EA201491565A1 - METHODS AND SYSTEMS OF IMITATION OF THE UNDERGROUND CRACKS OF THE BOTTOM WELL - Google Patents
METHODS AND SYSTEMS OF IMITATION OF THE UNDERGROUND CRACKS OF THE BOTTOM WELLInfo
- Publication number
- EA201491565A1 EA201491565A1 EA201491565A EA201491565A EA201491565A1 EA 201491565 A1 EA201491565 A1 EA 201491565A1 EA 201491565 A EA201491565 A EA 201491565A EA 201491565 A EA201491565 A EA 201491565A EA 201491565 A1 EA201491565 A1 EA 201491565A1
- Authority
- EA
- Eurasian Patent Office
- Prior art keywords
- disk
- methods
- disks
- casing
- fluid sample
- Prior art date
Links
- 238000000034 method Methods 0.000 title abstract 3
- 239000012530 fluid Substances 0.000 abstract 4
- 230000015572 biosynthetic process Effects 0.000 abstract 2
- 238000005755 formation reaction Methods 0.000 abstract 2
- 241000238366 Cephalopoda Species 0.000 abstract 1
- 235000015076 Shorea robusta Nutrition 0.000 abstract 1
- 244000166071 Shorea robusta Species 0.000 abstract 1
- 239000000654 additive Substances 0.000 abstract 1
- 238000005553 drilling Methods 0.000 abstract 1
- 239000012779 reinforcing material Substances 0.000 abstract 1
- 239000007787 solid Substances 0.000 abstract 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/26—Oils; Viscous liquids; Paints; Inks
- G01N33/28—Oils, i.e. hydrocarbon liquids
- G01N33/2823—Raw oil, drilling fluid or polyphasic mixtures
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/24—Earth materials
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Analytical Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Pathology (AREA)
- Food Science & Technology (AREA)
- Medicinal Chemistry (AREA)
- Physics & Mathematics (AREA)
- Immunology (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Remote Sensing (AREA)
- Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
- Geophysics And Detection Of Objects (AREA)
Abstract
Изобретены устройство и способы имитации трещин ствола скважины. Устройство (100) имитации трещины в подземном пласте содержит кожух (110), впуск (102) для направления образца текучей среды в кожух (110), первый диск (202А) и второй диск (202В), установленные в кожухе (110). Второй диск (202В) может перемещаться относительно первого диска (202А) для образования регулируемого зазора (302) между первым диском (202А) и вторым диском (202В), и образец текучей среды проходит через регулируемый зазор (302). Общий коллектор (216) принимает по меньшей мере часть образца текучей среды, которая проходит по меньшей мере через один из первого диска (202А) и второго диска (202В). Устройство и способы являются особенно подходящими для испытания буровых растворов, кальматирующих добавок или упрочняющих ствол скважины материалов. Диски могут являться пористыми дисками, щелевыми дисками или сплошными дисками для представления пород подземных пластов различных типов, таких как песчаники или сланцы.A device and methods for simulating cracks in a wellbore have been invented. The device (100) simulating a crack in an underground formation contains a casing (110), an inlet (102) for guiding a fluid sample into the casing (110), a first disk (202A) and a second disk (202B) installed in the casing (110). The second disk (202B) can be moved relative to the first disk (202A) to form an adjustable gap (302) between the first disk (202A) and the second disk (202B), and a fluid sample passes through the adjustable gap (302). A common manifold (216) receives at least a portion of a fluid sample that passes through at least one of the first disk (202A) and the second disk (202B). The device and methods are particularly suitable for testing drilling fluids, squid additives, or borehole reinforcing materials. Disks can be porous disks, slit disks, or solid disks to represent various types of subterranean formations, such as sandstones or shales.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/401,651 US8972235B2 (en) | 2012-02-21 | 2012-02-21 | Methods and systems for subterranean bore hole fracture simulation |
PCT/US2013/026419 WO2013126287A1 (en) | 2012-02-21 | 2013-02-15 | Methods and systems for subterranean bore hole fracture simulation |
Publications (2)
Publication Number | Publication Date |
---|---|
EA201491565A1 true EA201491565A1 (en) | 2014-11-28 |
EA030301B1 EA030301B1 (en) | 2018-07-31 |
Family
ID=47846143
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EA201491565A EA030301B1 (en) | 2012-02-21 | 2013-02-15 | Method and system for subterranean bore hole fracture simulation |
Country Status (8)
Country | Link |
---|---|
US (1) | US8972235B2 (en) |
EP (1) | EP2817618B1 (en) |
AU (1) | AU2013222663B2 (en) |
BR (1) | BR112014020587B1 (en) |
CA (1) | CA2864984C (en) |
EA (1) | EA030301B1 (en) |
MX (1) | MX346348B (en) |
WO (1) | WO2013126287A1 (en) |
Families Citing this family (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105332683B (en) * | 2015-11-16 | 2017-07-21 | 中国石油大学(北京) | Fracturing experiments device and method |
CN105547526B (en) * | 2016-01-13 | 2017-12-26 | 中国矿业大学(北京) | A kind of monitoring device and method of fault tectonic stress |
CN106640019B (en) * | 2016-11-11 | 2019-05-17 | 中国地质大学(北京) | Fracturing work simulates real-time monitoring system and its analog detection method |
CN108214484B (en) * | 2016-12-22 | 2024-05-10 | 常州轻工职业技术学院 | Pipeline blocking manipulator clamp control system |
US11365626B2 (en) | 2017-03-01 | 2022-06-21 | Proptester, Inc. | Fluid flow testing apparatus and methods |
US10612356B2 (en) | 2017-03-01 | 2020-04-07 | Proptester, Inc. | Fracture fluid and proppant transport testing systems and methods of using same |
US11111742B2 (en) * | 2017-03-16 | 2021-09-07 | Saudi Arabian Oil Company | Apparatus for loss circulation material performance evaluation |
US11268381B2 (en) * | 2017-03-16 | 2022-03-08 | Saudi Arabian Oil Company | Additive manufacturing of a vugular loss zone simulating test device |
CN107727539A (en) * | 2017-09-29 | 2018-02-23 | 中国石油化工股份有限公司 | The experimental provision of pre-crosslinked gel particle migration rule in rock micro throat |
CN107939363B (en) * | 2017-10-25 | 2020-03-13 | 中国石油天然气集团公司 | Visual model for simulating fluid flow in tight reservoir fracture and preparation and application thereof |
US10508978B2 (en) | 2017-11-03 | 2019-12-17 | Saudi Arabian Oil Company | Strain energy-based method and apparatus to determine the coefficient of resilience of lost circulation materials |
CN108303348B (en) * | 2017-12-20 | 2020-07-14 | 中国石油化工股份有限公司 | Device and system for simulating tensile degradation characteristics of polymer in oil reservoir pore throat |
CN108104786B (en) * | 2017-12-24 | 2021-04-06 | 东北石油大学 | Shale fracturing indoor simulation experiment device |
US20200110015A1 (en) * | 2018-10-04 | 2020-04-09 | Saudi Arabian Oil Company | Vugular Loss Simulating Vug Tester for Screening and Evaluation of LCM Products |
CN109297830A (en) * | 2018-11-27 | 2019-02-01 | 山东大学 | A kind of refracturing laboratory testing rig and its operating method |
CN110273680B (en) * | 2019-07-22 | 2024-08-16 | 西安石油大学 | Direction-changeable parallel plate crack simulation device and method |
CN110821466B (en) * | 2019-10-09 | 2022-01-04 | 大港油田集团有限责任公司 | Visual fracturing technology research experimental apparatus with variable seam width |
US11709118B2 (en) | 2020-02-13 | 2023-07-25 | Saudi Arabian Oil Company | Lost circulation materials (LCM) and lost circulation shapes (LCS) test fixture |
US11352545B2 (en) | 2020-08-12 | 2022-06-07 | Saudi Arabian Oil Company | Lost circulation material for reservoir section |
CN112343575B (en) * | 2020-11-20 | 2021-07-13 | 西南石油大学 | Simulation experiment method for researching plugging and bearing mechanism of fractured stratum |
CN112814642B (en) * | 2021-03-31 | 2022-10-25 | 中国科学院武汉岩土力学研究所 | Shaft device and method for shale horizontal well staged fracturing physical simulation experiment |
US11761274B2 (en) * | 2021-12-17 | 2023-09-19 | Halliburton Energy Services, Inc. | Test apparatus for measuring particle plugging of a simulated fracture |
CN115370341B (en) * | 2022-04-15 | 2023-11-28 | 中国石油大学(北京) | Microcosmic visual rock plate hydraulic fracturing indoor simulation method and device |
CN116380752B (en) * | 2023-06-05 | 2023-08-11 | 成都理工大学 | Evaluation method for shielding effect of degradable sinking agent artificial interlayer |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4748849A (en) * | 1987-02-04 | 1988-06-07 | Nl Industries, Inc. | Apparatus for dynamically measuring fluid loss characteristics |
US5987969A (en) * | 1998-02-25 | 1999-11-23 | Intevep, S.A. | Apparatus and method for determining dynamic stability of emulsions |
US6584833B1 (en) * | 2002-05-30 | 2003-07-01 | Halliburton Energy Services, Inc. | Apparatus and method for analyzing well fluid sag |
US7900504B2 (en) | 2007-03-26 | 2011-03-08 | M-I Llc | High pressure fracture tester |
US7721612B2 (en) * | 2008-03-03 | 2010-05-25 | Halliburton Energy Services, Inc. | Real-time filtration apparatus and associated methods |
US20090306898A1 (en) | 2008-06-04 | 2009-12-10 | Prop Tester, Inc. | Testing Particulate Materials |
EP2396510A4 (en) * | 2009-02-11 | 2017-01-04 | M-I Llc | Wellbore fluid testing apparatus and methods |
-
2012
- 2012-02-21 US US13/401,651 patent/US8972235B2/en active Active
-
2013
- 2013-02-15 CA CA2864984A patent/CA2864984C/en active Active
- 2013-02-15 EA EA201491565A patent/EA030301B1/en not_active IP Right Cessation
- 2013-02-15 EP EP13708956.1A patent/EP2817618B1/en active Active
- 2013-02-15 AU AU2013222663A patent/AU2013222663B2/en not_active Ceased
- 2013-02-15 MX MX2014010006A patent/MX346348B/en active IP Right Grant
- 2013-02-15 WO PCT/US2013/026419 patent/WO2013126287A1/en active Application Filing
- 2013-02-15 BR BR112014020587A patent/BR112014020587B1/en not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
AU2013222663A1 (en) | 2014-09-25 |
EA030301B1 (en) | 2018-07-31 |
EP2817618B1 (en) | 2019-02-20 |
AU2013222663B2 (en) | 2015-06-18 |
US8972235B2 (en) | 2015-03-03 |
CA2864984C (en) | 2017-05-09 |
US20130218545A1 (en) | 2013-08-22 |
MX346348B (en) | 2017-03-14 |
CA2864984A1 (en) | 2013-08-29 |
BR112014020587B1 (en) | 2019-08-27 |
BR112014020587A2 (en) | 2019-01-02 |
EP2817618A1 (en) | 2014-12-31 |
WO2013126287A1 (en) | 2013-08-29 |
MX2014010006A (en) | 2014-11-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EA201491565A1 (en) | METHODS AND SYSTEMS OF IMITATION OF THE UNDERGROUND CRACKS OF THE BOTTOM WELL | |
Bertoncello et al. | Imbibition and water blockage in unconventional reservoirs: well-management implications during flowback and early production | |
Hansen et al. | Snøhvit: The history of injecting and storing 1 Mt CO2 in the fluvial Tubåen Fm | |
Yu et al. | Simulation study of CO2 huff-n-puff process in Bakken tight oil reservoirs | |
Zechner et al. | Simulation of polymer injection under fracturing conditions—an injectivity pilot in the Matzen field, Austria | |
Delamaide | Polymer flooding of heavy oil-from screening to full-field extension | |
Morel et al. | Dalia/camelia polymer injection in deep offshore field angola learnings and in situ polymer sampling results | |
EP2848964A3 (en) | Combining downhole fluid analysis and petroleum systems modeling | |
EA201071257A1 (en) | METHOD AND TEST SYSTEM OF OIL WELLS BY FUELING WITH MIXING | |
EA201590946A1 (en) | WELL FLUIDS CONTAINING MINERAL PARTICLES AND METHODS RELATED TO THEM | |
GB2533226A (en) | Methods and systems for evaluation of rock permeability, porosity, and fluid composition | |
MY179810A (en) | Zero equivalent circulating density drilling method | |
Sun et al. | Experimental study of friction reducer flows in microfracture | |
Wang et al. | An investigation of fluid leak-off due to osmotic and capillary effects and its impact on micro-fracture generation during hydraulic fracturing stimulation of gas shale | |
GB2553468A (en) | Estimating casing wear during drilling using multiple wear factors along the drill string | |
Al Rbeawi et al. | Pressure behaviours and flow regimes of a horizontal well with multiple inclined hydraulic fractures | |
Williams | PS the permeability of overpressure shale seals and of source rock reservoirs is the same | |
Jackson et al. | Laboratory measurements and numerical modeling of streaming potential for downhole monitoring in intelligent wells | |
Wang et al. | A semianalytical model for simulating real gas transport in nanopores and complex fractures of shale gas reservoirs | |
Zhichun et al. | Numerical Well Test Analysis for Polymer Flooding considering the Non‐Newtonian Behavior | |
Kweon et al. | Reactive and pore structure changes in carbon dioxide sequestration | |
Merzoug et al. | Advancement in Hydraulic Fracturing for Improved Oil Recovery | |
Yu et al. | Numerical Well Testing Interpretation Model and Applications in Crossflow Double‐Layer Reservoirs by Polymer Flooding | |
Zhang et al. | Comprehensive model for flow behavior of high-performance-fracture completions | |
Zhang et al. | The Effect of Rheology of Viscoelastic Polymer on Pressure Transient Response in Near‐Wellbore Regions |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Lapse of a eurasian patent due to non-payment of renewal fees within the time limit in the following designated state(s) |
Designated state(s): AM AZ BY KZ KG TJ TM |
|
MM4A | Lapse of a eurasian patent due to non-payment of renewal fees within the time limit in the following designated state(s) |
Designated state(s): RU |