EA201700242A1 - METHOD OF MANUFACTURING ELECTROMAGNETIC 3D SCANNER AND ELECTROMAGNETIC 3D SCANNER PERFORMED IN THIS METHOD - Google Patents
METHOD OF MANUFACTURING ELECTROMAGNETIC 3D SCANNER AND ELECTROMAGNETIC 3D SCANNER PERFORMED IN THIS METHODInfo
- Publication number
- EA201700242A1 EA201700242A1 EA201700242A EA201700242A EA201700242A1 EA 201700242 A1 EA201700242 A1 EA 201700242A1 EA 201700242 A EA201700242 A EA 201700242A EA 201700242 A EA201700242 A EA 201700242A EA 201700242 A1 EA201700242 A1 EA 201700242A1
- Authority
- EA
- Eurasian Patent Office
- Prior art keywords
- electromagnetic
- scanner
- electrical properties
- improving
- increasing
- Prior art date
Links
- 238000000034 method Methods 0.000 title abstract 4
- 238000004519 manufacturing process Methods 0.000 title abstract 3
- 239000004020 conductor Substances 0.000 abstract 2
- 230000005672 electromagnetic field Effects 0.000 abstract 2
- 230000005540 biological transmission Effects 0.000 abstract 1
- 238000010276 construction Methods 0.000 abstract 1
- 229910052500 inorganic mineral Inorganic materials 0.000 abstract 1
- 238000009434 installation Methods 0.000 abstract 1
- 239000007788 liquid Substances 0.000 abstract 1
- 239000011159 matrix material Substances 0.000 abstract 1
- 239000011707 mineral Substances 0.000 abstract 1
- 239000011435 rock Substances 0.000 abstract 1
- 230000035945 sensitivity Effects 0.000 abstract 1
- 239000000758 substrate Substances 0.000 abstract 1
- 238000004804 winding Methods 0.000 abstract 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V3/00—Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
- G01V3/18—Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation specially adapted for well-logging
- G01V3/30—Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation specially adapted for well-logging operating with electromagnetic waves
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B49/00—Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Geology (AREA)
- Physics & Mathematics (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Mining & Mineral Resources (AREA)
- Environmental & Geological Engineering (AREA)
- Remote Sensing (AREA)
- General Physics & Mathematics (AREA)
- Geophysics (AREA)
- Fluid Mechanics (AREA)
- Electromagnetism (AREA)
- Geochemistry & Mineralogy (AREA)
- Geophysics And Detection Of Objects (AREA)
Abstract
Изобретение относится к геофизическому оборудованию для исследований скважин методом электромагнитного каротажа и предназначено для исследования электрических свойств горных пород и жидких сред, их пространственного распределения и их анизотропии в объеме скважины и околоскважинном пространстве. Способ изготовления электромагнитного сканера включает выполнение в продолговатом корпусе сканера выемок, установку в выемки по меньшей мере одного передатчика, излучающего электромагнитное поле, и по меньшей мере одного приемника, принимающего электромагнитное поле, каждый из которых содержит антенны и электронные платы, при этом предварительно собирают по меньшей мере одну антенну путем намотки на диэлектрическую основу проводника, в каждую из выемок, предназначенных для установки антенн и выполненных в корпусе прибора, вставляют по меньшей мере одну диэлектрическую основу с намотанным проводником, представляющую собой антенну в собранном виде. Также описан электромагнитный сканер, выполненный вышеуказанным способом. Технический результат заключается в повышении эффективности используемых в приборе вставляемых антенн и улучшении метрологических характеристик прибора, повышении ремонтопригодности и производственной технологичности прибора в сравнении с известными аналогами, за счет конструкции и способа сборки измерении полной матрицы коэффициентов передачи магнитного поля трехкомпонентными приемником и передатчиком на двух или более частотах и, следовательно, повышении полноты и достоверности определения величины, распределения и анизотропии электрических свойств в скважине и околоскважинном пространстве вне зависимости от ориентации прибора, упрощении обработки и интерпретации данных за счет того, что приемник и передатчик выполнены секторным методом и, следовательно, имеют более компактные размеры, что является предпочтительным с точки зрения теоретического описания чувствительности прибора к электрическим свойствам окружающего пространства, повышении точности описания электрических свойств окружающего прибор пространства и, следовательно, повышении качества строительства скважин и разведки полезных ископаемых по совокупности особенностей построения прибора.The invention relates to geophysical equipment for well studies using electromagnetic logging and is intended to study the electrical properties of rocks and liquid media, their spatial distribution and their anisotropy in the well volume and near-wellbore space. A method of manufacturing an electromagnetic scanner includes making grooves in an elongated body of the scanner, installing at least one transmitter radiating an electromagnetic field into the notches, and at least one receiver receiving an electromagnetic field, each of which contains antennas and electronic boards, while preliminarily collecting at least one antenna by winding a conductor on the dielectric base, in each of the grooves intended for the installation of antennas and made in the instrument case, is inserted of at least one dielectric substrate with a conductor wound representing the antenna in the assembled state. Also described is an electromagnetic scanner made by the above method. The technical result consists in increasing the efficiency of the inserted antennas used in the device and improving the metrological characteristics of the device, increasing the maintainability and production efficiency of the device in comparison with the known analogues, due to the design and assembly method of measuring the full matrix of magnetic field transmission coefficients by two or more frequencies and, consequently, increasing the completeness and reliability of determining the magnitude, distribution and anisotropic and electrical properties in the well and near-wellbore space regardless of the orientation of the instrument, simplifying data processing and interpretation due to the fact that the receiver and transmitter are made by the sector method and, therefore, have more compact dimensions, which is preferable from the point of view of a theoretical description of the sensitivity of the instrument to electrical properties of the surrounding space, improving the accuracy of describing the electrical properties of the surrounding space of the device and, consequently, improving the quality of the oitelstva wells and mineral exploration for the construction of combined features of the device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EA201700242A EA036852B1 (en) | 2017-04-26 | 2017-04-26 | Method for production of electromagnetic 3d scanner, and electromagnetic 3d scanner made by the method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EA201700242A EA036852B1 (en) | 2017-04-26 | 2017-04-26 | Method for production of electromagnetic 3d scanner, and electromagnetic 3d scanner made by the method |
Publications (2)
Publication Number | Publication Date |
---|---|
EA201700242A1 true EA201700242A1 (en) | 2018-10-31 |
EA036852B1 EA036852B1 (en) | 2020-12-28 |
Family
ID=63917756
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EA201700242A EA036852B1 (en) | 2017-04-26 | 2017-04-26 | Method for production of electromagnetic 3d scanner, and electromagnetic 3d scanner made by the method |
Country Status (1)
Country | Link |
---|---|
EA (1) | EA036852B1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112285433A (en) * | 2020-09-23 | 2021-01-29 | 北京空间飞行器总体设计部 | 3D electromagnetic scanning system |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4319191A (en) * | 1980-01-10 | 1982-03-09 | Texaco Inc. | Dielectric well logging with radially oriented coils |
US7579840B2 (en) * | 2006-09-28 | 2009-08-25 | Baker Hughes Incorporated | Broadband resistivity interpretation |
EP2361394B1 (en) * | 2008-11-24 | 2022-01-12 | Halliburton Energy Services, Inc. | A high frequency dielectric measurement tool |
-
2017
- 2017-04-26 EA EA201700242A patent/EA036852B1/en unknown
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112285433A (en) * | 2020-09-23 | 2021-01-29 | 北京空间飞行器总体设计部 | 3D electromagnetic scanning system |
CN112285433B (en) * | 2020-09-23 | 2023-08-08 | 北京空间飞行器总体设计部 | 3D electromagnetic scanning system |
Also Published As
Publication number | Publication date |
---|---|
EA036852B1 (en) | 2020-12-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103726840B (en) | A kind of stratum orientation method of measuring resistivity and device | |
CA2663477C (en) | An antenna for an electromagnetic probe for investigating geological formations and its applications | |
US9903199B2 (en) | Use of metamaterial to enhance measurement of dielectric properties | |
US9746575B2 (en) | Induction type broadband 3-component borehole magnetic measuring sensor and borehole electromagnetic tomography method using the same | |
US20130191028A1 (en) | Gain-corrected measurements | |
WO2003054587A1 (en) | Method of using electrical and acoustic anisotropy measurements for fracture identification | |
CN107849914A (en) | Antenna structure and equipment for dielectric logging | |
CA2895018A1 (en) | Deep azimuthal system with multi-pole sensors | |
CN106089194B (en) | Apparatus and method for formation interface measurement while drilling using azimuthal resistivity | |
US9989666B2 (en) | Imaging of earth formation with high frequency sensor | |
CN103670387A (en) | Stratum directional electrical resistivity measuring method and device | |
EA201700242A1 (en) | METHOD OF MANUFACTURING ELECTROMAGNETIC 3D SCANNER AND ELECTROMAGNETIC 3D SCANNER PERFORMED IN THIS METHOD | |
Höfinghoff et al. | Resistive loaded antenna for ground penetrating radar inside a bottom hole assembly | |
CN109661596B (en) | Determining a full electromagnetic coupling tensor using multiple antennas | |
US10768333B2 (en) | Determining a full electromagnetic coupling tensor using multiple antennas | |
CN103291277A (en) | Calibration device for three-dimensional array induction logging instrument | |
CN108519622B (en) | Underground electric target detection method and device based on natural field source excitation | |
CN203607538U (en) | Magnetic dipole antenna | |
CN203705661U (en) | LWD resistivity measurement device utilizing high frequency magnetometer | |
RU2739230C1 (en) | Method of organizing an antenna of a downhole resistivity meter for a telemetric system (versions), an antenna of a downhole resistivity meter for a telemetric system (versions) | |
US20130147488A1 (en) | Radio frequency assisted geostructure analyzer | |
CN103675925B (en) | One utilizes high frequency magnetic force instrument LWD resistivity log device and method | |
US20130141101A1 (en) | Radio frequency assisted geostructure analyzer | |
Ebihara et al. | Frequency spectrum change of borehole radar signals and blind separation | |
US20130113490A1 (en) | Apparatus and method for directional resistivity measurement while drilling using incomplete circular antenna |