DK202000919A1 - Dehydration detector, an electronic sensor for retrofitting the water supply to the toilet which collects data to assess the risk of dehydration in a citizen. - Google Patents

Dehydration detector, an electronic sensor for retrofitting the water supply to the toilet which collects data to assess the risk of dehydration in a citizen. Download PDF

Info

Publication number
DK202000919A1
DK202000919A1 DKPA202000919A DKPA202000919A DK202000919A1 DK 202000919 A1 DK202000919 A1 DK 202000919A1 DK PA202000919 A DKPA202000919 A DK PA202000919A DK PA202000919 A DKPA202000919 A DK PA202000919A DK 202000919 A1 DK202000919 A1 DK 202000919A1
Authority
DK
Denmark
Prior art keywords
citizen
data
dehydration
toilet
water
Prior art date
Application number
DKPA202000919A
Other languages
Danish (da)
Inventor
Juul Winther René
Winther Lene
Original Assignee
First Software Aps
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by First Software Aps filed Critical First Software Aps
Priority to DKPA202000919A priority Critical patent/DK202000919A1/en
Publication of DK202000919A1 publication Critical patent/DK202000919A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F15/00Details of, or accessories for, apparatus of groups G01F1/00 - G01F13/00 insofar as such details or appliances are not adapted to particular types of such apparatus
    • G01F15/06Indicating or recording devices
    • G01F15/061Indicating or recording devices for remote indication
    • G01F15/063Indicating or recording devices for remote indication using electrical means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D4/00Tariff metering apparatus
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/002Investigating fluid-tightness of structures by using thermal means
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B21/00Alarms responsive to a single specified undesired or abnormal condition and not otherwise provided for
    • G08B21/02Alarms for ensuring the safety of persons
    • G08B21/04Alarms for ensuring the safety of persons responsive to non-activity, e.g. of elderly persons
    • G08B21/0407Alarms for ensuring the safety of persons responsive to non-activity, e.g. of elderly persons based on behaviour analysis
    • G08B21/0423Alarms for ensuring the safety of persons responsive to non-activity, e.g. of elderly persons based on behaviour analysis detecting deviation from an expected pattern of behaviour or schedule
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02B90/20Smart grids as enabling technology in buildings sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/30Smart metering, e.g. specially adapted for remote reading

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Psychiatry (AREA)
  • Psychology (AREA)
  • Social Psychology (AREA)
  • General Health & Medical Sciences (AREA)
  • Gerontology & Geriatric Medicine (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Fluid Mechanics (AREA)
  • Sanitary Device For Flush Toilet (AREA)

Abstract

Dehydreringsdetektor (opfindelsen) eftermonteres på en vandtilslutningsslange til et toilet for at detektere om en borger er i fare for at være dehydreret, og får behov for tilsyn eller anden handling. Detektoren registrerer data om frekvensen af toiletskyl og installationens gyldighed ved at opsamle temperaturforskelle mellem en vandtilslutning og omgivende luft. Af disse data kan afledes hvor ofte og hvornår et toiletskyl foretages. Ved at registrerer hvordan temperaturer i vandtilslutning og luft nærmer sig hinanden før og efter et skyl, kan det vurderes om en toilet-installation skal tilses og vurdere om data er pålidelige til at danne grundlag for en beslutning om at at tilse en borger eller ej. Data kan afbildes på grafer til at træne plejepersonale eller øvrige i at se mønstre og sammenligne med tidligere grafer for samme borger eller andre borgere, så det kan besluttes om en borger skal tilses. Data kan også anvendes til computer-programmeret læring og detektion af forandring i mønstre eller genkendelse af mønstre der kan udløse en automatiseret reaktion. Dehydreringsdetektor (opfindelsen) kan også monteres på flere aftapningssteder i en borgers bolig, for at få mere viden om en borger ændrer adfærd eller opfører sig anderledes end andre sammenlignelige borgere.The dehydration detector (the invention) is retrofitted to a water connection hose to a toilet to detect if a citizen is in danger of being dehydrated, and needs supervision or other action. The detector registers data on the frequency of toilet flushing and the validity of the installation by collecting temperature differences between a water connection and ambient air. From this data can be deduced how often and when a toilet flush is performed. By recording how temperatures in water connection and air approach each other before and after a flush, it can be assessed whether a toilet installation should be inspected and assess whether data are reliable to form the basis for a decision to inspect a citizen or not. Data can be plotted on graphs to train caregivers or others in seeing patterns and comparing with previous graphs for the same citizen or other citizens so that it can be decided whether a citizen should be supervised. Data can also be used for computer-programmed learning and detection of change in patterns or recognition of patterns that can trigger an automated response. Dehydration detector (the invention) can also be mounted at several drainage points in a citizen's home, to gain more knowledge about whether a citizen changes behavior or behaves differently than other comparable citizens.

Description

DK 2020 00919 A1DK 2020 00919 A1

BESKRIVELSE Opfindelsen angår et elektronisk produkt, kaldet dehydrerings-detektor, der monteres på eksisterende rørføring til et toilet for at opsamle information om hyppigheden af toiletbesøg i en borgers bolig, Den opsamlede information sendes til forbundne internetservere, hvor den anvendes til at estimere risiko for at borgeren er dehydreret og i så fald underrette de ansvarlige, En persons faldende hyppighed af toiletbesøg er en indikator for højere risiko for dehydrering. Opfindelsen er kendetegnet ved at toiletbesøg detekteres ved målinger af temperatur-differencen mellem et vandførende rør og omgivende luft. Opfindelsen monteres uden værktøj, uden forsyningsspænding og uden at modificere toilet eller rørføring. Installationen skjules for borgeren sammen med rørføringen, så man undgår at eksempelvis demente borgere utilsigtet kommer i kontakt med opfindelsen. Andre kendte teknologier er mekaniske og/eller synlige og eksponeret måtter”, "infrarød detektion”, "vandtank niveaumåler”, "kamera”), hvilket giver ulemper mht. servicering, rengøring eller at eventuelt demente borgere ødelægger funktionen. Af særlig værdi kan nævnes at opfindelsen gør det muligt at estimere borgerens risiko for dehydrering uden synlig eller funktionsmæssig forandring af borgerens hjem - hvilket især er tiltænkt ældre eller demente borgere. En estimering af risiko for dehydrering gør det muligt for borgeren, pårørende eller plejepersonale at forhindre eller mindske antallet af tilfælde af dehydrering af især enlige ældre og personer med plejebehov, hvilket har en meget høj værdi. Følgevirkningerne af dehydrering er særdeles uønskede, og inkluderer nedsat funktion, ubehag, sygdom, skader og dødsfald. Dehydrering kan tydeligt påvirke livskvaliteten og længden af livet for en person (typisk ældre), der ikke føler en naturlig tørst. I en særlig anvendelse kan opfindelsen monteres på det vandrør, som forsyner hele borgerens hjem {typisk ved stophanen) og tælle frekvensen af aktiviteter, der involverer aftapning af vand (brusere, vandhaner, toilet, etc}. Den opsamlede information sendes til forbundne internetservere for at vurdere om borgeren har en normal aktivitet. Nedsat aktivitet kan betyde at borgeren er blevet immobil som følge af uheld ved fald eller pludselig opstået sygdom, De forbundne intemetservere kan benytte den opsamlede information | kombination med data input fra andre kilder til at forbedre vurderingen af aktivitetsniveau, eksempelvis viden om borgerens geografiske position, fra sensorer til bevægelsesdetektion, etc. Opfindelsen forklares nærmere i det følgende under henvisning til tegningen, hvor fig, 1 til § viser komponenter, funktioner, eksempler og tests involveret i at forbinde et vandrør og dehydrerings-detektor i interaktion med internetserverne, I fig. 1 udpeges de essentielle komponenter, Dehydreringsdetektoren (D1) er på størrelse med en lille tændstikæske med en ende som måler toilettets vandtilslutningsslanges (V1) temperatur og en anden ende med rimelig afstand som måler lufttemperaturen, Dehydreringsdetektoren (D1) monteres med strips {D2) på vandtilslutningsslangen (V1), 2/4DESCRIPTION The invention relates to an electronic product, called a dehydration detector, which is mounted on existing piping to a toilet to collect information on the frequency of toilet visits in a citizen's home. The collected information is sent to connected Internet servers where it is used to estimate the citizen is dehydrated and in that case inform those responsible, A person's decreasing frequency of toilet visits is an indicator of higher risk of dehydration. The invention is characterized in that toilet visits are detected by measurements of the temperature difference between a water-carrying pipe and ambient air. The invention is mounted without tools, without supply voltage and without modifying the toilet or piping. The installation is hidden from the citizen together with the piping, so that, for example, demented citizens accidentally come into contact with the invention. Other known technologies are mechanical and / or visible and exposed mats "," infrared detection "," water tank level gauge "," camera "), which gives disadvantages in terms of servicing, cleaning or that possibly demented citizens destroy the function. that the invention makes it possible to estimate the citizen's risk of dehydration without visible or functional change of the citizen's home - which is especially intended for elderly or demented citizens. cases of dehydration of especially single elderly and people in need of care, which has a very high value.The consequences of dehydration are highly undesirable and include impaired function, discomfort, illness, injury and death.Dehydration can clearly affect the quality of life and longevity of a person. person (typically the elderly) who does not feel a natural thirst.In a particular application, the invention may mounted on the water pipe that supplies the entire citizen's home {typically at the stopcock) and count the frequency of activities involving draining water (showers, faucets, toilet, etc}. The collected information is sent to connected internet servers to assess whether the citizen has a normal activity. Reduced activity may mean that the citizen has become immobile as a result of an accident in the event of a fall or sudden illness, The connected internet servers can use the collected information | combination with data input from other sources to improve the assessment of activity level, for example knowledge of the citizen's geographical position, from sensors to motion detection, etc. The invention is explained in more detail below with reference to the drawing, where fig, 1 to § show components, functions, examples and tests involved in connecting a water pipe and dehydration detector in interaction with the Internet servers, In fig. 1, the essential components are designated, the dehydration detector (D1) is the size of a small matchbox with one end measuring the temperature of the toilet water connection hose (V1) and another end at a reasonable distance measuring the air temperature, the dehydration detector (D1) is mounted with strips {D2) on water connection hose (V1), 2/4

DK 2020 00919 A1 alternativt med elastikker eller andre praktiske fastgørings mekanismer i en typisk VVS værktøjskasse, se også fig, 2, Dehydreringsdetektoren (D1) kan optionelt indpakkes i krympeplast af æstetiske grunde fidet plastik-indpakningen er vandtæt) for at undgå begroning/slam ved montering eller produktion efter forholdene idet ingen dele skal serviceres eller udskiftes | detektorens levetid, Dehydreringsdetektoren (D1) sender signaler med dataindhold af målinger af temperaturer til en signalmodtager ($1). Signalmodtager {S1) opsamler data og sender disse til forbundne internetservere, Vandtilslutningsslangen (V1) til et toilet, kan sidde både internt | cisternen eller eksternt, Desuden kræver en installation en strømforsyning (S3) til Signalmodtager ($1) og et kabel til netværksforbindelse (S2).DK 2020 00919 A1 alternatively with elastics or other practical fastening mechanisms in a typical plumbing tool box, see also fig. 2, The dehydration detector (D1) can optionally be wrapped in shrink plastic for aesthetic reasons if the plastic packaging is waterproof) to avoid fouling / sludge assembly or production according to the conditions as no parts need to be serviced or replaced | detector lifetime, the dehydration detector (D1) sends signals containing data contents of temperature measurements to a signal receiver ($ 1). Signal receiver {S1) collects data and sends these to connected internet servers, The water connection hose (V1) to a toilet can sit both internally | cistern or external, In addition, an installation requires a power supply (S3) for the Signal Receiver ($ 1) and a cable for network connection (S2).

I fig.2 ses 2 forskellige monteringer af Dehydreringsdetektoren (DT) på vandtilslutningsslangen (V1) med strips (D2). I fig.3 defineres de interne komponenter i dehydreringsdetektoren (1) og signalmodtageren {S1). Detektorens elektronik er indpakket i plastik (D1), som er vandtæt og ikke nødvendig at åbne efter montering. Flere udgaver af plastik kan laves, hvis eksempelvis VVS selv ønsker at betrække detektoren med krympeplast omkring et større område under monteringen. Når dehydreringsdetektoren (D1) er fastgjort på vandtilslutningsslangen (V1) med eksempelvis strips (D2), så registrerer en NTC modstand (D3) temperaturen i rummet, og en anden NTC modstand (D6) har kort afstand til vandtilslutningsslangen (V1) og dennes temperatur. En micro-chip og ram (D5) aflæser NTC modstandes temperaturer (D3, DB) og afsender radiosignaler (D7) via en antenne D4). Signaleme (D7) modtages trådløst af signalmodtageren ($1), med elektronik i form af bla. antenne, CPU og RAM (S4), som afsendes via internetforbindelsen (52) til forbundne internet servere, Den samme signalmodtager (31) kan benyttes til at modtage signaler fra 1 eller flere end 1 detektorer, så langt de trådløse signaler kan række, hvilket kan spare på mængden af installeret udstyr I boliger med flere toiletter eller eksempelvis tætte ældreboliger. I fig.4 afbildes metoden til detektion af et toiletskyl ud fra temperaturvariationer. Bemærk at grafens y-akse viser hvor meget temperaturen falder, dvs. jo højere, des større temperaturfald i vandtilslutningsslangen (V1) sammenlignet med den omkringværende luft. Før et skyl vil temperaturen målt på vandtilslutningsslangen (V1) af NTC modstand (D8) være ca. den samme som lufttemperaturen målt af NTC modstand (D3), det ses på fig.4 som en difference på 0 (eller ikke noget fald | temperatur fra luft til vandtilslutningsslangen). Lige under og efter et toiletskyl vil temperaturen på vandtilslutningsslangen (V1) falde hurtigt idet tilførte vand er væsentligt under stuetemperatur, det ses på fig. 4 som en hurtig ændring af temperaturforskellen ftemperatur på V1 falder hurtigt). Straks efter toiletskyl er overstået, begynder udligningen igen mellem temperaturen målt på luft og vandtilslutningsslangen (VT). En spids, eller "bjergtop" viser sig derfor altid indenfor få minutter efter et skyl, Det er disse "bjergtoppe”, som skal detekteres, idet hver repræsenterer et skyl. Hvis der går lang tid nok, fypisk mindst 1 time som vist på graf 4-1 i fig.4, så vil temperaturforskellen igen være helt udlignet idet vandtilslutningsslangen (V1) igen får samme temperatur som luften, Hvis der efter 10 minutter eller mere igen foretages et toiletskyl, så fremkommer en ny “bjergtop”, som vist på graf 4-2 i fig 4. Jo kortere tid efter et nyt skyl foretages, jo højere vil næste "bjergtop" blive, idet vandtilslutningsslangens (V1) temperatur nærmer sig det mindst mulige pga, mere vandgennemstrømning pr, tidsenhed, Variationer i "bjergtoppenes” højde efter skyl pr. tidsenhed er input til erfaringsbaseret læring om den pågældende installation er velfungerende og sensitiv (præcision i detektering af dehydrering), Den erfaringsbaserede 3/4Fig. 2 shows 2 different mounts of the Dehydration Detector (DT) on the water connection hose (V1) with strips (D2). In Fig. 3, the internal components of the dehydration detector (1) and the signal receiver {S1) are defined. The detector's electronics are wrapped in plastic (D1), which is waterproof and does not need to be opened after installation. Several versions of plastic can be made if, for example, the plumber himself wants to cover the detector with shrink plastic around a larger area during installation. When the dehydration detector (D1) is attached to the water connection hose (V1) with, for example, strips (D2), one NTC resistor (D3) detects the temperature in the room and another NTC resistor (D6) has a short distance to the water connection hose (V1) and its temperature . A micro-chip and ram (D5) read the temperatures of the NTC resistor (D3, DB) and transmit radio signals (D7) via an antenna (D4). The signals (D7) are received wirelessly by the signal receiver ($ 1), with electronics in the form of i.a. antenna, CPU and RAM (S4), which are transmitted via the Internet connection (52) to connected Internet servers. The same signal receiver (31) can be used to receive signals from 1 or more than 1 detectors, as far as the wireless signals can reach, which can save on the amount of equipment installed in homes with several toilets or, for example, dense homes for the elderly. Fig. 4 depicts the method for detecting a toilet flush based on temperature variations. Note that the y-axis of the graph shows how much the temperature drops, ie. the higher, the greater the temperature drop in the water connection hose (V1) compared to the surrounding air. Before rinsing, the temperature measured on the water connection hose (V1) of NTC resistor (D8) will be approx. the same as the air temperature measured by NTC resistor (D3), it is seen in Fig. 4 as a difference of 0 (or no decrease | temperature from air to the water connection hose). Just below and after a toilet flush, the temperature of the water connection hose (V1) will drop rapidly as the supplied water is significantly below room temperature, it can be seen in fig. 4 as a rapid change in the temperature difference (temperature on V1 decreases rapidly). Immediately after the toilet flush is over, the equalization begins again between the temperature measured on the air and the water connection hose (VT). A peak, or "mountain peak" therefore always appears within a few minutes after a flush. It is these "mountain peaks" that must be detected, each representing a flush. 4-1 in fig.4, then the temperature difference will again be completely equalized as the water connection hose (V1) again gets the same temperature as the air. If after 10 minutes or more a toilet flush is performed again, a new “mountain top” will appear, graph 4-2 in fig 4. The shorter time after a new flush is made, the higher the next "mountain top" will be, as the temperature of the water connection hose (V1) approaches the least possible due to, more water flow per unit time, Variations in the "mountain peaks" height after rinsing per. unit of time is input for experiential learning if the installation in question is well-functioning and sensitive (precision in detecting dehydration), The experiential 3/4

DK 2020 00919 A1 læring kan udføres af personer der optrænes til at genkende mønstre på grafer eller computer-programmeret læring. Hvor der er bjergtoppe, er der også dale, En dal indikerer at der har været pause i skyl og vandgennemstrømning i vandtilslutningsslangen (V1), hvilket er input til erfaringsbaseret læring om at toilettet fungerer korrekt og eksempelvis ikke løber konstant med vand.DK 2020 00919 A1 learning can be performed by people who are trained to recognize patterns on graphs or computer-programmed learning. Where there are mountain peaks, there are also valleys. A valley indicates that there has been a break in the flush and water flow in the water connection hose (V1), which is input to experiential learning that the toilet works properly and for example does not run constantly with water.

I fig. er graferne fra fig.4 vist med data fra faktiske borgere, Kun "bjergtoppene og dalene” er dog markeret med prikker, for at vise de interessante fokuspunkter til at tælle henholdsvis skyl og længder på pauser i skyl, Graf 5-1 og graf 5-2 | fig.5 viser forskellen mellem en normal periode for borgeren og en periode hvor borgeren ikke fik nok vand, Frekvensen og antal af toiletskyl bjergtoppe”) falder kraftig selvom borgeren stadig tydeligvis er hjemme og i stand til at bruge toilettet med mellemrum. En person eller computer-program kan tydeligt se denne ændring i mønsteret og forebyggende opsøge borgeren eller aktivere en handling. 4/4In FIG. The graphs from Fig. 4 are shown with data from actual citizens. However, only the "mountain peaks and valleys" are marked with dots, to show the interesting focus points for counting rinsing and lengths of breaks in rinsing, Graph 5-1 and graph 5, respectively. -2 | fig.5 shows the difference between a normal period for the citizen and a period when the citizen did not get enough water, the frequency and number of toilet flush mountain peaks ”) decreases sharply even though the citizen is still clearly at home and able to use the toilet at intervals. A person or computer program can clearly see this change in the pattern and preventively seek out the citizen or activate an action.

Claims (1)

DK 2020 00919 A1DK 2020 00919 A1 PATENTKRAV Krav 1: Elektronisk produkt, kaldet dehydreringsdetektor (D1), der monteres på eksisterende vandtilslutningsslange (V1) for at forsyne et toilet med vand, og måler temperaturforskelle mellem vandtilslutningsslange (V1) og lufttemperatur vha. NTC modstande (D3, D6) så toiletskyl kan registreres og tælles som "bjergtoppe” med kortvarig stigning og derefter gradvist fald i temperaturdifferencen (mellem D3 og D6, se også graf 4-1, fig 4). Registrerede "dale” (se beskrivelsen og graf 4-2, fig 4) aflæses som fald i temperaturdifferencen mod 0 som funktion af tiden. Data bestående af disse nævnte "bjergtoppe” og “dale” samt selve temperaturaflæsninger afsendes med antenne (D4) til en signalmodtager (S1) og videre (S2) som tidsstemplede data til internet forbundne servere. Med data opsamlet af disse internet forbundne servere kan erfaringsbaseret læring trænes eller programmeres til at se og sammenligne mønstre i disse data og vælge at reagere på fejl i installationer, og vurdere risiko for dehydrering afhængig af anden kontekst (hvor udsat er borgeren, skal det gå hurtigt eller langsomt at reagere, osv). Hver "bjergtop” data indikerer et toiletskyl for den erfaringsbaserede læring, og dermed hvor frekvent et toilet anvendes hvilket er essentielt for at vurdere om en person kan være i fare for dehydrering eller være faldet hvis frekvensen går ned. Forskelle i "højden af bjergtoppe” samt deres tidsmæssige afstande (se graf 4-2 fig 4) er indikationer til den erfaringsbaserede læring om pågældende installation er velfungerende og sensitiv mht. præcision i detektering af toiletskyl og dermed dehydrering. Hver "dal” i data er indikation til den erfaringsbaserede læring om toilettet stadig virker eller vandet konstant løber når temperaturdifferencen skal falde gradvist mod 0 som funktion af tiden efter et skyld eller stabiliserer sig på et højere niveau hvis vand konstant afkøler vandtilslutningsslange (V1) når toilettet løber. Krav 2: En ekstra dehydreringsdetektorer (D1), udover dem på toiletter fra krav 1, kan monteres på et centralt vandrør i en bolig, eksempelvis vandforsyningsrøret efter hovedhanen og sende data trådløst til samme signalmodtager (S1) som øvrige dehydreringsdetektorer i boligen. Denne ekstra dehydreringsdetektor (D1) måler så temperaturforskelle mellem vandrør og luft (D3, D6) når en vilkårlig aftapning foregår i boligen, uanset om det er toilet eller vandhane. Aftapninger kan registreres og tælles som "bjergtoppe” med kortvarig stigning og derefter gradvist fald i temperaturdifferencen (mellem D3 og D6, se også graf 4-1, fig 4). Registrerede “dale” (se graf 4-2, fig 4) aflæses som fald i temperaturdifferencen mod 0 som funktion af tiden. Data bestående af disse nævnte "bjergtoppe” og “dale” samt selve temperaturaflæsninger afsendes med antenne (D4) til en signalmodtager (S1) og videre (S2) som tidsstemplede data til internet forbundne servere. Med data opsamlet af disse internet forbundne servere kan erfaringsbaseret læring trænes eller programmeres til at se og sammenligne mønstre i disse data og vælge at reagere på fejl i installationer, og vurdere risiko for borgerens tilstedeværelse og ændring i adfærd afhængig af anden kontekst (hvor udsat er borgeren, skal det gå hurtigt eller langsomt at reagere, osv). Hver "bjergtop" data indikerer en aftapning af vand for den erfaringsbaserede læring, og dermed hvor frekvent aftapninger anvendes hvilket er essentielt for at vurdere om en person er til stede og aktiv eller inaktiv og måske har behov for akut hjælp hvis frekvensen går ned. Toiletskyl er registreret af andre sensorer og kan derfor udpeges i mængden af aftapninger så vandhaner og toilet kan adskilles til ekstra information for den erfaringsbaserede læring. Forskelle i "højden af bjergtoppe” samt deres tidsmæssige 2/3CLAIMS Claim 1: Electronic product, called dehydration detector (D1), which is mounted on an existing water connection hose (V1) to supply a toilet with water, and measures temperature differences between water connection hose (V1) and air temperature using NTC resistors (D3, D6) then toilet flush can be registered and counted as "mountain peaks" with short-term increase and then gradual decrease in the temperature difference (between D3 and D6, see also graph 4-1, fig 4) Registered "valleys" (see the description and graph 4-2, fig 4) is read as a decrease in the temperature difference towards 0 as a function of time. Data consisting of these mentioned "mountain peaks" and "valleys" as well as the actual temperature readings are sent by antenna (D4) to a signal receiver (S1) and further (S2) as time-stamped data to Internet-connected servers. learning is trained or programmed to see and compare patterns in this data and choose to respond to installation errors, and assess the risk of dehydration depending on other context (how vulnerable the citizen is, it must be quick or slow to respond, etc.). "mountain top" data indicate a toilet flush for the experiential learning, and thus how often a toilet is used which is essential to assess whether a person may be at risk of dehydration or have fallen if the frequency goes down. Differences in the "height of mountain peaks" and their temporal distances (see graph 4-2 fig 4) are indications for the experiential learning whether the installation in question is well-functioning and sensitive in terms of precision in detecting toilet flushing and thus dehydration. Each "valley" in data is an indication of the experiential learning whether the toilet is still working or the water is constantly running when the temperature difference must gradually decrease towards 0 as a function of time after a fault or stabilizes at a higher level if water constantly cools the water connection hose (V1) when the toilet is running. Requirement 2: An additional dehydration detectors (D1), in addition to those on toilets from claim 1, can be mounted on a central water pipe in a dwelling, for example the water supply pipe after the main tap and send data wirelessly to the same signal receiver (S1) as other dehydration detectors in the dwelling. This additional dehydration detector (D1) then measures temperature differences between water pipes and air (D3, D6) when an arbitrary drain takes place in the home, regardless of whether it is a toilet or a tap. Drains can be registered and counted as "mountain peaks" with short-term increase and then gradual decrease in the temperature difference (between D3 and D6, see also graph 4-1, fig. 4). Registered "valleys" (see graph 4-2, fig. 4) are read. data consisting of these mentioned "mountain peaks" and "valleys" as well as the actual temperature readings are sent with antenna (D4) to a signal receiver (S1) and further (S2) as time-stamped data to internet connected servers . With data collected by these internet connected servers, experiential learning can be trained or programmed to see and compare patterns in this data and choose to respond to errors in installations, and assess the risk of citizen presence and change in behavior depending on other context (where exposed is the citizen, it must be quick or slow to react, etc.). Each "mountain top" data indicates a drain of water for the experiential learning, and thus how frequently taps are used which is essential to assess whether a person is present and active or inactive and may need emergency assistance if the frequency decreases. Toilet flushes are registered by other sensors and can therefore be designated in the amount of drains so that taps and toilets can be separated for extra information for the experience-based learning. Differences in the "height of mountain peaks" as well as their temporal 2/3 DK 2020 00919 A1 afstande (se graf 4-2 fig 4) er indikationer til den erfaringsbaserede læring om pågældende installation er velfungerende og sensitiv mht. præcision i detektering af aftapninger og dermed præcisionen af en vurdering om man skal tilse borgeren. Hver "dal" i data er indikation til den erfaringsbaserede læring om aftapningerne stadig virker idet temperaturdifferencen skal falde gradvist mod 0 som funktion af tiden efter en aftapning og ellers vil stabiliserer sig på et højere niveau hvis haner og rør er utætte og kræver reparation for at forbedre funktionen.DK 2020 00919 A1 distances (see graph 4-2 fig 4) are indications for the experience-based learning whether the installation in question is well-functioning and sensitive with regard to precision in detecting drains and thus the precision of an assessment of whether to look after the citizen. Each "valley" in the data is an indication of the experiential learning about the drains still working as the temperature difference must fall gradually towards 0 as a function of the time after a drain and will otherwise stabilize at a higher level if taps and pipes are leaking and require repair to improve the function. Krav 3: En ekstra dehydreringsdetektorer (D1), udover dem på toiletter fra krav 1 og centrale vandrør fra krav 2, kan monteres på vandforsyningsrøret til alle vandhaner i en bolig, og sende data trådløst til samme signalmodtager (S1) som øvrige dehydreringsdetektorer i boligen. Denne ekstra dehydreringsdetektor (D1) måler så temperaturforskelle mellem vandhanens vandrør og luft (D3, D6) når en aftapning foregår fra vandhanen. Aftapninger kan registreres og tælles som "bjergtoppe” med kortvarig stigning og derefter gradvist fald i temperaturdifferencen (mellem D3 og D6, se også graf 4-1, fig 4). Registrerede “dale” (se graf 4-2, fig 4) aflæses som fald i temperaturdifferencen mod 0 som funktion af tiden. Data bestående af disse nævnte "bjergtoppe” og "dale” samt selve temperaturaflæsninger afsendes med antenne (D4) til en signalmodtager (S1) og videre (S2) som tidsstemplede data til internet forbundne servere. Med data opsamlet af disse internet forbundne servere kan erfaringsbaseret læring trænes eller programmeres til at se og sammenligne mønstre i disse data og vælge at reagere på fejl i installationer, og vurdere risiko for borgerens tilstedeværelse og ændring i adfærd afhængig af anden kontekst (hvor udsat er borgeren, skal det gå hurtigt eller langsomt at reagere, osv). Hver "bjergtop" data indikerer en aftapning af vand fra en specifik vandhane som typisk bruges til bestemte formal af borgeren (til håndvask eller fylde et drikkekrus, opvask osv). Denne "bjergtop” er input til den erfaringsbaserede læring, for at vurdere om en borger er aktiv og følger sædvanlige procedurer eller har ændret adfærd og har behov for at blive tilset. Den erfaringsbaserede læring kan sammenligne med andre sensorer i borgerens hjem, for at vurdere om aftapninger flytter sig eller detektere øvrige mønstre for borgerens adfærd. Forskelle i "højden af bjergtoppe” samt deres tidsmæssige afstande (se graf 4-2 fig 4) er indikationer til den erfaringsbaserede læring om pågældende installation er velfungerende og sensitiv mht. præcision i detektering af aftapninger og dermed præcisionen af en vurdering om man skal tilse borgeren. Hver “dal” i data er indikation til den erfaringsbaserede læring om aftapning stadig virker idet temperaturdifferencen skal falde gradvist mod 0 som funktion af tiden efter en aftapning og ellers vil stabiliserer sig på et højere niveau hvis hanen er utæt og kræver reparation for at forbedre funktionen.Requirement 3: An additional dehydration detectors (D1), in addition to those on toilets from claim 1 and central water pipes from claim 2, can be mounted on the water supply pipe to all taps in a dwelling, and send data wirelessly to the same signal receiver (S1) as other dehydration detectors in the dwelling . This additional dehydration detector (D1) then measures temperature differences between the faucet's water pipes and air (D3, D6) when a drain takes place from the faucet. Drains can be registered and counted as "mountain peaks" with short-term increase and then gradual decrease in the temperature difference (between D3 and D6, see also graph 4-1, fig. 4). Registered "valleys" (see graph 4-2, fig. 4) are read. data consisting of these mentioned "mountain peaks" and "valleys" as well as the actual temperature readings are sent with antenna (D4) to a signal receiver (S1) and further (S2) as time-stamped data to internet connected servers With data collected by these internet connected servers, experiential learning can be trained or programmed to see and compare patterns in this data and choose to respond to errors in installations, and assess the risk of citizen presence and change in behavior depending on other context (where exposed is the citizen, it must be quick or slow to react, etc.) Each "mountain top" data indicates a drain of water from a specific tap that is typically used for certain purposes by the citizen wash or fill a drinking mug, dish, etc.). This "mountain top" is input to the experiential learning, to assess whether a citizen is active and follows usual procedures or has changed behavior and needs to be supervised. The experiential learning can compare with other sensors in the citizen's home, to assess differences in the "height of mountain peaks" and their temporal distances (see graph 4-2 fig 4) are indications for the experiential learning whether the installation in question is well-functioning and sensitive in terms of precision in detection. of bottlings and thus the precision of an assessment of whether to look after the citizen. Each "valley" in the data is an indication of the experiential learning about bottling still works as the temperature difference must gradually decrease towards 0 as a function of the time after a bottling and otherwise will stabilize at a higher level if the tap is leaking and requires repair to improve function . 3/33/3
DKPA202000919A 2020-08-13 2020-08-13 Dehydration detector, an electronic sensor for retrofitting the water supply to the toilet which collects data to assess the risk of dehydration in a citizen. DK202000919A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DKPA202000919A DK202000919A1 (en) 2020-08-13 2020-08-13 Dehydration detector, an electronic sensor for retrofitting the water supply to the toilet which collects data to assess the risk of dehydration in a citizen.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DKPA202000919A DK202000919A1 (en) 2020-08-13 2020-08-13 Dehydration detector, an electronic sensor for retrofitting the water supply to the toilet which collects data to assess the risk of dehydration in a citizen.

Publications (1)

Publication Number Publication Date
DK202000919A1 true DK202000919A1 (en) 2022-02-14

Family

ID=81214488

Family Applications (1)

Application Number Title Priority Date Filing Date
DKPA202000919A DK202000919A1 (en) 2020-08-13 2020-08-13 Dehydration detector, an electronic sensor for retrofitting the water supply to the toilet which collects data to assess the risk of dehydration in a citizen.

Country Status (1)

Country Link
DK (1) DK202000919A1 (en)

Similar Documents

Publication Publication Date Title
US10590640B2 (en) Automated plumbing system sensor warning system and method
US11668622B2 (en) Fluid flow detection and analysis device and system
CN104896310B (en) The device that the method and apparatus of water flowing and water use in monitoring pipe-line system
WO2017219142A1 (en) Fluid flow measuring and control devices and method
GB2553681A (en) Flow detection device
KR20100065480A (en) System for activity recognition
JP2019148482A (en) Aqueous environment sensing device
JP6440223B2 (en) Water usage detection system, monitoring system using the same, water usage detection method, monitoring method and program
DK202000919A1 (en) Dehydration detector, an electronic sensor for retrofitting the water supply to the toilet which collects data to assess the risk of dehydration in a citizen.
EP4215811A1 (en) Apparatus for and method of determining dryness level of steam
WO2020035696A1 (en) Sensing fluid flow for estimating fluid flow state
JPH116826A (en) Water quality monitoring system
WO2019160834A1 (en) Building type classification
GB2523402A (en) A sensing device and a monitoring system comprising a plurality of the sensing devices
GB2570225B (en) Flow detection device
JP2013025472A (en) Toilet use detection system, toilet use detection device and safety confirmation system
JP2013210799A (en) Life situation notification system
CN115867769A (en) System and method for management, control and predictive maintenance of equipment in wet rooms and fluid distribution networks
CA3081617A1 (en) Connector for a water system
WO2019129510A1 (en) Leak detection for piping systems using a sound signal
WO2023241766A1 (en) A management system for monitoring a facility, a method and use therefore and a facility
KR100335507B1 (en) a checking and managing system for home automation
GB2573665A (en) Flow detection device
KR20230112194A (en) Analyizing system for eating habits with moving data and door events in a form of binary data set of monitorized senior person
JP2020183675A (en) Monitoring device and system for drain pipe clogging

Legal Events

Date Code Title Description
PAT Application published

Effective date: 20220214

PHB Application deemed withdrawn due to non-payment or other reasons

Effective date: 20220303