EA201700242A1 - METHOD OF MANUFACTURING ELECTROMAGNETIC 3D SCANNER AND ELECTROMAGNETIC 3D SCANNER PERFORMED IN THIS METHOD - Google Patents

METHOD OF MANUFACTURING ELECTROMAGNETIC 3D SCANNER AND ELECTROMAGNETIC 3D SCANNER PERFORMED IN THIS METHOD

Info

Publication number
EA201700242A1
EA201700242A1 EA201700242A EA201700242A EA201700242A1 EA 201700242 A1 EA201700242 A1 EA 201700242A1 EA 201700242 A EA201700242 A EA 201700242A EA 201700242 A EA201700242 A EA 201700242A EA 201700242 A1 EA201700242 A1 EA 201700242A1
Authority
EA
Eurasian Patent Office
Prior art keywords
electromagnetic
scanner
electrical properties
improving
increasing
Prior art date
Application number
EA201700242A
Other languages
Russian (ru)
Other versions
EA036852B1 (en
Inventor
Александр Александрович ЖИЛИН
Максим Сергеевич Кочергин
Артем Юрьевич Васильев
Сергей Валериевич Зимовец
Владимир Николаевич Лещетный
Павел Александрович Сухарев
Антон Александрович Жилин
Валерий Викторович Злодеев
Original Assignee
Общество С Ограниченной Ответственностью "Русские Универсальные Системы"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Общество С Ограниченной Ответственностью "Русские Универсальные Системы" filed Critical Общество С Ограниченной Ответственностью "Русские Универсальные Системы"
Priority to EA201700242A priority Critical patent/EA036852B1/en
Publication of EA201700242A1 publication Critical patent/EA201700242A1/en
Publication of EA036852B1 publication Critical patent/EA036852B1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V3/00Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
    • G01V3/18Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation specially adapted for well-logging
    • G01V3/30Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation specially adapted for well-logging operating with electromagnetic waves
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B49/00Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Physics & Mathematics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Remote Sensing (AREA)
  • General Physics & Mathematics (AREA)
  • Geophysics (AREA)
  • Fluid Mechanics (AREA)
  • Electromagnetism (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

Изобретение относится к геофизическому оборудованию для исследований скважин методом электромагнитного каротажа и предназначено для исследования электрических свойств горных пород и жидких сред, их пространственного распределения и их анизотропии в объеме скважины и околоскважинном пространстве. Способ изготовления электромагнитного сканера включает выполнение в продолговатом корпусе сканера выемок, установку в выемки по меньшей мере одного передатчика, излучающего электромагнитное поле, и по меньшей мере одного приемника, принимающего электромагнитное поле, каждый из которых содержит антенны и электронные платы, при этом предварительно собирают по меньшей мере одну антенну путем намотки на диэлектрическую основу проводника, в каждую из выемок, предназначенных для установки антенн и выполненных в корпусе прибора, вставляют по меньшей мере одну диэлектрическую основу с намотанным проводником, представляющую собой антенну в собранном виде. Также описан электромагнитный сканер, выполненный вышеуказанным способом. Технический результат заключается в повышении эффективности используемых в приборе вставляемых антенн и улучшении метрологических характеристик прибора, повышении ремонтопригодности и производственной технологичности прибора в сравнении с известными аналогами, за счет конструкции и способа сборки измерении полной матрицы коэффициентов передачи магнитного поля трехкомпонентными приемником и передатчиком на двух или более частотах и, следовательно, повышении полноты и достоверности определения величины, распределения и анизотропии электрических свойств в скважине и околоскважинном пространстве вне зависимости от ориентации прибора, упрощении обработки и интерпретации данных за счет того, что приемник и передатчик выполнены секторным методом и, следовательно, имеют более компактные размеры, что является предпочтительным с точки зрения теоретического описания чувствительности прибора к электрическим свойствам окружающего пространства, повышении точности описания электрических свойств окружающего прибор пространства и, следовательно, повышении качества строительства скважин и разведки полезных ископаемых по совокупности особенностей построения прибора.The invention relates to geophysical equipment for well studies using electromagnetic logging and is intended to study the electrical properties of rocks and liquid media, their spatial distribution and their anisotropy in the well volume and near-wellbore space. A method of manufacturing an electromagnetic scanner includes making grooves in an elongated body of the scanner, installing at least one transmitter radiating an electromagnetic field into the notches, and at least one receiver receiving an electromagnetic field, each of which contains antennas and electronic boards, while preliminarily collecting at least one antenna by winding a conductor on the dielectric base, in each of the grooves intended for the installation of antennas and made in the instrument case, is inserted of at least one dielectric substrate with a conductor wound representing the antenna in the assembled state. Also described is an electromagnetic scanner made by the above method. The technical result consists in increasing the efficiency of the inserted antennas used in the device and improving the metrological characteristics of the device, increasing the maintainability and production efficiency of the device in comparison with the known analogues, due to the design and assembly method of measuring the full matrix of magnetic field transmission coefficients by two or more frequencies and, consequently, increasing the completeness and reliability of determining the magnitude, distribution and anisotropic and electrical properties in the well and near-wellbore space regardless of the orientation of the instrument, simplifying data processing and interpretation due to the fact that the receiver and transmitter are made by the sector method and, therefore, have more compact dimensions, which is preferable from the point of view of a theoretical description of the sensitivity of the instrument to electrical properties of the surrounding space, improving the accuracy of describing the electrical properties of the surrounding space of the device and, consequently, improving the quality of the oitelstva wells and mineral exploration for the construction of combined features of the device.

EA201700242A 2017-04-26 2017-04-26 Method for production of electromagnetic 3d scanner, and electromagnetic 3d scanner made by the method EA036852B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EA201700242A EA036852B1 (en) 2017-04-26 2017-04-26 Method for production of electromagnetic 3d scanner, and electromagnetic 3d scanner made by the method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EA201700242A EA036852B1 (en) 2017-04-26 2017-04-26 Method for production of electromagnetic 3d scanner, and electromagnetic 3d scanner made by the method

Publications (2)

Publication Number Publication Date
EA201700242A1 true EA201700242A1 (en) 2018-10-31
EA036852B1 EA036852B1 (en) 2020-12-28

Family

ID=63917756

Family Applications (1)

Application Number Title Priority Date Filing Date
EA201700242A EA036852B1 (en) 2017-04-26 2017-04-26 Method for production of electromagnetic 3d scanner, and electromagnetic 3d scanner made by the method

Country Status (1)

Country Link
EA (1) EA036852B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112285433A (en) * 2020-09-23 2021-01-29 北京空间飞行器总体设计部 3D electromagnetic scanning system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4319191A (en) * 1980-01-10 1982-03-09 Texaco Inc. Dielectric well logging with radially oriented coils
US7579840B2 (en) * 2006-09-28 2009-08-25 Baker Hughes Incorporated Broadband resistivity interpretation
EP2361394B1 (en) * 2008-11-24 2022-01-12 Halliburton Energy Services, Inc. A high frequency dielectric measurement tool

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112285433A (en) * 2020-09-23 2021-01-29 北京空间飞行器总体设计部 3D electromagnetic scanning system
CN112285433B (en) * 2020-09-23 2023-08-08 北京空间飞行器总体设计部 3D electromagnetic scanning system

Also Published As

Publication number Publication date
EA036852B1 (en) 2020-12-28

Similar Documents

Publication Publication Date Title
CN103726840B (en) A kind of stratum orientation method of measuring resistivity and device
CA2663477C (en) An antenna for an electromagnetic probe for investigating geological formations and its applications
US9903199B2 (en) Use of metamaterial to enhance measurement of dielectric properties
US9746575B2 (en) Induction type broadband 3-component borehole magnetic measuring sensor and borehole electromagnetic tomography method using the same
US20130191028A1 (en) Gain-corrected measurements
WO2003054587A1 (en) Method of using electrical and acoustic anisotropy measurements for fracture identification
CN107849914A (en) Antenna structure and equipment for dielectric logging
CA2895018A1 (en) Deep azimuthal system with multi-pole sensors
CN106089194B (en) Apparatus and method for formation interface measurement while drilling using azimuthal resistivity
US9989666B2 (en) Imaging of earth formation with high frequency sensor
CN103670387A (en) Stratum directional electrical resistivity measuring method and device
EA201700242A1 (en) METHOD OF MANUFACTURING ELECTROMAGNETIC 3D SCANNER AND ELECTROMAGNETIC 3D SCANNER PERFORMED IN THIS METHOD
Höfinghoff et al. Resistive loaded antenna for ground penetrating radar inside a bottom hole assembly
CN109661596B (en) Determining a full electromagnetic coupling tensor using multiple antennas
US10768333B2 (en) Determining a full electromagnetic coupling tensor using multiple antennas
CN103291277A (en) Calibration device for three-dimensional array induction logging instrument
CN108519622B (en) Underground electric target detection method and device based on natural field source excitation
CN203607538U (en) Magnetic dipole antenna
CN203705661U (en) LWD resistivity measurement device utilizing high frequency magnetometer
RU2739230C1 (en) Method of organizing an antenna of a downhole resistivity meter for a telemetric system (versions), an antenna of a downhole resistivity meter for a telemetric system (versions)
US20130147488A1 (en) Radio frequency assisted geostructure analyzer
CN103675925B (en) One utilizes high frequency magnetic force instrument LWD resistivity log device and method
US20130141101A1 (en) Radio frequency assisted geostructure analyzer
Ebihara et al. Frequency spectrum change of borehole radar signals and blind separation
US20130113490A1 (en) Apparatus and method for directional resistivity measurement while drilling using incomplete circular antenna