DK176054B1 - Steering mechanism for a ship - Google Patents

Steering mechanism for a ship Download PDF

Info

Publication number
DK176054B1
DK176054B1 DK200300830A DKPA200300830A DK176054B1 DK 176054 B1 DK176054 B1 DK 176054B1 DK 200300830 A DK200300830 A DK 200300830A DK PA200300830 A DKPA200300830 A DK PA200300830A DK 176054 B1 DK176054 B1 DK 176054B1
Authority
DK
Denmark
Prior art keywords
rudder
mechanism according
wheel
driven
ship
Prior art date
Application number
DK200300830A
Other languages
Danish (da)
Inventor
Arne Schmidt
Steen Ankjaer Pedersen
Original Assignee
Schmidt S Marine El As A
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schmidt S Marine El As A filed Critical Schmidt S Marine El As A
Priority to DK200300830A priority Critical patent/DK176054B1/en
Priority to PCT/DK2004/000384 priority patent/WO2004108523A1/en
Publication of DK200300830A publication Critical patent/DK200300830A/en
Application granted granted Critical
Publication of DK176054B1 publication Critical patent/DK176054B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H25/00Steering; Slowing-down otherwise than by use of propulsive elements; Dynamic anchoring, i.e. positioning vessels by means of main or auxiliary propulsive elements
    • B63H25/06Steering by rudders
    • B63H25/08Steering gear
    • B63H25/14Steering gear power assisted; power driven, i.e. using steering engine
    • B63H25/18Transmitting of movement of initiating means to steering engine
    • B63H25/24Transmitting of movement of initiating means to steering engine by electrical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H25/00Steering; Slowing-down otherwise than by use of propulsive elements; Dynamic anchoring, i.e. positioning vessels by means of main or auxiliary propulsive elements
    • B63H25/06Steering by rudders
    • B63H25/08Steering gear
    • B63H25/14Steering gear power assisted; power driven, i.e. using steering engine
    • B63H25/26Steering engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H25/00Steering; Slowing-down otherwise than by use of propulsive elements; Dynamic anchoring, i.e. positioning vessels by means of main or auxiliary propulsive elements
    • B63H25/06Steering by rudders
    • B63H25/08Steering gear
    • B63H25/14Steering gear power assisted; power driven, i.e. using steering engine
    • B63H25/34Transmitting of movement of engine to rudder, e.g. using quadrants, brakes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H25/00Steering; Slowing-down otherwise than by use of propulsive elements; Dynamic anchoring, i.e. positioning vessels by means of main or auxiliary propulsive elements
    • B63H25/06Steering by rudders
    • B63H2025/066Arrangements of two or more rudders; Steering gear therefor

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Transmission Devices (AREA)
  • Mechanical Operated Clutches (AREA)

Description

t DK 176054 B1t DK 176054 B1

Opfindelsens områdeFIELD OF THE INVENTION

Den foreliggende opfindelse angår en styremekanisme til et skib, hvor nævnte mekanisme indbefatter en drejelig aksel og 5 et drevet hjul, som er koaksialt fastgjort til den drejelige aksel, nævnte drevne hjul er et helt hjul eller et hjulsegment.The present invention relates to a steering mechanism for a ship, wherein said mechanism includes a rotatable shaft and a driven wheel coaxially attached to the rotatable shaft, said driven wheel being a whole wheel or wheel segment.

Baggrund for opfindelsen 10BACKGROUND OF THE INVENTION 10

Styrekræfterne i skibe kan være ret betydelige. Derfor er servostyresysterner blevet normen til skibe i en størrelse fra fisketrawlere til supertankere. Nuværende servostyresystemer til skibe er typisk baseret på hydrauliske cylindere.The steering forces in ships can be quite significant. Therefore, power steering systems have become the norm for vessels of a size ranging from fishing trawlers to supertankers. Current power steering systems for ships are typically based on hydraulic cylinders.

1515

Beskrivelse af kendt teknik DE 476125 omtaler en styremekanisme i form af et ror med hjælperor til skibe. Hovedroret bevæges via en drejelig aksel, 20 som er koaksialt fastgjort til en kvadrant af et tanddrev.Description of the prior art DE 476125 discloses a steering mechanism in the form of a helm with helm for ships. The main rudder is moved via a swivel shaft 20 which is coaxially attached to a quadrant of a tooth drive.

DE 101 15 110 Al giver et godt eksempel på et hydraulisk servostyresystem til et skib. Hydrauliske systemer såsom det i DE 101 15 110 Al beskrevne har et antal ulemper. Den første 25 ulempe er, at der kræves en hydraulisk energiforsyning for at tilvejebringe tryk og strømning til de hydrauliske cylindre. Eftersom hydrauliske energiforsyninger typisk ikke er standardudstyr på skibe, kræves der almindeligvis en formålsbundet hydraulisk energiforsyning. Dette øger 30 styresystemets omkostninger, kompleksitet og størrelse. En anden ulempe ved hydrauliske systemer er, at hydraulikolien skal holdes ren. Hvis olien bliver forurenet, kan systemet blive beskadiget. Yderligere ulemper ved hydrauliske systemer omfatter, at de typisk larmer og har tendens til at lække 35 olie.DE 101 15 110 A1 provides a good example of a hydraulic power steering system for a ship. Hydraulic systems such as that described in DE 101 15 110 A1 have a number of disadvantages. The first disadvantage is that a hydraulic power supply is required to provide pressure and flow to the hydraulic cylinders. Since hydraulic power supplies are typically not standard equipment on ships, a purpose-built hydraulic power supply is usually required. This increases the cost, complexity and size of the operating system. Another disadvantage of hydraulic systems is that the hydraulic oil must be kept clean. If the oil becomes contaminated, the system may be damaged. Further disadvantages of hydraulic systems include that they typically noise and tend to leak 35 oil.

2 DK 176054 B12 DK 176054 B1

Udover de problemer, som skyldes de hydrauliske systemers natur, er anvendelse af lineære aktuatorer også et problem.In addition to the problems caused by the nature of the hydraulic systems, the use of linear actuators is also a problem.

For at omdanne de hydrauliske cylindres lineære bevægelse til rotationsbevægelse af roret, er de lineære cylindre fastgjort 5 til rorstangen via en vippestang. På grund af denne geometri roterer vippestangen også, når roret roterer, og vinklen mellem vippestangen og den lineære cylinder reduceres derfor.In order to convert the linear movement of the hydraulic cylinders to rotational movement of the rudder, the linear cylinders are attached to the rudder bar via a rocker bar. Because of this geometry, the rocker rod also rotates as the rudder rotates, and the angle between the rocker rod and the linear cylinder is therefore reduced.

Idet vinklen reduceres, omdannes en mindre del af den af den hydrauliske cylinder udøvede kraft til drejningsmoment. Dette 10 betyder, at det drejningsmoment, som de hydrauliske cylindre påfører roret, reduceres, idet roret ledes væk fra dets neutralstilling. Uheldigvis øges den kraft, som vandet udøver på roret, idet roret drejes væk fra dets neutralstilling.As the angle is reduced, a smaller part of the force exerted by the hydraulic cylinder is converted to torque. This 10 means that the torque applied by the hydraulic cylinders to the rudder is reduced as the rudder is guided away from its neutral position. Unfortunately, the force exerted by the water on the rudder increases as the rudder is turned away from its neutral position.

Dette betyder, at det tilgængelige styremoment reduceres, 15 samtidigt med at behovet for moment øges. Eftersom styresystemet er nødt til at være dimensioneret til det størst mulige belastningtilfælde, er styresystemet overdimensioneret, når roret er tæt ved dets neutralstilling. Eftersom roret det meste af tiden er nær dets neutralstilling, er systemet for 20 det meste overdimensioneret. Det at systemet er overdimensioneret, gør styresystemer, som er baseret på lineære aktuatorer, tungere og dyrere end nødvendigt.This means that the available torque is reduced, while increasing the need for torque. Since the control system has to be dimensioned for the greatest possible load case, the control system is oversized when the rudder is close to its neutral position. Since most of the time the helm is near its neutral position, the system is mostly oversized. The fact that the system is oversized makes control systems based on linear actuators heavier and more expensive than necessary.

Udover momentbegrænsningerne ved den nuværende geometri har de 25 nuværende systemers geometri også et begrænset rotations område. I et almindeligt system vil roret have et vinkelområde på ikke mere end ±90°. Ved nogle anvendelser, såsom et bovskruearrangement, er fri rotation uden nogen hindringer ønskeligt. Det kunne også være nyttigt at kunne rotere i en 30 retning i mere end én hel rotation. Systemer baseret på vippestangsprincippet vil ikke kunne anvendes i disse situationer.In addition to the torque constraints of the current geometry, the geometry of the 25 current systems also has a limited range of rotation. In an ordinary system, the rudder will have an angular range of not more than ± 90 °. In some applications, such as a bow screw arrangement, free rotation without any obstructions is desirable. It could also be useful to rotate in a 30 direction for more than one full rotation. Systems based on the tilting principle will not be applicable in these situations.

På grund af fremkomsten af billigere, stærkere og mere 35 almindeligt tilgængelige elmotorer har der været en række 3 DK 176054 B1 anvendelser, hvor elmotorer har erstattet hydrauliske cylindre i styremekanismer til skibe.Due to the emergence of cheaper, stronger and more 35 commonly available electric motors, there have been a number of 3 DK 176054 B1 applications where electric motors have replaced hydraulic cylinders in ship steering mechanisms.

Et godt eksempel er GB 2 012 387 A. Dette patent beskriver et 5 styresystem baseret på en elmotor, som er forbundet til en planetgearkasse. Idet motorakslen roterer, drejer gearkassen ved en hastighed, som bestemmes af planetgearkassens gearforhold. Gearkassen er fast forbundet til en rorpindsenhed, og drejer rorpinden, idet motoren roterer.A good example is GB 2,012,387 A. This patent discloses a 5 operating system based on an electric motor connected to a planetary gearbox. As the motor shaft rotates, the gearbox rotates at a speed determined by the gear ratio of the planetary gearbox. The gearbox is firmly connected to a rudder unit and rotates the rudder as the engine rotates.

10 Rorpinden er forbundet til roret via en ledforbindelse. Roret drejer derfor også, når rorpinden drejer.10 The tiller is connected to the rudder via a hinge connection. The rudder therefore also rotates when the rudder stick turns.

Dette system har et problem lig de hydrauliske systemer, idet det anvendte moment ændres, idet roret drejer. Som ved det 15 hydrauliske system, er styrekræfterne mindst, når behovet er størst. Dette betyder, at også dette system må overdimensioneres. Et andet problem med dette system er, at det er vanskeligt at tilføje reservestyring, hvis hovedmotoren skulle falde ud. Heller ikke med dette system er det muligt at 20 få fri rotation.This system has a problem similar to the hydraulic systems in that the torque used changes as the rudder turns. As with the hydraulic system, the steering forces are the least when the need is greatest. This means that this system must also be oversized. Another problem with this system is that it is difficult to add reserve control if the main engine should drop out. Even with this system it is possible to get free rotation.

EP 1 209 074 Al er et andet godt eksempel på et styresystem, som er baseret på en elmotor. Dette system blev udformet til brug på skibe med et styresystem baseret på en 25 svingskruesamling. Princippet kan imidlertid også anvendes på et skib med rorbaseret styring. Et antal elmotorer er forbundet til hinanden via en gearkasse. Gearkasseeffekten anvendes på et lille gearhjul. Det lille gearhjul indgriber med et stort gearhjul, som er aksialt monteret på 30 skruesamlingens drejeaksel. Gearkassen er konstrueret således, at motoromdrejningstallene lægges til eller trækkes fra hinanden for at drive det lille gearhjul. Problemet med at anvende dette system til at styre skibe er, at gearkassen gør systemet komplekst og dyrt. Hvis der går noget galt i 35 gearkassen, ville båden miste styringen.EP 1 209 074 A1 is another good example of a control system based on an electric motor. This system was designed for use on ships with a control system based on a 25 turn screw assembly. However, the principle can also be applied to a rudder-based ship. A number of electric motors are connected to each other via a gearbox. The gearbox effect is applied to a small gear wheel. The small gear wheel engages with a large gear wheel axially mounted on the rotary shaft of the screw assembly. The gearbox is designed so that the engine rpm is added or subtracted to drive the small gear wheel. The problem with using this system to control ships is that the gearbox makes the system complex and expensive. If something goes wrong in the 35 gearbox, the boat would lose control.

4 DK 176054 B14 DK 176054 B1

Sammendrag af den foreliggende opfindelseSummary of the present invention

Et første aspekt ved den aktuelle opfindelse er at tilvejebringe en styremekanisme til et skib af den 5 indledningsvis nævnte art, der er mere sikkert end hidtil kendt.A first aspect of the present invention is to provide a steering mechanism for a ship of the kind initially mentioned which is safer than hitherto known.

Et andet aspekt ved den aktuelle opfindelse er at tilvejebringe en styr emekanisme til et skib af den 10 indledningsvis nævnte art, som er mere udvidelig og tilpasselig end hidtil kendt.Another aspect of the present invention is to provide a rigid mechanism for a ship of the type mentioned initially, which is more extensible and adaptable than previously known.

Et tredje aspekt ved den aktuelle opfindelse er at tilvejebringe en styremekanisme til et skib af den 15 indledningsvis nævnte art, som er mere energieffektiv end hidtil kendt.A third aspect of the present invention is to provide a steering mechanism for a ship of the type mentioned initially, which is more energy efficient than hitherto known.

Et fjerde aspekt ved den aktuelle opfindelse er at tilvejebringe en styremekanisme til et skib af den 20 indledningsvis nævnte art, som er billigere, enklere og mere robust end hidtil kendt.A fourth aspect of the present invention is to provide a steering mechanism for a ship of the type mentioned initially, which is cheaper, simpler and more robust than previously known.

Det nye og særegne hvorved ovennævnte aspekter opnås ifølge den foreliggende opfindelse består i at tilvejebringe en 25 styremekanisme til et skib ifølge indledningen, der endvidere indbefatter mindst to uafhængige momentoverførselsmekanismer, som kan indgribe med nævnte drevne hjul, og en aktuator til at drive hvert af nævnte momentoverførselsmekanismer. 1 35The new and distinctive aspect of achieving the above-mentioned aspects of the present invention consists in providing a steering mechanism for a ship according to the preamble, which further includes at least two independent torque transfer mechanisms which can engage with said driven wheels, and an actuator for driving each of said torque transmission mechanisms. 1 35

Med denne indretning fremvises et styresystem, som giver en høj grad af sikkerhed. Fordi der er mindst to aktuatorer integreret i styresystemet, vil den anden aktuator kunne overtage styringen af skibet, hvis en af aktuatorerne skulle fejle.This device exhibits a control system which provides a high degree of security. Because there are at least two actuators integrated into the control system, the other actuator will be able to take over the control of the ship should one of the actuators fail.

5 DK 176054 B15 DK 176054 B1

Den projekterede styremekanisme kan også udvides. Eftersom aktuatorerne påfører moment til et drevet hjul via momentoverførselsmekanismer, kan flere aktuatorer let tilføjes systemet ved at tilføje yderligere momentoverførsels-5 mekanismer, som anbringes omkring det drevne hjul.The projected control mechanism can also be expanded. Since the actuators apply torque to a driven wheel via torque transfer mechanisms, multiple actuators can be easily added to the system by adding additional torque transfer mechanisms which are placed around the driven wheel.

Styremekanismen kan konstrueres med ekstra aktuatorer under opførelsen, eller ekstra aktuatorer kan tilføjes efter ibrugtagningen.The control mechanism can be designed with additional actuators during construction, or additional actuators can be added after commissioning.

10 Fordi systemet kan udvides, kan systemet også skræddersys. En producent af styremekanismer kunne producere en basisenhed, indbefattende det drevne hjul, mindst to momentoverførselsmekanismer og de to aktuatorer, og tilføje systemet ekstra aktuatorer efter kundens anmodning.10 Because the system can be expanded, the system can also be tailored. A manufacturer of control mechanisms could produce a base unit, including the driven wheel, at least two torque transmission mechanisms and the two actuators, and add the system additional actuators at the customer's request.

1515

Systemet har også potentiale til at være energieffektiv, eftersom antallet af mindre, knap så kraftige, parallelforbundne aktuatorer kan anvendes i stedet for én stor og kraftig aktuator. Når kraft- og hastighedsbehovet er lavt, 20 såsom under normal sejlads, kan der anvendes en enkelt mindre aktuator. Når kraft- og hastighedsbehovet øges, kunne de andre aktuatorer blive aktiveret en efter en.The system also has the potential to be energy efficient, since the number of smaller, less powerful, parallel connected actuators can be used instead of one large and powerful actuator. When the power and speed requirements are low, such as during normal sailing, a single smaller actuator can be used. As the power and speed requirements increase, the other actuators could be activated one by one.

I en foretrukken udførelsesform for styremekanismen kan det 25 drevne hjul være et drevet gearhjul og hver momentoverførsels-mekanisme kan være et drivgearhjul, som indgriber med det drevne gearhjul. Det drevne gearhjuls radius er fortrinsvis større end drivgearhjulets radius.In a preferred embodiment of the steering mechanism, the 25 driven wheel may be a driven gear wheel and each torque transmission mechanism may be a drive gear which engages the driven gear wheel. The radius of the driven gear wheel is preferably greater than the radius of the drive gear.

30 Med denne indretning bliver styremekanismen meget enkel. På grund af det simple arrangement af gearene og det lave antal bevægelige dele, er systemet også robust med lille risiko for svigt. På grund af det reducerede antal dele bliver mekanismen endvidere billigere, både fra et fabrikationsperspektiv og et 35 samlingsperspektiv.With this device, the control mechanism becomes very simple. Due to the simple arrangement of the gears and the low number of moving parts, the system is also robust with little risk of failure. Furthermore, because of the reduced number of parts, the mechanism becomes cheaper, both from a manufacturing perspective and from a assembly perspective.

, DK 176054 B1 o, DK 176054 B1 o

Ved skibe med et enkelt ror kan den drejelige aksel være koaksialt fastgjort til skibets rorstang. Denne indretning vil give en kompakt, uafhængig styreenhed.For ships with a single rudder, the swivel shaft may be coaxially attached to the rudder bar of the ship. This device will provide a compact, independent controller.

5 Ved skibe med mere end et ror eller skibe med pladsbegrænsning omkring rorstangen kan den drejelige aksel forbindes med skibets ene ror eller flere ror via et gear-, kabel-, remeller kædesystem.5 For ships with more than one helm or space-limited ships around the helm, the pivot shaft can be connected to one or more helm of the ship via a gear, cable, belt or chain system.

10 I en foretrukken udførelsesform for styremekanismen kan mindst én aktuator indbefatte en elmotor, som styres af en elektronisk feedbackregulator af rorstillingen, hvor feedbacken kommer fra en eller flere rorbevægelsessensorer, og hvor rorbevægelsesreferencesignalet er et elektronisk signal, 15 som kommer fra en rorgænger via en mand-maskine-grænseflade eller en autopilot. At anvende en elmotor som aktuator tillader styresystemet at blive drevet af en elektrisk generator om bord. De fleste skibe har i dag allerede indbyggede generatorer, så systemomkostningerne holdes lave.In a preferred embodiment of the control mechanism, at least one actuator may include an electric motor controlled by an electronic feedback regulator of the rudder position, the feedback coming from one or more rudder motion sensors and the rudder reference signal being an electronic signal coming from a rudder through a man. machine interface or autopilot. Using an electric motor as an actuator allows the control system to be powered by an electric generator on board. Most ships today already have built-in generators, so system costs are kept low.

20 Elmotorer har også positivt moment- contra hastighedsforhold.20 Electric motors also have positive torque versus speed ratios.

En elmotor har højt moment ved nulhastighed. Dette er gavnligt, eftersom motoren under normal drift stoppes og kun anvendes til at holde roret i stilling. Feedbackregulering med anvendelse af en sådan motor og et rorbevægelsessignal som 25 feedback giver en meget nøjagtig styring af rorets stilling.An electric motor has high torque at zero speed. This is beneficial since during normal operation the engine is stopped and used only to hold the rudder in position. Feedback control using such an engine and a rudder motion signal as feedback provides a very accurate control of the rudder's position.

Mindst én aktuator kan fortrinsvis være en reserveelmotor med en manuel styringsgrænseflade af rorstillingen. At anvende en reserveelmotor tillader nødbetjening af styremekanismen fra 30 skibets bro, i stedet for at tvinge manuel aktivering af styremekanismen. En manuelt betjent aktuator kan imidlertid også anvendes til at sikre mod en situation med strømtab.Preferably, at least one actuator may be a spare motor with a manual control interface of the rudder position. Using a spare engine allows emergency operation of the steering mechanism from the 30 ship's bridge, instead of forcing manual activation of the steering mechanism. However, a manually operated actuator can also be used to safeguard against a power loss situation.

I systemer med meget stærke styrekræfter kan elmotorerne drive 35 momentoverførselsmekanismerne via en transmission. Transmissionen kan øge det moment, som motorerne påfører det drevne 7 DK 176054 B1 hjul. Transmissionen kan også reducere momentoverførselsmekanismens hastighed, hvilket tillader anvendelse af motorer med højere hastighed.In systems with very strong control forces, the electric motors can drive the torque transmission mechanisms via a transmission. The transmission can increase the torque applied by the engines to the driven 7 DK 176054 B1 wheel. The transmission can also reduce the torque transmission mechanism, allowing the use of higher speed motors.

5 I en yderligere udførelsesform for styremekanismen kan momentoverførselsmekanismerne omfatte en koblingsmekanisme, som kan afkoble den momentpåførende aktuator fra det drevne hjul. Koblingsmekanismen er anvendelig til at afkoble aktuatorerne, når de ikke er i brug. Dette øger systemets 10 energieffektivitet, eftersom de ikke anvendte aktuatorers inerti ikke påvirker systemet.In a further embodiment of the steering mechanism, the torque transfer mechanisms may comprise a clutch mechanism which can decouple the torque applying actuator from the driven wheel. The clutch mechanism is useful for disconnecting the actuators when not in use. This increases the energy efficiency of the system, since the inertia of the actuators not used does not affect the system.

En bremse, som kan stoppe rorets bevægelse, kan også være inkorporeret i styremekanismen. En bremse er nyttig, når det 15 er ønskeligt at låse rorets stilling i en vis tidsperiode.A brake that can stop the rudder movement may also be incorporated into the steering mechanism. A brake is useful when it is desirable to lock the rudder's position for a certain period of time.

Kort beskrivelse af tegningenBrief description of the drawing

Opfindelsen vil blive forklaret mere detaljeret nedenfor, hvor 20 der beskrives yderligere fordelagtige egenskaber og eksempelvise udførelsesformer under henvisning til tegningen, hvoriThe invention will be explained in more detail below, wherein further advantageous features and exemplary embodiments are described with reference to the drawing, in which

Fig. 1 skematisk viser styremekanismen ifølge opfindelsen, set 25 fra siden,FIG. 1 is a schematic side view of the control mechanism according to the invention,

Fig. 2 skematisk viser en del af samme, set fra oven,FIG. Figure 2 is a schematic view of a portion of the same,

Fig. 3 skematisk viser en anden eksempelvis udførelsesform for 30 styremekanismen, set fra oven,FIG. 3 is a schematic top view of another exemplary embodiment of the control mechanism,

Fig. 4 skematisk viser en tredje eksempelvis udførelsesform for styremekanismen, set fra siden, 35 Fig. 5 skematisk viser en fjerde eksempelvis udførelsesform for styremekanismen, set fra oven, DK 176054 B1FIG. 4 is a schematic side view of a third exemplary embodiment of the control mechanism, FIG. 5 schematically shows a fourth exemplary embodiment of the control mechanism, seen from above, DK 176054 B1

Fig. 6 skematisk viser en femte eksempelvis udførelsesform for styremekanismen, set fra siden, og 5 Fig. 7 skematisk viser en sjette eksempelvis udførelsesform for styremekanismen, set fra siden.FIG. 6 is a schematic side view of a fifth exemplary embodiment of the control mechanism; and FIG. 7 is a schematic side view of a sixth exemplary embodiment of the control mechanism.

Beskrivelse af en foretrukken udførelsesform for opfindelsen 10 Fig. 1 er en skematisk afbildning af en eksempelvis udførelsesform for skibstyremekanismen ifølge den foreliggende opfindelse anvendt på et skib med et drejeligt ror 1.Description of a Preferred Embodiment of the Invention 10 FIG. 1 is a schematic representation of an exemplary embodiment of the ship control mechanism of the present invention applied to a ship with a rotatable rudder 1.

Styremekanismen drejer roret 1 via en rorstang 2. Et gearhjul 15 3 er koaksialt fastgjort til rorstangen 2. Gearhjulet 3, som fra nu af omtales som det drevne gearhjul 3, drives af to uafhængige drivgearhjul 4', 4''. Diameteren af drivgearhjulene 4', 4'' er mindre end den af det drevne gearhjul 3. På denne måde er der en hastighedsreduktion og en momentforøgelse fra 20 drivgearhjulene 4', 4'' til det drevne gearhjul 3.The steering mechanism turns the rudder 1 via a rudder rod 2. A gear wheel 15 3 is coaxially attached to the rudder rod 2. The gear wheel 3, which from now on is referred to as the driven gear wheel 3, is driven by two independent drive gears 4 ', 4' '. The diameter of the drive gears 4 ', 4' 'is smaller than that of the driven gear wheel 3. In this way, there is a speed reduction and torque increase from the 20 drive gears 4', 4 '' to the driven gear wheel 3.

I denne eksempelvise udførelsesform er drivgearhjulene 4', 4'' cylindriske gearhjul, men hvis der ønskes yderligere momentforøgelse eller hastighedsreduktion, kunne snekkegear 25 (ikke vist) anvendes i stedet for cylindriske gear. Udover at tilvejebringe øget moment, er snekkegear også selvlåsende, hvilket kan være ønskeligt i nogle tilfælde. Et godt eksempel ville være på skibe, hvor roret holdes i samme stilling i længere perioder. Når der anvendes et snekkegear, låser roret 30 selv, så snart aktuatoren frigiver momentet. Hvis der i stedet anvendes cylindrisk gear, ville aktuatoren konstant skulle påføre moment for at holde roret i stilling.In this exemplary embodiment, the drive gears 4 ', 4' 'are cylindrical gears, but if further torque increase or speed reduction is desired, worm gears 25 (not shown) could be used instead of cylindrical gears. In addition to providing increased torque, worm gears are also self-locking, which may be desirable in some cases. A good example would be for ships where the helm is held in the same position for extended periods. When a worm gear is used, the rudder 30 locks itself as soon as the actuator releases the torque. If cylindrical gears are used instead, the actuator would constantly have to apply torque to keep the rudder in position.

Snekkegearløsningen ville derfor være mere energieffektiv.The worm gear solution would therefore be more energy efficient.

35 I denne eksempelvise udførelsesform drives hvert drivgearhjul 4', 4'' af en elmotor 5', 5 ' ' .In this exemplary embodiment, each drive gear 4 ', 4' 'is driven by an electric motor 5', 5 ''.

9 DK 176054 B19 DK 176054 B1

Ved typisk brug anvendes den første motor 5' ikke og bruger derfor ingen strøm. I tilfælde af at den anden motor 5'' fejler, kan den første motor 5' styres ved at påføre den 5 første motors 5' udtag 6' spænding via en manuel omkoblingsenhed 7, som er forbundet til et batteri 8. I en anden udførelsesform (ikke vist) kunne den første motor erstattes af en manuelt betjent armmekanisme, som drejer drivgearhjulet 4' med anvendelse af menneskekraft. Dette ville 10 være nyttigt i det tilfælde, hvor skibet mister strømmen.In typical use, the first motor 5 'is not used and therefore uses no power. In case the second motor 5 '' fails, the first motor 5 'can be controlled by applying the voltage 6' of the first motor 5 'via a manual switching unit 7 which is connected to a battery 8. In another embodiment (not shown), the first engine could be replaced by a manually operated arm mechanism which turns the drive gear 4 'using manpower. This would be useful in the case of the ship losing power.

Den anden motor 5'' styres via en automatisk regulator 9. Et elektronisk rorvinkelreferencesignal 10 indlæses, enten i digital eller analog form, via en joystick 11. I dette 15 eksempel betjenes joysticket 11 af en rorgænger. Det elektroniske rorvinkelreferencesignal 10 kunne imidlertid også komme fra et autopilotsystem (ikke vist). Den automatiske regulator 9 modtager et rorvinkelsignal 12 fra en rorvinkelsensor 13. Den automatiske regulator 9 forsøger at 20 tvinge forskellen mellem rorvinkelsignalet 12 og rorvinkelreferencesignalet 10 til nul. Dette kan opnås med en af mange forskellige kontrolalgoritmer, hvor et populært eksempel er en PID regulator. Regulatoren kan være digital eller analog. For at forbedre regulatoren 9's ydelse, kunne 25 sensoren 13 også tilbageføre yderligere parametre, såsom hastighed, acceleration eller styrke til regulatoren 9.The second motor 5 '' is controlled via an automatic regulator 9. An electronic rudder angle reference signal 10 is input, either in digital or analog form, via a joystick 11. In this example, the joystick 11 is operated by a rudder. However, the electronic rudder angle reference signal 10 could also come from an autopilot system (not shown). The automatic regulator 9 receives a rudder angle signal 12 from a rudder angle sensor 13. The automatic regulator 9 attempts to force the difference between the rudder angle signal 12 and the rudder angle reference signal 10 to zero. This can be achieved with one of many different control algorithms, where a popular example is a PID controller. The controller can be digital or analog. To improve the performance of the controller 9, the sensor 13 could also return additional parameters such as speed, acceleration or strength to the controller 9.

Regulatoren 9's outputsignal 14 er input til en motordrivenhed 15. Motordrivenheden 15 er fastgjort på skibets strømforsyning 30 (ikke vist) via kabler 16. Motordrivenheden 15 påfører kraft til den anden motor 5'' ifølge regulatoren 9's outputsignal 14. Motordrivenheden 15 afhænger af hvilken type motor, den anden motor 5'' er. I en foretrukken udførelsesform er den anden motor 5'' en asynkron motor, og motordrivenheden 15 er 35 en frekvensomformer.The output signal 14 of the controller 9 is input to a motor driver 15. The motor driver 15 is attached to the ship's power supply 30 (not shown) via cables 16. The motor driver 15 applies power to the second motor 5 '' according to the output signal 14. The motor driver 15 depends on the type of motor, the other motor 5 '' is. In a preferred embodiment, the second motor 5 '' is an asynchronous motor and the motor driver 15 is a frequency converter.

10 DK 176054 B110 DK 176054 B1

Fig. 2 viser skematisk en del af den samme styremekanisme, som er vist i fig. 1, når den ses fra oven. Roret 1 er koaksialt fastgjort til det drevne gearhjul 3 via rorstangen 2. Det drevne gearhjul 3 drives af drivgearhjulene 4', 4''.FIG. 2 schematically shows part of the same control mechanism shown in FIG. 1 when viewed from above. The rudder 1 is coaxially attached to the driven gear 3 via the rudder rod 2. The driven gear 3 is driven by the drive gears 4 ', 4' '.

5 Den i fig. 1 og 2 viste eksempelvise udførelsesform viser anvendelsen af cylindriske gear til at overføre moment fra drivhjulene 4', 4'' til det drevne hjul 3. Det ville imidlertid også være muligt at overføre moment via et rem-, kæde- eller kabelsystem {ikke vist) . Et rem-, kæde- eller 10 kabelsystem har den fordel, at motorerne kan være anbragt længere væk fra det drevne hjul 3. Dette er nyttigt i de tilfælde, hvor der er pladsmangel omkring det drevne hjul 3.5 The embodiment of FIG. 1 and 2, exemplary embodiment shows the use of cylindrical gears for transferring torque from the drive wheels 4 ', 4' 'to the driven wheel 3. However, it would also be possible to transfer torque via a belt, chain or cable system {not shown ). A belt, chain or cable system has the advantage that the motors can be located further away from the driven wheel 3. This is useful in cases where there is a lack of space around the driven wheel 3.

Fig. 3 viser en anden udførelsesform for styresystemet, når 15 det ses fra oven. I denne udførelsesform er det drevne gearhjul 17 et hjulsegment. Det drevne gearhjul 17 er koaksialt fastgjort på roret 1 via rorstangen 2.FIG. 3 shows another embodiment of the control system when viewed from above. In this embodiment, the driven gear wheel 17 is a wheel segment. The driven gear wheel 17 is coaxially secured to the rudder 1 via the rudder rod 2.

Drivgearhjulene 4', 4'' driver det drevne gearhjul 17. Denne udførelsesform anvendes i tilfælde, hvor roret 2's 20 vinkelbevægelse er begrænset.The drive gears 4 ', 4' 'drive the driven gear 17. This embodiment is used in cases where the angular motion of the rudder 2 is limited.

Fig. 4 viser en tredje udførelsesform for styresystemet, når det ses fra siden. I dette tilfælde er motorerne 5', 5'' fastgjort på drivgearhjulene 4', 4'' via tandhjulsudvekslinger 25 18', 18''. Tandhjulsudvekslingerne 18', 18'' reducerer omdrejningstallet af drivgearhjulene 4', 4'' yderligere i forhold til omdrejningstallet af motorerne 5', 5''. På grund af reduktionen i omdrejningstal øges momentet derfor. Mindre og hurtigere motorer kan derfor anvendes til at påføre samme 30 moment.FIG. 4 shows a third embodiment of the control system when viewed from the side. In this case, the motors 5 ', 5' 'are secured to the drive gears 4', 4 '' via gear gears 25 18 ', 18' '. The gears 18 ', 18' 'further reduce the rpm of the drive gears 4', 4 '' relative to the rpm of the motors 5 ', 5' '. Therefore, due to the reduction in rpm, the torque increases. Smaller and faster motors can therefore be used to apply the same 30 torque.

Fig. 5 viser en fjerde udførelsesform for styremekanismen, set fra oven. Denne udførelsesform anvendes på et skib, som har en dobbeltror- (21', 21'') samling. Som i de foregående eksempler 35 driver drivgearhjulene 4', 4'' et drevet gearhjul 3. Det drevne gearhjul 3 er fastgjort til et kædehjul 18 via en n DK 176054 B1 drejelig aksel 19. De to ror 21', 21'' er hver koaksialt forbundet til et kædehjul 22', 22'' via en rorstang 23', 23''.FIG. 5 is a top view of a fourth embodiment of the control mechanism. This embodiment is used on a ship which has a double rudder (21 ', 21' ') assembly. As in the previous examples 35, the drive gears 4 ', 4' 'drive a driven gear 3. The driven gear 3 is attached to a sprocket 18 via a rotatable shaft 19. The two rudders 21', 21 '' are each coaxially connected to a sprocket 22 ', 22' 'via a rudder rod 23', 23 ''.

De tre kædehjul 19, 22', 22'' er forbundet med hinanden via en kæde 24. Når drivhjulene 4', 4'' drejer det drevne hjul 3, 5 drejer de to ror 21', 21'' på denne måde synkront. Kæden 24 kunne erstattes af en anden type drivenhed, såsom et gearsystem, remsystem eller kabelsystem uden at ændre opfindelsens omfang.The three sprockets 19, 22 ', 22' 'are connected to each other via a chain 24. As the drive wheels 4', 4 '' rotate the driven wheel 3, 5 the two rudders 21 ', 21' 'in this way synchronously. The chain 24 could be replaced by another type of drive such as a gear system, belt system or cable system without changing the scope of the invention.

10 Fig. 6 viser en femte udførelsesform for styremekanismen, når den ses fra siden. I denne udførelsesform er en bremsemekanisme 25 fastgjort til det drevne gearhjul 3. I denne eksempelvise udførelsesform består bremsen af en skive 26, som er koaksialt fastgjort til det drevne gearhjul 3. Et 15 bremseåg 27 presser på skiven 26, når det drevne gearhjul 3's rotation ønskes stoppet.FIG. 6 shows a fifth embodiment of the control mechanism when viewed from the side. In this embodiment, a brake mechanism 25 is attached to the driven gear wheel 3. In this exemplary embodiment, the brake consists of a washer 26 coaxially attached to the driven gear wheel 3. A 15 brake shaft 27 presses on the disk 26 as the rotation of the driven gear wheel 3 wish to be stopped.

Fig. 7 viser en sjette udførelsesform for styremekanismen, når den ses fra siden. I denne udførelsesform forbinder 20 koblingsmekanismer 28', 28'' motorerne 5', 5'' med drivgearhjulene 4', 4''. Når koblingsmekanismerne 28', 28'' ikke er i indgreb, afkobles motorerne 5', 5'' fra drivhjulene 4', 4'', og har derfor ingen indflydelse på systemet. Dette er særlig nyttigt, når en motor 5' ' arbejder, og den anden motor 25 5' holdes i reserve. Hvis reservemotoren 5' kobles direkte til systemet, skal den motor 5'', som er i drift, rotere inertien af reservemotoren 5' og spilder derved energi. Ved via en koblingsmekanisme 28' at afkoble reservemotoren 5', når den ikke er i brug, reduceres belastningen på den arbejdende motor 30 5 " .FIG. 7 shows a sixth embodiment of the control mechanism when viewed from the side. In this embodiment, 20 clutch mechanisms 28 ', 28' 'connect motors 5', 5 '' to drive gears 4 ', 4' '. When the clutch mechanisms 28 ', 28' 'are not engaged, the motors 5', 5 '' are decoupled from the drive wheels 4 ', 4' ', and therefore have no influence on the system. This is particularly useful when one motor 5 '' is operating and the other motor 25 5 'is being held in reserve. If the spare motor 5 'is connected directly to the system, the motor 5' which is in operation must rotate the inertia of the spare motor 5 ', thereby wasting energy. By decoupling the spare motor 5 'when not in use via a clutch mechanism 28', the load on the working motor 30 5 "is reduced.

Hvis man ønsker at spare på driftsomkostningerne, kunne styresystemet omfatte flere drivenheder, som arbejder parallelt for at drive roret (ikke vist). Eftersom roret under 35 typisk drift er tæt på at være centreret, er styrekræfterne ret svage. Det meste af tiden kræves der derfor kun svage DK 176054 B1 styrekræfter. Når der kun kræves svage styrekræfter, kunne en enkelt motor drive styremekanismen. De ekstra motorer kunne følgelig afkobles systemet med anvendelse af en koblingsmekanisme 28', 28'' lig den vist i fig. 7. Idet 5 behovet for styrekræfter øges, kunne ekstra motorer kobles til systemet en efter en. Dette betyder, at der kun anvendes en enkelt lille motor under normal drift. Dette vil reducere strømforbruget og følgelig driftsomkostningerne.If you want to save on operating costs, the control system could include several drive units operating in parallel to operate the helm (not shown). Since the rudder during typical operation is close to being centered, the steering forces are rather weak. Most of the time, therefore, only weak DK 176054 B1 steering forces are required. When only weak steering forces are required, a single motor could drive the steering mechanism. Accordingly, the auxiliary motors could be decoupled using a clutch mechanism 28 ', 28' 'similar to that shown in FIG. 7. As the need for steering forces increased, additional motors could be connected to the system one by one. This means that only a single small engine is used during normal operation. This will reduce power consumption and consequently operating costs.

10 Selvom elmotorer har et antal positive features sammenlignet med hydrauliske systemer, er hydrauliske energiforsyningssystemer i nogle tilfælde allerede monteret i skibet. I disse tilfælde kunne det være fordelagtigt at drive styremekanismen med hydraulikmotorer i stedet for elmotorer. Hydraulikmotorer 15 har et meget stort kraft/størrelsesforhold, hvilket gør dem meget fordelagtige i trænge omgivelser.10 Although electric motors have a number of positive features compared to hydraulic systems, in some cases hydraulic energy supply systems are already mounted in the ship. In these cases, it could be advantageous to operate the steering mechanism with hydraulic motors instead of electric motors. Hydraulic motors 15 have a very large power / size ratio, which makes them very advantageous in confined environments.

Claims (9)

13 DK 176054 B113 DK 176054 B1 1. Styremekanisme til et skib indbefattende en drejelig aksel (2), og 5. et drevet hjul (3), som er koaksialt fastgjort til den drejelige aksel (2), nævnte drevne hjul (3) er • et helt hjul eller et hjulsegment, kendetegnet ved, at nævnte mekanisme endvidere indbefatter: 10. mindst to momentoverførselsmekanismer (4',4''), som kan indgribe med nævnte drevne hjul (3), og en aktuator (5', 5'') til at drive hver af nævnte momentoverførselsmekanismer (4',4'').1. Steering mechanism for a ship including a pivot shaft (2), and 5. a driven wheel (3) coaxially attached to the pivot shaft (2), said driven wheel (3) being • an entire wheel or wheel segment. , characterized in that said mechanism further includes: 10. at least two torque transmission mechanisms (4 ', 4' ') which can engage with said driven wheels (3) and an actuator (5', 5 '') for driving each of said torque transmission mechanisms (4 ', 4' '). 2. Styremekanisme ifølge krav 1, kendetegnet ved, at det drevne hjul (3) er et drevent gearhjul (3), og hver momentoverførselsmekanisme (4',4'') er et drivgearhjul (4', 4''), som indgriber med det drevne gearhjul (3).Steering mechanism according to claim 1, characterized in that the driven wheel (3) is a driven gear wheel (3) and each torque transmission mechanism (4 ', 4' ') is a driving gear (4', 4 '') which engages with the driven gear wheel (3). 3. Styremekanisme ifølge krav 2, kendetegnet ved, at det drevne gearhjuls (3) radius er større end drivgearhjulenes {4', 4'') radius.Steering mechanism according to claim 2, characterized in that the radius of the driven gear wheel (3) is greater than the radius of the drive wheels (4 ', 4' '). 4. Styremekanisme ifølge krav 1, 2 eller 3, kendetegnet ved, 25 at den drejelige aksel (2) er koaksialt fastgjort til skibets rorstang (2).Steering mechanism according to claim 1, 2 or 3, characterized in that the rotatable shaft (2) is coaxially attached to the rudder rod (2) of the ship. 5. Styremekanisme ifølge krav 1, 2 eller 3, kendetegnet ved, at den drejelige aksel (2) er forbundet til skibets ror 30 (1) eller ror (21', 21'') via et gear-, kabel-, rem eller kædesystem. 1 2 3 4 Styremekanisme ifølge ethvert af de foregående krav, 2 kendetegnet ved, at mindst én aktuator (5'') indbefatter 3 35 en elmotor (5''), som styres af en elektronisk 4 feedbackregulator af rorstillingen (9), hvor feedbacken DK 176054 B1 kommer fra en eller flere rorbevægelsessensorer (13) , og hvor rorbevægelsesreferencesignalet (10) er et elektronisk signal, som kommer fra en rorgænger via en mand-maskine-grænseflade (11) eller fra en autopilot. 5Steering mechanism according to claim 1, 2 or 3, characterized in that the pivot shaft (2) is connected to the ship's rudder 30 (1) or rudder (21 ', 21' ') via a gear, cable, belt or chain system. Control mechanism according to any of the preceding claims, 2 characterized in that at least one actuator (5 '') includes an electric motor (5 '') which is controlled by an electronic 4 feedback regulator of the rudder position (9), wherein The feedback DK 176054 B1 comes from one or more rudder motion sensors (13) and wherein the rudder motion reference signal (10) is an electronic signal coming from a helm via a man-machine interface (11) or from an autopilot. 5 7. Styremekanisme ifølge ethvert af de foregående krav, kendetegnet ved, at mindst én aktuator (5') er en reservemotor (5') med en manuel styringsgrænseflade af rorstillingen (7) . 10Control mechanism according to any one of the preceding claims, characterized in that at least one actuator (5 ') is a spare motor (5') with a manual control interface of the rudder position (7). 10 8. Styremekanisme ifølge ethvert af de foregående krav, kendetegnet ved, at nævnte aktuatorer (5', 5'') driver momentoverførselsmekanismer (4', 4'') via en transmission (18', 18 ' ') . 15Control mechanism according to any one of the preceding claims, characterized in that said actuators (5 ', 5' ') drive torque transmission mechanisms (4', 4 '') via a transmission (18 ', 18' '). 15 9. Styremekanisme ifølge ethvert af de foregående krav, kendetegnet ved, at hver momentoverførselsmekanisme (4', 4'') omfatter en koblingsmekanisme (28', 28''), som kan afkoble den momentpåførende aktuator (5', 5'') fra det 20 drevne hjul (3). 1 Styremekanisme ifølge ethvert af de foregående krav, kendetegnet ved, at en bremse (25) er inkorporeret i systemet, nævnte bremse (25) kan standse rorets (1) 25 bevægelse.Steering mechanism according to any one of the preceding claims, characterized in that each torque transmission mechanism (4 ', 4' ') comprises a clutch mechanism (28', 28 '') capable of decoupling the torque applying actuator (5 ', 5' '). from the 20 driven wheel (3). Control mechanism according to any one of the preceding claims, characterized in that a brake (25) is incorporated in the system, said brake (25) being able to stop the movement of the rudder (1).
DK200300830A 2003-06-04 2003-06-04 Steering mechanism for a ship DK176054B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DK200300830A DK176054B1 (en) 2003-06-04 2003-06-04 Steering mechanism for a ship
PCT/DK2004/000384 WO2004108523A1 (en) 2003-06-04 2004-06-03 Steering mechanism for a ship

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DK200300830 2003-06-04
DK200300830A DK176054B1 (en) 2003-06-04 2003-06-04 Steering mechanism for a ship

Publications (2)

Publication Number Publication Date
DK200300830A DK200300830A (en) 2004-12-05
DK176054B1 true DK176054B1 (en) 2006-02-27

Family

ID=33495506

Family Applications (1)

Application Number Title Priority Date Filing Date
DK200300830A DK176054B1 (en) 2003-06-04 2003-06-04 Steering mechanism for a ship

Country Status (2)

Country Link
DK (1) DK176054B1 (en)
WO (1) WO2004108523A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITTO20070140A1 (en) * 2007-02-27 2008-08-28 Avio Spa COMMAND AND CONTROL GROUP OF AN DIRECTIONAL ORGAN OF A NAVAL UNIT
DE102009000993A1 (en) * 2009-02-18 2010-08-19 Zf Friedrichshafen Ag Control device and boat drive with control device
JP6004876B2 (en) * 2012-10-03 2016-10-12 三菱重工業株式会社 Steering machine and ship equipped with the same
JP5826164B2 (en) * 2012-12-28 2015-12-02 三菱重工業株式会社 Steering machine
JP5875545B2 (en) * 2013-03-06 2016-03-02 三菱重工業株式会社 Electric steering
KR101538895B1 (en) * 2014-12-15 2015-07-22 훌루테크 주식회사 Steering apparatus of gear type and steering method by the same
JP2017013621A (en) * 2015-06-30 2017-01-19 ナブテスコ株式会社 Drive unit for electric steering device, electric steering mechanism, electric steering unit, and ship
WO2017002875A1 (en) * 2015-06-30 2017-01-05 ナブテスコ株式会社 Electric steering device drive apparatus, electric steering device, electric steering device drive control apparatus, electric steering mechanism, electric steering unit, ship, and method for designing electric steering device
DE102017213420A1 (en) * 2017-08-02 2019-02-07 Siemens Aktiengesellschaft Electric actuator system of a nacelle for driving a float

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2586019A (en) * 1948-10-20 1952-02-19 Willy O Frohlich Marine propelling and steering mechanism
JPS5247231B2 (en) * 1972-05-27 1977-12-01
US3838656A (en) * 1972-08-21 1974-10-01 Safe Flight Instrument Marine automatic pilot rudder motor control system
SE459249B (en) * 1987-12-09 1989-06-19 Kamewa Ab COMBINED ROOTER AND PROPELLER DEVICE
FI108119B (en) * 1999-01-26 2001-11-30 Abb Azipod Oy Turning a propulsion unit
DE10062354B4 (en) * 2000-12-14 2007-12-20 Siemens Ag Actuator for a, in particular electrically driven, rudder propeller of a ship

Also Published As

Publication number Publication date
WO2004108523A1 (en) 2004-12-16
DK200300830A (en) 2004-12-05

Similar Documents

Publication Publication Date Title
FI107042B (en) Turning a propulsion unit
DK176054B1 (en) Steering mechanism for a ship
US8317556B2 (en) Boat propulsion system, and control device and control method therefor
JP7117895B2 (en) Ships and ship maneuvering systems
US6712654B1 (en) Turning of a propulsion unit
US8277270B2 (en) Boat propulsion unit
US7942712B2 (en) Boat propulsion system, and control device and control method therefor
US20090215331A1 (en) Boat propulsion system, control device thereof, and control method
EP2390175B1 (en) Servo-assisted steering device for vehicles, in particular for boats or the like
EP1959163B1 (en) Linear actuator
US8255102B2 (en) Steering unit for a steer-by-wire ship's control system and method for operating the steering unit
EP3354558B1 (en) Side-mount type engine control apparatus
KR930005818A (en) Electronic shift or clutch actuator for vehicle transmission
US8016625B2 (en) Marine propulsion system
JPS5816958A (en) Power steering device
JP2009241754A (en) Vessel propulsion unit
US7435146B2 (en) Forward and reverse drive switching device for outboard motor
KR20030067702A (en) Actuator for a rudder propeller, in particular an electrically driven propeller of a sea-going vessel
US8011984B2 (en) Boat propulsion system
WO2018159208A1 (en) Marine propulsion system and ship
EP3693265B1 (en) Motorboat fly-by-wire steering wheel hub
US4173937A (en) Remotely actuated marine steering system
KR102559264B1 (en) Remote controlling device for shift lever of ship and shift controlling apparatus having the same
JP4283646B2 (en) Outboard motor shift operation device
US5350328A (en) Marine engine control system

Legal Events

Date Code Title Description
PBP Patent lapsed

Ref document number: DK