DK181186B1 - Robotic transporter for loading and transporting vehicles and a method therefore - Google Patents

Robotic transporter for loading and transporting vehicles and a method therefore Download PDF

Info

Publication number
DK181186B1
DK181186B1 DKPA202170468A DKPA202170468A DK181186B1 DK 181186 B1 DK181186 B1 DK 181186B1 DK PA202170468 A DKPA202170468 A DK PA202170468A DK PA202170468 A DKPA202170468 A DK PA202170468A DK 181186 B1 DK181186 B1 DK 181186B1
Authority
DK
Denmark
Prior art keywords
transporter
bed
vehicle
loading
transport
Prior art date
Application number
DKPA202170468A
Other languages
Danish (da)
Inventor
Peter Nyrup Jensen Jan
Original Assignee
Joeni Holding Aps
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Joeni Holding Aps filed Critical Joeni Holding Aps
Priority to DKPA202170468A priority Critical patent/DK181186B1/en
Priority to PCT/DK2022/050198 priority patent/WO2023046253A1/en
Application granted granted Critical
Publication of DK181186B1 publication Critical patent/DK181186B1/en
Publication of DK202170468A1 publication Critical patent/DK202170468A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62CFIRE-FIGHTING
    • A62C27/00Fire-fighting land vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60PVEHICLES ADAPTED FOR LOAD TRANSPORTATION OR TO TRANSPORT, TO CARRY, OR TO COMPRISE SPECIAL LOADS OR OBJECTS
    • B60P3/00Vehicles adapted to transport, to carry or to comprise special loads or objects
    • B60P3/12Vehicles adapted to transport, to carry or to comprise special loads or objects for salvaging damaged vehicles
    • B60P3/122Vehicles adapted to transport, to carry or to comprise special loads or objects for salvaging damaged vehicles by supporting the whole vehicle
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62CFIRE-FIGHTING
    • A62C3/00Fire prevention, containment or extinguishing specially adapted for particular objects or places
    • A62C3/07Fire prevention, containment or extinguishing specially adapted for particular objects or places in vehicles, e.g. in road vehicles
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62CFIRE-FIGHTING
    • A62C3/00Fire prevention, containment or extinguishing specially adapted for particular objects or places
    • A62C3/16Fire prevention, containment or extinguishing specially adapted for particular objects or places in electrical installations, e.g. cableways
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62CFIRE-FIGHTING
    • A62C8/00Hand tools or accessories specially adapted for fire-fighting, e.g. tool boxes
    • A62C8/06Fire-blankets

Landscapes

  • Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Handcart (AREA)

Abstract

The present invention relates to a robotic transporter for loading and transporting vehicles. It is an object of the invention to provide a transporter for automatically loading and transporting vehicles, and a method thereof, which addresses the above-mentioned problems and additionally provides a number of further advantages. The present invention addresses this by providing a robotic transporter for loading and transporting vehicles, wherein the robotic transporter comprises: - a transporter bed having a first and a second side wall arranged relative to the transporter beds first and second side edge, and an end side wall arranged relative to the first and second side wall at a first bed end of the transporter bed, - a gate flap is pivotally attached to a second bed end of transporter bed, such that the gate flap, when arranged in a substantially closed position, is resting against the first side wall and second side wall at said second bed end of the transporter bed, such that said first and second side wall, said end side wall, and said gate flap forms a cavity on the upper side of the transporter bed in the robotic transporter, - loading means for loading said vehicle onto the transporter bed, wherein the loading means is configured to be activated when the gate flap is arranged in a predetermined loading position, such that said vehicle is capable of being loaded onto the transporter bed, - transporting means for transporting the robotic transporter from a first location to a second location, wherein the transporting means or part of the transporting means is arranged relative to a lower side of the trans-porter bed.

Description

DK 181186 B1 1
Field of the Invention
The present invention relates to a robotic transporter for loading and transporting vehi- cles.
Background of the Invention
It is a well-known fact that vehicles have a risk of catching or initiating fire. Safety is a very important issue when limiting, containing and/or putting out the fire, especially for the people and surroundings involved in the process.
When looking towards electric vehicles, a new issue occurs regarding safety of lithium- ion batteries and the risk of initiating fire. The safety of lithium-ion batteries in vehicles is a priority of the automotive industry.
One example may be lithium-ion batteries that may suffer thermal runaway and cell rupture if overheated or overcharged. In extreme cases, the thermal runaway and cell rupture may lead to combustion. To reduce these risks, lithium-ion battery packs contain fail-safe circuitry that shuts down the battery when the temperature of the battery is outside the safe range. When handled improperly, or if manufactured defectively, some rechargeable batteries can experience thermal runaway resulting in overheating. Sealed cells will sometimes explode violently if safety vents are overwhelmed or nonfunc- tional.
Another example may be a lithium-ion battery that may be damaged, for example when the electric vehicle run over some debris, and the driver might not be aware of the dam- age. And then a fire may start well after the initial incident. That could theoretically cause a fire after the electric vehicle is parked in a garage or in a vehicle park. The lithium-ion cells may cause an explosion, or a fire may occur.
Burning vehicles are hazardous. The fire in vehicles may cause a huge risk for the fire- fighters involved in the process, especially if the vehicles are located for example in
DK 181186 B1 2 troublesome locations, such as in vehicle parks, parking garages/basements or parking decks in ferries, where a plurality of vehicles are present with limited space between each vehicle. Due to a low clear height of each floor level in a parking garage, it can be very complicated or even impossible for a truck to manoeuvre and operate in a parking garage. Especially if the truck comprises a container which is to be used for transporting the vehicle out of the parking garage.
EP3851168A1 describes a vehicle trailer with is designed to handle a burning electrical vehicle. The vehicle trailer has a trailer body which delimits a cargo space delimited by body walls for accommodating the motor vehicle involved in an accident. The motor vehicle involved in an accident can be transferred into the loading space. A gripping device attached to the vehicle trailer can be extended and retracted in such a way that when a body wall is open, the motor vehicle can be gripped by means of the gripping device and transferred into the loading space via the open body wall. Due to the high heat generated during such a fire, the recovery and extinguishing of electric vehicles with such accumulators turns out to be extremely difficult. It is very difficult to grip the motor vehicle using gripping device. The gripping means is difficult to the motor vehi- cle such that the motor vehicle can be loaded correctly into the loading space. This may require a firefighter close to the burning vehicle to ensure the gripping means has a safe grip in the motor vehicle. The burning motor vehicle risk being dragged such that the motor vehicle rotates transversally relative to the loading space. Alternative the gripping device must lift the motor vehicle onto the loading space, which requires a large acces- sible space above the vehicle trailer.
Today firefighters need to be close to the burning vehicles placing the firefighters in a big fire hazard. The firefighter is not able to bring safety firefighting apparatus and/or trucks to the burning vehicle. Firefighters will be at risk of getting hurt or developing diseases such as cancer when the firefighters frequently come into contact with high levels of carbon monoxide and other toxic hazards etc. These dangerous exposures pre- sent a likelihood for many diseases because the firefighters are too close for too long to the burning vehicles. Firefighters will be at risk of dying in the line of duty.
DK 181186 B1 3
Object of the Invention
It is an object of the invention to provide a transporter for automatically loading and transporting vehicles, and a method thereof, which addresses the above-mentioned problems and additionally provides a number of further advantages.
Description of the Invention
The present invention addresses this by providing a robotic transporter for loading and transporting vehicles, wherein the robotic transporter comprises: - a transporter bed having a first and a second side wall arranged relative to the trans- porter bed’s first and second side edge, and an end side wall arranged relative to the first and second side wall at a first bed end of the transporter bed, - a gate flap is pivotally attached to a second bed end of the transporter bed, such that the gate flap, when arranged in a substantially closed position, is resting against the first side wall and second side wall at said second bed end, such that said first and second side wall, said end side wall, and said gate flap forms a cavity on the upper side of the transporter bed in the robotic transporter, - loading means for loading said vehicle onto the transporter bed, wherein the loading means is configured to be activated when the gate flap is arranged in a predetermined loading position, such that said vehicle is capable of being loaded onto the transporter bed, - transporting means for transporting the robotic transporter from a first location to a second location, wherein the transporting means or part of the transporting means is arranged relative to a lower side of the transporter bed.
Fire incidents in electric vehicles occur relatively frequently. Fire in electric vehicles where the lithium-ion battery is ignited, is in some cases more challenging than in ordi- nary vehicle fires. Even when the battery fire is obvious, it is well-known that it easily may take 24 hours for a lithium-ion battery fire in an electric vehicle to be fully extin- guished. Experience from fires in electric vehicles as well as a number of guidelines related to the topic uncovers the difficult challenges which may arise in handling a fire in an electric vehicle or any other types of vehicles. If the vehicles are located in trou- blesome locations, such as in vehicle parks, parking garages/basements, garage for re- pairs or parking decks in ferries, a fire may be more troublesome, because a plurality of vehicles are present with limited space between each vehicle.
DK 181186 B1 4
The robotic transporter must be agile and robust at the same time. If fire and/or smoke is present in the vehicle, the vehicle can be loaded onto the transporter bed of the robotic transporter, secured and transported to a safe location.
The robotic transporter comprises a transporter bed having a first side wall and a second side wall. The transporter bed has a first and a second side edge, and a first bed end and a second bed end. The transporter bed may be substantially square or rectangular. The transporter bed may be elongated, such that the transporter bed may comprise two elon- gated sides edges. The side edges may also be referred to as cross sides. The side walls are arranged relative to the transporter bed’s first and second side edge. An end side wall is arranged at the first end of the transporter bed, relative to the first and second side wall, forming a U-shaped side wall.
A gate flap is pivotally connected to a second bed end of transporter bed. The gate flap extends from the first side edge to the second side edge of the transporter bed. The gate flap may be arranged in a substantially closed position or in a predetermined loading position. When the gate flap is arranged in the closed position, the gate flap is extending in a substantially vertical direction from the transporter bed. The vertical sides of the flap gate are resting against the first side wall and second side wall. The flap gate is placed such that said first and second side wall, said end side wall, and said gate flap forms a cavity on the upper side of the transporter bed on the robotic transporter.
The robotic transporter comprises loading means for loading said vehicle onto the trans- porter bed. The loading means may be arranged in the cavity, on the end wall or be a part of the gate flap. The transporter bed may also comprise loading means, for easily moving the vehicle into a correct position in the robotic transporter.
The gate flap is arranged in a predetermined loading position, such that said vehicle is capable of being loaded onto the transporter bed. Part of the gate flap may rest on the ground, forming a slope. The gate flap may be placed as an extension of the vehicle, such that the vehicle easily can be guided onto the transporter bed, manually or auto- matically. The loading means may be configured to be activated by the force of the vehicle when the vehicle is moved or pushed onto the transporter bed. The loading
DK 181186 B1 means may be configured to be activated automatically and/or controlled by a user such that the vehicle is dragged or guided onto the transporter bed.
The robotic transporter further comprises transporting means for transporting the ro- 5 botic transporter from a first location to a second location. One of the locations may be in a parking zone in a parking garage or in another parking zone for parking vehicles.
The robotic transporter is configured to drive automatically or manually to the selected vehicle to be transported. The robotic transporter may be self-impelling. The robotic transporter may further comprise robotic means for automatically driving and/or navi- gating. Due to the transporting means, the robotic transporter has a very small turning radius or even a zero turning radius. The robotic transporter is very agile and is capable of manoeuvring and operate in a parking garage.
The transporting means may comprise a zero-radius turning and steering system. For example, a four-wheel zero-radius turning and steering system is capable of controlling the four wheels independently. For example, in the two-wheel steer mode only one axle is driven. In a four-wheel steer mode both axles are driven but in directions opposite to each other. In crab steer mode all the wheels turn in same direction. In zero turn steer mode the vehicle follows a circular path.
Using four-wheel turning and steering system, the robotic transporter is capable of mov- ing in all directions. Four-wheel zero-radius turning and steering system is beneficial because it increases the vehicle’s steering response time and helps keep the vehicle sta- ble. With all four wheels steering, instead of for example only the front two, this four- wheel zero-radius turning and steering system offers unprecedented control and maneu- verability. The transporting means may alternative comprise a zero-radius turning and steering system for caterpillar means for crawlers.
The transporting means may be arranged under the lower side of the transporter bed.
The transporting means may alternatively be arranged under the sides of the transporter bed. The robotic transporter may also comprise at least one motorised unit for activating the transporting means. The robotic transporter may also comprise at least one motor- ised unit for activating and pivoting the gate flap from a substantially closed position to a predetermined loading position, and vice versa.
DK 181186 B1 6
In an advantageous embodiment of the invention, a frame or part of a frame is arranged relative to the lower side of the transporter bed.
The robotic transporter may also comprise at least one frame. The frame or part of a frame is arranged relative to the lower side of the transporter bed. The frame reinforces the construction of the robotic transporter and stabilises the transporter bed. The frame also provides rigging or connecting means for easy loading and unloading of the robotic transporter to and from a truck, a crane, or similar.
According to the invention the gate flap comprises at least one conveying means for conveying said vehicle to and from the transporting bed.
The conveying means is arranged on or as a part of the gate flap. The conveying means may be rollers, such that the vehicle easily can be pushed or dragged over the gate flap.
The conveying means may alternatively be conveying belts and/or chains. The convey- ing means may be automatically activated, such that the vehicle easily is transported from the ground onto the transporter bed. The transporter bed may also comprise con- veying means, for easily moving the vehicle into a correct position in the robotic trans- porter.
In a still further advantageous embodiment of the invention at least one actuator is con- figured to pivotally move the gate flap from the closed position to said predetermined loading position, and vice versa.
The gate flap is pivotally connected to the second bed end of transporter bed. The ro- botic transporter comprises actuators for pivoting the gate flap. The actuators may be arranged on each side wall of the robotic transporter and fastened to each side of the gate flap, such that the gate flap can be moved from a substantially closed position to a predetermined loading position, and vice versa. Alternatively, the actuators may be ar- ranged on the lower side of the transporter bed or on the frame of the robotic transporter and fastened to each side of the gate flap.
DK 181186 B1 7
In a further advantageous embodiment of the invention, said robotic transporter com- prises sealing means for sealing said gate flap to the first and second side wall and to the second bed end in a waterproof connection.
A gate flap is pivotally connected to a second bed end of the transporter bed. In closed position the gate flap extends from the first side wall to the second side wall. The said robotic transporter comprises sealing means for sealing said gate flap to the first and second side wall and to the second bed end in a waterproof connection, such that fluid is capable of being contained inside said cavity. The sealing means may be a resilient membrane, which is attached and/or fastened to the ends of the first and second side wall and to the second bed end. When the gate flap is in the closed position, the gate flap is pressing against the resilient membrane and thereby providing a waterproof con- nection between the gate flap, the first and second side wall, and the second bed end.
The resilient membrane may also be referred to as a sealing strip or a rubber strip.
In a still further advantageous embodiment of the invention, said robotic transporter comprises fire extinguishing means for extinguishing fire in said vehicle, wherein said fire extinguishing means is arranged in said enclosed cavity.
With an electric vehicle fire, there is a need for liquid. The best way to extinguish fires in an electric vehicle is to keep a direct and focused stream on the battery until the battery relents and temperature is greatly decreased. Alternatively, the electric vehicle may be placed in a liquid basin. The fire extinguishing means comprises at least one tube with at least one nozzle, which may be arranged under and/or around the electric vehicle. The robotic transporter’s fire extinguishing means may comprise at least one liquid inlet and/or at least one liquid outlet. Before and/or during transportation of the vehicle or part of the vehicle, which is more or less covered with liquid in the robotic transporter’s cavity. The vehicle is then secured and can be transported to a safe loca- tion. At the same time the temperature can be reduced and the fire and/or smoke can be substantially eliminated.
In a further advantageous embodiment of the invention, the robotic transporter com- prises a fire-retardant tarpaulin.
DK 181186 B1 8
The vehicle arranged in a secured position inside a robotic transporter, may be covered with a fire-retardant tarpaulin. The fire-retardant tarpaulin is suitable for cover- ing/shielding the vehicle in the robotic transporter. The fire-retardant tarpaulin may be arranged such that the robotic transporter and the fire-retardant tarpaulin encapsulates a volume, which is capable of enclosing a vehicle inside said volume. The fire-retardant tarpaulin may be stored in a tarpaulin container. The fire-retardant tarpaulin may be pulled/rolled out from the container and/or attached manually. The fire-retardant tar- paulin extends from the end side wall, along the side walls to the gate flap. The fire- retardant tarpaulin may easily be rolled out and in using tarpaulin rolling means. The rolling means may be arranged inside the tarpaulin container.
In a further advantageous embodiment of the invention, the robotic transporter com- prises a control unit, wherein the control unit is configured to control the transporting means and/or the motorised unit.
The robotic transporter may comprise a computer unit, processing means and/or means for communication. The means for communication may comprise a receiver unit and/or a transmitter unit. The communication may be between the robotic transporter and a remote-control device. The control unit is in data communication with a remote-control device. The data communication may be wired or wireless. The data communication may be between the robotic transporter and at least one global positioning system or similar. The robotic transporter may comprise robotic means. The robotic transporter may also comprise impelling means. The robotic transporter may be configured to au- tomatically impel and/or navigate.
In a still further advantageous embodiment of the invention, the robotic transporter com- prises a control unit, wherein the control unit is configured to control the loading means and/or the gate flap.
The invention is also directed at a method for loading and transporting a vehicle using a robotic transporter, comprising following steps: - loading said vehicle onto the transporter bed, - transporting said vehicle from a first location to a second location using said robotic transporter.
DK 181186 B1 9
The invention has now been explained with reference to a few embodiments which have only been discussed in order to illustrate the many possibilities and varying design pos- sibilities achievable with the robotic transporter according to the present invention.
Description of the Drawing
The embodiments of the invention are described in the following with reference to:
Figure 1a,b: Illustrating viewing angles of a robotic transporter loading a vehicle, wherein a gate flap is in a first loading position.
Figure 2a,b: Illustrating viewing angles of a robotic transporter loading a vehicle, wherein a gate flap is in a second loading position.
Figure 3a,b: Illustrating viewing angles of a robotic transporter loading a vehicle, wherein a gate flap is in a second and a third loading position.
Figure 4: Illustrating a vehicle arranged in a secured position inside a robotic trans- porter.
Figure 5: Illustrating a vehicle arranged in a secured position inside a robotic trans- porter, wherein the vehicle is covered with a fire-retardant tarpaulin.
In the explanation of the figures, identical or corresponding elements will be provided with the same designations in different figures. Therefore, no explanation of all details will be given in connection with each single figure/embodiment.
Detailed Description of the Invention
An embodiment of the invention is explained in the following detailed description. It is to be understood that the invention is not limited in its scope to the following description or illustrated in the drawings. The invention is capable of other embodiments and of being practiced or carried out in various ways.
Figure 1a,b illustrates two viewing angles of a robotic transporter loading a vehicle 11.
The robotic transporter 1 comprises a transporter bed 2 having a first side wall 3” and a second side wall 3". The transporter bed 2 has a first and a second side edge, a first bed end and a second bed end. The transporter bed 2 has a rectangular shape. The transporter bed 2 comprises two elongated side edges, where the first side wall 3” is attached to the transporter bed’s first side edge, and the second side wall 3°" is attached to the
DK 181186 B1 10 transporter bed’s second side edge. An end side wall 5 is attached to the first bed end of the transporter bed. The end side wall 5 extends form the first side wall 3” to the second side wall 3", forming a U-shaped side wall.
A gate flap 6 is pivotally connected to a second bed end of the transporter bed 2. The gate flap 6 is in a first loading position, resting on the ground in front of the vehicle 11.
The gate flap 6 is arranged in a predetermined loading position, such that said vehicle 11 is capable of being loaded onto the transporter bed 2. Part of the gate flap 6 rests on the ground, forming a slope. The gate flap 6 is placed as an extension of the vehicle 11, such that the vehicle 11 easily can be guided onto the transporter bed 2. The robotic transporter 1 comprises loading means for loading said vehicle 11 onto the transporter bed 2. The loading means may be configured to be activated by the force of the vehicle 11, when the vehicle 11 is moved or pushed onto the transporter bed. The loading means may be configured to be activated automatically and/or controlled by a user, such that the vehicle is dragged or guided onto the transporter bed.
The robotic transporter 1 further comprises transporting means 7 for transporting the robotic transporter 1 from a first location to a second location. The robotic transporter may be self-impelling. The robotic transporter 1 has a computer unit and means for data communication. The data communication may be between the robotic transporter and a remote-control device. The robotic transporter 1 comprises robotic means for automat- ically impelling and navigating. The transporting means 7 may alternatively comprise a zero-radius turning and steering system for caterpillar means for crawlers. The robotic transporter 1 has a very small turning radius or even a zero turning radius. The robotic transporter 1 is therefore very agile and is also very capable of manoeuvring and oper- ating in troublesome locations.
The robotic transporter 1 is capable of loading the vehicle onto the transporter bed by itself. The robotic transporter 1 places the gate flap on the ground. The gate flap may comprise rolling means for rolling on the ground. The gate flap can then be forced under the front wheels of the vehicle. Once the front wheels are on the gate flap, the conveying means 12 or rolling means is capable of moving the entire vehicle up on the gate flap and onto the transporter bed.
DK 181186 B1 11
Figure 2a,b: Illustrating viewing angles of a robotic transporter loading a vehicle, wherein a gate flap is in a second loading position.
The gate flap 6 is pivotally connected to a second bed end of transporter bed 2 and arranged in a first loading position resting on the ground. The gate flap 6 is arranged in the loading position, such that the vehicle 11 is capable of being loaded onto the trans- porter bed 2, for example being dragged by wire or similar. Part of the gate flap 6 rests on the ground, forming a slope. Part of the gate flap 6 rests on the ground may comprise rollers such that the gate flap 6 easily can be moved across the ground.
The back end of the vehicle may rest against a wall or another solid object, such that when the robotic transporter 1 moves forward towards the vehicle 11. The robotic trans- porter 1 is capable of pushing the gate flap 6 underneath the vehicle and loading the vehicle onto the gate flap 6. The robotic transporter 1 may use the conveying means 12 for loading the vehicle onto the gate flap 6. In this embodiment the conveying means 12 is rollers. The vehicle 11 is positioned, such that the front wheels is moved up on the transporter bed. The conveying means or rolling means arranged on the transporter bed is configured to move the entire vehicle from the gate flap 6 and onto the transporter bed.
The frame 9 or part of a frame 9 is arranged relative to the lower side of the transporter bed. The frame 9 reinforces the construction of the robotic transporter 1 and stabilises the transporter bed. The frame 9 also provides rigging or connecting means 13 for easy loading and unloading of the robotic transporter I to and from a truck, a crane or similar.
The transporting means 7 may comprise a four-wheel zero-radius turning and steering system. The four-wheel zero-radius turning and steering system is capable of control- ling the four wheels 7' independently. Using four-wheel turning and steering system, the robotic transporter is capable of moving in all directions.
The four wheels 7' may be arranged under the lower side of the transporter bed. The four wheels 7' may be attached to the frame 9. The four wheels 7° may alternatively be arranged under the sides of the transporter bed. The robotic transporter may also com- prise at least one motorised unit for driving the four wheels 7°. The robotic transporter
DK 181186 B1 12 may also comprise at least one motorised unit for activating and pivoting the gate flap 6 from the first loading position to the second loading position, and vice versa.
Figure 3a,b: Illustrating viewing angles of a robotic transporter loading a vehicle, wherein a gate flap is in a second and a third loading position. Once the vehicle is loaded onto the gate flap 6. The flap gate 6 is moved from a first position to a second position, showed in fig 3a. The gate flap’s 6 second position may be substantially horizontal, such that most of the vehicle’s weight is resting one the gate flap 6. The vehicle 11 is positioned, such that the front wheels are arranged on the transporter bed. The convey- ing means 12 or rolling means arranged on/in the gate flap 6 and the transporter bed are configured to move the entire vehicle 11 easily from the gate flap 6 and onto the trans- porter bed, when the gate flap 6 is moved into a third position using pivotally moving means, showed in fig. 3b. The gate flap is attached to the second bed end of the trans- porter bed using a pivotally moveable hinge 14. The third position is pivotally elevated in a higher position than the second position, which is substantially horizontal. The ve- hicle 11 is thereby forced to move into the transporter bed in the robotic transporter.
Figure 4: Illustrating a vehicle arranged in a secured position inside a robotic trans- porter. Once the vehicle is loaded onto the transporter bed, the gate flap is arranged in a closed position. The gate flap 6 is pivotally connected to the second bed end of the transporter bed and pivotally moved into a substantially vertical position using actuators 8. The actuators 8 are arranged on each side wall of the robotic transporter and fastened to each side of the gate flap 6, such that the gate flap can be moved from a closed posi- tion to a predetermined loading position, and vice versa.
A gate flap 6 is pivotally connected to a second bed end of the transporter bed, in closed position the gate flap 6 extends from the first side wall to the second side wall. The said robotic transporter comprised sealing means 16 for sealing said gate flap to the first and second side wall and to the second bed end of the transporter bed in a waterproof con- nection, such that fluid is capable of being contained inside said cavity 4. The sealing means 16 may be a resilient membrane, which is attached and/or fastened to the ends of the first and second side wall and to the second bed end of the transporter bed. When the gate flap 6 is in the closed position the gate flap is pressing against the resilient
DK 181186 B1 13 membrane and thereby providing a waterproof connection between the gate flap, the first and second side wall, and the second bed end of the transporter bed.
The robotic transporter comprises fire extinguishing means 17°, 17" for extinguish fire in said vehicle. The fire extinguishing means 17°, 17°" are arranged in the front end of robotic transporter in the end side wall. The fire extinguishing means 17°, 17°" are in fluid connection with the enclosed cavity. The fire extinguishing means 17" may be an inlet for fluid, and the fire extinguishing means 17°" may be an outlet. The fire extin- guishing means 17°, 17°" may alternatively both be inlets and/or outlets.
In one embodiment, the part of the vehicle can be placed in a liquid basin in the cavity 4 of the robotic transporter. Before and/or during transportation the vehicle or part of the vehicle is more or less covered with liquid in the robotic transporter’s cavity 4. The vehicle 11 is secured and can be transported to a safe location.
Figure 5: Illustrating a vehicle arranged in a secured position inside a robotic trans- porter, wherein the vehicle is covered with a fire-retardant tarpaulin 18. The fire-retard- ant tarpaulin 18 is suitable for covering/shielding the vehicle in the robotic transporter.
The fire-retardant tarpaulin 18 is stored in a tarpaulin container 10 relative to the end side wall 5. The fire-retardant tarpaulin 18 extends from the end side wall 5 to the gate flap 6. The fire-retardant tarpaulin 18, when rolled out, is covering the cavity of the robotic transporter 1. The robotic transporter 1 and the fire-retardant tarpaulin 18 en- capsulate a volume, which encloses the vehicle.
The fire-retardant tarpaulin 18 is stored in the tarpaulin container 10, when the fire- retardant tarpaulin 18 is not in use. The fire-retardant tarpaulin 18 is then pulled/rolled out from the tarpaulin container 10 automatically and/or attached manually. The fire- retardant tarpaulin 18 extends from the end side wall 5, along the side walls to the gate flap 6. The fire-retardant tarpaulin 18 may easily be rolled out of the tarpaulin container 10 and into the tarpaulin container 10 using tarpaulin rolling means.

Claims (9)

DK 181186 B1 14 PATENTKRAVDK 181186 B1 14 PATENT CLAIM 1. Robottransportvogn til lastning og transport af køretøjer, ke nde te g ne t ved, at robottransportvognen (1) omfatter: - et transportleje (2) der har en første og en anden sidevæg (3°, 37), som er anbragt i forhold til transportlejets første og anden sidekant, og en endesidevæg (5), som er an- bragt i forhold til den første og anden sidevæg (3,3), ved en første lejeende af trans- portlejet (2), - en lågeklap (6) som er drejeligt fastgjort til en anden lejeende af transportlejet (2), således at låge-klappen (6), når den er anbragt i en i det væsentlige lukket stilling, hviler imod den første sidevæg (3') og den anden sidevæg (3") ved den anden lejeende, således at den første og anden sidevæg (3', 3"), endesidevæggen (5), og lågeklappen (6) danner et hulrum (4) på oversiden af transportlejet (6) i robottransportvognen (1), hvor låge- klappen (6) omfatter mindst ét overførselselement (12) til at overfører et køretøj til og fra transportlejet (2), - lasteelementer til lastning af køretøjet (11) på transportlejet (2), hvor lasteelementerne er konfigureret til at blive aktiveret, når lågeklappen (6) er anbragt i en forudbestemt lastestilling, således at køretøjet (11) er i stand til at blive lastet på transportlejet (2), - transportelementer (7) til transport af robottransportvognen (1) fra en første lokation til en anden lokation, hvor transportelementerne (7) eller en del af transportelementerne (7) er anbragt i forhold til en underside af transportlejet (2).1. Robot transport vehicle for loading and transporting vehicles, characterized in that the robot transport vehicle (1) comprises: - a transport bed (2) which has a first and a second side wall (3°, 37) which is arranged in in relation to the first and second side edges of the transport bed, and an end side wall (5), which is placed in relation to the first and second side walls (3,3), at a first bearing end of the transport bed (2), - a door flap ( 6) which is rotatably attached to another bearing end of the transport bearing (2), so that the door flap (6), when placed in a substantially closed position, rests against the first side wall (3') and the second side wall (3") at the other bearing end, so that the first and second side walls (3', 3"), the end side wall (5) and the door flap (6) form a cavity (4) on the upper side of the transport bed (6) in the robot transport carriage ( 1), where the door flap (6) comprises at least one transfer element (12) for transferring a vehicle to and from the transport bed (2), - loading elements for loading the vehicle (11) on the transport bed (2), where the loading elements are configured to to be activated when the door flap (6) is placed in a predetermined loading position, so that the vehicle (11) is able to be loaded on the transport bed (2), - transport elements (7) for transporting the robot transport vehicle (1) from a first location to another location, where the transport elements (7) or part of the transport elements (7) are arranged in relation to an underside of the transport bed (2). 2. Robottransportvogn ifølge krav 1, hvor en ramme (9) eller en del af en ramme (9) er anbragt i forhold til undersiden af transportlejet (2).2. Robot transport vehicle according to claim 1, where a frame (9) or part of a frame (9) is arranged in relation to the underside of the transport bed (2). 3. Robottransportvogn ifølge krav 1 eller 2, hvor mindst en aktuator (8) er konfigureret til drejeligt at bevæge lågeklappen (6) fra den lukkede stilling til den forudbestemte lastestilling, og vice versa.3. Robotic transport vehicle according to claim 1 or 2, wherein at least one actuator (8) is configured to rotatably move the door flap (6) from the closed position to the predetermined loading position, and vice versa. 4. Robottransportvogn ifølge et hvilket som helst af de foregående krav, hvor robot- transportvognen (1) omfatter tætningselementer (16) til at tætne lågeklappen (6) til den første og anden sidevæg (3,3) og til den anden lejeende af transportlejet (2) i en vand- tæt forbindelse, så væske er i stand til at blive indeholdt inden i hulrummet (4).4. Robotic transport carriage according to any one of the preceding claims, wherein the robotic transport carriage (1) comprises sealing elements (16) for sealing the door flap (6) to the first and second side walls (3,3) and to the other bearing end of the transport bearing (2) in a water-tight connection so that liquid is able to be contained within the cavity (4). DK 181186 B1 15DK 181186 B1 15 5. Robottransportvogn ifglge et hvilket som helst af de foregaende krav, hvor robot- transportvognen (1) omfatter brandslukningselementer (17) til slukning af brand i kø- retøjet (11), hvor brandslukningselementerne (17) er anbragt i hulrummet (4).5. Robot transport vehicle according to any one of the preceding claims, where the robot transport vehicle (1) comprises fire-extinguishing elements (17) for extinguishing a fire in the vehicle (11), where the fire-extinguishing elements (17) are placed in the cavity (4). 6. Robottransportvogn ifølge et hvilket som helst af de foregående krav, hvor robot- transportvognen (1) omfatter en brandhæmmende presenning (18).6. Robot transport vehicle according to any one of the preceding claims, wherein the robot transport vehicle (1) comprises a fire-retardant tarpaulin (18). 7. Robottransportvogn ifølge et hvilket som helst af de foregående krav, hvor robot- transportvognen (1) omfatter en styreenhed, hvor styreenheden er konfigureret til at styre transportelementerne (7).7. Robotic transport vehicle according to any one of the preceding claims, wherein the robotic transport vehicle (1) comprises a control unit, where the control unit is configured to control the transport elements (7). 8. Robottransportvogn ifølge et hvilket som helst af de foregående krav, hvor robot- transportvognen (1) omfatter en styreenhed, hvor styreenheden er konfigureret til at styre lågeklappen (6) og/eller laste-elementerne. 8. Robot transport vehicle according to any one of the preceding claims, wherein the robot transport vehicle (1) comprises a control unit, where the control unit is configured to control the door flap (6) and/or the loading elements. 9, Fremgangsmåde til lastning og transport af et køretøj ved anvendelse af en robot- transportvogn ifølge krav 1 til 8, omfattende følgende trin: - laste køretøjet (11) på robottransportvognens (1) transportleje, - transportere robottransportvognen (1) fra en første lokation til en anden lokation.9, Method for loading and transporting a vehicle using a robot transport vehicle according to claims 1 to 8, comprising the following steps: - loading the vehicle (11) on the transport bed of the robot transport vehicle (1), - transporting the robot transport vehicle (1) from a first location to another location.
DKPA202170468A 2021-09-27 2021-09-27 Robotic transporter for loading and transporting vehicles and a method therefore DK181186B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DKPA202170468A DK181186B1 (en) 2021-09-27 2021-09-27 Robotic transporter for loading and transporting vehicles and a method therefore
PCT/DK2022/050198 WO2023046253A1 (en) 2021-09-27 2022-09-27 Robotic transporter for loading and transporting vehicles and a method therefore

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DKPA202170468A DK181186B1 (en) 2021-09-27 2021-09-27 Robotic transporter for loading and transporting vehicles and a method therefore

Publications (2)

Publication Number Publication Date
DK181186B1 true DK181186B1 (en) 2023-04-12
DK202170468A1 DK202170468A1 (en) 2023-04-12

Family

ID=85227144

Family Applications (1)

Application Number Title Priority Date Filing Date
DKPA202170468A DK181186B1 (en) 2021-09-27 2021-09-27 Robotic transporter for loading and transporting vehicles and a method therefore

Country Status (2)

Country Link
DK (1) DK181186B1 (en)
WO (1) WO2023046253A1 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110371009B (en) * 2019-06-26 2020-09-29 江铃汽车股份有限公司 Road wrecker
DE102020101233A1 (en) 2020-01-20 2021-07-22 Helmut Fliegl VEHICLE TRAILER FOR ACCIDENTED MOTOR VEHICLES
EP3881903A1 (en) * 2020-03-16 2021-09-22 Castellan AG Fire extinguishing assembly
DE202020104825U1 (en) * 2020-08-20 2020-09-22 Paul Müller GmbH Emergency container

Also Published As

Publication number Publication date
DK202170468A1 (en) 2023-04-12
WO2023046253A1 (en) 2023-03-30

Similar Documents

Publication Publication Date Title
US7896113B1 (en) Police robotic system
US7007761B1 (en) Emergency response vehicle
US6000502A (en) Personnel carrying vehicle
US20110005846A1 (en) Robotic vehicle
WO2010108118A1 (en) Towing robot
JP2008536779A (en) Equipment for lifting, handling and transporting containers
US20190293226A1 (en) Automated pipeline pig handling system
CN110371009B (en) Road wrecker
DK181186B1 (en) Robotic transporter for loading and transporting vehicles and a method therefore
CN111731181A (en) Logistics vehicle
US20220227279A1 (en) Methods and Apparatus for Releasably Securing a Robot in a Delivery Vehicle
CN206765884U (en) Vehicle lifting above and below a kind of fire-fighting robot
US20230001956A1 (en) System and method for unattended package manipulation
JP3929954B2 (en) Firefighting pump on-board unit
EP2248757B1 (en) Personnel carrying vehicle
EP3176116A1 (en) Deployment system
DK180794B1 (en) Fire extinguishing apparatus
US20170369041A1 (en) Automatic wheel chocking system for vehicles
TWI837983B (en) Fire accidence protection method used for parking lot and fire accidence propagating prevention system
CN117068031A (en) New energy electric automobile accident handling transfer car (buggy)
FI127421B (en) Method for controlling a loader and control equipment for a loader
WO2002062663A1 (en) Rpv transport vehicle
KR200341225Y1 (en) a fire hose carrying vehicle
US10159613B2 (en) Vehicle, device and method for loading a vehicle
US11292380B2 (en) Enclosed boat trailer

Legal Events

Date Code Title Description
PAT Application published

Effective date: 20230328

PME Patent granted

Effective date: 20230412