DK202270534A1 - Method and large two-stroke uniflow scavenged internalcombustion engine configured for carbon dioxide capture - Google Patents

Method and large two-stroke uniflow scavenged internalcombustion engine configured for carbon dioxide capture Download PDF

Info

Publication number
DK202270534A1
DK202270534A1 DKPA202270534A DKPA202270534A DK202270534A1 DK 202270534 A1 DK202270534 A1 DK 202270534A1 DK PA202270534 A DKPA202270534 A DK PA202270534A DK PA202270534 A DKPA202270534 A DK PA202270534A DK 202270534 A1 DK202270534 A1 DK 202270534A1
Authority
DK
Denmark
Prior art keywords
exhaust gas
gas
stream
carbon dioxide
solvent
Prior art date
Application number
DKPA202270534A
Inventor
Kjemtrup Niels
Mayer Stefan
Christensen Henrik
Original Assignee
Man Energy Solutions Filial Af Man Energy Solutions Se Tyskland
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Man Energy Solutions Filial Af Man Energy Solutions Se Tyskland filed Critical Man Energy Solutions Filial Af Man Energy Solutions Se Tyskland
Priority to DKPA202270534A priority Critical patent/DK202270534A1/en
Publication of DK202270534A1 publication Critical patent/DK202270534A1/en
Priority to JP2023187423A priority patent/JP2024068162A/en
Priority to CN202311459000.3A priority patent/CN117988970A/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Treating Waste Gases (AREA)
  • Exhaust-Gas Circulating Devices (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

A large two-stroke turbocharged uniflow scavenged internal combustion engine and a method of operating the engine by supplying a carbon-based fuel to the combustion chambers, combusting the carbon-based fuel in the combustion chambers, thereby producing a stream of exhasut gas containing carbon dioxide, recirculating a first portion of the stream of exhaust gas, and exhausting a second portion of the stream of exhaust gas, cooling the first portion of the stream of recirculated exhaust gas in the exhaust gas system using a stream of heat exchange medium thereby heating the stream of heat exchange medium, chemically absorbing carbon dioxide from the second portion of the stream of exhaust gas into a solvent by supplying a flow of carbon dioxide lean solvent to an absorber (42) and discharging a flow of carbon dioxide rich solvent from the absorber (42) to a desorber (64) and reboiler (62) assembly, and regenerating the carbon rich solvent in the desorber (64) and reboiler (62) assembly through heating by supplying at least a portion of the heated stream of heat exchange medium to the desorber (66) and reboiler (62) assembly for heating the solvent.

Description

+ FEER TS i ER 3 Py pest SYRIEN LL NGEEN AY BSE Tv kogte entry CEN FEI DI SURTFO TY LYRIK METHOD AND LARGE TWO-STROKE UNIFLOW SCAVENGED INTERNAL
COMBUSTION ENGINE CONFIGURED FOR CARBON DIOXIDE CAPTURE
TECHNICAL FIELD The disclosure relates to large two-stroke internal er ger År År a EP - 5. ar - ee Ioan Tor a. … red “ + z 3 > combustion engines, in particular, large two-stroke unlflow i oo onan fd a yen de ovn om I ogs de SF oe {yy ey vo + 3 Lea yen me en b od yen 2 ye socavenged internal combustion engines with crosshesds running SS Aa 0 Pan Ty an er 1 ol føorasøenie fS dis wd Eyes Suns Tu vor on a CALFDON-BPASSA LUST (gaseous Or LUVLI Tuell, COnTLIDUFSU i $ rE a $A % + GÅ GÅ 5 3 r - 5 i st — st > to reduce carbon dioxide emissions, and to a method of 0 ons ratir such a tvoe of sngd 18 operating such a type of srøigine,
BACKGROUND Large two-stroke turbo) søers tims Flom ac avonoos — 3 rd goter Large LUWO-SLYOKE CLKOOCnargea UuUnLELOW sgavengsaq internal combustion engines with crossheads are for example used for 18 propulsion of large oceangoling vessels or as the primary mover 3 en " 7 3 a“ Yas By nm 3 3a Tor vr å en > in a power plant. Not only due to thelr sheer size, these two-stroke diesel engines are onstructed differently from LWO-SCroKe diese engines are CONSTYUCCTSOA ALILLEKSNT IV Tow NT ther internal combustion angl Their exhaust valves anv ocnhner 1l1nlernaf COMDUSTCLOD SNJYINe, NSQTYL EKNALET valves a Ps oe ee 3 AU YU + + ae re an wm - FI … em ger £7 + On may welgh up to 400 kg, pistons have a dlameter of up to 100 ser 3 tk os REN NEY REVY re erat ver FRIES OT KOEN 1 ise combust Lo abd on and che maximum Operating Dregsurse in hg COMDUST LON dy mba 3&0 3 cv sa i OY RF 3 3 ved Ye FR WAT yee ES. SS 4 Sd py chamber ls typicaily several hundred bar. The forces involved md boheme, sner mer en = r - i md 29 or Er, a FE mn Ty at these high pressure levels and piston sizes are enormous. > ag dog ax? ES pa ay end ah en ren cl 3 we A i som 7 I ER: a i cy Ee Large two-stroke turbocharged internal combustlon engines oH a 3 in boy 4 ; vy wom Be ev pnd 25 + + i orig 3 rå Fr ars 3 2 % Er ab that are operated with liquid fusl (e.g. fuel oil, marine J 5 mg - Fnr + 7 ir dm, en yn 1 Så er år trin i … n FTN A - … Je diesel, heavy fuel oil, etharol, dimethyl ether (DME) or with fr, NERE Fr Fr or PE i 2 of 9 mr 3 Fr, es fY KISS de rr. Yak “oe gaseous fuel (e.g. methane, natural gas (LNG), petroleum gas en . 5 . (LEG), methanol or ethane). TE risene ob Yond ge 4 crt +" - me veste ÆT SA øm x NEES Vy Bg mg ie mE A ey 30 Engines that operate with a gasecus fuel may operate according J i I ¥ Of 3 to the Otto cyole in which gaseous fuel is admitted by fuel ven i krøse — OL PR oy 3m vers el 34 m 3% = ~ Try ye oy + er a -] . valves arranged medially along the length of the cylinder ie me 3 + Em SFT oT ows opm NTE Ey "yt 4 = 4 Irn on ge ~ re = 3 A de liner or in the cylinder cover, i.e. these engines admit the + £ 3 Jaa hed + 3 43 Fr: 2 FE T 4 TES a gaseous fuel during the upward strokes (from BDC to TDC) of de Jon mn a . 2 æg ve 3% gr.
TR - i + ren Tl on on the piston starting well before the exhaust valve closes, and = NITY MES ET OS TRA Sr de 1 wee re Fae FÅ Er Fr TELE RÅ PLØN wr ow +R, compress a mikture of gaseous fuel and scavenging air in the LN Pr ede ørn, ln, så FA rn, rå == Am Så 3 my i dr mare dn ir an ay es = + + mles = ir - combustion chamber and ignites the compressed mixture at or mee TIRES " FE et 4 +, " ne >» eq ya by me : + Lære ed 5 near TDC by fimed ignition means, such as s.g9. liguid fuel injection.
TN Te 3 mee + mg øv i er ~ rå + Ar 5 mesa se > oF ees a Engines that are operated with liguid fuel, and also engines - ey - ~ ør rn er 3 ed 53 ere irer I på 3 oy de Fr 3 7 > Ad 3 that are operated with gasecus fusl with high-preszure 3 Åen ge års fer Fe de SNEEN €3 ERNE ex mæ TS awry om Tine.) mrk, bd et en injection, inject Lhe gaseous- or liquid fuel when the piston 3 + 2 md ITTY og 2 | = ” 4 ~ a ; is close to or at TDC, i.e. when the compression pressure in the combustion chamber is at or close to its maximum, and are 78 + penn es + ENS mere Rå ~ Fm Fi ave? tir em 3 i rå + 13 thus operated according to the Diesel ovele, i.e. with i ~ Soy 3 3% $ compression ignition, mr TE erg i Tyme em = ct ment. 3 re + og Se NE Tr The liguid- and gaseous fuels used in Known large two-stroke ep ade wy pn hy a pe ed pen Si SC TEST eT gn de er egy ay - Tong en de Fava - re ge ~ turbocharged unit flow scavenged internal combustion engines 0 TET Tal Fr contain Carhor 3 thoeno are cz rboar-bes SE 3 Fuel a £43 GELSFALLVY CONTAIN CSKDON, 1.8. UH8sse ALE CAFVDONTDA SSO UDE, ged i an emp nrg rd 3 pm. mee te i fo be år A om - em pb and their combustion results in the generation of carbon FE rå ed + de 2 skare de er 2 ede, I rey Ve deg Se ed a dioxide that is exhausted into the atmosphere, Carbon dioxide Så er gm ha - on pe em, aen, en OY Ren oy ee ses ed - os br ges 4 sd + re he en emissions are generally considered to contribute to climate of £ me avis tr be mi Åoni sgl se XT Jared Change and LO DE minimised OP aveilidagd. 3
TF gy ava ToT EV eT ov gt - STR om, mr i SDK rw neem 33 J - mo FO el Known Carbon Capture Technologies are typically classified into three categories: post-combustion C02 capture, pre- ; ; Ny mr? = ] ret Fit 3 3 i Dr en combustion 002 capture, and oxzy-Ffuel combustion.
Pre- aa fa 2 - år & + 3 & men 2 + A " . combustion means separating and capturing the carbonaceous TY SE EETY YB 2 FY en iy AR a peo A Tey io en rr ee rr components before the combustion of fuel.
DK 2022 70534 A1 3 In pre-combustion carbon dioxide capture, the fusl is reached first with oxvgen and/or steam and then further processed in a water-gas shift reactor to produce a mixture of HE and COZ. The COZ is captured from a high-pressure gas mixture that contains between 15% and 40% (02. An advantage of pre- combustion is that the gas volume regulred for processing 1s greatly reduced and the CO? concentration in the gas is increased. This will reduce energy consumption and equipment investment for the separation process.
In Oxy-Foel combustion, the carbon-based fuel is combusted in re-circulated flue gas and pure 02, rather than aly. This limits its commercialization potential dus to the high cost of OZ sevaration. The oxy-fuel combustion technology consists 18 of an sir separation unit where the nitrogen is removed from the air. Then the carbon-based fuel is combusted in the re- circulated flue gas and pure oxygen, The flue gas now, orimarily consisting of particulate matter from the combustion, C02, sulfur oxides from the fuel, and water is 29 sent to a particulate matter removal unit, and sulfur removal unit before condensing the water out, leaving a stream of COL that can be compressed. The main advantage ls that it enables nesriy 100% COZ capture.
2% In post-combustion technology, the carbon based fusls are combusted as in conventional energy generation, and the COZ is captured from the exhaust gas, This carbon separation technology is roughly divided into four sub-areas, namely, absorption, adsorption, membranes, and crvogenics. An amine 38 solvent can be used to capture the C02 by absorption from
DK 2022 70534 A1 4 exhaust gas. Here COZ is captured in the solvent, followed by a regeneration process of the amine. A drawback is the massive scale-up for power plants and the substantial energy required for the carbon dioxide capture process, In particular, a very significant amount of energy is required for amine solvent regeneration.
SUMMARY It is an object to provide an engine and a method that 19 overcomes or at lsast reduces the problems indicated above, The foregoing and other oblscls are achieved by the features of the independent claims. Further implementation forms are apparent from the dependent claims, the description, and the 18 figuras.
According to a first aspect, there is provided a large twoe- stroke turbocharged uniflow scavenged internal combustion engine with crossheads, the engine comprising: 28 at least one combustion chawber, delimited by a cylinder liner, a piston configured to reciprocate in the cylinder liner, and a cylinder cover, scavenge ports arranged in the cylinder liner for admitting scavenge gas into the at least one combustion 2% chamber, a fuel system configured for supplying a carbon-based fuel to the at least one combustion chamber, the at least one combustion chamber being configured for combusting the carbon-based fuel thereby generating a stream of exhavst gas that contains carbon dioxide,
or xhaust vas outlet arranged ir the rl dmi OMAR me an eGKNAUST JAS GUT LET arrangea 15 The CYLINGESK COVer and SE ge oy 1 rå ~ = on p Gre A rn controlled by an exhaust valve of z the at least one combustion chambar being connected to + Pt Et hon 3 ze = ~~ + em ze + - - a scavenge gas receiver vis the scavenge ports and te an 5 avhaust gas racaiver via the as hatnist gas outlet 3 SKLaUuUsSt gas ragelvel Via TONE eXiaust Jas Quien, an exhaust gas system comprising a turbine of a + vi Fr J va re by Jpn Xr e I 7 +? mi TR SN f Fis us ie pr ap CurDoOcnarger sSvslæem Quiven LY Lhe 3LISAam OF ØNOMIUST gas, . i Ce es rte en an an air inlst system comprising a compressor of the i ye » +. hm NENT SY Fed ern TA rriroed — Fr turbocharger system, the compressor being configured for 70 & vi eså er re 3 ere me x, åg Fo + Ste TEN tg ry 19 supplying pressurized sdavenge aly Lo the scavenge gas revaeiver, en er Gr br = » + ex ET: Pr or tren ern ~ po Få rer ve en på F øm an exhaust gas recirculation system configured foxr pri 4 føl hen ed ae hu | 5 SP the - ded mad åer Fes recirenlating a portion of the exhaust gas originating from the at least one combustion chamber to the scavenge gas 18 receiver, the exhaust gas recirculstion system comprising & + bg dr dD ge an pt 3 3 & 3 go > . Ae + : ne lower for assisting the flow of exhaust gas to the svavenge air receiver, ny Ty nr on Be veg nm 3 x 2 m ber es de 4 rv sø, £ ng an absorber preferably an absorption tower for r i + 3 1 - hao vis 3 ng oa hon ed nx Aen in ei med LYE nt AVLSUCTLLIAU Carn ALOMXIOGE INNO & BOLVEDT an = fe or ende mr PR a wn dT ree a3 ane Tore Fen wn Jorn ame ev vee Bon HY v np 240 a desorber and reboller assembly ox desorbing carbon 32 3 ng år nem . re. dioxide from the solvent, ing Tr, gr Yen pra 3 ri re Yer de + em A - wry va tra ry du the absorber having a solvent inlet receiving carbon FÅ se oe dS T rw ey pu me vray ode ser ms ren de Sy oe eee on pn Bo om dr mn aes eb - es org . verde Yay de dioxide lean solvent from the desorber and a solvent outlet sunp lying carbo dioxide rich solvent tø the desorbhar SURPLVING argon ALOKXKIQE KLOO SOLVenE TO CNE JOSQOCFORT, 5 FR hy me ys rr OS Im PISSE Fine — 3 rr er metho the absorber being arrangsd for the stream of exhaust . . + . - gas passing through the absorber for separation of carbon AT mi ae = vr yy hr 5 mpm sf ard i =e Ft ev Fer th me i oc rende år dioxide from the stream of exhaust gas by chemical absorption ped I into the solvent, oe : nr \ in un he ..d 9 the desorbsr and reboller assembly having an inlet 3n receiving carbon dioxide rich solvent from th absorber and mr ht de Nr rr + nS wf dS Ad NI ey rhe han dd FOA.
ML Le Se Aa A £ ak of 0 NÆRE FS ER 380 ecelving carbon dioxi« rich solven rom the a har and
J. mand Tow NL ETL orn vd, 34 ert åer ry cr nF ren a A an outlet supplving carbon dioxide lean solvent to the abhzorber, 32 3 pm -~ 3 3 å em Ar je, hue 4 + Eg Ar 23 Ten the desorber and reboller assembly being configured for i 4 ; Po 3 + Aen Toe = matt ag st = 7 = heating the solvent to release carbon dioxide from the solvent, and endt gr i eg ve Evy - Re NEN Fre pF mT Å eyes rd A = fn a a heat exchanging arrangsment configured to exchange Ty nay dr JE dr xEN + I, mp on ere Toms dem ed mg nøbe maa evt PM eNDEN tee vebvenvvde ron heal between the recirculated exhaust gas in the exhavst gas mn ed hd Cn ed ee . 3 6 ' . 3 reoiroulation system and the solvent in the desorber and reboller assembly. ig er a ede 3 re YE ay Ta He 3 7 ven ze en, at gia ry ee eb ro or den em — gr Fer KS ES 2 The amount of energy required for regenerating the solvent is Så 33 me = EEN ør - 11 py be 3 r EF sR - hr = i É ig TR significant and can amount to over 60% af the engine shalt ~ Jen TA aay 3 Fe k oar wa dan A ony be re ae ye i . : dr power delivered by the large two-stroke internal combustion Eye i YES viet oa mana Py Frys + F e anaray oa £ Firsi er GE t h =; TY Pen BILDE.
SALE a Pia LV LOE Tne energy LL AA DALEDCY LIE iE engine 1K STEN 3 zm wy ed on a Fn i TR eT ve + 5 Nr AS er et AC eN Be 18 would render the operation with a carbon dioxide capture f DR er + FA Yar F 3 ro er for 3 An = få system significantly more expensive compared to an engine with + £ 00 - om hon SÅ fe Santiire SE TA Haw tro tha WITHOUT SUdh Aa Caron SilgxXliqe Capture SYS Can. 10OWOVEE BEES inventors realized that a la ture, at 3 {iesel engine that INVENntoOES KFS&ALIZER TDAT a LAKLGE CWO-SLTLOKE ALSSE LSIGFInE whan Å ew sen om Ee 3 fy deh FR ad ay en søn smn oh yew yy Tey de 3 . w A. er dr een, 2 is operated with exhavst gas recirculation generates a stream so OF GMC TYE DDP per the recirculated exhaust oas 5 oe £43 AL Xess SDNETÆAV, since he FeCLKOULRLEeD SKMAUuST Jags 1s sfrantaocrempyvvele cms vet rt 3 heat share sdium before it SOV ANTaAJSDUSI Y CA LE USING 3. MEST SKOIMAnJE MEQIUm Deidre LL Åe mer i om en em Tg 1 em pd A a ir I, ER FRIE ry ry pn Ar my ren To em FA 3 ig reintroduced into the cylinder.
The inventors also realized Ee By ay de dn 4 en ne sån 23 ¥en wen mY de . ro er wn re de my - 2) Fh, that this exchange medium (e.g. water or steam) would be heated Co a lemperature that is sufficlent for using the heat pE bs mm wy par erry 33 py Ter Br re rå Toms eon br + : ynde A pe 28 exchange medium directly for heating and thereby regenerating A Fey pm åt, do + an ~~ = 3 JE dr, . = o mtr To ery the carbon dioxide rich solvent in the desorber and reboiler er go RP assembly.
TT er - 3 7 3 . ns as As La A gr . Er " > i 5. 5. PE In & possible implementation form of the first aspect, the TE VAN VE NEE EY aa Cr INT on nr vr de pra ed na er tear dos de 4 eye x dre I oy 3 " 38 engine comprises an exhaust gas recirculation hest axchangey in the exhaust gas recirculation system configured for f + z + er in or sg 3r pe sry wm Ye ny? = exchanging heat between the exhaust gas in the exhaust gas ra Sj roul at dary suet am an 3 = hm + exe AYGO madi um to the rany FeliCuliatlon System ana a NEAL SKCONAane feglum LO Llieraly 3% ; am of ln en na gr Aa … enn io , cool the exhsust gas in the exhaust gas recirenlation system av heat +1 Ex en = oh NES gt 3 39 savn hmm t £ > TE and Sd LSE neat EXC lange MEDLUM CALLA a LAVER 1. SHC Langer E rvs ET en RS IS i fr SE APS re + +, om øn wre den + [ER + +, om øn 5 configured to exchange heat between the solvent and the heat = "ha Seve ened f TY fm Trent +h & yt Iran = nel ea rhe I sat oo so hmmome exchange medium to hest the solvent and cool the heal exchange won rå ur Wea Ln, In a possible implementation form af the first aspect, the 0 ahnt rn recirgsulation Cong oy Somonrisgeas 2 sorubluer iv CALIEE ULD I Jas FECILYOUJATLON SV Lam LOMODTYLS68 3 STALL, x| Fy ng es a Tr + + pg 3 mg Yet + Io ama AE 3 = % Se a pe pe 3 3 preferably a wet scrubber, the scrubber being arranged in the exhaust gas recirculation system downstream of the exhaust gas recirculation heat exchanger.
138 In a possible implementation form of the first aspect, the " 3 - on oe gå se " To ra rr. + 3 N ” engine comprises a controller configured to regulate the Sød, yo de . - . - Gamera Tom de ed mr oy eS i meter ‘ percentage by mass of recirculated exhaust gas in the scavenge + + Tora ad AE TE hst tray XP 3 RES gas to at least 40%, preferably between 40% and 55%, AR ye på een Kr he i or + I re pkt ra der i - PR æÆ de Ye en FT ed ag + de Yo on 240 In a possible implementation form of the first aspect, the I ie dr vin, TT ER ded de ed ane + Png Ty PR re Tar oy controller is configured to control the spesd of the blower to regulate the percentage of recirculated exhaust gas in the scavenge gas.
3 Term 3 od - oe en Es » we - io z = + rd 28 According to a second aspect, there is provided a method of — + Ten, gen, or de, or, Gr ør 3 3 TT mer Fer re red operating a large two-stroke turbocharged uniflow scavenged A pee A py en po FS ry 1 py em fr 4 ny gen A dex sø + rr I. internal combustion engine with a plurality of combustion 3 ~ fa 3 3 i + chambers, the method comprising: ” 3 = £ Far er + 3 9 - + 4 4 supplving a carbon-based fuel ta the combustion Sf Fn ry yde vn ew chambers,
combusting the carbon-based fuel in the combustion ny i ws Bee 6 FR mdr Neen Pe Ye dt 3 re = gr Fe gig OS FR | ing mø ÅR, A+ yc A råen ge chambers, thereby generating & stream of exhaust gas om 3 on} 3Å pet dod containing carbon dioxide, recirculating a first portion of the stream of exhaust circulatin irst gort : the stream xhau LI Cilia ng A i 3 EA ARE FR 3 SLCLEeam oO LALDALUS E + ry a e Alm tr i oR eo ey Ey ye A yy ye a EO SÅ ENE dr sy kaos gas, and exhausting a second portion of the stream of exhaust gas, "yr lever a ede yen oF NOS SENT 3 SE SP ENS > zg en enge Fe ev de en supplying a stream of pressurized scavenge gas to the an opret dm Tony rr a i " sær - a 3 em, a - rå e combustion chambers, the stream of pressurized scavenge gas i i i | " 3 me Toon be gn od > + c containing the recirculated exhaust gas, 30 Prnl ivr the Få = + nt of +h a abreg of Cea ery io om todd ES Ss RÅ Kid AN en de dn AN FR he - sg Nør be 5 dt ha a AS Fos’ A Pt he ve he SN 9 cooling the first portlen of the stream i recirenlated pny wn vy ew dt PEN de 3 + ir øn Ned 2 ede ewe em sr de Sanh we mn ed ne Yo end gxhaust gas in the exhaust gas system using a stream of heat ra e po a + Flo i. på ft % Fre t od den vd own - FO Rom i Ye eee exchange medium thereby heating the stream of heat exchange 34 44 madium, chemically absorbing carbon dioxide from the second 18 portion of the stream of exhaust gas inte a solvent by 3 ad + Er rr << ~~, RÅ sr aad ed er Te en re , … - supplying a flow of carbon dioxide lean solvent to an absorber x I = rd TA eee om We A me + Pm.
Få, HR + red + and discharging a flow of carbon dioxide rich solvent from + ~~ br SEE hs gt 3 ae > … 3 2 rå the absorber to a desorber and reboller assembly, and regenerating the carbon rich solvent in the desorber and omg La LL TERE LÆSE ORE I Wai LAL DEI ELV SER.
ALE LASER JES HAT JET dill an end 3 ns en ay enemy by Yon - sr eg nem A+ Ean a Am - ren $x yet - + 3 ey 583 - reboller assembly through heating by supplying at least a s ge 3 re Fr ei de ard ae ren A bey ey vr er de ye I a sy portion of the heated stream of heat exchange medium ta the pms en be a ny py god - mt Ton DE eT Far Fae ry ony Ar ae ben ome 3 mre desorber and reboiler assembly for heating the solvent, + « " rs gg Ti 3 3 ve år my deed . 17 orm sie, I od fe en 3 i apd 3 In a possible implementation form of the second aspect, the == 7 + er rå RTT 3 EP ey EX a TE PS. nA ay yt 3 ys AS fyr ayo ex Sy no 28 method comprises recirculating at least 40% by mass of the i 1 + rr gr Ted > Pe - eg 3 A i er i 30 stream of exhaust gas, preferably reciroulating at least 40 = CL. mg + VÆ Ty nå dt om gr FF my ree FESD to 535% hy mass of the stream of exhaust gas. rd - : 3 : 7 He 3 ent = Fe 5 3 | In a possible implementation form of the second aspect, the I r io oy A Bs oe pd es ray Å ES gee Steside mme 3 3 S er “Ty i PR. = - St gø vr 5 - 39 method comprises controlling the speed of a blower in an exhaust gas recirculation System for regulating the
DK 2022 70534 A1
G percentage of recirculated exhaust gas in the pressurized scavenge gas. In a possible implementation form of the second aspect, ths method comprises supplying a flow of gas containing carbon dioxide and walter vapor or steam generated in the desorber 66 to a sgparator 69 for separating the carbon dioxide and water vapor or steam, the separator preferably being a knockout drum to obtain a stream cf a gas mainly containing carbon 120 dioxide and a strsam of a8 liguid mainly containing water. In a possible lmplementation form of the second aspect, the method comprises supplying the stream of gas mainly containing carbon dioxide to a liguefaction unit and liguefying the 18 stream of gas mainly containing carbon dioxide to obtain a stream of ligusfied carbon dioxide, the method preferably comprising directing the stream of liquefiled carbon dioxide into a liquefied carbon dioxide storage unit. 29 These and other aspects will be apparent from the embodiments described below,
BRIEF DESCRIPTION OF THE DRAWINGS In the following detailed portion of the present disclosure, the aspects, embodiments, and implementations will be explained in more detall with reference to the example embodiments shown in the drawings, in which: Fig. 1 1s an elevated view of a large two-stroke diesel engine according to an example embodiment, Fig. 2 is an elevated view from another angle of the large two-stroke engine of Fig. 1,
DK 2022 70534 A1 10 Flg. 3 la a diagrammatic representation of the large two- stroke engine according to Figs. 1 and 2 in an embodiment, Fig. da is a Glagrammatic representation of a first embodiment of the heat pump used in the embodiment of Figs. 1 to 3, Fig, 4b is a diagrammatic representation of a second embodiment of the heat pump used in the embodiment of Figs. 1 to 3, and Fig. 5 is a diagrammatic representation in more detail of an enbodiment af a heat pump used in the embodiment of Figs, I te 4a, and Fig. $ 1s a diagrammatic representation of the large two- stroke engine according to Figs, 1 and 2, in another embodiment. 18 DETAILED DESCRIPTION In the following detailed desuoriptien, an internal combustion engine will be described with reference to a large two-stroke low-speed turbocharged internal combustion crosshead engine in the example embodiments.
Figs. 1, 2, and 3 show an 29 embodiment of a large low-speed turbocharged two-stroke diesel engine with a crankshaft 8 and crossheads 9. Figs. 1 and 2 are elevated views from different angles.
Fig, 3 is a diagrammatic representation of an embodiment of the large low-speed turbocharged two-stroke diesel engine of Figs. 1 and 2 with its intake and exhaust systems.
In this embodiment, the engine has six cylinders in line.
However, the large low- spesd turbocharged two-stroke internal combustion engine may have between four and fourteen cylinders in line, with the cylinder liners carried by an engine frame 11. The engine may e.g. be used as the main engine in a marine vessel or as a stationary engine for operating a generator in a power r aA 19% i i + 2 + >, yt - er rn ET sem ur - 3 station.
The total output of the engine may, for example, FE 3 A pp 7 PM & FAD DL, KT range from 1,000 to 110,000 kW. mM p rå 3 5 om ht X - - Ye x om, og re: - ed . AE To i The engine is in this evample smbodiment an engine of the r Age pt Le ans fd TY wy mee wee Peri] Tera Yad bs TEENY IES rt Pay om CT SY Å y two-streke uniflow scavenged type with sgavenyging ports 18 in the lower region of the cylinder liners 1 and a central ca des em tede ge der - tr 3 5 ye -: AMEN GET TE eN rå te em ANT > 1% ande års: + en 37 & vr, exhaust valve 4 in a cylinder cover 22 at the top of the 2 åg ad 3 i x rd, åg ge 3 = på omgå ger th i FA cylinder liners 1. The scavenge gas is passed from the ORONO & asejver ? through the scavenge ports IR +f tha SCAVENnge gas FOCOLVDE o LARYOUON CE scavendga ROGXLsE i8 GE COD TN 5 emedå nad ras arb 5 ride TS - : 2 en yo omdr, TVS mt - 5 individual cylinder liners 1 when the piston 19 is below the soavenge ports 18. When the engine is operated as a premix engine (Ctto > vom + RED EEN 44 de ry 4 ov pe eks e Fo Nfoy +R on yy oad principle), gaseous fuel containing carbon {a.g.
Methanol, "oe nd nn A ge i pari i nt i Ta on Bo Sy wen Ch ow A 5 7 yes NTE CTA Ye vn ae £ 18 petroleum gas or LPG, methane, natural gas LNG, or Ethane) is eee dA A 3 E 4 - å gr 3 len 3 gå + Yar EA + Jom wn A admitted from gassous fuel admission valves 50! under the rdr en Er med mt PM mt Tor TOO rig + må ter 78 3 control of an electronic controller 190 when the piston 10 is 3 3 5 - - -, . > 3 = TIPS de TE ~ + % oF es få a dm, in its upward movement (from BEC to TDC) and before the plston T0 passes the fre! valves 50 cas admission valves) FA SKS 10 passes the fuel valves 54 {gas admission valves). Gasecous An me Fd err ed ae an de den vat 23 3 Dare Fryers) fo FN gm Fond we eN eet nå 28 or liqulid carbon contalning fuel (e.g. fuel oil) is injected > To ok 2 Fr i ym mr EET bea yn me rs A at high pressurs {preferably 300 bar or more) is injected Ep PAN vet 3 mp; om - - Fr om Terme & iv, St ir Fr 30 into the combustion chamber uel valves 50 when the piston 10 Ia … å . hen om ge EY TRE NY, Fan es ey So sim df sed zy be - met att "oer 13 abt or near TDC, The fuel gas is admitted at a relatively low pressure that is below 30 bar sreferahlv below 25 bar LOW PFESSUre TNal 18 D8low ou HK, DYESLEFKADLIY DESLOW 23 aX, ng yen sv ~ War fend 9 > Ae - 3 es 1 4 med oe een ent more preferably below 20 bar, and supplied by a gaseous fuel ma PN e, 3 i, EF: + FR Se, Trem TE år rende & supply system 3087. The current containing fuel for injecting briter + he ett ra lirese SH Je em tim hr 5 Fite oevetes ar through the fuel valves 50 is supplied by a fuel system 30. TY A ae ~ aa an - on 4 ou 1 + 3 se ah Fo + in High-pressure can either be generated by the fuel system 30 omy , " Ty " 3 oe ao 7 : ” ZR mm Tx 3 3 : 4 (common rail) or in the fuel valves 30, The fuel admission valves 507 are, preferably evenly, distributed around the wr don a Æ em sr ger I fe de ert 4 ved - Yi rer + - Vores 3 - >. rets go åt ger 8 circumference of the oylinder liner and placed in the central
DK 2022 70534 A1 12 region of the length of the cylinder liner 1. The admission af the gaseous fuel takes place when the compression pressure is relatively low, i.e. much lower than the compression pressure when the piston reaches TDC, hence allowing admission at relatively low pressure.
When the engine is operated as a compression ignition engine {Diesel principle) there are no gas admission valves 507 and the carbon containing fuel {gaseous or lignid} is injected at high pressure through the fuel valves 32 when the gisten 10 is at or near THC.
A piston 10 in the cylinder liner 1 compresses the charge of gaseous fuel and scavenge gas, (or compresses the sgavengs 18 gas in case the operation is with fuel injectlon at TLC only) sand at or near TDC ignition is triggered by injectian of the fuel at high pressure from fuel valves 50 that are preferably arranged in the cylinder cover 22 or through the compression in case of lliquid fuel injection at or near THO only. 289 Combustion follows and exhaust gas containing carbon dioxide is generated.
When the exhaust valve 4 is opened, the combustion gas flows through a combustion gas duct associated with the cylinder 1 2% into the combustion/eshaust gas receiver 3 and onwards through a first exhaust gas condult 19 that includes a selectively catalytic reactor 33 for reduction of nitrous oxides (NOx) in the exhaust gas. 39 Through a shaft, the turbine & drives a compressor 7 supplied with fresh air via an air inlet 12. The compressor 7 delivers ye er : rå mer res ES + = FE, sym ye vr eder 5 TO oF J. pressurized scavenge alr to a scavenge alr condult 13 leading ta the scavenge aly receiver 2. The scavenge air in conduit + ; an 7] 1 A 2 ; 3 my nm . i 13 passes an intercooler 14 for cooling the scavenge alr. hod Tea Ae Te 3% åt gr, ao = Fo TT oy SF np ry an A en {yy ome fe = Fo TT st +R ) EL ALOE GLS SB kItMWIL KA hat DR iio LE ED CASE ERP T.
Sk ItMWIL 2 AAR Bither upstrean hown) or downstream (ru hov >f the Å Fyr ar ten + + A + oy : >, rr pa non SA ey a) ay es EN dvr 25 intercooler 14 the exhaust gas rfecirculation condult 35 år År re ER NY rr an vee - -. LO + oe åd 7 em " > dr 4 » connects to the scavenge air conduit 13. At this position, recirculated exhaust gas is mixed with the scavenge air to ÅDAL 3 LEE ALIAS WL LE AS MENS VILLE AAR Lay enge må Li. form scavencde aas that flows t+ the scavends gas receiver 2 Crm sScCavenge gas CTNat LLOWS CO Lhe sgavends Jas redelva Se 70 Bene rim nr FM 3; mdt krig re SPA RG Er np rr FOG reat TE FEY PEN kr em, A controller 190 {electronic control unit) is configured to 33 ze le i re gm Fx, Fa on ex an vn ØS re gå en ay TF Pn Sn ai dee — do adjust the ratio between the scavenge air and exhaust gas in the svavenge gas, as will be described in greater detail LEG La VælnjE dads Bas WIJ 1 USL LIL 1 UI DAaLTL Gia Ly DELOW. 18 The cooled scavenge air or gas passes vig an auxiliary blower om are av … 7 … … = re 4 ged Fr 7 18 driven by an electric motor 17 that pressurizes the Se ae + rd ie s NE “TL. for don fir 4 ks vm pm ey be En scavengs airflow when the compressor 7 of the turbocharger 5 3 > i råen ) % xrE yr æg 3 cm? sø TEN er + en my A. does not deliver sufficient pressure for the scavenge alr Fr" 3 me MT 3 ~~ 3 3 . rome a ond + eg 7 Tn ed ney sd de va 3 recelver 2, l.e. in løw- or partial load conditions of the ~ en on en x + Ip nn vr ong od a ro eT en Se br ve bo om est eon un aa Sr AN gare . 3 29 engine.
At higher engine loads the turbocharger compressor 7? Tom + 3 apie yy AEE A ay dn re EN.
EX ES OS SR PS YO må re «2 : 5 delivers sufficient compressed scavenge air and then the maaned TN oy pe FN rv FE GR 4 ze Om så - reb ee TTF ere TS he auxiliary blower 168 is bypassed via a non-return valve 15. It La aen ie pn wed + ae å- + un en + on dae ar me ~ 4 sg gere aw men + Jor - + en 18 noted, that the examination may comprise more than one EO me - nme am hm Æ + I. + sn dn, vr, + ØR fg Yet = 3 ae be lurbocharger 5, thereby forming a turbocharger system. 3 mir, men mt tomme TAS ris ed > or - me hm vei om 3 + mer … 7 The controller 100, which as such may be comprised of several SE ENE gm SB vey Toe Units hoa np ARS Å SONNE ED CS NAS 3 interconnected electronic units that comprise a processor and i i 3 Z > 3 Bla dr 7 - i or yo - other hardware for performing the function of a controller), 3 + Am hy! . i fe ” oo ee ” Am de 4 oo A en == 3 ca i is generally in control of the operation of the engine and 3 wart a rant ol over ef CIR EN311 SR Fi el mime io tantitu and 38 exerts control over e.g. gaseous fuel admission (quantity and timing), liguid fuel injection (quantity and timing), and
DK 2022 70534 A1 14 opening and closing of the exhaust valve 4 (timing and extent of 1ift), recirculated exhaust gas ratio and operation of various coolers, pumps, and other eqgulpment, Hereto, the controller 100 is in recelpt of various signals from sensors that inform the controller 180 of the operating conditions of the engine (engine load, engine speed, blower speed, scavenging gas temperatures, exslt gas temperature at various locations, exhaust gas temperature åt various locations, pressuras in the scavenging system, in the combustion chambers, in the sKhaust gas system, and in the exhaust gas racivoulation system, Preferably, the engine comprises a variable timing exhaust valve actuation system allowing individual control of the exhavst valve timing for each combustion chamber, The controller 100 is connected via signal 18 lines or wireless connections to the fuel valves 50, the liquid fuel admission valves 507, the sxhsust valve actuator, an angular position sensor that detects the angle of the crankshaft and generates a signal representative of the position of the crankshaft, and 3 pressure sensor, preferably in the cylinder cover 22 or altevnatively in the cylinder liner 1 generating a signal representative of the pressure in the combustion chamber.
Depending on the engine size, the cylinder liner 1 may be 2% manufactured in different sizes with cylinder bores typically ranging from 250 mm to 1000 mm, and corresponding typical lengths ranging from 1000 mm to 4500 mm, The oylinder liners I are mounted in a oylinder frame 23 with 38 a cylinder cover 22 placed on the top of each cylinder liner 1 with a gas-tight interface therebetween, The piston 19 is
1 jy 2 we - 3 En + vy pr = te Ar Tare on Fa øn ir år am Tours oo, I er ry Re CTE =, 3 arranged to reciprocate between Bottom Dead Center (BDC and ITU en, ern nå Et en, ge de - TTF ØS FEY, ny gø A ae mr pn pe res % + 4 gå AR A Yr Top Dead Center (TDC). These two ertreme positions of the ; % og " " mm 3 . Co 3. me re ” 3 7 k piston 10 are separated by a 180 degrees revolution of the » ør | , > fn om 3 Jen va 14 ” 3 i J] syed + crankshaft 8. The cylinder liner I is provided with a E ge 3 x “FF 4 Åge pe 2 ere 5 mm I TY CT ert gt Inga de gr kr 2 5 Åge plurality of circumferentially distributed cylinder Trained ee mod Yoon Toner de fr Add IT 1 ud fe my rt 3 ered eae abn ahd im og år 3 indrication holes Chat are connected to a Oylindex lubrication 3 ire that orovides a surnlv of cvlinder Trkyyn 3 cat arn ol whan Godot Ef L PEN LAs 3 I UDD Ly Hd.
Gd Laide lbh dea LA LITE aa wikia 2 : + 5 4 F en en 3 net > % Ton gen of - : To oni 5 SE the piston 10 passes the covylinder lubrication holes 25, fo Joy mn amy on E54 3 em Åen ES mi : de} ode en 3 “oy - thereafter piston rings in the piston (10 (not shown) 3n 34 Så fra fro > v ar: = Tanah ae 3 ra dr åg mn 3 EA i hen, No ~ distribute the vylinder lubrication oil over the running Sapp wer de ene ena iL en ane . . on ET ry SÆR +1 3 > am en ge "| POUL må OX yen . surface (inner surface) of the cylinder liner 1. The cylinder Fd ae en wen me se eerå åen få ri A E ay ene fe en s . SF pens 2 vre Nay ee fe en liners are provided with a jacket (not shown) and jacket cooling water is circulated in the space between the jacket and the cylinder liner. i mn TR erty de FN — LT så so Te . ve ES + + The ligulg fuel valves 0 {typloelly more than ong per wrt 4 om ele a ; : + 3 Bay 4 ~ Ett 4 - fxn de oo : hd cylinder, preferably three or four), are mounted in the mer I 3 md rer — 39 . 3 mmm er + = Bø Mm Fee YY or el cylinder cover £2 and connected To a source of pressurized JN Jen ane J un bt om oh en OS Fu 3 3, Fr TL mer 3 på me, 3 ran Tove ow Ef - mn carbon containing fuel 30, The liguid fuel valves 50 are a0 eN pe mre eng pe wx ben Tx nn ES VR SK & an vo dg Sd em, rer km wm trey de woes TT 3 : og yet 3 prag dos en zO preferably arranged around the sxhaust valve 4, in particular re eR rr gem ee oh 2 . NÅ Yen 2 : sy eit yl 2 3 dng omy around the central outlet (opening) in the cylinder cover 22, ed FÅ wer vrd dr 4 om 11 TEN lå ed ri 3 SE] ne Vie rr 14 and circumferentialiv avenly distributed.
The central outline + er Fr, dede nn DOT ENG + Pir - er gm Re ere Fox Sf Fy aes - Fer A PL - 3 wip de 3 bees la controlled by the evhsust valve 4. The timing and quantity of the apparition fuel injectlon are controlled by the == en år Gem i nu ri yo cc £D FE 3 pre - mangt 2 28 controller 1200. The fuel valves 50 are only used to inject a men 3 - my? = 2 rev A i men 32 ery 3 Fax Yo om ir X vo + Fy or ny : " {a small amount of ignition liguid (pilot) 1f£ the engine is name rm pe isp dS er 3 A By on rn — 3 ws J væ ~ Jr er 2 en -, NT AS ve 34 operating in the premiz mode. ff the engine is operating in om; ; : og 5 de Xp 3 ge) Cd ur + 4 Fo . + a compression ignition mode, the amount of liquid fuel A 3 3 KI an fyn + — + 4 2, 3 de " 2, + re i en Yo 3 required for operating the engine with the actual engine load 3 Se en A orde så + Sri Ad TÅ rev 3 od Cane 3 ra Tara LM TE Ax 3 me > is injected through the liguid fuel valves 30. The cylinder an ma a pm get mer ae pn am + rå ee ed — tør Ae on ge on de 2 nen deres . | % - pi - 22 vover may be provided with pre-chambers (not shown) and a tie of the liguid fuel valves 50, typically a tip provided with a nozzle with one or more nozzle holes is arranged such i 2% rå al tod AN Så i 5 . . that the pilot efl {ignition Liquid) is injected and atomized rt & ER yt + red me 3 oq Tim ra-rh TE EE into the pre-chambers to trigger ignition. The pre-chambers pod i et 3 yt ETT FK Pe ER yd py 3 Aw 2 er, assist in ensuring reliable ignition. Uk og Fenian} mg > rev Sr pm cen - ar an pen os, an am day VOY 3 3. + An: ar exe + CR The fvel admission vales 507 are installed in the cylinder T 3 -~ “4 7 5 % 3 x o- - 92% % apd ATE ay ik " % liner 1 (ør in the ovlinder cover 22), with their nozzle gå io i AA oe TT ZF vn gl 3 + i + aa yA oe oy + i Je vy lod 3 => substantially flush with the inner surface of the cylinder 0 Tod ere i mye ro NR en + Forest yr 3 + BO syd Fv 19 finer i and with the rear snd of the fusl valve SOf protruding #7 ex - - Em i 1 + +) eN i OR en od ame Se FO riger “ CRY Leen == 3 Tx from the outer wall of the cylinder liner 1. Typically, one . Frem, HA enengt ge 3 Nr - fg Fr ds nye FT + + BDOS or two, but possibly as many as three or four fuel valves 30 re nrovided 3 each my inder liner 1 sircumferentisllv are LXOWVAIA2C 1D gan CYILDUS ine År CLYCUMLISKESNTLA LY 3 mt åt 3 pm rå Fe gon pen be 1 cd an ry NÆ AE wn aos pe A 4 a er skreven FT xr På cede aed bass de girl distributed {preferably circumferentially evenly distributed) 78 Ama ER eo …t 3 odense yo 3 me CF Frk ey TS gm rr: cay se HOP 18 around the cylinder liner i. The fuel admission valves 50 " 3 - br ed. Å . 3 Ven gede i NY Tag - mm T 3 " - are in an embodiment arranged substantially medial along the mm gir 3 ere re i TR Ge - 3 3 Tb pm Em LA wl yf length of the cylinder liner 1, The fuel admission valves 30 39 en macho ts as ENO TI TØS SMT ee + Addons Fyre 2 are connected CO a BPY2SSUFKLEGU source ar Jasa0us KUSA ver i : - I | omen Kw TA Ten om - re + ; - - ore ? (e.g. Methanol, LPG, LNG, Ethane, or Ammonia), i.e. the fuel No” 2 s 3%. am eN pn ET En onde en ev et em og 3 ew NE er en en, +. 3 SOE 240 is in the gassous phase when it is delivered to the fuel admit sein Ua ler FA Di rime + S famous Fris] so Syd tt AO NE Fl an NONI mm - mt AA NS he pe MEL AS, at? + Frm de he - Kø N.N SOMILSSLO! valves ; LCE 18. gaseous Tus LS aamiritaed 3 I ele r=) + Fr, er A tm m - TT i yet ie during the stroke of the piston 10 from BD to TLC, the reen er KS … Æt 3b on or gen pon £ £ 23 2 ED = ? » 1 ES FE EEN? 2 Fre pressure of the source of gaseous fuel merely needs to be 3 7 en in eg ve 3 % Pere 0 EN 33 ti aon ey 4 3 0 i 3 i 3 I en rr 3 me 3 higher than the pressure residing in the cylinder liner 1, pE = rå Try må har om roet me je ob nn 59 oe — få md er, 2% and typically a pressure of less than ZO bar is sufficient For ye sm mo Fame mt er er, ed A Fey pm dens om 3 Fo æren, for the gaseous fuel delivered to the fuel admission valves m op . Fr syd OE SF VTE KM ger FE ey id + ~ 3
50.7 The fuel admission valves 307 are connected to the 3 TT FN 2 pm 3 jn re i i SN Fr i controller 100, which determines the timing of the opening 3 + 3 ge fasen Tadd ; re i FO ] ' 314 der and closing of the fuel admission valves 507, and the duration TH EF 5 NTs GYS ~F Fhe Fite NTT wim envy troy Firemen Sf 3% of the opening of the fuel admission valves 507.
EO 3 3 3 Fire - A rr 3 3 3 år Yon em od 4 PS - se? — må 3 The liquid fuel for ignition ls in an embodiment a fuel oil, RCE EN ER dd + og has FF F & 1 tier I — Dd mid sr? tå ir gi n Waring UIDSEL, navy Iuel O1l, EBTNAanOL, OF PDIMmeltnyi elher ; {DME} . E Ta, io AD Er - = PE eT ren ey Så 2 rt pe on Yer go AS St FNS vy NR sm BR SYS 3 The gaseous operation mode can be one of several operation SS Ye ex Er yde met ØS eN vy Ap en 3 = REE oe nodes of the engine.
Other modes may include a liquid fuel ved åt en 3 de + rede 7 mt dr Yee Frye} ee mC 5 RAVE Lang — + dre operation mode, in which all of the fuel required for the er 3. 2 gr + - 3 5 3 we fo 3 3 Sme 5 en, ter Tong en 4 re operation of the engine is provided in liguid form through 63 1A pred A Fram) ] 4 EN T i Fr EA Firm? om mn the liguid fuel valves 59, In the gaseous fuel operation mode, 3n s LM FR Sa 3 EN yt + - mg : 4: å 3 rå ++ eet the engine is operated with gasecus fuel that is admitted der we we oe oy dre gen ne Lae AT de — Fen dr re AY a ERENT em EVEN ag de orn) os EA vre fox during the stroke of the piston from BL to TDC at relatively 1 - rn gf Oy er eg "| = 4 TA ? 4 rå mr 3 ed Én gr en ry th pn SØ law pressure as the main fuel, i.e. providing for a major portion of the energy supplied to the engine, whereas the 34 oy så Farad A Ee BRF MT a TY GE Sr ern cr BA fe is fed mit tera Yr amo TJ LX IU MA FEE aap RY pa Tison ro RULE LLDULES a LBLATLLVEL ¥ SI I amount of foel that makes only a relatively small contribution 32 amount.
OF fuel LOAT Mayes ORLY 4 Yalatlvely shall TCONTFALDUTLOM + : 3 a oN ATRE og Td 3 + 3 - 3 en £ fre dere Ye ty the smount of energy supplied to the engine, the purpose ea hr 2 + 2 rr ra . . NE end 3 Fea of the liguld fuel being timed ignition, i.e. the liguid fuel ge o = mo + ng år Am 33 32 serves as an ignition liguid, SO hy vy a dvs overs Mon el PE - omk, 33 en + - I Er: 240 Thus, the engine of the present embodiment can be a dval-fvuel 0% Tye : + § ri YT oa = or På år | + ele to > 5 engine, ice, the engine has a mode in which it operates i ¥ ud ] je ev ar . 3 ++ rå = - ru år sid me 3 + mm i exclusively on liquid fuel and a mode in which lt nearly exclusively operates on gaseous fuel. = Tg i Se Ye dS 7 dn er ~ Peer 5 mæ SR æn 2 ne åre In this embodiment, the engine is shown as a premix engine A 3 i ir. pm, Br A gm i Tere = im gr operating according to the Otto principle.
However this A ped = A i ¥ should be understood that the engine can just as well he a compression ignition engine (operating according to the TG - ogs jer & 3 i Ae … el rå | am på To 3 For " Diesel principle), with the carbon-based fuel (gaseous or 3 TE rat es re OS må råt sd od Te dee mød 49 te fAkseavi Se od ste, 3n 2 liquid) being injected at high pressure when the piston 10 is at or near TOC.
ey SYG TYE 4 SYNES PSA get der AY Fi mer 8 Få SN TIN ENE oo FN SS Five ge The engine is operated by supplying a carbon-based fuel to ever | ey hu FIX go yd ~ + ] 3 the combustion chambers {liquid and/or gaseous fuel}, 3 rr på 3 ny Yor, 3 3 LP fo de) - ende of oo rx 4 combusting the carbon-based fuel in the combustion chambers, thereby generating a stream of exhaust gas containing carbon Så ner å rå SET Spe mB Tn rs pyr i om Årre jo ES nie ry on dr pee £ … dioxide, preferably rsoirculating a first portion of the i 5 A Pa Fra on 4 + e je Fars ett er oy on 2 ae = stream of æexhavst gas (or of the combustion gas in an ink 32 A .% i 3% Lån: ts 4 3 + de: in ør en, 3 im mg ke Tas En embodiment where the recirculated gases taken directly from i Je ; p ~ i . be rd 3 ' - > og A To rr the combustion chambers), and exhausting ancther (second) + An =. oe mA er ad Ree SE ar Tm mo oF ed vey me dm mr grey dn er oe TTY 3 : ~ ig portion of the stream of exzbaust gas as exhaust gas, supplying Ses ØS EAT WY 3 Vn EA PO yy ep ev SN wn dr and wn wy mr bv vy ew Ee any ep + - vressurlzegd scavenge gas containing exhaust gas to the combustion chambers, the pressurized scavenge gas containing 3 ” 3 34 = at} AMG. 3 ep Vedr emer bom it in an embodiment at least 40% by mass recirculated szhaust gas, preferably 40 to 55%, separating carbon dioxide from the ze oT ret os Fry < ey v ony gee Be eg AEA aed oN pn - Sr A ” i nr an oe gr > yy end is exhavst gas in a carben dioxide absorption process, and 3 3 3 … men tå on 3 eN en gå) si po storing the separated carbon dioxide. ™ RO Åt Ge ENE ; i åen = & Ty Fe Yo ps se by er des tor om go Downstream of the turbine € of the turbecharger, the exhaust SAS ar TE po a ren Eee et ews hat bt AN aa 3 t pa] TRS +F tær ds + syhaust gas enters a second exhaust conduit 28 which leads {he exhaust ze gas Co a boller 20 (also referred to as economizer), which is mr ES vy A det per Sy Fr . Fy x em FE men oe ev mbvrds nd configured to generate steam, The steam is used e.g. aboard - . me De År ele ie ref PP fm 4 min? I rem ran a marine vessel in which the engine is installed for various ep > em or F - + am RE - nr fan 3 aen en de yams pd rn Fa eg i 4 4 pra - purposes or the steam can be directly used for heating a På > pa me i KLØ vredt + ” ” en om be wn SO rer 3 x3 - Fe i + 3 3 I ng gar 3 Bea 3 desorber 86 and regenerator 82 assembly that will be described 3 ir mm - ~~ + % dn er fre To + ven + mæ år em ry he 2 in greater detail further below since this steam has a År EE gy pe {Te yr A orm Fem A - 5 må i ae É 3 Ar … laAmperature sufficient for being supplied directly to the regenerator 66 and reboller 62 assembly. =. i. oe en ood 3 dr EY bl NE mm rbe oe ener eden å oy 03 Downstresm of the boiler 20, the second szhaust conduit 28 TE rd A TT ~ - AE ei A ny oy vob vn Fy gn " x 4 . 3 ed A Fy en Com ey vr eA wontinues to a first heal exchanger 40 in which the ezhaust
AG + cha YTS ET sy ir ur? th = oS TYG Ty TT mene im at wi i Fun as exchanges seat it a primary medium that 11 be oa ek Lang ; val WL 3 pl LMA 3 meQIam Lobia wo bd ræs J on gere vr 3 4 res OP am set moi 7 Fay gede la eg gr Pend & described in greater detail further below. ™ ay gg hr © 4 de We + sn a ag a0 + oy tm 3 oy dn » Downstream of the first heat exchanger 40, the second exhaust 3 conduit øB continues and connects to an inlet at the bottom Ea ny fon ie Be i ø in be sæ JN ge EY Se re pen sk åg oy ba Nå em, er of an absorber 42. The absorber 42 la preferably an absorbing Toni = é Få > che 3 ave ER ko re TE fo? FPS my yy abe FYS £1 TF COWSIF, &.JT. & padiaed BOSOFDINU COWAY, (hg gHAnalusy gas LAQOWSE + aa % + … os A rå - - ; 3 de an An de de Pr og re i; through the absorber 42 to an outlet at the top of the absorber ål,
fr een eds AO 3 am enke en Fw sworn wf we evi Eien TY vy ey Ye ew he . The absorber 42 is part of a svstem for chemically absorbing carbon dioxide using a solvent.
An example of a sultable Tore, pt : x To i hes : 7] do . . 4 i solvent is an amine solution.
The amine solution may comprise mg Å EL TS SE fr RE ved FN ng ge A en gr RE Sorel PS KS TE By em ge oy wr Ye primary, secondary, and/or tertiary amines. ånother example zu so avy + en 3 3 So TT 3 + og KUE FYE es Ll cx any rade wwe ps i A a de Io 2 my 18 of a suitable solution is as HaOH/ KOH solution, preferably an soueons amine NaOH/KOH solution, SP 33 me i på Doar eg 3 - 2 ry lem ER OSS gm deg rd Carbon dioxide is removed from the exhaust gas by a packed bre on ecb 3 > entre Fonden så ov pr By ey An Fo oa ene ed 3 3 er røde) ren er absorptlon lower (absorber) 42, This reaction is exwothermig an ES any pop er] -3 NS & rer en om HE gn a Ye - 3 a Fen event yen zO and increases the solvent temperature along the absorption + me AS Nom or pve Be op i : + oe J an dre de 4 vam Awe tower 42. As an example, the carbon dioxide concentration in the exhaust gas from the engine is between 4-5% (no exhaust 1m cen yen Foon de de - + Det 3 come Fn er spe Fe fRA ES whem ew owe peas os de 2 . gas recirculation ) and 3-108 {with szhaust gas reciroculation) Vers røn oyver ened om A So ge pn od ew od — 3 ay br, gr ey ÅD rr py be by volume and is introduced in the absorber 42 countercurrent 3 PEE a emir § 4 home re kr pr + me ~ fo 25% with the solvent, which enters at the top of the absorption ra - 35 JR 3 . ny yn pe prs På ra go + Fr, or en ey dr pon AIA rvp åen mer tower 4Z and is referred to as the carbon dioxide lean møl FRA SE + ny 35% Ae Vennr en lvant io CIITA td Fy = 301Vent., LE CALHOR GL10KXK10E Lean SOLVÆNLT 1S SUDPILLEUd DY a 3 nm oe - od 4 3 oo Q ~ , 5 Do wr od rd, 3 2 desorber 66 at approximately 35 "0 to 55 FC and ambient en a 2, , . + 5 … HOS - - 3 - - dr pressure.
At the top of the absorber 42 a wash water section TE ry KR he A 4 = nn gr Lr a Så Ty Fay kr gå A NF & RE et em - + " 38 consisting of a packed bed removes most of the volatile amine > nå, be de 5 ede Yee oy en > att em rå — Ho Tor en, - oy or gm be am er nen Py EET PCY Å Yi sorbent, that has escaped to the exhaust gas, by condensing
DK 2022 70534 A1 20 and solubilizing it.
The total height of the absorption tower 42 can be up to 50 meters.
As carbon dioxide is absorbed in the absorber 42, a stream of carbon dioxide rich solvent from the bottom of the absorber 42 is fed by a pump 44 into a cross heat exchanger 60 for heat exchange with a stream of carbon dioxide léan solvent before 1t 1s introduced into the desorber &E and reboiler 63 assembly where it is heated in the reboiler 682, in order to release the carbon diozide from the solvent, The stripping (desorbing) temperature varies between 120 °C 19 and 188 "0, and the operating pressurs reaches up ta 5 bar.
A water-saturated carbon dioxide stream is released from the top of the desorber column 6& and 1s cooled in a hest exchanger 688 in order to condense most of the water content, which is 18 then separated in a knockout drum 682% and returned to the desorber column 66. The stresm of carbon diozide from the knock-out drum 69 is subsequently compressad/liguified in a liquefaction unit 70 and stored temporarily in a storage tank 88, which is an embodiment a cryogenic storage tank, From the temporary storage tank 85, the liguefied carbon dioxide can be Transported to a final storage or utility site {not shown), If the engine is installed in a marine vessel, the temporary storage tank 88 will be arranged in the marine vessel and will be emptied when the marine vessel is in a harbor that is 28 provided with utilities for receiving liquefied carbon dioxide.
The regeneration process of the amine solution does not remove all the carbon dloxide in the solution, and the regenerated carbon dioxide lean solvent is recycled to the absorption tower 42 with a lean carbon dioxide loading by the action of
STITT SA Before romeo how the abort 40 He om TRO Sin ide <a Tr ump na.
DELOCE Isadnly ig CRS alsSoroaly 42, THE Caroon dioXias fy an co in Na + ae 5 Ap øn, ge Toy en, on i på + Im + Ty wm Ea - 34 srt Ao , rich solvent exchanges heat with the carbon dioxide lean mp, gi] 3 i - ou or Yon Sr 3 4 am, om Er a nnd reg - solvent in the cross heat exchanger 60 and in a heat exchanger GF, i, od 3, eg rn pn dr 3A rr 4 Så EN wy ond ar. - = je + x + moe The carbon dioxide loading of the solvent after it has - en, Be den pp ed me dn, vr OS Torre de Re Tevere de pe absorbed carbon dioxide through the column is referred to as ¥ ~ 34 ise sr mn Turan The alffarsrnøs hetuer his the carbon dioxide rich solvent, The difference between this Ye and rich load ig the amount of cacvotu AX marie St må Am Lean and rich load IE Une amount o captures Carisn Ga1OXLOE 3 nm an ig br nen J = ; from the sxhaust gas.
Ik, om, sem om Sør dem, om, då emne 5 På em ~ om gr: aps vs ei of - : "1 a » 4 oN oy eo Ton mtr å wren The carbon dioxide concentration in the exhaust gas leaving + " bo 3 43 LEN : 3 . 3 a on the absorber 42 is up to lå times lower than the carbon 3 må Ar in ØM SØN IN Øm a A mn EE a a ~~ A YT em - S- de J Tom Ae on A in Ge ES Yn dioxide concentration of the exhaust gas that enters the 18 absorber 42. erne + 3 = AF +R 3 ne . + 113 Eng ye : Soma of the amines of the solvent may still be present in the arb mn 1g er rem rå re om aA en re nm ye 2 ar rå Terr exhaust gas leaving the absorber 42, and these are removed by = samt + zørubber 44 that is arranced in the srhaust condi t an amine SCKFUDDET a4 Than 18 arranged In ne SKNAUST CONGULEC mn Ro edn rr ev åt pg de Re en Ven am ew ør " 8 4% downstream of the absorber 42. FPS, 3 ur Eee = = - = ry Ren + 2 - Dom … - = I FT The engine produces a number of excess energy flows QL, 02, © aber, pe Tovar + ev vere am å hest £7 yi Fn RrEy et Å smed poy wb a On, also referred to as waste heat, flows, from various parts of the engine.
In the embodiment of Fig. 3 these include: ag — 1 To Th Fy TTY ee år ened 3 39 fo ~ ny dn oy pn + : SPS OR PES TRL 2% Q1, the primary cooling medium {2.g. water) of the scavenge ir ooolæer 14 The soolin water from the scavenge ir ooolæer ALY COOLSY la.
INS DVOQLLINF Water Tow The sgavends 310 COLE RENE 17 ford rem 3 3 + h 3ve a tamnoratuitre hetuwanen ; NYY EVE YT = t ga lat DO La WILL LYDICal LY have a lCamperatlufe DSTWaen approximately <u - ao Tan Gom ang £44 Leg — MP the pvorimarv addin angive iuhrioration oil which will 22, the primary medium engine lubricstlon oil, which will els I 5 sr ep møn — øre ond rr rr NÅ VER EN A rå Cy typically have a temperature between 45 and 5% "0
Yh
KF 1 i 3 IR = 2 EE i mo? i eden ve — Q3 the primary cooling medium {e.g. water) of the cylinder 3 oy + A 5 FIT Ty eN 4 A form 3 - Fans bn Mt iver ås skab jacket cooler. The cooling water from the cylinder jacket Fest. TS ;o : ; oer ett 3 er en e af ÅER ES TÅ oy mo de r Hf will typically have a temperature between approzimately 70 and 80 °C and wi æF; E - CT iran rir evr] 3m rd 3 vin wr rn a Af an svane — 34 the primary cooling medium (e.g. water) of an exhaust i ati yy i ~~ Tar AD mich tveicallv has a gas recirculation conduit cooler 32, which typically has + + 4 . Jem pwn STUER ETE ENP ENES NT TE tals 50 + ASD Bys temperature between approximately SO to 350 °C, NY Fhe bi] mg Leh tvoajlnal! jo unolyv steam with - 3% the boller 20, which typically will supply steam with a i i Yara tio En SES fra ten | TEN STE DE temperature between approximately 160 and 170 "C, sn FE . Can A For Fema 33 fæ ant that im nasa in the first - 26 the primary medium (e.g. water) that is usså in the rst i pr 3 ++ de 0 3 - omen YY Es ER X FØR - tb ømre vat heat exchanger 40, that will typically have a temperature ey ny os ER - nå TYR @ om between 180 and 170 wr 07, the vrimarv medin (e.94., water) that is used in the = ag ly LOE DE imary medium 57 MÅ + WALL LIDER: AN 5 ; ai ny: hast Dr ns tee hat 73 7 ery eva Far have & second heat exchanger 687, that will typically have a temperature between 100 and 170 °C, o . 3 es CC mind eneX Sad da ard Am he ir = DR the primary medium (6.9. water) that is used in the third heat changer 68, that will typically have a temperature heat exchanger 608, that will Lypic LY a TOMPEerat 3 3 fm be - i TNE Oe ketwesn 95 and 105 °C, MG } j Tiv fe df wat or) hat 3 used tr co) the ~ Q% the primary medium {e.g. water) that is used to cool the yo% % > HOLE rep Fog eb Ya ” . + or Sr An en + +3 ti TT 2 børne rat in ea ha 240 Tiguefaction unit 70, that will have a temperature that 3 3 + 3 ren FO frmmlmeret mr mn ye 3 rn aod 3 my ane depends on the type of technology used for ligusfaction and > 3 3 a mt 3 own Støt am Teel Fre = TVÅ eres Foner A em 113 on the type of cooling system used for the liquefaction unit
70.
; T 3 i fdd Mg Timt ST merase arora OT I ARE TOT A bod It is noted that this list of excess energy flows generated 3 + : : 3 re o eg d OY: fo serie by the engine is not exhaustive and merely serves to provide examples of such sources.
3 2 MS 2 3 = oh | - 3 4 En REINER ES SRST YY YE At least one of the above-listed sources of excess energy QL, ” oo : \ fo A wega bag ge 5 fr pg Cy oy de — & formative be | st GZ... Én, in particular, those that have a temperature below ; sn on dey pn an se en onen rå e . at ing Fhe Tar men rhe SE are the temperature required for heating the desorbey 668 and
DK 2022 70534 A1 23 regenerator 62? assembly (whioh requires a secondary medium with a temperature of at least 120 °C preferably at least 110 SC) is supplied to a heat pump 80. The heat pump 80 is configured to generate a stream of energy Or in the form of the flow of a secondary medium (e.g. water or steam) with a temperature of at least 120 °C preferably at least 130 °C.
Preferably the temperature of the secondary medium supplied to the desorber 68 and reboiler 62? assembly is between 130 and 140 °C most preferred approximately 138 °C,
A first embodiment of the implementation of the pump 80 is shown in Fig. 4a.
In this embodiment, a plurality of sources of excess energy QL, Q2 ... On is applied to the single heat pump 89, and a stream of energy Qr that is supplied to the 138 desorber 6t and regenerator 62 assembly is generated by the gump 80, A second embodiment of the implementation of the pump 80 is shown in Fig. 4b.
In this embodiment, one of a plurality of 29 sources of excess energy Q1, 02 ,.. On le applied to one of a plurality of heat pumps 80 and the stream of ensrgy Qr that is supplied to the desorber $6 and regenerator 62 asgembly is generated by the plurality of heat pumps 80 and preferably combined into one stream of energy Qr to the desorber 66 and 2% regenerator 62 assembly.
The heat pump or pumps 80 are used to boost the temperature of the amine solution in the reboiler 62, Tha heal pump &0 comprises at least an evaporator, a condenser, a COMPrsssor, and a throttling valve.
Within the heat pump 80 a heat pump (refrigerating) fluid is cycled in a cycle that comprises the
DK 2022 70534 A1 24 evaporator, a condenser, a compressor, and a throttling valve, as shown in Fig. 5. The heat pump 80 functions by the evaporator receiving thermal heat from the flow of energy 22. The heat pump fluid evaporates in the evaporator and enters the compressor. The compressor is driven, e.g. by an electric motor that receives electric power, e.0. from an alternator or generator driven by takeoff power from the crankshaft of the engine, The compressor increases the pressure and temperature of the heat pump fluid. Downstream of the 18 compressor the heat pump fluid enters the condenger, and heat is transferregd to the hest sink and the heat pump fluid condenses. Subsequently, the heat pump Fluid expands in the throttling valve before it re-enters the evaporator and the cycle repeats. The secondary medium, e.9. water or steam, 13 transports heat from the condenser to the reboller 2, preferably in a cyole that is driven by a pump, the secondary medium having a temperature of at least 120 °C preferably at least 130 °C. Thus, the reboiler 62 forms the heat sink for the heat pump 80. 28 To boost the efficiency of the heat pumy 280 the condenser bart is in an embodiment split into three heal exchanger (HEX) regions; a super-hesater, a condenser, and a sub-vooler. The heat extracted in the super-heater and condenser region is 2% sent to the heat sink. The heat extracted in the sub-cooler is used to preheat the heat pump fluld leaving the evaporator. Kv having this condenser arrangement less work is needed for the compressor and the system efficiency increases, Moreover, 3 water loop with a steam HEX and an electrical coll is applied in between the condenser, super-heater and reboiler
82. The fluid entering the steam HEX is in an embodiment the ae ten mratæn % the boller 20. Th team HEX Ad ealfmomtvrirs? staan generated Ln Tne Oriel SU.
ADS Staal HL And eLecLrlcas øm 3 SEL our ty i dr i Poabni lør FE? rørøitees <& EFS AE ant ane vely Col ensure That ong FeDOQILISK be FeCSIVeS SUFKLCLSNL aherdy 3 i et ” 3 7 3 " + in the whole engine load range, øl In Fig. 3 several energy flows 21, Q2 ... On are utilized.
If rr Fee vam I, a CRIN ST NA Ev - 3 = …, ed ur, - . only one energy flow ls $l, O2? ... On applied the desersator helsw th Cra Tye atm he removed RE LOW Ue @YVaporatnol’ oan DE anovad. a es : et a Ct syd 2 Ce 0 In an embodiment, the engines is provided with an exhaust gas TH me ; Spd Sp o a ep + in FO 7 5 2 +, et ryg reciroulation systam that comprises an øxhanust Fas øm eo re ES 3 3 . cdr + 3 sr Tra kr ge Ay amy sade - Sl ere er, er vor em he recirøglatjon conduit 3h that connects the first exhaust de AG bb leve wd eeenpredid $ 4 Mee Lh sondult 19% to the scavenge alr conduit 13. Preferably, the Shane Aaa Pori ren lat ian Mr Auit 3% connects to the first EKNAVUST GAS FSCLFOULALTLONR CONUULT oo COAMeBCts TO Lag LLYST exhaust gas conduit 19 upstream of the selective catalyvtic 7 es Lø øv TE TO een AR er de Toe SE, hos bev te RA ES mae Da ay AS sier 5 dx 183 resctor 33. Preferably, the exhavst gas recirsulation conduit Em. 6. . : hd % Le 3% connects to the scavenge alr conduit 13 upstream of the SCAVengD ai + cooler 14 Fy fever it ehonlgd he underston 3 + t SCAVSHnU all C0 i ROWED, L SSOULO SD UNGGESLOOGU That + rt met eb mm ; NA ve Pte grå + + BR om ~ Te . Four i år the exhaust gas recirculation conduit 33 can also connect to ti f3 Rea YTS OTS aft ooncnd rb TH ru et SØ LEE ~~ f t rn Qt ARFEAVISEED TY Lhe Sslaveange al! COMOULILC 13 GGWNStreanm of Le SCAVOrJe all mU a ae] - 3 “i rå, a ca der eng a Fr" rå wer TF md 5 - F se Sode 38 as. 2% 4 ere cooler 14. The exhaust gas recirculation conduit 35 comprises > te mn EA 3 wp 0 havet mp g ve i % hy oF ~ Fr - La a blower 34 to force exhaust gas from the exhaust gas conduit i ny hy RF i am ry ivr i + A riet Yr on FLE EY 5 to the scavenge aly CoOnGdul1t, since the pressure an the ~ amp . - le å fe OR TE OA er dreven den rå Td og se fod & Jo hs ES € eee OS 1 scavenger conduit 13 is typically higher than the pressure in + HTD en + erb amr en år re seler 3 + ay Top ve ot o~ a rv yoy Pb - ge the first exhaust gas condult 19 during engine operation.
In 3 i a : ; såå i : Vere 3 re åd grev x . ory pre we 2% the shown smbodiment the blowsr 34 is driven by an electric ri - rå ; + åg eden pom tant + dr + - Tea - - 7 Tr em, J ed motor, but it is understood that the blower could be powered hv anv other source of ror: VU TORT I rn he 2 hyryugr rå ib nadimart DY any ole SOUCECe DL FOLALV powell, LI Le SAOWD EMODOIMEIIL, i - ay Yo - EA i ae 3 . + A - the blower 34 is arranged between the exhaust gas Am rr de a __— - må 3 me" rer i - rn aa å o recireulation coefer 32 and an exhaust gas recirculation TI ior mr v1 FE bn oy 7 RE i Ør ES + + Doo + en er Fe a Eo) = Ty i be ge NE AG eh pe = scrubber 36. However, it is understood that the position of FE pes 3 mv … PE eager TAY ed yen seer sen gee sed pen ie de pen seep sen vr onde in eg oe the blower 35 could be upstream or downstream of the other er merit an 3 : ” or rs = em + grene Tom + mm va Ar »E © elements in the exhaust gas recirculation cliroult 25. The irl atet 5 het stil at 4 mon] ed TT de ay pass møl TTR dt + < exhaust gas recirculation cooler 32 is arranged upstream of the exhaust gas recirculation scoryubbe BE The mai il DRE the ENMAUST Gas FfeEClroulalion SCYUDCer so, he malin purpose a rr" 2 — " I 7 rr ar} en 3 3 + ~ + of the exhaust gas recirculation scrubber 36 is to remove impurities {soot}. The controller 10900 is configured to control
3 3 Ind mars — Eg : Ton, FE TE, a eran mya i me 3 the speed of the blower 34 in the exhaust gas reclrculation mer de ane wens tb en dt - In er be my snes a en nth very ay em ed le on 4 system for regulating the percentage of recirculated exhavst Anh ng 3 4p m ? une BAT 3 i gas in the pressurized scavenge gas, preferably to a
+ rå + + -, Lg Tom ed TE + Se mn ny 2 pg percentage by mass of at least 35% to increase the TN ~~ yn yp a - SS mi Fr: + er + i Ay By vy fe © oo Ny oe end v 18 concentration of carbon dlexzide in the exhaust gas and theraby 3 a pan Sh + ir mA FT er, pede 3 pre rr a wp pb 0 Ih rt od - ae pee Æt 5 . increase The effecliveness of the carbon dioxide absorption system.
The exhaust gas recirculation rate can also be ; Ap ra: + ~ ; : Væren & 2 1 : ' der en en der RA + TT a controlled by means of valves (not shown) that are controlled by the controller 100. Thus, the controller 100 is configured 18 to operate the engine with a percentage of recirenlated 12 co operate ung engine win 4 perlentage on rRoLrCuLataed tg FN an 44 Ea Ir 3 i s gi 4 3 e - << AM pe, re - exhaust gas in the pressurized scavenge gas of 40% or higher, ALU . & 3 te pr Aa LS eye So erbsst de med vr 4 + tm - - få ve 45% or higher, or 50% or higher depending on the operating i od A Å man ven) 3 . men dr em TÅ am Ee … 3 pd de conditions.
Generally, the controller 100 is configured to operate Wi th + be h 3 shest Doss i ble noercentage o £ re ed rola tad META le Wit Lhe n1gnest poOs31n9Le perCentlage OL FØCLYFOVLATDC sn sw ved fom + if SNP 2 ES Åse +33 oc fe wed 1 de mdt es ev +} EYE EIT 3 4 ÆT 28 exhavst/combustion gas since this facilitates the removal of re i 3 4 Sr Æg ir fr, sl mu ef : Tir : i My 4 rd ox current dioxide from the exhaust gas.
By the highest rn 3 Ey on eN i tig Ie a Æt pe de tog i 1, i Sår n ir my? possible”, is meant the highest ratio that does not cause sy prev on py og: 7 Fedt ri bo FF Foye bo pe yen con ebro en ir Few ungcceøotable detrimental effects, such as a reduction in the peer 3 3 ÆT - I SEES F sr + a - Frk gir EN + i ~ 3 md 3 TE Æ —- quality of the combustion process, the reliability of the ag ve bustior YN ES EG AN NNnacvsente dn i eg OF ven tr Et + th hent jr Fe COMDUSCTLON process, AN UN3CTCEPTaCLSE INCKIASE IN TNS neat liga 1 TN TE - å 1G, em eT ET TTY ; ” + Ce ra mA eg den en on the engine, eto.
The medium (e.g. water or steam) used to my Fy =r Ne ay frå ~ Fe grin vor & oc 3% ~ Fe oy wr We oy vor de oc exchange heat with the exhaust gas in the sexzhaust gas
; aa] 3 en TRG Ae Fr . - 3 ge 3 Fr recirculation cooler 32 leaves the szhaust gas recirculation ey ad a … . . e ed on b ti. ama herr Gm cooler 32 with a temperature of approximately 130 tol70 °C 38 and this medlum can therefore be directly used in the desorber Se en sn rå SEN so ss pang de em go re FO + a ei de EA en ep de + re Nord An en de 68 and regenerator 627 assembly, i.e. without involvirng heat aa
KEE - . Cr, ert, - A wen Tan eno rom TT ra der ev mn np de, nya - pump 80. The recirculated exhaust gas enters the exhaust gas raciroulation cooler 32 with a temperature > between apd 3 2 mn I AONE, 3 i 2 gr på + > on approximately 260 and 400°C and the desired temperature for rr … 34 ay " Fn ke em 3 3 1 3 i de TY em mr SN the medium can be obtained by adiusting the flow rate of the medium through the exhaust gas recirculation cooler 32. BY ag by Tir dr = mm NYY A ey 3 ON mt eN ory en - > 5, Re dr en a] 3 rå . Exhaust gas raclroulaticon increases the carben dioxide . er omen Fe den en be ens gt år Ye ” oe ede sen ev vy ype bd md dre ay Benen nen vr A concentration of the exhavst gas supplied to the absorber 42 resulting in a lower energy consumption of the desorber 66 od rr ~ ~ Sr . “1 xs x 4 gl på va - and regeneratox 62 assembly. A hlgher exhaust gas TN cima Tod Sp Ned A pe om . a= en Es me - re 4 3 rå; HA dte Fp 19 recirculation ratio also reduces the magnitude of the flow of os nr hy wn vy a Et even Kr be tk - aero 3 men rå tt vie SN. stem vba FT rtae GANAUST Jas CO Lhg 8ODSOFDSE fg and LHS, AN ADSOLDST Tower ed Ae - rr € En FÅ sen ye er Ye en rn oN abs dn en 4 ge with a lesser diameter can be used when exhaust gas recireulation is used or the ratio is increased. Further, the SMØrTer awd Yar rary 3 + h £ fn Ty rye 49 ey Ferier = + 3 My IM me r RO eneFryv ext Facleag In The EKXKNAUSTL GAS FETLFTVULALION TOOLE Ju, 13 which is excess energy (waste heat) that is supplied to the Jdesorb r EN na FS NE TY ÉT fS Gt ao STEN il > the oom By sf TRICYoe i Ana radangralox ie ASFØSMOLY IETany od vy + FS mg ey de må i i Fm øn +49, % FF mmoaretr +bant moors i fi significantly reducing the amount of energy that nesds to be 9 3 md fo - = mdr en . 3 ax ype bm SE . 3 oy åre ox supplied to operate the desorter 66 and regenerator 62 SOY Yen ni] Sr Ti ho? ord duo Fry iv For the ao F £ md syne Mari rønniatinn ASS Ye 5 8 Mad LUN COMLIY Irom The aexngusy gas rect rOULatLON so cooler 39 has a high temperaturs comoared © eg, abd TOOLE 32 MAS a NLYD Temperature COmparead LTO QUilel aXxdiaess fg aed ge em by i pn We od rye ng ed vy ion sem der hsat streams of the engine (since the medium is heated by rt ert ere dn 3 DO MAT TODT + ir ir & z exhaust gas that has not passed through the turbine $ of the + + rm om Ton ra pee pa ee « 3 em Be By eon geen AT sm pen " em må I een gråt ¥ a Ho Tor om turbocharger 5) and can therefore be used directly in the ~~ yo en ben ne Se Sn 3 we v, rr bE a ea ew Vu desorber 86 and regenerator 52 assemblv, 3 Dår = ~ > on ny Np vom oS A ry ry A Ty VT ~ “+ i Fig, 6 shows another embodiment of the engine. In this emhodimaent structures and features that are the sams 1 gmbodiment, structures and features that are the same or i PT mæ + ; uF : - 3 Ten - - 3 omy en Ys similar to corresponding structures and features previously 3 ag 3 3 gt + aen 4 ge > 3 > år en En FE > on am en described or shown herein are denoted by the same reference 38 numeral as previously used for simplicity. In this embodiment, Fr By sen sem pe ovre — Food ey pen em øv ser de 4 . + mmr - pense Ter rn rh ed br pe eg T en the engine and the operation thereof are largely identical to
- rn Å rette vr råt WES År mom >> J. 3 ér jr J JE me rå + the previcus embodiment, and hence only the differences with tk fg OPERERE eT embodime gr will he Sen ev) Feed 3 pli day 4 7 Che DFØVIOUS EMDOGITMEeNnT Wiil he Aesdriided 15 G8lali. mg om få + rr > = » 3 o 7 2 Hm nn pan od ge This embodiment comprises an optional second scavenge alr E 25 Ås pr tå Få etteren og dr ta YE jr 2 Re rT NERE må ye cnr eT ev I A Fr gi cooler ida downstream of the scavenge air cooler 14, The sgavengs air cooler 14 can be configured to generate a stréam Ba ae enna os bn an er ~ ver e + Jes mtr Eves LER 3 RE of heat exchange medium to the desorber $6 and regenerator 64 an oe øde Ae + ar ar a Aa i > A «+ - £2 — ansembly with the temperature that is sufficient for direct i Pe SE = SØ - Pp 3 ~~ ~ m = 5 3 rn 5 NE YU use in the desorber 66 and regenerator 62 assembly, The second TN & > rr I TA am even poe PO LF vd WR pe => > er MY Så acavenge aly cooler l4a generates an excess energy flow LE 4 do Tey am S$ pe a - SE Ge ET pm ye a x . Så ven i pers de » & gi ded in tha form of a stream of primary medium (e.09. water) with r ir > 7 uven Ard pee rn dhe Yor amy de ~ tå ee gm gi der Yr me Fr i om wo oy he > «al bro a temperature that requires the use of the heat pump SO to re om be Fre += a] 3 as sum baf = < af ge 5 generate a stream of a secondary medium before the stream of energy can be used in the desorbher 66 and regenerator 682 78 Ea Ed, 3 0 DT os pen aims, wn op es By i eX F47% TT Ty A roy å wr A Yen Ox gon mr NS ES 18 assembly.
The stream of energy 10 generated in the second Ge en 3 rr" Tv + A 3 " i LA Tee " Ea “a . | ar svavenge aly cooler lda is sent to the heat exchanger 80. + ho iS ; + > i og mede lev) ÅR . I ar mam In this embodiment, there can opticnally be provided an ede 5 et or - 7 ed då nen de på Tre any rev vA ann ES A 3 . rr - ET 3 FR additional fourth heat exchanger 41 downstream of the first AR i - 3 " Tr an reen nn Sen A 0D Eid en aed etd dt Å - Ag pede 3 Y yt - ely am a ze A 240 healt exchanger 40. This additional fourth heat exchanger 41 511m feer Five rear aE ir ms 2 + Fy ne 5 Foo ren I allows for the generation of another excess energy stream €Q 3 år tr on Ar Å oye Å mel fr Ye rn ir - - CM 11 that le supplied to the heat pump 80. rr tis 3 or rå 1h ed Fo Er fedt thes ven Ey ad en fø fur ion på rn i i + ise i LR TAS smelling, VMSLe Can ALEG DE CKFØATSA AN SIUOLLLOFKMAL DE ~~ DO EAYVER Yo Fea YT 3 = ae nt > hmm we, mary Sy Qt or 5 28 excess snergy flow Q12 from excess heat from the exhaust gas or 1 CR megninivae RE Rab a i % + - Yon org 23 ir - - recirculation scrubber 38 that is supplied to the heat pump 80, en an er ce ] 3 3 ~ 3 de JO 3 er å 3 The various aspects and implementatlens have been described TE + Freer 3 LTTE i mn with AT STS ombngd i mentes heretin Uha Sha LEX CLONTUDCELON LEE VALLØUS SMIOQLI1MENTS TFT + i DE 3 34 fe sen mr Fax en ri irer ri vr Så rige om ser gg en de Fey en pe em de FA ig er embodiments can be combined in various ways.
Further, other
DK 2022 70534 A1 28 variatione to the disclosed embodiments can be understood and affected by those skilled in the art in practicing the claimed subject-matter, from a study of the drawings, the disclosures, and the appended claims.
In the claims, the word “comprising” does not exclude other elements or steps, and the indefinite article "a” or Man” does not exclude a plurality.
A single processor, controller, or other unit way fulfill the funotions of several items recited in the cvlaims., The mere fact that certain measures are recited in mutually different dependent claims does net indicate that a combination of these measured cannot be used to advantage.
The reference signs used in the claims shall not be construed as limiting the scope.

Claims (1)

  1. rn Ter
    CLAIMS 7 + Ean, A LF nd ye Trg nye don re en RY a SA aN 4 FY emt LN EX KØN PRS 2 gede es SR AS, 1
    1. A large two-stroke turbocharged uniflow scavenged internal Ces al ta 1 nn 3 .. 6... hd combustion engine with crossheads, the engine comprising: — 1 > . en de 4 - 3 3 i me . 3 x - at least one combustion chamber, delimited by a cylinder liner (1), a piston (19) configured to reciorocate in the cir i og Med På z rey Ty Sx pe + st 3 rå ey J. ie FO cylinder liner (1), and & cylinder cover (22), oaATrerse Onrbts (18) arranced in the nvlinder liner (1 sCavarnge ports (lg) arrvanged in The Qylinder ihe (I for admitting scavenge gas inte the at least one combustion — + . chamber, PE. = rs es f5M ma qo AE 2 Ad ig ex a 3 me oy : boy … 18 a Fuel system (39) configured for supplying a carbon ra Så tg I + Ee Fy em + 7 ag + + ar rt 4 + - ad on based fuel to the at least one combustion chamber, de i vd 3 = ohn tå oe br Fre - 3 3 - Æt 3 3 en, Lhe al least one combustion chamber being configured for + ge 4 ou 3 LT en 2 Fr nb . - 3 ” combusting the carbon-based fuel thereby generating a stream ; po] = Af i - + eee + om ie merit mi Tr Fnr AA eder OL EKNAUST URE LAGT CONLATNS TAKDON (ULOKLIÆA, an exhaust gas outlet arranged in the cylinder vover Fn 3 i oe Læs Be mr ow h + a 1 Få) (22) and controlled by an exhanst valve (2), . CA 6 anet bl 2 i the at least one combustion chamber being connected to > SAV RNOS gay mr ret f 72 rå dd en me IES TOTO APT a TR 3 a STaVvAnge Jas LSCSLVOr i Sid Toe SCAVSngQe ports LQ and ts sav øovhavet nm vars wear 3 ros + Fe “a ¥ £ md orme mund i mt LO AM exaust Jas KFECSLVØY (3) via the exhaust gas QDUTLOL, a0 svi — gr dveyieit sya ram de FSF OY am Å YyøHr Bay nd dam en fg mn an exhaust gas system comprising a turbine (68) of a ty +h nn WEF ET CN XE Fy fh Aand TT hv Th aA mi FEAT SE Sr nytt at on lyurboocnarger system (23) driven Ly the styrsam of exhaust gas, PR 3 mr de mr - Fr + mt py - TEN, TÆT gt ØR rR al an alr inlet system comprising a compressor 7) of the yY : : $ > on de er en ge > od Z bå le eve fn eg fr ge =, == % ir om pr Ti een est turbocharger system (5), the compressor (7) being configured for supplying pressurized scavenge alr to the scavenge gas aeg Trout 3 Fy racaiver (2), =. le mt re ye 1 A rn mr eee, ERC i EN = my Rs an exhaust gas recirculation system configured for Tart oil sting a onGrtian of the os 5 = st gag originatine from FØCIFCOULREING a DOKFLLON OL LNS gXhaust Jas OUigilatililyg 170m i rå ” Få A Fr 3 de a 3 Am i Ae er en, Få the at least one combustion chamber to the scavenge gas re 3 FO i = > 3 + = ; + 7 So : = raceiver (2), the exhaust gas recirculation system comprising a blower (34) for assisting the flow of exhavyst gas to the scavenge air receiver (2),
    - dn ed en FAT mer Am rd jy br mye mM år ., & . an absorber (42), preferably an absorption tower, for ahzorhing carbon diovide into a solvent ADSOLDIDT CaAcDon G1L1OX1åde LACE aA BULVETNL a desorber (66) and reboller (62 ) assembly for desorbing carbon dioxide from the solvent he CA EL RAM dd Re JE LDL LEE SUL Lr the absorber (24) having a solvent inlet receiving carbon Sid sr å ef oy om sm? Rs egy ++ Fr ge ae re bus 9 PE avon dr wed d vr dioxide lean solvent from the desorber (86) and & solvent. - åer Doe pele vr 35 me Få RE > 3 se de jr 3 Re ER outlet supplying carbon dioxide rich solvent to the desorber er (86), Tn : 4 ~ ran me 3 + ps & s = the absorber (42) being arranged for the stram of TH or Te mv - > en ES ely een taal A ox oy byes 3% go ØD wy eng Fr År ME ezhaust gas passing through the absorber (4Z) for separation er; re: wi FI pnp I PÅ Fae A de yin wn Foo enes iter de me be od + pay 3 of carbon dioxide from the stream of exhaust gas by chemical absorption into the solvent, 2 3 he FRR 3 oh 3 Toa FEY ageamiy ly I: i ar the desorber (66) and reboller (62) assembly having an inlet receiving carbon dioxide rich solvent from the absorber 7 FAG re de fir ett arr AER mr øvre få 3 rs 8rå så g Teg mn ype A (42) and sn outlet supplying carbon dioxide lsabh solvent to + fo nN an the absorber (42), 4 eyo i FR 3 = pr den on A ”" FE = - 3, 3 3 ~~ the desorber (66) and reboliler (62) assembly being env RT Py N= - fn ; ny i » re? 5 FE) END CE OS yea a eve % så en configured for heating the solvent to release carbon dioxide Æ 3% - vy ny be F N from the solvent, and - ¥ ont area ner Mey EA RS 3 £ eg ev, i sinn F åer SØ så te EW en i Ed vy pre SA 3 feat e@XOhangihd avrrangeumallt COMTILGUFPG LO DRKCODANGE + , A Te om ry oe amie Tony mon Sh my 3 roe Nam den Mere? mp 2 hsat betwsern the recirculated exhaust gas in the axhaust gas recirculation system and the solvent in the desorber (86) and sene br 3 7 EN eng ed gere b 3 re-boiler (62) assembly. oe ~~ Ti 3 » > i” - ta ig de omg + ran mm 2 g Se ry DE 23 2. The engine according to claim 1, comprising an sxhaust gas mm 1 A my OA ad + f 3% + mm me ur mir Ty ER rsclreulation heat exchanger (32) in the exhaust gas Tor rouls Firm syvsten oon figured for exchar ins Mos boty = OT FØCIFCOULBRELOONn SYSLER CONIIqUTred LOL exXnanging ngdd SLwWgen NT de en, or ea re i FR rr pe Some 3 dag aad the exhaust gas in the exhaust gas reciroulation system and . oi . - Ce - a heat exchange medium to thereby cool the exhaust gas in the 38 exhaust gas recirculation system and heat the heat exchange 3 yy od " aen de ar on By oy ge or re I. - sop roe Ty a bene de medium, and a heat exchanger configured to exchange heat rn År TP ESS EN > mm spr mid > rs em my + %, | om EN epe rors od ST TY - between the sclvent and the heat exchange medium to heat the som Tres TE ey åd a oe FR Er 5 FE OFRES oA TTT solvent and cool the heat exchange medium. “3 Ti x 3 me —= + of mt eg orm rå -= 5 -= out ds > 3, The engine according to claim 1 or 2, wherein the exhaust bed yo ar ÅGE wn TE Årg org ag NEE EE KN = FN ETT PE pt BR 3 gas recirculstion system comprises 3 > scrubber (38), = “ay iy re i rnp Bon, Tow gon Teh er ord pn Te dr om.
    Tay end am a ve pe pers en] A pe . preferably a wet scrubber, the scrubber being arranged in the bevendt em ag gt very? 2 t 3 rum mt st en Jeurn at mer £ + he as Fy aust 2ROAALSL gas FSOILYECUIATLON SYSlen QGOWDST.Tsam OL Lhe exaust gas recirculation heat exchanger (32). 3 nm 5 re re Fe Red TE SR vm py En ee Fr 3 3 = 4, The engines according to any one of the preceding claims, comprising a controller (100) configured to regulates the RER TN pt fr - ] me ME Im så me Taber awrite dt omen 3 les smerte ge percentage by mass of recirculated exhaust gas in the scavenge : to at ]l + 40% Fo rab] het eu AD 3 RR gas to at least 40%, preferably between 40% and 55%. z T FI SS PE + yy SÅ - 3 og 3 cr by io pan 5 ovr A Ye emer de een TE iy ee 18 5, The engine according to claim 4, wherein the controller £7 TI de io EF pet meen å . : Fa be ev 3 ex bem. 3 et nr (100% is configured to control the speed of the blower (735) i veri? me + me Pe ron py on mg 2 Ter by vn on on A ye dee to regulate the percentage of racirculated exhaust gas in the scavenge gas. oo fj - Få eg ed J er rs der re a TT am wer pp ane Årre en Be + sn kr Fr Sø eng oo 240 8, A method of operating a large two-stroke turbocharged + 3 ET nu mø a Tre TY gi 3 stLerral sømbatnf i nm øormvive with Terp $+ or UNLT LOW sgavaengsa 11% C0DSXKNM3 OMDUSK LON Sng9Ine WITH & PLIUKALLUV er værd re NED Gt 2 & 3, ett Fry pn ed er vy of combustion chambers, the method comprising: > tin, + gg - on rå 3203 re 3 Fo - vr ere sr de å en ge supplying a carbon-based fuel to the combustion chambers, pE vy} RC in Yo mm ge bm ay ae by 2g pn) ve tom + > ag ed A es 2% combusting the carbon-based fuel in the combustion 3 me Se em vm yn my dR 3 ey = r TRY + o mdr rr chambers, thereby generating a stream of exhaust gas rr A or 3 3 an er Re Nv So IS containing carbon dioxide, recireulating a first portion of the stream of exhaust . or on A Ea en dd obs 3 - i gender SE 2, ng, £ mone bn om it gas, and exhausting a second portion of the stream of exhaust 2 år, go GAS,
    DK 2022 70534 A1 33 supplying a stream of pressurized scavengs gas to the combustion chawbers, the stream of pressurized scavenge gas containing the recirculated exhaust gas, cooling the first portion of the stream of recirculated exhaust gas in the exhaust gas system using a stream of haat exchange medlum thereby heating the stream of heat exchange madd om, chemically absorbing carbon dioxide from the second perticn of the stram of exhaust gas into a solvent by supplylng a flow of carbon diozide lean solvent fo an absorber (42) and discharging a flow of carbon diozide rich solvent from the absorber (47) to a desorber (684) and reboller (CF) assembly, and regenerating the carbon rich solvent in the desorber 18 (684) and reboiler (82) assembly through heating by supplying st least a portion of the heated strsam of heat exchange medium to the desorber (66) and reboiler (62) assembly for heating the solvent.
    7, The method according to claim 6, comprising recirculating at least 40% by mass of the stream of exhaust gas, preferably recirculating at least 40 to 55% by mass of the stream of exhaust gas.
    2% 8, The method according to claims & or 7, comprising controlling the speed of a blower {38} In an exhaust gas recireulation system for regulating the percentage of recirculated exhaust gas in the pressurized scavenge gas.
    38 8, The method according to claim ©, 7 or 8, comprising supplying a flow of gas containing carbon dioxide and water
    DK 2022 70534 A1 34 vapor or steam generated in the desorber (66) to a separator {€9) for separating the carbon dioxide and water vapor oy steam, the separator preferably being a knockout drum to obtain a stream of a gas mainly containing carbon dioxide and a stream of a liquid mainly containing water.
    10. The method according to olaim 3, comprising supplying the stream of gas mainly containing carbon dioxide to a liquefactlon unit (70) and liquefying the stream of gas mainly containing carbon dioxide to obtain a stream of liguefied carhon dioxide, the method preferably comprising directing the stream of liguefisd carbon dioxide inte a ligueiisd carbon dioxide storage unit (8253).
DKPA202270534A 2022-11-04 2022-11-04 Method and large two-stroke uniflow scavenged internalcombustion engine configured for carbon dioxide capture DK202270534A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DKPA202270534A DK202270534A1 (en) 2022-11-04 2022-11-04 Method and large two-stroke uniflow scavenged internalcombustion engine configured for carbon dioxide capture
JP2023187423A JP2024068162A (en) 2022-11-04 2023-11-01 Method for carbon dioxide capture and large two-stroke uniflow scavenging internal combustion engine
CN202311459000.3A CN117988970A (en) 2022-11-04 2023-11-02 Large two-stroke turbocharged uniflow scavenged internal combustion engine and method of operating the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DKPA202270534A DK202270534A1 (en) 2022-11-04 2022-11-04 Method and large two-stroke uniflow scavenged internalcombustion engine configured for carbon dioxide capture

Publications (1)

Publication Number Publication Date
DK202270534A1 true DK202270534A1 (en) 2022-11-18

Family

ID=84046112

Family Applications (1)

Application Number Title Priority Date Filing Date
DKPA202270534A DK202270534A1 (en) 2022-11-04 2022-11-04 Method and large two-stroke uniflow scavenged internalcombustion engine configured for carbon dioxide capture

Country Status (3)

Country Link
JP (1) JP2024068162A (en)
CN (1) CN117988970A (en)
DK (1) DK202270534A1 (en)

Also Published As

Publication number Publication date
JP2024068162A (en) 2024-05-17
CN117988970A (en) 2024-05-07

Similar Documents

Publication Publication Date Title
JP6921080B2 (en) Reverse Brayton cycle heat engine
US9243518B2 (en) Waste heat recovery system
US8407999B2 (en) Efficiency turbocharged engine system with bottoming cycle, and method of operation
US5802840A (en) Process for the low-pollutant conversion of fossil fuels into mechanical power
CA2801492C (en) Stoichiometric combustion with exhaust gas recirculation and direct contact cooler
US8166747B2 (en) Gas turbine engine
US8151553B1 (en) Operating internal-combustion engine without discharging gas into environment
US20080000225A1 (en) Cascade power system
CN104981587B (en) Combined cycle power plant and method for operating such a combined cycle power plant
US20040182330A1 (en) Method for operating an internal combustion engine
DK201770703A1 (en) A large two-stroke uniflow scavenged gaseous fueled engine
CH699804A1 (en) Gas turbine plant with exhaust gas recirculation and method for operating such a plant.
US20180221807A1 (en) Method for Liquid Air Energy Storage with Fueled and Zero Carbon Emitting Power Output Augmentation
JP5121892B2 (en) Large turbocharged diesel engine with energy recovery configuration
US9617875B2 (en) Method and apparatus for achieving a high efficiency in an open gas-turbine (COMBI) process
US20080202094A1 (en) aeroengine fitted with heat exchanger means
US9243589B2 (en) High-enthalpy fluid injection
DE102009055617A1 (en) Process for integrated pre-combustion of carbon dioxide separation in steam injected gas turbine process, comprises producing a water gas from fuel used first in an auto thermal steam gasification and transforming the carbon monoxide
DK202270534A1 (en) Method and large two-stroke uniflow scavenged internalcombustion engine configured for carbon dioxide capture
JP2022183044A (en) Large two-stroke uniflow scavenged turbocharged internal combustion engine with ammonia absorption system
US10830185B2 (en) Recirculating noble gas internal combustion power cycle
KR102359940B1 (en) Intercooler and engine including the same
KR101956974B1 (en) Internal combustion engine and method for operating same
CN108367799A (en) Steamer including engine
US9297337B2 (en) Internal combustion and waste heat steam engine having a heat recovery steam generator exhaust manifold

Legal Events

Date Code Title Description
PAB Application published on request

Effective date: 20221107