DK2067988T3 - Apparat og fremgangsmåde til at reducere asymmetriske rotorbelastninger ved vindmølledriftsstop - Google Patents

Apparat og fremgangsmåde til at reducere asymmetriske rotorbelastninger ved vindmølledriftsstop Download PDF

Info

Publication number
DK2067988T3
DK2067988T3 DK08170075.9T DK08170075T DK2067988T3 DK 2067988 T3 DK2067988 T3 DK 2067988T3 DK 08170075 T DK08170075 T DK 08170075T DK 2067988 T3 DK2067988 T3 DK 2067988T3
Authority
DK
Denmark
Prior art keywords
blade
blades
angle
pitch
starting
Prior art date
Application number
DK08170075.9T
Other languages
English (en)
Inventor
Leonardo Cesar Kammer
Hubert Oing
Original Assignee
Gen Electric
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gen Electric filed Critical Gen Electric
Application granted granted Critical
Publication of DK2067988T3 publication Critical patent/DK2067988T3/da

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/022Adjusting aerodynamic properties of the blades
    • F03D7/024Adjusting aerodynamic properties of the blades of individual blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/022Adjusting aerodynamic properties of the blades
    • F03D7/0224Adjusting blade pitch
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/0264Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor for stopping; controlling in emergency situations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/04Automatic control; Regulation
    • F03D7/042Automatic control; Regulation by means of an electrical or electronic controller
    • F03D7/043Automatic control; Regulation by means of an electrical or electronic controller characterised by the type of control logic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/30Control parameters, e.g. input parameters
    • F05B2270/328Blade pitch angle
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Wind Motors (AREA)

Claims (8)

1. Fremgangsmåde til at reducere belastning i en vindmølle (100) med en flerhed af vinger (108), idet hver vinge har en vingevinkel, idet fremgangsmåden omfatter at beregne en tidsforsinkelse for at skifte mindst en vinge (108a, 108b, 108c) hen imod en kantstilling fra en startpitchhastighed til en slutpitchhastighed efter igangsættelse af en driftsstoptilstand, hvor startpitchhastigheden er lavere end slutpitchhastigheden, kendetegnet ved at skifte den mindst en vinge (108a,108b,108c) til slutpitchhastigheden når tidsforsinkelsen er udløbet, hvor tidsforsinkelsen er beregnet med følgende ligning: Delay (i) = [Angle(i) - Min Angle] / [Final Pitch Rate - Initial Pitch Rate] hvor, Delay (i) = tidsforsinkelsen for i-th vingen til at skifte fra startpitchhastigheden til slutpitchhastigheden, Angle (i) = vingevinklen på i-th vingen efter igangsættelse af driftsstoptilstanden, Min Angle = en minimumsvinkel for flerheden af vinger efter igangsættelse af driftsstoptilstanden, Initial Pitch Rate = startpitchhastigheden under batterikraft, og Final Pitch Rate = slutpitchhastigheden under batterikraft.
2. Fremgangsmåde ifølge krav 1, hvor mindst en vinge (108a, 108b, 108c) af flerheden af vinger (108) med en minimumsvingevinkel pitcher hen imod kantstilling med slutpitchhastigheden indtil alle de andre vinger af flerhed af vinger (108) har opnået omtrent en identisk vingevinkel.
3. Fremgangsmåde ifølge et hvilket som helst af de foregående krav, hvor mindst en vinge (108a, 108b, 108c) af flerheden af vinger (108) med en maksimumvingevinkel pitcher hen imod kantstilling med startpitchhastigheden indtil alle de andre vinger af flerheden af vinger (108) har opnået omtrent en identisk vingevinkel.
4. Fremgangsmåde ifølge et hvilket som helst af de foregående krav, hvor mindst en vinge (108a, 108b, 108c) af flerheden af vinger (108) pitcher hen imod kantstilling med startpitchhastigheden indtil alle de andre vinger af flerheden af vinger (108) har opnået omtrent en identisk vingevinkel.
5. Vindmølle (100) omfattende en rotor (106) med en flerhed af vinger (108) og et nav (110), idet vindmøllen også omfatter et styresystem (300) konfigureret til at måle en pitchvinkel for hver vinge (108a, 108b, 108c), hvor styresystemet (300) beregner en tidsforsinkelse til at skifte mindst en vinge hen imod kantstilling fra en startpitchhastighed til en slutpitchhastighed efter igangsættelse af en driftsstoptilstand, hvor startpitchhastigheden er lavere end slutpitchhastigheden, kendetegnet ved at styresystemet (300) er operativt til at skifte den mindst ene vinge (108a, 108b, 108c) ved slutpitchhastigheden når først tidsforsinkelsen er udløbet, og hvor tidsforsinkelsen er beregnet med følgende ligning: Delay (i) - [Angle(i) - Min Angle] / [Final Pitch Rate - Initial Pitch Rate] hvor, Delay (i) = tidsforsinkelsen for i-th vingen til at skifte fra startpitchhastigheden til slutpitchhastigheden, Angle (i) = vingevinklen for i-th vingen efter igangsættelse af driftsstoptilstanden, Min Angle = en minimumsvinkel for flerheden af vinger efter igangsættelse af driftsstoptilstanden, Initial Pitch Rate = startpitchhastigheden under batterikraft, og Final Pitch Rate = slutpitchhastigheden under batterikraft.
6. Vindmølle (100) ifølge krav 5, hvor mindst en vinge (108a, 108b, 108c) af flerheden af vinger (108) med en minimumsvingevinkel pitcher hen imod kantstilling med slutpitchhastigheden indtil alle de andre vinger af flerheden af vinger (108) har opnået omtrent en identisk vingevinkel.
7. Vindmølle (100) ifølge krav 5 eller 6, hvor mindst en vinge (108a, 108b, 108c) af flerheden af vinger (108) med en maksimalvingevinkel pitcher hen imod kantstilling med startpitchhastigheden indtil alle de andre vinger af flerheden af vinger (108) har opnået omtrent en identisk vingevinkel.
8. Vindmølle (100) ifølge et hvilket som helst af kravene 5 til 7, hvor mindst en vinge (108a, 108b, 108c) af flerheden af vinger (108) pitcher hen imod kantstilling med startpitchhastigheden indtil alle de andre vinger af flerheden af vinger (108) har opnået omtrent en identisk vingevinkel.
DK08170075.9T 2007-12-06 2008-11-27 Apparat og fremgangsmåde til at reducere asymmetriske rotorbelastninger ved vindmølledriftsstop DK2067988T3 (da)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11/952,073 US8240990B2 (en) 2007-12-06 2007-12-06 Apparatus and method for reducing asymmetric rotor loads in wind turbines during shutdown

Publications (1)

Publication Number Publication Date
DK2067988T3 true DK2067988T3 (da) 2016-12-12

Family

ID=40472015

Family Applications (1)

Application Number Title Priority Date Filing Date
DK08170075.9T DK2067988T3 (da) 2007-12-06 2008-11-27 Apparat og fremgangsmåde til at reducere asymmetriske rotorbelastninger ved vindmølledriftsstop

Country Status (4)

Country Link
US (1) US8240990B2 (da)
EP (1) EP2067988B1 (da)
CN (1) CN101493075B (da)
DK (1) DK2067988T3 (da)

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060205554A1 (en) * 2003-08-12 2006-09-14 Osamu Nohara Speed reducer for use in yaw drive apparatus for wind power generation apparatus, and yaw drive method and apparatus for wind power generation apparatus using the speed reducer
DE102007063082B4 (de) * 2007-12-21 2010-12-09 Repower Systems Ag Verfahren zum Betreiben einer Windenergieanlage
PT2290232E (pt) * 2008-05-16 2015-11-12 Mitsubishi Heavy Ind Ltd Controlador do ângulo de inclinação de uma turbina de vento e método para controlo do ângulo de inclinação
US20100038192A1 (en) * 2008-08-15 2010-02-18 Culbertson Michael O Floating yaw brake for wind turbine
SE534957C2 (sv) 2009-05-20 2012-02-28 Ge Wind Energy Norway As Metod för att bestämma ett balanserat läge hos en vindturbin
CN101994647A (zh) * 2009-08-28 2011-03-30 西门子公司 风力涡轮的控制方法、中央控制器及其系统
EP2325480A1 (en) * 2009-11-24 2011-05-25 Siemens Aktiengesellschaft Method for controlling the operation of a wind turbine and wind turbine load control system
CN102216608B (zh) * 2010-02-08 2014-05-07 三菱重工业株式会社 风力发电装置及其翼倾斜角控制方法
CN102356235B (zh) * 2010-05-26 2014-01-01 三菱重工业株式会社 风车的控制装置和控制方法
US8360722B2 (en) * 2010-05-28 2013-01-29 General Electric Company Method and system for validating wind turbine
US8203230B2 (en) * 2010-06-29 2012-06-19 General Electric Company Yaw bearing system
US20120087792A1 (en) * 2010-10-12 2012-04-12 Clipper Windpower, Inc. Emergency feather rate limit with proportionality to operating pitch angle and energy storage voltage
US8035242B2 (en) 2010-11-09 2011-10-11 General Electric Company Wind turbine farm and method of controlling at least one wind turbine
EP2678556B1 (en) * 2011-02-24 2018-04-25 Vestas Wind Systems A/S A safety system for a wind turbine
EP2497946A1 (en) * 2011-03-09 2012-09-12 Siemens Aktiengesellschaft Method and arrangement for detecting a blade pitch angle misalignment of a rotor blade system of a wind turbine
ES2405739B1 (es) * 2011-08-18 2014-09-02 Acciona Windpower, S.A. Método de control de un aerogenerador
US20140286776A1 (en) * 2011-10-28 2014-09-25 General Electric Company Blade Pitch System for a Wind Turbine Generator and Method of Operating the Same
ES2405851B1 (es) * 2011-11-18 2014-09-03 Acciona Windpower, S.A. Procedimiento y sistema de control de aerogenerador y aerogenerador que hace uso de los mismos
WO2013159779A1 (en) * 2012-04-23 2013-10-31 Vestas Wind Systems A/S A method for controlling a wind turbine during shutdown
WO2013163795A1 (en) * 2012-05-02 2013-11-07 General Electric Company System and method for stopping the operation of a wind turbine
US20130309088A1 (en) * 2012-05-15 2013-11-21 Clipper Windpower, Llc Method for Protecting Wind Turbine Equipment in Fire Event
US20130307270A1 (en) * 2012-05-15 2013-11-21 Clipper Windpower, Llc Fire System for a Wind Turbine
US9303626B2 (en) 2012-12-18 2016-04-05 General Electric Company Control system and method for mitigating loads during yaw error on a wind turbine
DK2924280T3 (da) 2012-12-27 2017-01-30 Mhi Vestas Offshore Wind As FREMGANGSMÅDE OG INDRETNING TIL STYRING AF INDRETNING TIL GENERERING af VINDKRAFTELEKTRICITET PÅ ET FLYDELEGEME OG INDRETNING TIL GENERERING AF VINDKRAFTELEKTRICITET PÅ ET FLYDELEGEME
ES2683210T3 (es) * 2013-04-22 2018-09-25 Vestas Wind Systems A/S Método para controlar una turbina eólica durante la parada
EP2806161B1 (en) 2013-05-24 2018-04-18 Alstom Renovables España, S.L. Structural member for a wind turbine
ES2670516T3 (es) * 2013-07-08 2018-05-30 Vestas Wind Systems A/S Un método para el control de una turbina eólica durante la operación de seguridad
ES2908952T3 (es) 2013-10-31 2022-05-04 Gen Electric Sistema y método para controlar sistemas de generación de potencia eólica
CN105332855B (zh) 2014-06-11 2019-06-28 通用电气公司 用于风力涡轮机的控制方法和控制系统
US9970415B2 (en) 2014-06-12 2018-05-15 General Electric Company Method and system for managing loads on a wind turbine
US9784241B2 (en) 2014-08-25 2017-10-10 General Electric Company System and method for controlling a wind turbine
CN104655336B (zh) * 2015-01-19 2017-10-20 江苏大学 一种可测量叶片动态激振力的喷水推进泵结构
DE102015010227A1 (de) * 2015-08-12 2017-02-16 Senvion Gmbh Verfahren zum Steuern von Pitchantrieben einer Windenergieanlage, Steuervorrichtung und Windenergieanlage
US9920743B2 (en) 2015-10-21 2018-03-20 General Electric Company Wind turbine deceleration method and system
EP3401660B1 (en) 2017-05-10 2020-05-06 Ratier-Figeac SAS Propeller health monitoring
EP3401661B1 (en) 2017-05-10 2023-11-08 Ratier-Figeac SAS Propeller health monitoring
CN110185579B (zh) * 2019-06-12 2020-11-20 三一重能有限公司 一种变速顺桨停机方法、装置及风电机组

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4161658A (en) * 1978-06-15 1979-07-17 United Technologies Corporation Wind turbine generator having integrator tracking
US5584655A (en) 1994-12-21 1996-12-17 The Wind Turbine Company Rotor device and control for wind turbine
WO2002054561A2 (en) * 2000-12-29 2002-07-11 Abb Ab System, method and computer program product for enhancing commercial value of electrical power produced from a renewable energy power production facility
US7692322B2 (en) * 2004-02-27 2010-04-06 Mitsubishi Heavy Industries, Ltd. Wind turbine generator, active damping method thereof, and windmill tower
US7118339B2 (en) 2004-06-30 2006-10-10 General Electric Company Methods and apparatus for reduction of asymmetric rotor loads in wind turbines
ES2623880T3 (es) 2004-07-23 2017-07-12 Vestas Wind Systems A/S Método y sistema de control para el control de una pala de turbina eólica durante el proceso de parada del rotor
FI117352B (fi) * 2005-03-09 2006-09-15 Winwind Oy Menetelmä tuulivoimalan roottorin pysäyttämiseksi
US7488155B2 (en) * 2005-11-18 2009-02-10 General Electric Company Method and apparatus for wind turbine braking
CN101454564B (zh) * 2006-04-02 2014-04-23 考特能源有限公司 具有细长叶片的风力涡轮机

Also Published As

Publication number Publication date
US8240990B2 (en) 2012-08-14
CN101493075B (zh) 2013-01-23
CN101493075A (zh) 2009-07-29
EP2067988B1 (en) 2016-10-19
EP2067988A3 (en) 2015-06-24
US20090148286A1 (en) 2009-06-11
EP2067988A2 (en) 2009-06-10

Similar Documents

Publication Publication Date Title
DK2067988T3 (da) Apparat og fremgangsmåde til at reducere asymmetriske rotorbelastninger ved vindmølledriftsstop
DK1612413T3 (da) Fremgangsmåder og apparater til reduktion af asymmetriske rotorbelastninger i vindmøller
EP2169219B1 (en) System and method for controlling a wind turbine during loss of grid power and changing wind conditions
US7944067B2 (en) System and method for reducing rotor loads in a wind turbine upon detection of blade-pitch failure and loss of counter-torque
US7175389B2 (en) Methods and apparatus for reducing peak wind turbine loads
DK1612414T3 (da) Fremgangsmåde og apparat til at reducere rotorvingeudbøjninger, belastninger og/eller toprotationshastighed
EP2096300B1 (en) Method of controlling the tip speed ratio of wind turbine blades
US7095129B2 (en) Methods and apparatus for rotor load control in wind turbines
US7772713B2 (en) Method and system for controlling a wind turbine
DK2096301T3 (da) Fremgangsmåde til at drive et vindmølleanlæg under højvindsforhold
US8093737B2 (en) Method for increasing energy capture in a wind turbine
DK2522853T3 (da) Vindmølle-drejemomenthastighedsstyring
US11708814B2 (en) Method for operating a wind turbine, a method for designing a wind turbine, and a wind turbine
US11867150B2 (en) Azimuth sensors in wind turbines
KR102042259B1 (ko) 풍력발전시스템 및 그것의 구동 정지 방법
EP4248088A1 (en) Method and system for optimizing power output of a wind turbine with yaw misalignment
KR20220145279A (ko) 요 시스템 및 방법