DK176907B1 - Power meter shunt with built-in electronics - Google Patents

Power meter shunt with built-in electronics Download PDF

Info

Publication number
DK176907B1
DK176907B1 DKPA200900164A DKPA200900164A DK176907B1 DK 176907 B1 DK176907 B1 DK 176907B1 DK PA200900164 A DKPA200900164 A DK PA200900164A DK PA200900164 A DKPA200900164 A DK PA200900164A DK 176907 B1 DK176907 B1 DK 176907B1
Authority
DK
Denmark
Prior art keywords
electronics
shunt
communication
current
measurement
Prior art date
Application number
DKPA200900164A
Other languages
Danish (da)
Inventor
Kurt Stokholm
Original Assignee
Kurt Stokholm
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurt Stokholm filed Critical Kurt Stokholm
Priority to DKPA200900164A priority Critical patent/DK176907B1/en
Priority to EP09839556.9A priority patent/EP2394179A4/en
Priority to PCT/DK2009/050350 priority patent/WO2010088908A1/en
Application granted granted Critical
Publication of DK176907B1 publication Critical patent/DK176907B1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/20Modifications of basic electric elements for use in electric measuring instruments; Structural combinations of such elements with such instruments
    • G01R1/203Resistors used for electric measuring, e.g. decade resistors standards, resistors for comparators, series resistors, shunts

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Current Or Voltage (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Description

DK 176907 B1 iDK 176907 B1 i

StrømmåSeshyat med iocibyggef elektronik, 5 Den foreliggende opfindelse, ’’Strømmåieshunt med indbygget elektronik” er tiltænkt, men ikke begrænset til, elektriske fordelingsanlæg for både jævn- og vekselstrøm, og til et vilkårligt spændingsniveau i forhold til neutral jord.Current Invention With iocebuilding electronics, 5 The present invention, "" Built-in electronics power shunt "is intended, but not limited to, DC and AC power distribution systems, and to any voltage level relative to neutral ground.

Det er almindelig kendt, at elektronik kan afskærmes mod omgivende felter ved 10 indkapsling i en lukket elektrisk/magnetisk ledende montagebox. Den foreliggende opfindelsen angår, med henvisning til fig.l og billederne 1-4, en strømmåieshunt med indbygget måle-, kommunikations- og beregningselektronik, og hvor denne elektronik er placeret i det feltfrie centrum i midterlederen på en kendt impedans, med en coaxial udformning bestående af 2 elektrisk ledende rør, der er placeret 15 koncentrisk med det ene rør inden i det andet, og hvor rørene er sammensvejst i den ene ende. En iysledertilkobling gør det muligt for elektronikken at sende og modtage signaler til/fra andet udstyr, placeret på andet spændingspotentiai end enheden. En specialudførelse vil være anvendelse af berøringsfri signaltransmission. Det nye i opfindelsen er at placere elektronik, afskærmet mod 20 elektriske- og magnetiske felter, i centrum af en sådan strømmåieshuntIt is well known that electronics can be shielded from surrounding fields by encapsulation in a closed electrical / magnetic conductive mounting box. The present invention relates, with reference to Figs. 1 and Figures 1-4, to a current measurement shunt with built-in measurement, communication and calculation electronics, and wherein this electronics is located in the field-free center of the center conductor of a known impedance, with a coaxial configuration. consisting of 2 electrically conductive tubes located 15 concentrically with one tube within the other and the tubes being welded at one end. An AC conductor connection allows the electronics to transmit and receive signals to / from other equipment located on voltage potentials other than the device. A special design will be the use of touch-free signal transmission. What is new in the invention is to place electronics, shielded from 20 electric and magnetic fields, at the center of such a current muzzle shunt

Den relevante kendte teknik er beskrevet i følgende dokumenter: 1) US 5420504 Al (Berkcan) 30. maj 1995 25 Noninductive shunt current sensor based on concentric-pipe geometry.The relevant prior art is described in the following documents: 1) US 5420504 Al (Berkcan) May 30, 1995 25 Noninductive shunt current sensor based on concentric-pipe geometry.

2) US5461307A1 (Berkcan) 24. oktober 19952) US5461307A1 (Berkcan) October 24, 1995

Electro-optical current sensing system and method for sensing and avoiding thermally induced measurement error therein.Electro-optical current sensing system and method for sensing and avoiding thermally induced measurement error therein.

30 3) EP 1028321 A2 (Heilman etal.) 3. februar 20003) EP 1028321 A2 (Heilman et al.) February 3, 2000

Stromteiler fur Messwandler, , 1 i DK 176907 B1 4} US 5416408 Al (Berkcan et al.) 16. maj 1995Stromteiler fur Messwandler,, 1 in DK 176907 B1 4} US 5416408 A1 (Berkcan et al.) May 16, 1995

Current sensor employing a mutually inductive current sensing scheme with a magnetic field substantially uniform in angular 5 direction.Current sensor employing a mutually inductive current sensing scheme with a magnetic field substantially uniform in angular 5 direction.

5) GB 2056182 A (Ferranti Limited) 11. marts 19815) GB 2056182 A (Ferranti Limited) March 11, 1981

Electrical resistance 10 Den foreliggende opfindelse adskiller sig fra 1) ved at alt elektronik er placeret i centrum af det inderste rør, hvorimod det fremgår af 1) fig. 5, at det kun er måleiedningeme og en temperaturføler (210) der er placeret her, den tilhørende måle-, kommunikations- og heregningselektromk er placeret udenfor shunten og dermed på et andet potentiale end den målte spænding.Electrical resistance 10 The present invention differs from 1) in that all electronics are located in the center of the inner tube, whereas it is apparent from 1) fig. 5, that only the measuring wires and a temperature sensor (210) are located here, the associated measuring, communication and recharging electromechanicals are located outside the shunt and thus at a different potential than the measured voltage.

1515

Dokument 2) viser i fig. 2 en tilsvarende konstruktion, men igen foregår al maling, kommunikation og beregning udenfor shunten på et andet potentiale.Document 2) shows in FIG. 2 a similar construction, but again all the paint, communication and calculation outside the shunt takes place on another potential.

I dokument 3) er der tale om placering af elektronik på samme potential, men blot 20 placering af elektronik i det yderste rør, og ikke i det inderste rør.In document 3) there is the placement of electronics at the same potential, but only 20 placement of electronics in the outer tube, and not in the inner tube.

Dokument 4) beskriver i fig. 9 en strømshunt med en sensor (28) indbygget i en udfræsning i den midterste leder. Igen er måle- kommunikations- og beregningselektronikken ikke en integreret del af shunten.Document 4) describes in FIG. 9 is a power shunt with a sensor (28) built into a middle conductor cutout. Again, measurement communication and calculation electronics are not an integral part of the shunt.

2525

Dokument 5) beskriver princippet om sammensvejsning af 2 koncentriske rør som udgør en induktansfri shunt. 1 modsætning ti! den foreliggende opfindelse findes der ingen elektronik i centrum af det inderste rør, og denne må derfor fonnodes placeret udenfor shunten og på andet potential.Document 5) describes the principle of welding 2 concentric tubes which constitute an inductance-free shunt. 1 unlike ten! In the present invention, there is no electronics in the center of the inner tube, and this must therefore be located outside the shunt and at other potential.

Den foreliggende opfindelse adskiller sig således fra ovenstående kendte teknik ved, at måle-, kommunikations- og beregningselektronikken er placeret IThe present invention thus differs from the prior art in that the measuring, communication and calculation electronics are located in

30 2 DK 176907 B1 inderste rare centrum af strønamåleshnnien,, mrøteret på det spændkgspoteistiate, hver stremmen ønskes målt, beregnet eg viderefransmsiteret fra.30 2 DK 176907 B1 innermost strange center of the current measurement line, matched to the voltage potential, which each current is desired to be measured, calculated from further transmitted from.

3 DK 176907 B13 DK 176907 B1

BeskrivelseDescription

FigwreversigtFigwreversigt

Fig. 1 viser en skitse af den coaxiale strømmåleshunt, omfattende de elektrisk 5 ledende og koncentrisk placerede rør (A) og (B), svejsningen (C), måle-, kommunikations' og beregningselektronikken (D), lyslederen (G) med tilkoblingen (H), samt måSeledningeme (JE) og (FK).FIG. 1 shows a sketch of the coaxial current measuring shunt, comprising the electrically conductive and concentrically located tubes (A) and (B), the welding (C), the measuring, communication and calculation electronics (D), the light conductor (G) with the connection (H ), as well as the measurement lines (JE) and (FK).

Billede 1 viser et eksempel på en udførelse af strømmåleshunten rned tilslutningspunkteme (A) og (B), men uden lysledertilslutning ved (C), og derfor 10 vist i en version for berøringsfri signaloverførsel.Figure 1 shows an example of an embodiment of the power meter shunt at the connection points (A) and (B), but without the fiber optic connection at (C), and therefore 10 shown in a version for contactless signal transfer.

Billede 2 viser samme eksempel på udførelse som billede 1, blot vist med måleledning og låg i modsatte ende af (C). Måleledmng og låg er ikke endeligt sammensvejst til rør (A).Fig. 2 shows the same example of embodiment as Fig. 1, simply shown with measuring line and lid at opposite end of (C). Measurements and covers are not finally welded to pipes (A).

Billede 3 viser det samme som billede 2 men blot den modsatte ende. Elektronikken 15 er skitseret ved et rektangulært stykke pap, men kan antage andre udførelsesformer.Picture 3 shows the same as picture 2 but just the opposite end. The electronics 15 are outlined by a rectangular piece of cardboard, but may take other embodiments.

Billede 4 viser måleledning og låg ved svejsningen (C)s samt et eksempel på en isolerende lysleder til kommunikationsformål.Figure 4 shows the measuring line and lid at the welding (C) s as well as an example of an insulating light conductor for communication purposes.

Detaljeret gennemgang 20 Ordet induktansfri strømmåleshunt anvendes ofte, og også i ovennævnte dokumenter, når koncentrisk placerede ledere anvendes. Der er dog altid tale om, at den gensidige induktans er så lille at den er negligibel, men egeninduktansen over målerøret kan blive betydelig, hvis den resistans man ønsker at måle spændingen over, er overordentlig lille. Såfremt det viser sig nødvendigt kan egeninduktansen 25 for målerøret i en coaxial udformet strømmåleshunt, beregnes ud fra Ampere's lov, og korrigeres for af beregningseiektronikken, i det følgende anvendes derfor den almindelige talemåde ’’coaxial udformet resistiv strømmåleshunt”, vel vidende, at der afhængig af materialevalg måske skal korrigeres for målerørets egeninduktans.Detailed Review 20 The word inductance-free current measurement shunt is often used, and also in the above documents, when concentrically placed conductors are used. However, there is always talk that the mutual inductance is so small that it is negligible, but the intrinsic inductance across the measuring tube can become considerable if the resistance to which the voltage is to be measured is extremely small. If necessary, the intrinsic inductance 25 of the measuring tube in a coaxially designed power meter shunt can be calculated from Ampere's law and corrected for by the computing electronics, hence the common saying "coaxially designed resistive power meter shunt" is used, knowing that dependent of choice of material may need to be corrected for the self-inductance of the measuring tube.

30 Med henvisning til fig. 1 og billederne 1-4 vælges rør (A) med en kendt impedans.Referring to FIG. 1 and pictures 1-4, pipe (A) with a known impedance is selected.

Efter anbringelse af elektronikken inden i rør A), sammensvejses begge ender af før A med låg ved C) og ligeledes i modsatte ende af (C). Den skitserede konstruktion, 4 DK 176907 B1 skaber et feltfrit centrum i det inderste rør, hvorfor der her kan placeres et digitalt og/eller analogt måle-, kommunikations- og beregningselektronisk kredsløb (D), der med kendskab til rør A's impedans kan beregne strømmen gennem rørene ud fra den målte spænding i måletilslutningspunkterne (J) og (K). Den elektriske og 5 magnetiske afskærmning til elektronikken kan etableres af rør (Å) og (B) ved valg af materiale, der både er elektrisk og magnetisk ledende, heks. my-metal.After placing the electronics within tube A), both ends of before A are welded with a lid at C) and also at the opposite end of (C). The outlined construction, 4 DK 176907 B1 creates a field-free center in the inner tube, which is why a digital and / or analog measuring, communication and calculation electronic circuit (D) can be placed here, which, with knowledge of tube A's impedance, can calculate the current through the tubes from the measured voltage at the target connection points (J) and (K). The electrical and 5 magnetic shielding for the electronics can be established by tubes (Å) and (B) when selecting material which is both electrically and magnetically conductive, hex. mu-metal.

Alternativt vi! det også være muligt at lade rør (A) og (B) udgøre afskærmningen mod elektriske felter, og så afskærme elektronikken alene mod magnetfelter. Måle-, kommunikations- og beregningselektronikken kan, udover at gøre strømværdien 10 tilgængelig for intern brag, omforme den beregnede strømværdi til et lyssignal i punktet (F). Ved punktet (F) kan måle-, kommunikations- og bcregningselekironikken både sende og modtage lys, hvilket gør kommunikation med omverdenen mulig.Alternatively we! it is also possible to have pipes (A) and (B) form the shield against electric fields, and then shield the electronics against magnetic fields only. In addition to making the current value 10 available for internal noise, the measuring, communication and calculation electronics can transform the calculated current value into a light signal at the point (F). At point (F), the measurement, communication, and calculation electronics can both transmit and receive light, making communication with the outside world possible.

Måleledningeme, der henholdsvis går ffa (J) til (Έ) og fra (F) til (K), anbringes i 15 rørenes centrum, og føres til måle-, kommunikations- og beregningselektronikken som cirkulære ledere, og således at strækningen fra (F) til (K) udføres med en lysleder i centrum af måleledningen. Herved er måle-, kommunikations- og 1 beregningselektronikken så forbundet lysmæssigt med tilkoblingsstedet (H).The measuring lines, which pass ffa (J) to (Έ) and from (F) to (K) respectively, are placed in the center of the tubes and are passed to the measuring, communication and calculation electronics as circular conductors, and so that the distance from (F ) to (K) is performed with a light guide in the center of the measuring line. Hereby, the measuring, communication and 1 calculation electronics are then connected in luminous terms to the connection point (H).

Tilkoblingen (H) forbinder måle-, kommunikations« og beregningselektronikkens 20 afgivne/modtagne lys ti! lyslederkablet (G), som er dimensioneret tilstrækkelig elektrisk isolerende, til det spændingsniveau som strømmåleshunten er monteret på.The connection (H) connects the measured, communicated and received light of the measuring, communication and calculation electronics 20! the fiber-optic cable (G), dimensioned sufficiently electrically insulating, to the voltage level to which the current meter shunt is mounted.

Signalet, dier signalerne, kan nu anvendes væk fa det spændingsniveau, hvor strømmen er målt. Udover at være isolator skal lyslederen (G) også, via lys/spændingsomsættere i begge ender, virke som evt. spændingsforsyning til måle-25 , kommunikations- og beregningselektronikken, hvis det er nødvendigt. En tredje opgave for lyslederkablet (G), er at sende andre målte værdier, f. eks. spændingen på det anlæg, hvor strømmåleshunten er placeret, fa omverdenen til måle-, kommunikations- og beregningselektronikken. Med måle-, kommunikations- og beregningselektronikkens kendskab til både strøm og spænding ti! et og samme 30 tidspunkt, kan næsten alle elektriske størrelser nu beregnes, og anvendes ti! både intern og/eller ekstern brug. En speciel udførelse er at udelade lyslederen ved anvendelse af berøringsfri signaliransmission.The signal, with the signals, can now be used away from the voltage level at which the current is measured. In addition to being an insulator, the light conductor (G) must also, via light / voltage converters at both ends, function as possible. power supply for gauge-25, communication and computing electronics, if needed. A third task for the fiber-optic cable (G) is to transmit other measured values, such as the voltage at the system where the current measurement shunt is located, to get the outside of the measuring, communication and calculation electronics. With the measurement, communication and calculation electronics knowledge of both current and voltage ten! at one and the same time, almost all electrical sizes can now be calculated and used ten! both internal and / or external use. A special embodiment is to omit the light conductor using non-contact signal transmission.

5 DK 176907 B15 DK 176907 B1

Problemer der løses.Troubleshooting.

1 elektriske fordelingsanlæg til produktion, transmission og distribution af elektrisk energi, anvendes der til strømmåling såkaldte strømtransformere som omsætter en 5 høj strøm - primærstrømmen - til en væsentlig lavere strøm - sekundærstrømmen.In electric distribution systems for the production, transmission and distribution of electrical energy, current transformers are used which measure a high current - the primary current - to a substantially lower current - the secondary current.

S ekundærstrømmen sendes videre til andet udstyr, som kan omfatte relæbeskyttelse, alarmering, imtrumentvisnmg, afregningsmåling etc., der typisk er placeret i et dertil indrettet apparaihus, container eller lignende. Denne måde at styre, regulere og overvåge anlægget på er anvendt i årtier, men byder på visse 10 uhensigtsmæssigheder. Magnetfelter, og dermed induktansen, i strømtransformere gør at målenøjagtigheden er begrænset. Samtidig er der personrisiko ved ’’åben sekundærkreds”, idet livsfarlige spændinger kan induceres her, der overalt er placeret, hvor vedligeholdspersonale har direkte adgang.The secondary current is passed on to other equipment, which may include relay protection, alarms, imtrument detection, settlement measurement, etc., which are typically located in an appliance housing, container or the like. This way of operating, regulating and monitoring the plant has been used for decades, but offers some 10 inconveniences. Magnetic fields, and thus the inductance, in current transformers mean that measurement accuracy is limited. At the same time, there is a personal risk of '' open secondary circuits '', as life-threatening tensions can be induced here, located anywhere where maintenance personnel have direct access.

Strømmåling udføres ikke kun på fordelingsanlæg til produktion, transmission og 15 distribution af elektrisk energi, men også i højspændingslaboratorier. Her måles høje-, transiente- og nøjagtige strømme ved hjælp af en coaxial strømmåleshunt, hvor shunten pga. den coaxial« udformning er induktansfri, og strømmen måles som en spænding over en kendt resistans. En sådan måling foregår normalt med den ene ende af resistansen jordforbundet, f.eks. punkt (B) i fig, 1, hvilket gør at 20 målespændingen altid er ’’bundet” til jordpotential. En coaxial strømmåleshunt anvendes derfor, såvidt vides, ikke på elektriske fordelingsanlæg, fordi måleledningeme vil forårsage en jordslutning. Skulle det være muligt at finde lignende strømmåleshunte, vil det være sandsynligt, at de er fremstillet til jævnstrømsformål (DC), men ikke til vekseistrømsformåi (AC) som denne 25 måleshunt.Power measurement is performed not only at distribution plants for production, transmission and distribution of electrical energy, but also in high voltage laboratories. Here, high, transient, and accurate currents are measured using a coaxial current measurement shunt, where the shunt due to the coaxial design is inductance free and the current is measured as a voltage across a known resistance. Such a measurement usually takes place with one end of the resistance grounded, e.g. point (B) in Fig. 1, which means that the measuring voltage is always '' bound '' to ground potential. Therefore, as far as is known, a coaxial current measurement shunt is not used on electrical distribution systems because the measurement lines will cause a grounding. Should it be possible to find similar current measurement shunts, it would be likely that they were manufactured for direct current (DC), but not for AC power (AC) like this measurement shunt.

Formålet med den foreliggende opfindelse er, at tilvejebringe en mere nøjagtig- og formålstjenlig løsning til strømmåling og bearbejdning af signaler til elektriske fordelingsanlæg end anvendelse af konventionelle strømtransformere med 30 tilhørende elektronik.The object of the present invention is to provide a more accurate and convenient solution for current measurement and processing of signals for electrical distribution systems than the use of conventional power transformers with associated electronics.

6 DK 176907 B16 DK 176907 B1

Ved erstatning af konventionelle strømtransformere med nævnte coaxiale strømmåleshunt forbedres målenøjagtighcden ved fjernelse af mætningsproblemer hidrørende fra induktansens indflydelse på målingen. Samtidig fjernes personrisikoen ved vediigeholdsarbejder med sekundære strømkredse, 5By replacing conventional current transformers with said coaxial current measurement shunt, measurement accuracy is improved by removing saturation problems resulting from the influence of the inductance on the measurement. At the same time, the personal risk of maintenance work with secondary circuits is removed, 5

Da måle-, kommunikations- og beregningselektronikken kan få tilført andre signalværdier ffa omverdenen, feks, spændingen på det anlæg, hvor shunten er placeret som nævnt ovenfor, kan relæbeskyttelse, transientrecorder og afire gningsmåler ligeledes flyttes fra en placering i et apparathus, container eller 10 lignende, til en placering i centrum af den coaxiale strømmåleshunt. Også det elektriske fordelingsanlægs koblingstilstand kan tilføres måle-, kommunikations- og beregningselekironikken. Herved er det muligt at foretage aflåsninger i anlægget.Since the measurement, communication and calculation electronics can be supplied with other signal values ffa the outside world, for example, the voltage of the system where the shunt is located as mentioned above, relay protection, transient recorder and discharge meter can also be moved from a location in an appliance housing, container or 10 similarly, to a location in the center of the coaxial current measurement shunt. The switching state of the electrical distribution system can also be applied to the measuring, communication and calculation electronics. This makes it possible to lock in the system.

77

Claims (3)

15 Coaxial udformet resistiv strømmåleshunt med måle-, kommunikations- og beregningselektronik ifølge krav 1, kendetegnet ved, at relæbeskyttelse af det elektriske anlæg er en integreret del af elektronikken. Krav 3Coaxially designed resistive current measurement shunt with measuring, communication and calculation electronics according to claim 1, characterized in that relay protection of the electrical system is an integral part of the electronics. Requirement 3 20 Coaxial udformet resistiv strømmåleshunt med måle-, kommunikations- og beregmngselektronik ifølge krav 1, kendetegnet ved, at transientrecorder er en integreret del af elektronikken,Coaxially designed resistive current measurement shunt with measurement, communication and calculation electronics according to claim 1, characterized in that the transient recorder is an integral part of the electronics, 25 Krav 4 Coaxial udformet resistiv strømmåleshunt med måle-, kommunikations- og beregningselektronik ifølge krav 1,kendetegnet ved, at affegningsmåler til afregning af elektrisk energi er en integreret del af elektronikken, 8 DK 176907 B1 Krav 5 Coaxial udformet resisfiv strømmåieshunt med måle-, kommunikations- og beregningselektronik ifølge krav l,kendetegnet ved, at styring af et elektrisk fordelingsanlæg er en integreret del af elektronikken, 5 9Claim 4 Coaxial designed resistive current measurement shunt with measurement, communication and calculation electronics according to claim 1, characterized in that the scaling meter for electrical energy calculation is an integral part of the electronics, 8 DK 176907 B1 Claim 5 Coaxially designed resisive current measurement shunt, communication and computing electronics according to claim 1, characterized in that control of an electrical distribution system is an integral part of the electronics, 9
DKPA200900164A 2009-02-04 2009-02-04 Power meter shunt with built-in electronics DK176907B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DKPA200900164A DK176907B1 (en) 2009-02-04 2009-02-04 Power meter shunt with built-in electronics
EP09839556.9A EP2394179A4 (en) 2009-02-04 2009-12-23 Current measuring shunt
PCT/DK2009/050350 WO2010088908A1 (en) 2009-02-04 2009-12-23 Current measuring shunt

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DK200900164 2009-02-04
DKPA200900164A DK176907B1 (en) 2009-02-04 2009-02-04 Power meter shunt with built-in electronics

Publications (1)

Publication Number Publication Date
DK176907B1 true DK176907B1 (en) 2010-04-12

Family

ID=42091777

Family Applications (1)

Application Number Title Priority Date Filing Date
DKPA200900164A DK176907B1 (en) 2009-02-04 2009-02-04 Power meter shunt with built-in electronics

Country Status (3)

Country Link
EP (1) EP2394179A4 (en)
DK (1) DK176907B1 (en)
WO (1) WO2010088908A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017222479A1 (en) * 2017-12-12 2019-06-13 Siemens Aktiengesellschaft Arrangement with coaxial resistor

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4374359A (en) * 1979-10-04 1983-02-15 IREQ--Institut de Recherche de l'Hydro-Quebec System and method of sensing current in high voltage transmission lines utilizing the transmission of digital information by optical fibers
US5420504A (en) * 1993-07-06 1995-05-30 General Electric Company Noninductive shunt current sensor based on concentric-pipe geometry
DE29605606U1 (en) * 1996-03-26 1997-07-24 Siemens AG, 80333 München Device for measuring an electrical current in a current-carrying conductor
FR2793030B1 (en) * 1999-04-30 2001-06-15 Schneider Electric Ind Sa PREPAYMENT ENERGY MONITORING DEVICE HAVING A MEASUREMENT SHUNT
DE10258115B4 (en) * 2001-12-06 2008-07-03 Michael Baehr Broadband measuring module for current measurement at power electronics devices

Also Published As

Publication number Publication date
EP2394179A1 (en) 2011-12-14
EP2394179A4 (en) 2014-05-07
WO2010088908A1 (en) 2010-08-12

Similar Documents

Publication Publication Date Title
US10627431B2 (en) Combined in-line DC and AC current sensor for high voltage electric power lines
CA2675971C (en) Flexible current transformer assembly
CN105093149B (en) Calibration method for voltage sensing device
US7126348B2 (en) Method and a device for voltage measurement in a high-voltage conductor
CN105092932B (en) Non-contact voltage sensing device
CN101762355B (en) Vacuum tube vacuum-degree on-line monitoring device of high-voltage power distribution device and method thereof
CN103163364A (en) Wireless monitoring device and monitoring method for grounding current of transformer core/clamp
CN102368085A (en) Combined detection device for electrical variables
EP3555895B1 (en) Combination of an electricity conducting element, such as bushing, and a connector cable
US11137421B1 (en) Non-contact voltage sensing system
CN113985223A (en) Multi-parameter intelligent identification system of high-voltage dry-type sleeve and application
EP0849600A1 (en) Optical current transformer
CN109521264B (en) Digital zero sequence current transformer for pole switch
DK176907B1 (en) Power meter shunt with built-in electronics
CN111562427B (en) Non-contact arbitrary waveform alternating voltage measuring device
CN211126465U (en) Intelligent grounding monitoring device
CN209513903U (en) A kind of digital electric mutual inductor of voltage and current combination
JP2007024707A (en) Leakage current measuring monitoring device by clamp meter
WO2019216511A1 (en) Rogowski coil current sensor having shielding structure
CN116047357A (en) High-voltage sleeve multi-parameter integrated on-line monitoring system
CN103575325A (en) High-voltage photoelectric temperature, current and voltage compound sensor structure
CN207867017U (en) The detection circuit and electric energy computation chip of bleeder circuit parameter
CN105510679A (en) High-reliability and high-precision current measuring method and device
CN105548664A (en) Optical current-measurement device
JPH11237426A (en) Apparatus for measuring frequency characteristic of transformer

Legal Events

Date Code Title Description
PBP Patent lapsed

Effective date: 20190204