuprous oxide (C U2 0) and 30 percent silicon carbide (SiC) having an average particle size of 15 is preblended with the powdered phenolic resin and the fluorspar and the preblend is then added to the aluminum oxide blend.
- the resulting wheel is found to have an improved burst speed over the burst speed of the wheel prepared in accordance with Example I.
- Example III is repeated except that 50 grams of the Cu20-SiC mix is preblended with the powdered phenolic resin and fluorspar. The resulting preblend is then incorporated into the aluminum oxide blend. The resulting wheel is found to have a burst speed which is superior to the burst speed of any of the wheels manufactured in accordance with Examples I through V.
- Example IV is repeated except that 50 grams of the Cu 2 0-SiC mix is preblended with the powdered phenolic resin and fluorspar and the preblend is then incorporated into the aluminum oxide blend.
- the resulting abrasive wheel has a burst speed which is higher than the burst speeds of any of the wheels manufactured in accordance with Examples I through V and which is essentially the same as the burst speed manufactured in accordance with Example VI.
- Example VII is repeated except that 50 grams of essentially pure cuprous oxide is substituted for the C U2 0-SiC mix.
- the resulting wheel has a burst speed which is approximately the same as the burst speed of the wheel prepared in accordance with Example VII.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Polishing Bodies And Polishing Tools (AREA)
Claims (14)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US05/805,768 US4110939A (en) | 1977-06-13 | 1977-06-13 | Cuprous oxide containing resin bonded abrasive article and process for manufacturing same |
US805768 | 1977-06-13 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0000101A1 EP0000101A1 (fr) | 1978-12-20 |
EP0000101B1 true EP0000101B1 (fr) | 1981-02-11 |
Family
ID=25192459
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP78300033A Expired EP0000101B1 (fr) | 1977-06-13 | 1978-06-12 | Corps abrasif à liant résineux contenant de l'oxyde cuivreux et son procédé de fabrication |
Country Status (9)
Country | Link |
---|---|
US (1) | US4110939A (fr) |
EP (1) | EP0000101B1 (fr) |
JP (1) | JPS545289A (fr) |
AR (1) | AR223818A1 (fr) |
BR (1) | BR7803748A (fr) |
CA (1) | CA1104839A (fr) |
DE (1) | DE2860460D1 (fr) |
IN (1) | IN149678B (fr) |
ZA (1) | ZA783083B (fr) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0034898A3 (fr) * | 1980-02-16 | 1982-03-17 | Kennecott Corporation | Fabrication de produits abrasifs liés par une résine |
JPS5733421U (fr) * | 1980-08-02 | 1982-02-22 | ||
CA1188103A (fr) * | 1981-03-20 | 1985-06-04 | Richard H. Sioui | Meule abrasive |
US4871376A (en) * | 1987-12-14 | 1989-10-03 | Minnesota Mining And Manufacturing Company | Resin systems for coated products; and method |
US5250085A (en) * | 1993-01-15 | 1993-10-05 | Minnesota Mining And Manufacturing Company | Flexible bonded abrasive articles, methods of production and use |
JPH1119875A (ja) * | 1997-06-30 | 1999-01-26 | Toyoda Mach Works Ltd | ビトリファイド砥石 |
US6514302B2 (en) * | 2001-05-15 | 2003-02-04 | Saint-Gobain Abrasives, Inc. | Methods for producing granular molding materials for abrasive articles |
KR100664290B1 (ko) * | 2006-02-27 | 2007-01-04 | 엘지전자 주식회사 | 의류 건조기의 건조 드럼 |
US8481438B2 (en) * | 2008-06-13 | 2013-07-09 | Washington Mills Management, Inc. | Very low packing density ceramic abrasive grits and methods of producing and using the same |
KR20120129963A (ko) | 2010-08-06 | 2012-11-28 | 생-고벵 아브라시프 | 작업편 내의 복잡한 형상을 마무리 가공하기 위한 연삭 공구 및 방법 |
CN115304931B (zh) * | 2022-07-28 | 2023-07-11 | 辽宁嘉顺科技有限公司 | 一种高疏水、高绝缘性电工级氧化镁砂及其生产方法 |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2216135A (en) * | 1937-05-21 | 1940-10-01 | Us Rubber Co | Manufacture of abrasive articles |
US2878111A (en) * | 1954-09-21 | 1959-03-17 | Union Carbide Corp | Water-resistant abrasive structures |
US3041156A (en) * | 1959-07-22 | 1962-06-26 | Norton Co | Phenolic resin bonded grinding wheels |
US3098730A (en) * | 1959-07-22 | 1963-07-23 | Norton Co | Grinding wheels having unsaturated organic polymeric bonds and the like |
FR1519138A (fr) * | 1967-04-14 | 1968-03-29 | Avco Corp | Composition de charge pour article abrasif |
NL134383C (fr) * | 1967-07-21 | 1900-01-01 | ||
US3518068A (en) * | 1967-12-04 | 1970-06-30 | Gen Electric | Process for manufacturing grinding wheels containing coppercoated grains |
US3528789A (en) * | 1968-05-15 | 1970-09-15 | Gen Electric | Lubricating composition applied to boron nitride grinding wheels |
BE758964A (fr) * | 1969-11-14 | 1971-05-13 | Norton Co | Elements abrasifs |
US3899307A (en) * | 1970-11-10 | 1975-08-12 | Dresser Ind | Resin bonded diamond wheels with copper and silicon carbide fillers |
-
1977
- 1977-06-13 US US05/805,768 patent/US4110939A/en not_active Expired - Lifetime
-
1978
- 1978-01-12 IN IN635/CAL/78A patent/IN149678B/en unknown
- 1978-05-03 ZA ZA00783083A patent/ZA783083B/xx unknown
- 1978-05-17 CA CA303,544A patent/CA1104839A/fr not_active Expired
- 1978-06-10 JP JP6940078A patent/JPS545289A/ja active Pending
- 1978-06-12 DE DE7878300033T patent/DE2860460D1/de not_active Expired
- 1978-06-12 EP EP78300033A patent/EP0000101B1/fr not_active Expired
- 1978-06-12 BR BR7803748A patent/BR7803748A/pt unknown
- 1978-06-13 AR AR272604A patent/AR223818A1/es active
Also Published As
Publication number | Publication date |
---|---|
IN149678B (fr) | 1982-03-13 |
ZA783083B (en) | 1979-05-30 |
US4110939A (en) | 1978-09-05 |
EP0000101A1 (fr) | 1978-12-20 |
AR223818A1 (es) | 1981-09-30 |
DE2860460D1 (en) | 1981-03-26 |
JPS545289A (en) | 1979-01-16 |
CA1104839A (fr) | 1981-07-14 |
BR7803748A (pt) | 1979-03-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0000101B1 (fr) | Corps abrasif à liant résineux contenant de l'oxyde cuivreux et son procédé de fabrication | |
US3661544A (en) | A method for making thermosetting resinous abrasive tools | |
KR0178404B1 (ko) | 연삭 휠 연마 조성물 | |
US3041156A (en) | Phenolic resin bonded grinding wheels | |
US5042991A (en) | Hydrophobically coated abrasive grain | |
FI75582C (fi) | Slipkroppar med laog halt av slipmedel och hoeg halt av fyllnadsmedel. | |
US4472173A (en) | Ceramic-coated corundum abrasive grain | |
JP2005525242A (ja) | 多孔質研磨工具及びその製造方法 | |
CA2177591A1 (fr) | Articles abrasifs flexibles liaisonnes, leurs methodes de fabrication et leur utilisation | |
US4042347A (en) | Method of making a resin-metal composite grinding wheel | |
PL189790B1 (pl) | Sposób wytwarzania związanego wyrobu ściernego | |
JP2019520222A (ja) | 硬化性組成物、研磨物品及びその製造方法 | |
CA1175665A (fr) | Article abrasif | |
US3899307A (en) | Resin bonded diamond wheels with copper and silicon carbide fillers | |
US2162600A (en) | Filler for abrasive articles | |
US3098730A (en) | Grinding wheels having unsaturated organic polymeric bonds and the like | |
KR810000934B1 (ko) | 산화제일 구리함유 수지결합 연마제의 제조방법 | |
US4682988A (en) | Phenolic resin bonded grinding wheels | |
JP2004268195A (ja) | レジノイド砥石及びその製造方法 | |
JP3424540B2 (ja) | レジンボンド砥石 | |
GB2136011A (en) | Grinding wheel containing cubic boron nitride | |
JP2003117836A (ja) | 高能率研削加工用レジンボンド砥石 | |
US5026405A (en) | Bond for abrasive tools | |
JP2003205466A (ja) | 超砥粒ホイール及びその製造方法 | |
JP2002028871A (ja) | 成形可能な砥粒ペレット、その製造方法及び使用 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): DE FR GB SE |
|
17P | Request for examination filed | ||
DET | De: translation of patent claims | ||
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB SE |
|
REF | Corresponds to: |
Ref document number: 2860460 Country of ref document: DE Date of ref document: 19810326 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 19810402 Year of fee payment: 4 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Effective date: 19810613 |
|
RAP2 | Party data changed (patent owner data changed or rights of a patent transferred) |
Owner name: KENNECOTT CORPORATION |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Effective date: 19830201 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19830331 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Effective date: 19881117 |
|
EUG | Se: european patent has lapsed |
Ref document number: 78300033.4 Effective date: 19820119 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |