EA201500703A1 - Способ получения характеристической трехмерной модели образца пористого материала для исследования свойств проницаемости - Google Patents
Способ получения характеристической трехмерной модели образца пористого материала для исследования свойств проницаемостиInfo
- Publication number
- EA201500703A1 EA201500703A1 EA201500703A EA201500703A EA201500703A1 EA 201500703 A1 EA201500703 A1 EA 201500703A1 EA 201500703 A EA201500703 A EA 201500703A EA 201500703 A EA201500703 A EA 201500703A EA 201500703 A1 EA201500703 A1 EA 201500703A1
- Authority
- EA
- Eurasian Patent Office
- Prior art keywords
- sample
- characteristic
- dimensional model
- assigning
- pixel
- Prior art date
Links
- 238000000034 method Methods 0.000 title abstract 2
- 239000011148 porous material Substances 0.000 title abstract 2
- 239000000463 material Substances 0.000 abstract 4
- 230000035699 permeability Effects 0.000 abstract 4
- 238000002591 computed tomography Methods 0.000 abstract 1
- 239000012530 fluid Substances 0.000 abstract 1
- 238000004519 manufacturing process Methods 0.000 abstract 1
- 239000011435 rock Substances 0.000 abstract 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V20/00—Geomodelling in general
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N15/08—Investigating permeability, pore-volume, or surface area of porous materials
- G01N15/082—Investigating permeability by forcing a fluid through a sample
- G01N15/0826—Investigating permeability by forcing a fluid through a sample and measuring fluid flow rate, i.e. permeation rate or pressure change
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N15/08—Investigating permeability, pore-volume, or surface area of porous materials
- G01N15/088—Investigating volume, surface area, size or distribution of pores; Porosimetry
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N23/00—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
- G01N23/02—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
- G01N23/04—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
- G01N23/046—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material using tomography, e.g. computed tomography [CT]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/10—Complex mathematical operations
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T17/00—Three dimensional [3D] modelling, e.g. data description of 3D objects
- G06T17/05—Geographic models
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16C—COMPUTATIONAL CHEMISTRY; CHEMOINFORMATICS; COMPUTATIONAL MATERIALS SCIENCE
- G16C99/00—Subject matter not provided for in other groups of this subclass
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N15/08—Investigating permeability, pore-volume, or surface area of porous materials
- G01N2015/0846—Investigating permeability, pore-volume, or surface area of porous materials by use of radiation, e.g. transmitted or reflected light
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2223/00—Investigating materials by wave or particle radiation
- G01N2223/40—Imaging
- G01N2223/419—Imaging computed tomograph
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2223/00—Investigating materials by wave or particle radiation
- G01N2223/60—Specific applications or type of materials
- G01N2223/616—Specific applications or type of materials earth materials
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2223/00—Investigating materials by wave or particle radiation
- G01N2223/60—Specific applications or type of materials
- G01N2223/649—Specific applications or type of materials porosity
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Theoretical Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Software Systems (AREA)
- Geometry (AREA)
- Dispersion Chemistry (AREA)
- Mathematical Physics (AREA)
- Data Mining & Analysis (AREA)
- Remote Sensing (AREA)
- Bioinformatics & Computational Biology (AREA)
- Computing Systems (AREA)
- Computer Graphics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Pulmonology (AREA)
- Radiology & Medical Imaging (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Fluid Mechanics (AREA)
- Computational Mathematics (AREA)
- Mathematical Analysis (AREA)
- Mathematical Optimization (AREA)
- Algebra (AREA)
- Pure & Applied Mathematics (AREA)
- Databases & Information Systems (AREA)
- General Engineering & Computer Science (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geophysics (AREA)
- Analysing Materials By The Use Of Radiation (AREA)
Abstract
Настоящее изобретение относится к способу получения характеристической трехмерной модели образца горной породы для исследования пространственных физических характеристик материалов после обработки изображений, полученных методом компьютерной томографии. Способ включает получение трехмерного томографического изображения образца материала, определение областей с однородной структурой материала и присвоение каждой такой области определенного значения плотности материала, присвоение определенного значения пористости для каждого пикселя, присвоение определенного значения абсолютной проницаемости для каждого пикселя, формирование характеристической трехмерной модели на основе значений пористости и проницаемости для каждого пикселя, вычисление абсолютной проницаемости для всего образца или его сегмента в любом направлении методом вычислительной гидрогазодинамики. Техническим результатом является повышение точности и достоверности получаемых данных о свойствах проницаемости образца пористого материала без необходимости привлечения дополнительных финансовых и трудовых ресурсов.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/RU2012/001108 WO2014104909A1 (ru) | 2012-12-25 | 2012-12-25 | Способ получения характеристической трехмерной модели образца пористого материала для исследования свойств проницаемости |
Publications (1)
Publication Number | Publication Date |
---|---|
EA201500703A1 true EA201500703A1 (ru) | 2015-10-30 |
Family
ID=51021802
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EA201500703A EA201500703A1 (ru) | 2012-12-25 | 2012-12-25 | Способ получения характеристической трехмерной модели образца пористого материала для исследования свойств проницаемости |
Country Status (5)
Country | Link |
---|---|
US (1) | US20150331145A1 (ru) |
CN (1) | CN104885124A (ru) |
CA (1) | CA2896465A1 (ru) |
EA (1) | EA201500703A1 (ru) |
WO (1) | WO2014104909A1 (ru) |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105205213B (zh) * | 2015-08-24 | 2018-07-03 | 哈尔滨工业大学 | 一种点阵材料等效力学性能分析系统 |
CN108455733A (zh) * | 2018-01-22 | 2018-08-28 | 太原理工大学 | 一种膜生物污水处理的生物膜模型构建方法 |
CN108387495B (zh) * | 2018-01-22 | 2020-03-31 | 青岛理工大学 | 一种多孔混凝土孔隙率计算和孔隙参数表征方法 |
JP6998807B2 (ja) * | 2018-03-20 | 2022-01-18 | 三菱重工業株式会社 | 金属材料の脆化評価方法 |
CN108682020B (zh) * | 2018-04-28 | 2019-04-12 | 中国石油大学(华东) | 岩心微米ct孔隙结构重构方法 |
US11275037B2 (en) | 2018-12-07 | 2022-03-15 | General Electric Company | Alloy powder cleanliness inspection using computed tomography |
CN113167713B (zh) * | 2018-12-18 | 2024-01-02 | 国际壳牌研究有限公司 | 数字表征岩石渗透率的方法 |
CN110210460A (zh) * | 2019-06-26 | 2019-09-06 | 中国石油大学(华东) | 一种考虑多重因素影响的页岩气表观渗透率计算方法 |
US11125671B2 (en) * | 2019-07-09 | 2021-09-21 | Saudi Arabian Oil Company | Laboratory measurement of dynamic fracture porosity and permeability variations in rock core plug samples |
CN110222368B (zh) * | 2019-08-02 | 2021-09-17 | 中国石油大学(华东) | 一种利用二维切片计算岩心三维孔隙度和渗透率的方法 |
CN111104641B (zh) * | 2019-12-10 | 2023-07-21 | 重庆大学 | 一种三维空间内的计算机识别晶粒方法 |
CN112100931B (zh) * | 2020-08-04 | 2024-05-17 | 华南理工大学 | 一种基于纸页二维结构的纸页绝对渗透率的检测方法 |
CN112577979B (zh) * | 2020-12-08 | 2021-10-19 | 中国科学院力学研究所 | 一种岩石内部流体饱和度空间分布的定量分析装置及方法 |
CN112525799A (zh) * | 2020-12-14 | 2021-03-19 | 中国石油大学(华东) | 一种气体水合物分解过程中多孔介质渗透率变化的确定方法 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2128365C1 (ru) * | 1998-04-24 | 1999-03-27 | Кашик Алексей Сергеевич | Способ динамической визуализации данных об объекте |
US6516080B1 (en) * | 2000-04-05 | 2003-02-04 | The Board Of Trustees Of The Leland Stanford Junior University | Numerical method of estimating physical properties of three-dimensional porous media |
BRPI0902889A2 (pt) * | 2008-04-10 | 2017-08-29 | Prad Res & Development Ltd | Método para criar um modelo de pseudonúcleo numérico, sistema para criação de um modelo de pseudonúcleo numérico, e sistema para criar um modelo de pseudonúcleo numérico. |
CN101403683B (zh) * | 2008-11-17 | 2010-12-01 | 长安大学 | 采用ct技术分析多孔沥青混合料空隙结构的方法 |
US9128212B2 (en) * | 2009-04-20 | 2015-09-08 | Exxonmobil Upstream Research Company | Method for predicting fluid flow |
US8081082B2 (en) * | 2009-05-27 | 2011-12-20 | International Business Machines Corporation | Monitoring patterns of motion |
FR2979724B1 (fr) * | 2011-09-06 | 2018-11-23 | Ifp Energies Now | Procede d'exploitation d'un gisement petrolier a partir d'une technique de selection des positions des puits a forer |
-
2012
- 2012-12-25 EA EA201500703A patent/EA201500703A1/ru unknown
- 2012-12-25 WO PCT/RU2012/001108 patent/WO2014104909A1/ru active Application Filing
- 2012-12-25 CN CN201280078004.0A patent/CN104885124A/zh active Pending
- 2012-12-25 US US14/655,682 patent/US20150331145A1/en not_active Abandoned
- 2012-12-25 CA CA2896465A patent/CA2896465A1/en not_active Abandoned
Also Published As
Publication number | Publication date |
---|---|
CA2896465A1 (en) | 2014-07-03 |
WO2014104909A1 (ru) | 2014-07-03 |
CN104885124A (zh) | 2015-09-02 |
US20150331145A1 (en) | 2015-11-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EA201500703A1 (ru) | Способ получения характеристической трехмерной модели образца пористого материала для исследования свойств проницаемости | |
Zhang et al. | Influence of water saturation on the mechanical behaviour of low-permeability reservoir rocks | |
JP2016503167A5 (ru) | ||
EP4296721A3 (en) | Generating 3-dimensional maps of a scene using passive and active measurements | |
KR101661336B1 (ko) | 암석의 박편 영상을 이용한 암석의 투수율 및 공극률 산출 장치 및 그 방법 | |
EA201592039A1 (ru) | Прямое численное моделирование петрофизических свойств на основе изображений в имитированных условиях напряженно-деформированного состояния | |
JP2017508334A5 (ru) | ||
MX2014013970A (es) | Metodo y sistema para estimar propiedades de roca a partir de muestras de roca utilizando formacion de imagenes de fisica digital de roca. | |
WO2010059987A3 (en) | Method for determining rock physics relationships using computer tomographic images thereof | |
EA201991068A1 (ru) | Прямое численное моделирование петрофизических свойств горных пород с двумя или несколькими несмешивающимися фазами | |
Masciopinto et al. | An integrated approach based on numerical modelling and geophysical survey to map groundwater salinity in fractured coastal aquifers | |
Konstantinou et al. | Tensile strength of artificially cemented sandstone generated via microbially induced carbonate precipitation | |
Choi et al. | Equivalent pore channel model for fluid flow in rock based on microscale X-ray CT imaging | |
Brzeziński et al. | Photogrammetry-based volume measurement framework for the particle density estimation of LECA | |
Thanh et al. | Predicting electrokinetic coupling and electrical conductivity in fractured media using a fractal distribution of tortuous capillary fractures | |
Wei et al. | Production characteristics with different superimposed modes using variogram: a case study of a super-giant carbonate reservoir in the Middle East | |
Liu et al. | Pore-Scale Experimental Investigation of the Residual Oil Formation in Carbonate Sample from the Middle East | |
Lu et al. | Applying NMR T 2 Spectral Parameters in Pore Structure Evaluation—An Example from an Eocene Low-Permeability Sandstone Reservoir | |
Cozzolino et al. | The Extended data-adaptive Probability-based Electrical Resistivity Tomography Inversion Method (E-PERTI) for the characterization of the buried ditch of the ancient Egnazia (Puglia, Italy) | |
Martorana et al. | Evaluation of Artifacts and Misinterpretation in 2D Electrical Resistivity Tomography Caused by Three-Dimensional Resistive Structures of Regular or Irregular Shapes | |
Gilmanov et al. | Topological characteristics of digital models of geological core | |
Wu et al. | Effect of the heterogeneity on sorptivity in sandstones with high and low permeability in water imbibition process | |
Chen et al. | Analysis Method of Full-Scale Pore Distribution Based on MICP, CT Scanning, NMR, and Cast Thin Section Imaging—A Case Study of Paleogene Sandstone in Xihu Sag, East China Sea Basin | |
Li et al. | Quantitative study of the geometrical and hydraulic characteristics of a single rock fracture | |
Bogdan et al. | Errors in energy landscapes measured with particle tracking |