EA043871B1 - Способ переработки жидких радиоактивных отходов, содержащих в том числе изотопы трития - Google Patents
Способ переработки жидких радиоактивных отходов, содержащих в том числе изотопы трития Download PDFInfo
- Publication number
- EA043871B1 EA043871B1 EA202100077 EA043871B1 EA 043871 B1 EA043871 B1 EA 043871B1 EA 202100077 EA202100077 EA 202100077 EA 043871 B1 EA043871 B1 EA 043871B1
- Authority
- EA
- Eurasian Patent Office
- Prior art keywords
- concrete
- radioactive waste
- waste
- low
- processing liquid
- Prior art date
Links
- 239000010857 liquid radioactive waste Substances 0.000 title claims description 42
- 238000000034 method Methods 0.000 title claims description 37
- YZCKVEUIGOORGS-NJFSPNSNSA-N Tritium Chemical compound [3H] YZCKVEUIGOORGS-NJFSPNSNSA-N 0.000 title claims description 34
- 229910052722 tritium Inorganic materials 0.000 title claims description 34
- 238000012545 processing Methods 0.000 title claims description 28
- 239000004567 concrete Substances 0.000 claims description 35
- 230000000694 effects Effects 0.000 claims description 19
- 239000000203 mixture Substances 0.000 claims description 15
- 238000003860 storage Methods 0.000 claims description 15
- 230000003750 conditioning effect Effects 0.000 claims description 10
- 239000000941 radioactive substance Substances 0.000 claims description 9
- 239000002901 radioactive waste Substances 0.000 claims description 9
- 239000002699 waste material Substances 0.000 claims description 9
- 230000007613 environmental effect Effects 0.000 claims description 8
- 230000001143 conditioned effect Effects 0.000 claims description 7
- 239000011230 binding agent Substances 0.000 claims description 6
- 239000000945 filler Substances 0.000 claims description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 6
- 239000000440 bentonite Substances 0.000 claims description 4
- 229910000278 bentonite Inorganic materials 0.000 claims description 4
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 claims description 4
- 239000004568 cement Substances 0.000 claims description 4
- -1 condensate Substances 0.000 claims description 4
- 239000004576 sand Substances 0.000 claims description 4
- 238000012360 testing method Methods 0.000 claims description 4
- 239000000654 additive Substances 0.000 claims description 3
- 238000010276 construction Methods 0.000 claims description 3
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims description 2
- 239000002956 ash Substances 0.000 claims description 2
- 239000011384 asphalt concrete Substances 0.000 claims description 2
- 238000009933 burial Methods 0.000 claims description 2
- 239000010440 gypsum Substances 0.000 claims description 2
- 229910052602 gypsum Inorganic materials 0.000 claims description 2
- 239000012764 mineral filler Substances 0.000 claims description 2
- 239000004033 plastic Substances 0.000 claims description 2
- 239000004014 plasticizer Substances 0.000 claims description 2
- 239000013535 sea water Substances 0.000 claims description 2
- 150000004760 silicates Chemical class 0.000 claims description 2
- 239000002900 solid radioactive waste Substances 0.000 claims description 2
- 239000003381 stabilizer Substances 0.000 claims description 2
- 239000004575 stone Substances 0.000 claims description 2
- 239000011593 sulfur Substances 0.000 claims description 2
- 229910052717 sulfur Inorganic materials 0.000 claims description 2
- 238000010521 absorption reaction Methods 0.000 claims 1
- 238000002386 leaching Methods 0.000 claims 1
- 239000010808 liquid waste Substances 0.000 claims 1
- 230000008520 organization Effects 0.000 claims 1
- 238000004806 packaging method and process Methods 0.000 claims 1
- 239000002910 solid waste Substances 0.000 claims 1
- 238000010561 standard procedure Methods 0.000 claims 1
- 239000000243 solution Substances 0.000 description 28
- 150000003839 salts Chemical class 0.000 description 17
- 238000005516 engineering process Methods 0.000 description 10
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 8
- 238000001704 evaporation Methods 0.000 description 8
- 230000008020 evaporation Effects 0.000 description 8
- 239000002894 chemical waste Substances 0.000 description 7
- 239000011398 Portland cement Substances 0.000 description 6
- 230000002285 radioactive effect Effects 0.000 description 6
- 239000007787 solid Substances 0.000 description 5
- 229910052770 Uranium Inorganic materials 0.000 description 4
- 229910052792 caesium Inorganic materials 0.000 description 4
- TVFDJXOCXUVLDH-UHFFFAOYSA-N caesium atom Chemical compound [Cs] TVFDJXOCXUVLDH-UHFFFAOYSA-N 0.000 description 4
- 239000010941 cobalt Substances 0.000 description 4
- 229910017052 cobalt Inorganic materials 0.000 description 4
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 4
- 239000012141 concentrate Substances 0.000 description 4
- 229910052742 iron Inorganic materials 0.000 description 4
- 239000007791 liquid phase Substances 0.000 description 4
- 239000002594 sorbent Substances 0.000 description 4
- 239000008030 superplasticizer Substances 0.000 description 4
- DNYWZCXLKNTFFI-UHFFFAOYSA-N uranium Chemical compound [U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U] DNYWZCXLKNTFFI-UHFFFAOYSA-N 0.000 description 4
- 230000002378 acidificating effect Effects 0.000 description 3
- 238000005868 electrolysis reaction Methods 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- 239000010802 sludge Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- OKTJSMMVPCPJKN-NJFSPNSNSA-N Carbon-14 Chemical compound [14C] OKTJSMMVPCPJKN-NJFSPNSNSA-N 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 2
- 235000019738 Limestone Nutrition 0.000 description 2
- 239000003513 alkali Substances 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 150000001642 boronic acid derivatives Chemical class 0.000 description 2
- 239000004927 clay Substances 0.000 description 2
- 239000000084 colloidal system Substances 0.000 description 2
- 239000006028 limestone Substances 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 150000002823 nitrates Chemical class 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 239000010455 vermiculite Substances 0.000 description 2
- 229910052902 vermiculite Inorganic materials 0.000 description 2
- 235000019354 vermiculite Nutrition 0.000 description 2
- 230000000844 anti-bacterial effect Effects 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 238000005202 decontamination Methods 0.000 description 1
- 230000003588 decontaminative effect Effects 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 238000009439 industrial construction Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000002893 slag Substances 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Description
Изобретение относится к технологии переработки жидких радиоактивных отходов (ЖРО), содержащих в том числе изотопы трития, для максимального сокращения их объемов и может быть использована на различных объектах атомной промышленности, а также при выводе таких объектов из эксплуатации.
В настоящее время в мире более 130 исследовательских, демонстрационных и промышленных ядерных реакторов выработали свой ресурс, а в период до 2020 г. во всем мире будет снято с эксплуатации более 200 энергоблоков. По оценкам экспертов при снятии с эксплуатации 125 энергоблоков в странах ЕЭС общий объем радиоактивных отходов составит 1 миллион 600 тысяч тонн. На большинстве объектов атомной промышленности во временных хранилищах находятся жидкие радиоактивные отходы, форма которых неприемлема для длительного хранения (кубовые остатки, растворимые солевые плавы и т.д.). В связи с этим возникла необходимость решить эту проблему так, чтобы за счет экономически и технически приемлемых технологий свести к минимуму объем отходов, подлежащих длительному хранению. Особенно трудно очистить водные растворы от трития, так как это требует очень сложного, дорогого и энергоемкого оборудования. При этом тритий является очень слабым бетта-излучателем с энергией излучения 5,7 кэв, а санитарные нормы содержания трития в растворах, сбрасываемых в окружающую среду, допускают его количества более 7000 Бк/кг.
Существуют способы переработки радиоактивных отходов путем их фиксации в устойчивой твердой среде, а именно, их цементирование (см. патенты РФ №№ 2132095, 2218618, 2309472). При этом радиоактивные отходы надежно кондиционированы, однако их объем при цементировании увеличивается более чем в 2,5 раза с учетом объема контейнеров, используемых для хранения цементного компаунда, что приводит к очень большим затратам для надежной изоляции и хранения, полученных твердых радиоактивных отходов, в специальных хранилищах, что снижает их экологическую безопасность в целом.
Также существуют способы переработки жидких радиоактивных отходов, в процессе которых максимально осуществляется сокращение их объемов с получением радиоактивного шлама, отработанных сорбентов в пригодном для утилизации виде и жидких нерадиоактивных отходов (низкоактивных растворов), которые далее подвергаются переработке (кондиционированию).
Известны способы переработки жидких радиоактивных отходов (см. патент РФ № 2122753, патент US 8753518), включающие очистку растворов от радионуклидов с последующим кондиционированием упариванием очищенных от радионуклидов низкоактивных растворов до получения сухих солей или солевого плава, подлежащих хранению как нерадиоактивные химические отходы.
Общим недостатком этих способов является то, что образуется большой объем химических отходов за счет упарки нерадиоактивных химических отходов, но и то, что требуется особый контроль при их транспортировке и хранении на спецполигонах, что снижает их экологическую безопасность. Кроме того, наличие сложного и энергоемкого кондиционирования упариванием очищенных от радионуклидов низкоактивных растворов усложняет известные способы переработки жидких радиоактивных отходов.
Известен способ очистки жидких радиоактивных отходов от трития, включающий испарение и кондиционирование, холодный и горячий изотопный химический обмен, электролиз с образованием водорода, очищенной от трития воды (остаточное содержание трития менее 7600 Бк/л), тритиевого концентрата и солевого концентрата (см. патент на полезную модель РФ № 126185 Установка для очистки жидких радиоактивных отходов от трития, 8 МПК G21F 9/04, приоритет 27.08.2012 г., опубл. 20.03.2013 г.).
Недостатком известного способа является то, что это очень сложный, энергоемкий и дорогой способ, причем не предназначенный для переработки жидких радиоактивных отходов, содержащих значительное количество нитратов и боратов. Кроме того, в результате сложной многоступенчатой энергоемкой технологии образуются конечные продукты, каждый из которых требует свой вид утилизации, а именно, сжигание полученного при электролизе водорода, для исключения выброса в атмосферу содержащего тритий водорода, захоронение в контейнере тритиевого концентрата, который фиксируется в виде гидрида титана, цементирование и передача на захоронение солевого концентрата (радиоактивный отход), что в целом усложняет этот способ и снижает его экологическую безопасность. При этом полученная очищенная от трития вода (остаточное содержание трития менее 7600 Бк/л) сбрасывается, что также не повышает экологическую безопасность этого способа, поскольку влияние трития, даже содержащегося в пределах нормы, может имеет пагубное и непредсказуемое воздействие на экологию.
Известен способ разделения низкоактивного раствора, полученного после удаления из жидких радиоактивных отходов основного количества радиоактивных веществ, на кислую и щелочную составляющие методом электролиза, при этом кислая составляющая направляется в бак отстойник для дальнейшего использования в технологии переработки жидких радиоактивных отходов, а щелочная - для использования в производстве бетонных контейнеров на основе шлакоцемента (см. Молодежь - ядерной энергетике Украины: сборник материалов 2-й конференции г. Одессы, 12-13 сентября 1995 года/под ред. С.В. Барабашева. - Одесса: Украинское ядерное общество, 1995. с. 15).
Недостатком известного способа является то, что это очень сложный, энергоемкий и не универсальный способ, особенно в промышленном масштабе, поскольку в результате разделения низкоактивного раствора получают щелочную и кислую составляющие, которые, при этом, используются в конкретной технологии переработки жидких радиоактивных отходов.
- 1 043871
Наиболее близким к заявляемому изобретению является способ переработки жидких радиоактивных отходов, включающий окисление отходов, отделение от жидкой фазы шламов, коллоидов и взвешенных частиц и удаление из жидкой фазы радионуклидов для последующей утилизации с применением селективных сорбентов и фильтров, при этом очищенный от радионуклидов низкоактивный раствор кондиционируют упариванием до образования твердых солей, которые хранят как нерадиоактивные химические отходы (см. патент на изобретение РФ № 2577512 Способ переработки жидких радиоактивных отходов и их утилизации, 8 МПК G21F 9/00, приоритет от 29.12.2014 г., опубл. 20.03.2016 г.).
К недостаткам данного способа относятся высокая энергоемкость при кондиционировании упариванием очищенного от радионуклидов низкоактивного раствора до образования твердых нерадиоактивных солей, что технологически усложняет этот способ. Также недостатком этого способа является получение вторичных химических отходов (твердых нерадиоактивных солей), хранение которых осуществляется на спецполигонах и требует особого контроля, что снижает его экологическую безопасность.
Задача заявляемого изобретения заключается в разработке технически приемлемой технологии, позволяющей свести к минимуму объем отходов, полученных при переработке жидких радиоактивных отходов, содержащих в том числе изотопы трития.
Технический результат заявляемого изобретения заключается в упрощении технологического процесса переработки жидких радиоактивных отходов, содержащих в том числе изотопы трития, за счет исключения сложных и энергоемких операций кондиционирования очищенного от радионуклидов низкоактивного раствора, а также в повышении экологической безопасности за счет сокращения площадей для хранения отходов, полученных при переработке жидких радиоактивных отходов.
Заявляемый технический результат достигается тем, что в способе переработки жидких радиоактивных отходов, содержащих в том числе изотопы трития, включающем удаление из жидких радиоактивных отходов радиоактивных веществ с получением низкоактивного раствора, кондиционирование удаленных радиоактивных веществ в форму, удовлетворяющую критериям приемлемости для захоронения, согласно изобретению, в полученный низкоактивный раствор вводят вяжущее и заполнитель для приготовления бетонной смеси, соответствующей строительным, радиоэкологическим и санитарногигиеническим требованиям.
При этом состав полученного низкоактивного раствора, перед его использованием в качестве раствора для бетонной смеси, корректируют по значению рН для обеспечения требуемых параметров. Причем низкоактивный раствор дополнительно может быть разбавлен технической водой, конденсатом, морской водой и т.п.
В качестве вяжущего может быть использован цемент, силикаты, гипс, асфальтобетон, пластобетон, серобетон, зола, бентонит и др., а в качестве заполнителя может быть использован песок, щебень, галька и др. Кроме того, в низкоактивный раствор могут быть дополнительно введены добавки, а именно, минеральные наполнители, пластификаторы, стабилизаторы и др.
Полученная бетонная смесь может быть использована для производства бетона обычного и специального назначения, используемого для строительных блоков и разнообразных строительных конструкций.
Введение вяжущего и заполнителя в полученный после удаления из жидких радиоактивных отходов основного количества радиоактивных веществ низкоактивный раствор позволяет не только исключить сложную и энергоемкую технологию кондиционирования, что значительно упрощает технологический процесс переработки жидких радиоактивных отходов, содержащих в том числе изотопы трития, в целом, но и повышает экологическую безопасность за счет сокращения площадей для хранения отходов, поскольку фиксация низкоактивного раствора, именно в такой устойчивой твердой форме, как бетон, не требует особого контроля при хранении и дальнейшем использовании, поскольку полученная бетонная смесь соответствует строительным, радиоэкологическим и санитарно-гигиеническим требованиям.
Перед стадией удаления из жидких радиоактивных отходов, содержащих в том числе изотопы трития, радионуклидов процесс переработки жидких радиоактивных отходов может включать стадии окисления отходов, отделения от жидкой фазы шламов, коллоидов и взвешенных частиц, а удаление из жидкой фазы радионуклидов для последующей утилизации осуществляют преимущественно с применением селективных сорбентов и фильтров, после чего кондиционируют удаленные радиоактивные вещества в форму, удовлетворяющую критериям приемлемости для захоронения. Кондиционированные радиоактивные отходы, удовлетворяющие критериям приемлемости для захоронения, направляют на захоронение в специальные хранилища. Все эти стадии переработки и захоронения могут быть осуществлены любым известным способом.
При этом полученные низкоактивные растворы не рационально хранить в жидком виде, поскольку они объемны и могут быть химически активны, что экологически небезопасно (вероятность попадания в почву, водоемы), поэтому их кондиционируют, например, упариванием. После осуществления сложной и энергоемкой технологии кондиционирования низкоактивных растворов (например, упариванием) до получения сухих солей, концентрация радиоактивных веществ в сухих солях увеличивается в разы, что и приводит к необходимости хранить эти отходы на спецполигонах. Так, если после удаления радиоактивных веществ из жидких радиоактивных отходов низкоактивный раствор будет содержать радионуклиды в количестве, например, 100 Бк/кг, то после его упаривания в 10 раз, для получения сухих солей, направ
- 2 043871 ляемых на полигон химических отходов, активность сухого вещества составит 1000 Бк/кг, что неприемлемо, следовательно, очищать жидкие радиоактивные отходы необходимо до уровня 10-20 Бк/кг, а это требует большого количества сорбентов, реагентов и сложных технологий. Причем, в ряде случаев, для получения сухого вещества, направляемого на полигон химических отходов, жидкие радиоактивные отходы необходимо упаривать в 100-200 раз, что делает задачу очистки жидких радиоактивных отходов в целом еще более сложной.
По заявляемому способу низкоактивный раствор, полученный после дезактивации жидких радиоактивных отходов, и, содержащий радионуклиды в количестве, например, 100 Бк/кг не концентрируется, а разбавляется различными компонентами (вяжущим, заполнителем, добавками), необходимыми для получения качественной бетонной смеси, с содержанием несколько десятков Бк/кг, что соответствует нормально допустимому значению содержания радионуклидов для открытого использования и хранения (см. таблицу).
Кроме того, необходимо отметить, что ЖРО, содержащих в том числе изотопы трития, накапливаемые на АЭС, содержат, в основном, бораты (на АЭС с реакторами типа ВВР) и нитраты (на АЭС с реакторами типа РБМК), а эти вещества широко применяются в промышленном строительстве для улучшения качества бетонов - придания им бактерицидных свойств (защита бетона от биологической деструкции) и для корректировки времени схватывания бетонной смеси, особенно при низких температурах.
Технических решений, совпадающих с совокупностью существенных признаков заявляемого изобретения, не выявлено, что позволяет сделать вывод о соответствии заявляемого изобретения условию патентоспособности новизна.
Заявляемые существенные признаки, предопределяющие получение указанного технического результата, явным образом не следуют из уровня техники, что позволяет сделать вывод о соответствии заявляемого изобретения условию патентоспособности изобретательский уровень.
Условие патентоспособности промышленная применимость подтверждается следующими примерами конкретного выполнения.
Пример 1.
В низкоактивный раствор, полученный после удаления из него по способу, описанному в патенте РФ № 2577512, всех радионуклидов цезия, кобальта, железа, урана, с остаточной суммарной активностью гама- и альфа- излучающих изотопов менее 100 Бк/кг, и содержащих тритий в количестве 2,1 х108 Бк/кг, а углерод-14 в количестве 120 Бк/кг, с солесодержанием 82 г/дм3, рН 10,5, внесли портландцемент (М500), керамзитовый песок (20-40 мм), известняковую крошку (0,5-1 мм) и перемешали. Приготовленную бетонную смесь уложили в металлические формы ЗФБ-40 по ГОСТ 310.4-81. Через 28 суток провели испытания полученных изделий.
Пример 2.
Очищенный от радионуклидов низкоактивный раствор с остаточной суммарной активностью гамма- и альфа-излучающих изотопов менее 100 Бк/кг, содержащий 3,5х108 Бк/кг трития с общим солесодержанием 17,8 г/дм3, с рН 9,8 смешали с портландцементом М500, вермикулитом, суперпластификатором С-3 и золой ТЭЦ. Изделия из бетона для испытаний приготовили как в примере 1.
Пример 3.
В низкоактивном растворе, полученном после удаления из него всех радионуклидов цезия, кобальта, железа, урана, с остаточной суммарной активностью гамма- и альфа-излучающих радионуклидов менее 80 Бк/кг, с солесодержанием 20,6 г/дм3, содержащем 4,1х108 Бк/кг трития, с рН 4,0, провели корректировку рН до 9,5 добавлением натриевой щелочи, внесли портландцемент (М500), бентонит, золу ТЭЦ и суперпластификатор С-3. Изделия из бетона для испытаний приготовили как в примере 1.
Пример 4.
В низкоактивный раствор, полученный после удаления всех радионуклидов цезия, кобальта, железа, урана, с остаточной суммарной активностью гама- и альфа-излучающих изотопов менее 100 Бк/кг, и содержащих углерод-14 в количестве 150 Бк/кг, с солесодержанием 82 г/дм3, рН 10,5, внесли портландцемент (М500), керамзитовый песок (20-40 мм), известняковую крошку (0,5-1 мм) и перемешали. Приготовленную бетонную смесь уложили в металлические формы ЗФБ-40 по ГОСТ 310.4-81. Через 28 суток провели испытания полученных изделий.
Пример 5.
Очищенный от радионуклидов низкоактивный раствор с остаточной суммарной активностью гамма- и альфа-излучающих изотопов менее 100 Бк/кг с общим солесодержанием 10,8 г/дм3, с рН 10,2 смешали с портландцементом М500, вермикулитом, суперпластификатором С-3 и золой ТЭЦ. Изделия из бетона для испытаний приготовили как в примере 1.
Пример 6.
В низкоактивном растворе, полученном после удаления из него всех радионуклидов цезия, кобальта, железа, урана, с остаточной суммарной активностью гамма- и альфа-излучающих радионуклидов менее 90 Бк/кг, с солесодержанием 10,6 г/дм3, с рН 4,6, провели корректировку рН до 9,6 добавлением натриевой щелочи, внесли портландцемент (М500), бентонит, золу ТЭЦ и суперпластификатор С-3. Изде-
Claims (6)
- лия из бетона для испытаний приготовили как в примере 1.Исследования образцов бетона, полученных по примерам 1 -6 показали, что класс полученных бетонов по прочности В35 (42-46 МПа), марка бетона по морозостойкости F200, влагопоглощение (в % по массе) 1,23-1,25, водонепроницаемость (в МПа) 1,73-1,75 (W4). Выщелачивание радионуклидов, из исследуемых образцов, оцененное с помощью стандартных методик, не превышает нормативных значений.Характеристики получаемых бетонных смесей подтверждают, что получаемые бетоны могут быть использованы как бетоны обычные (для промышленных и гражданских зданий), так и как бетоны специальные (гидротехнические, дорожные, теплоизоляционные, декоративные, а также бетоны специального назначения (химически стойкие, жаростойкие, звукопоглощающие, для хранилищ радиоактивных отходов и др.).Классификация жидких и твердых радиоактивных отходовКатегория отходов Удельная активность, кБк/кгТритий бетаизлучающие радионуклид ы (исключая тритий) альфаизлучающие радионуклиды (исключая трансурановые ) Трансурано вые радионукл идыТвердые отходыОчень низкоактивные ДО 10? до ю3 до 102 ДО 10‘Низкоактивные от Ю7 до Ю8 от Ю3 до Ю4 от Ю2 ДО 1θ3 ОТ 1°' до 102Среднеактивные от Ю8 до Ю11 от 1θ4 до Ю7 от ю3 до ю6 ОТ 1θ2 до 10'Высокоактивные более 101 более !°7 более Ю6 более 10'Жидкие отходыНизкоактивные ДО Ю4 ДО 103 ДО 10' ДО 10‘Среднеактивные от Ю4 до 108 от 1θ3 ДО 1θ7 от Ю2 до 106 от 'θ' до 105Высокоактивные более 1q8 более 10? более 106 более '°5При переработке 100 м3 жидких радиоактивных отходов, содержащих в том числе изотопы трития по предлагаемому способу, получится около 3,5 м3 (объем вместе с упаковкой) кондиционированных радиоактивных отходов, которые будут отправлены в невозвратных контейнерах в спецхранилища радиоактивных отходов и около 450 м3 бетона обычного и специального назначения, используемого для строительных блоков и разнообразных строительных конструкций.Таким образом, заявляемое изобретение, а именно, способ переработки жидких радиоактивных отходов, содержащих в том числе изотопы трития обеспечивает упрощение технологического процесса переработки жидких радиоактивных отходов за счет исключения сложных и энергоемких операций кондиционирования очищенного от радионуклидов низкоактивного раствора, а также повышает экологическую безопасность за счет сокращения площадей для хранения отходов, полученных при переработке жидких радиоактивных отходов.ФОРМУЛА ИЗОБРЕТЕНИЯ1. Способ переработки жидких радиоактивных отходов, содержащих в том числе изотопы трития, включающий удаление из жидких радиоактивных отходов радиоактивных веществ с получением низкоактивного раствора, содержащего радионуклиды трития в количестве, не превышающем 108 Бк/кг, кондиционирование удаленных радиоактивных веществ в форму, удовлетворяющую критериям приемлемости для захоронения, отличающийся тем, что в полученный низкоактивный раствор вводят вяжущее и заполнитель для приготовления бетонной смеси и готовят бетонную смесь, соответствующую строительным, радиоэкологическим и санитарно-гигиеническим требованиям.
- 2. Способ переработки жидких радиоактивных отходов, содержащих в том числе изотопы трития, по п.1, отличающийся тем, что состав полученного низкоактивного раствора, перед его использованием в качестве раствора для бетонной смеси, корректируют по значению рН для обеспечения требуемых параметров.
- 3. Способ переработки жидких радиоактивных отходов, содержащих в том числе изотопы трития, по п.1, отличающийся тем, что низкоактивный раствор дополнительно разбавляют технической водой, конденсатом, морской водой и т.п.
- 4. Способ переработки жидких радиоактивных отходов, содержащих в том числе изотопы трития, по п. 1, отличающийся тем, что в качестве вяжущего используют цемент, силикаты, гипс, асфальтобетон, пла-- 4 043871 стобетон, серобетон, золу, бентонит и др., а в качестве заполнителя используют песок, щебень, гальку и др.
- 5. Способ переработки жидких радиоактивных отходов, содержащих в том числе изотопы трития, по п.1, отличающийся тем, что в низкоактивный раствор дополнительно вводят добавки, а именно минеральные наполнители, пластификаторы, стабилизаторы и др.
- 6. Способ переработки жидких радиоактивных отходов, содержащих в том числе изотопы трития, по п.1, отличающийся тем, что полученная бетонная смесь может быть использована для производства бетона обычного и специального назначения, используемого для строительных блоков и разнообразных строительных конструкций.Евразийская патентная организация, ЕАПВРоссия, 109012, Москва, Малый Черкасский пер., 2
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2018133705 | 2018-09-21 |
Publications (1)
Publication Number | Publication Date |
---|---|
EA043871B1 true EA043871B1 (ru) | 2023-06-30 |
Family
ID=
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5669120B1 (ja) | 汚染水の処理方法 | |
WO2020060444A1 (ru) | Способ переработки жидких радиоактивных отходов, содержащих, в том числе, изотопы трития | |
Burns | Solidification of low-and intermediate-level wastes | |
RU2737954C1 (ru) | Способ переработки жидких радиоактивных отходов, содержащих, в том числе, изотопы трития | |
Luhar et al. | Solidification/stabilization technology for radioactive wastes using cement: An appraisal | |
JP2513690B2 (ja) | 放射性廃棄物の固化剤 | |
FI129112B (fi) | Menetelmä nestemäisten jätteiden käsittelemiseksi ja kiinteyttämiseksi | |
Vance et al. | Geopolymers for nuclear waste immobilisation | |
CN104299668B (zh) | 放射性焚烧灰固化用的地质水泥及其固化方法 | |
JPS6120839B2 (ru) | ||
EA043871B1 (ru) | Способ переработки жидких радиоактивных отходов, содержащих в том числе изотопы трития | |
JP6151084B2 (ja) | 放射性廃棄物の固化処理方法 | |
Luo et al. | Geopolymer materials treatment of calcium arsenate waste for arsenic immobilization | |
JP6114055B2 (ja) | 放射性物質の固定化材および放射性汚染物の処理方法 | |
Walling | Conversion of magnesium bearing radioactive wastes into cementitious binders | |
JP2013190257A (ja) | 放射性物質の固定化材、および放射性汚染物の処理方法 | |
RU2195727C1 (ru) | Способ переработки радиоактивных и токсичных донных отложений | |
US20240221967A1 (en) | System and method to stabilize radioactive isotopes | |
RU2529496C2 (ru) | Состав для отверждения жидких радиоактивных отходов | |
Fuhrmann et al. | Survey of agents and techniques applicable to the solidification of low-level radioactive wastes | |
RU2154317C2 (ru) | Способ переработки жидких радиоактивных отходов | |
Solutions | Dual solidification process of BN-350 liquid radioactive waste using high technology polymers and newly designed encapsulation techniques | |
Sami | Immobilization of Radioactive Waste in Different Fly Ash Zeolite Cement Blends | |
Borowski et al. | Ecological and technical requirements of radioactive waste utilisation | |
RU2160937C1 (ru) | Монолитный блок для иммобилизации жидких радиоактивных отходов |