DK175810B1 - DNA coding for mammalian interleukin-1 receptor - used for obtaining protein and antibodies for diagnosis and therapy involving immune or inflammatory activities - Google Patents

DNA coding for mammalian interleukin-1 receptor - used for obtaining protein and antibodies for diagnosis and therapy involving immune or inflammatory activities Download PDF

Info

Publication number
DK175810B1
DK175810B1 DK200200803A DKPA200200803A DK175810B1 DK 175810 B1 DK175810 B1 DK 175810B1 DK 200200803 A DK200200803 A DK 200200803A DK PA200200803 A DKPA200200803 A DK PA200200803A DK 175810 B1 DK175810 B1 DK 175810B1
Authority
DK
Denmark
Prior art keywords
receptor
lys
cells
sequence
ile
Prior art date
Application number
DK200200803A
Other languages
Danish (da)
Inventor
Steven K Dower
Carl J March
John E Sims
David L Urdal
Original Assignee
Immunex Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US07/160,550 external-priority patent/US4968607A/en
Priority claimed from US07/258,756 external-priority patent/US5081228A/en
Priority claimed from DK198902553A external-priority patent/DK175403B1/en
Application filed by Immunex Corp filed Critical Immunex Corp
Priority to DK200200803A priority Critical patent/DK175810B1/en
Publication of DK200200803A publication Critical patent/DK200200803A/en
Application granted granted Critical
Publication of DK175810B1 publication Critical patent/DK175810B1/en

Links

Landscapes

  • Peptides Or Proteins (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

The following are claimed (a) a DNA sequence comprising a single open reading frame nucleotide sequence encoding mammalian interleukin-1 receptor (Ih-1R) or a subunit of it, (b) a recombinant expression vector comprising the DNA sequence, (c) a population of eukaryotic cells which express more than 30,000 surface Ih-1 receptors per cell, (d) a homogeneous biologically active mammalian IL-1R compsn., (e) antibodies immunoreactive with IL-1R.

Description

DK 175810 B1DK 175810 B1

Den foreliggende opfindelse angår lnterleukin-1 Reæptor (IL-1R).The present invention relates to interleukin-1 receptor (IL-1R).

Interleukin-1a og lnterleukin-1 β (IL-1 nr. on II -ΐβ) er fjernt hesleanterle polypeptidhormoner, der spiller en central rolle ved reguleringen af immun- og inflammatoriske responser. Disse to proteiner blev oprindeligt begge klassificeret som IL-1 5 på grundlag af en fælles lymfocytaktiveringsfaktor (LAF) aktivitet og en fælles hoved-cellekilde, aktiverede makrofager. De samlede informationer fra undersøgelser, hvor der blev anvendt rensede naturlige og rekombinante IL-1 molekyler, har gjort det klart, at IL-1a og IL-1 β hver især medierer de fleste, om ikke alle, af det brede spektrum af aktiviteter, der tidligere blev tilskrevet IL-1. Grundlaget for dette næsten identiske 10 spektrum af biologiske aktiviteter antages at være en enkelt klasse plasmamembran IL-1 receptorer, der binder både IL-1 α og IL-1 β.Interleukin-1a and interleukin-1 β (IL-1 no. On II -ΐβ) are distantly hesleanterle polypeptide hormones that play a central role in the regulation of immune and inflammatory responses. These two proteins were originally both classified as IL-1 5 on the basis of a common lymphocyte activation factor (LAF) activity and a common main cell source, activated macrophages. The pooled data from studies using purified natural and recombinant IL-1 molecules have made it clear that IL-1a and IL-1 β each mediate most, if not all, of the broad spectrum of activities. previously attributed to IL-1. The basis for this almost identical spectrum of biological activities is thought to be a single class of plasma membrane IL-1 receptors that bind both IL-1 α and IL-1 β.

Der er tidligere blevet publiceret nogle få foreløbige rapporter vedrørende eksistensen af en IL-1 plasmamembranreceptor. Hidtil har strukturel karakterisering af lnterleukin-1 receptoren været begrænset til bestemmelser af molekylvægten af dette 15 protein ved gelfiltrering, ved SDS-PAGE analyse af covalente komplekser dannet ved kemisk tværbinding mellem receptoren og 125I-IL-1 molekyler og ved immunpræcipi-tering af mærkede overfladeproteiner.A few preliminary reports have previously been published regarding the existence of an IL-1 plasma membrane receptor. Heretofore, structural characterization of the interleukin-1 receptor has been limited to determinations of the molecular weight of this protein by gel filtration, by SDS-PAGE analysis of covalent complexes formed by chemical crosslinking between the receptor and 125 I-IL-1 molecules, and by immunoprecipitation of labeled surface proteins.

Dover et al. (j. Exp. Med. 162:501,1985) og Dover et al. (Proc. Natl. A-cad. Sci. USA 83:1060,1986) beskriver kemiske tværbindingsundersøgelser, der viser 20 et tilsyneladende 79.5 kilodalton (kDa) plasmamembranprotein på LBRM-33-1A5 murine T-lymfomaceller og et overfladeprotein på 78 kDa på en murin fibroblastcellelinie, der bandt 1251-mærket human lnterleukin-1 β. Kilian et al. (J. Immunol. 136:4509, 1986) rapporterede, at murin 125l-IL-1a, der binder til murine thymomaceller, kunne blive blokeret med human IL-1a og IL-Ιβ. Dover et al. (Nature 324:266,1986) rappor-! 25 terede kompetitive bindingsundersøgelser, der viste, at IL-1 α og IL-1 β bandt til de samme celleoverfladereceptorer på LBRM-33-1 A5 celler, humane dermale fibrobla-ster, murine BALB-3T3 celler samt ARH77, en human B-lymfoblastoidcellelinie. Receptorerne i de forskellige cellelinier udviste lignende, men ikke identiske bindingskarakteristika. Det blev påvist, at IL-1 receptorerne på porcine synoviale fibroblaster (Bird 30 et al., Nature 324:263,1986) og humane dermale fibroblaster (Chin et al., J. Exp. Med.Dover et al. (j. Exp. Med. 162: 501,1985) and Dover et al. (Proc. Natl. A-cad. Sci. USA 83: 1060,1986) describes chemical crosslinking studies showing an apparent 79.5 kilodalton (kDa) plasma membrane protein on LBRM-33-1A5 murine T lymphoma cells and a 78 kDa surface protein on a murine fibroblast cell line that bound 1251-labeled human interleukin-1 β. Kilian et al. (J. Immunol. 136: 4509, 1986) reported that murine 125 I-IL-1α, which binds to murine thymoma cells, could be blocked with human IL-1α and IL-β. Dover et al. (Nature 324: 266,1986) rappor-! 25 competitive binding studies showing that IL-1 α and IL-1 β bound to the same cell surface receptors on LBRM-33-1 A5 cells, human dermal fibroblasts, murine BALB-3T3 cells, and ARH77, a human B lymphoblastoid cell line. The receptors in the different cell lines exhibited similar but not identical binding characteristics. The IL-1 receptors on porcine synovial fibroblasts (Bird 30 et al., Nature 324: 263,1986) and human dermal fibroblasts (Chin et al., J. Exp. Med.

165:70,1987) giver en hovedart i størrelsesområdet Mr 97.000-100.000, når de tværbindes med mærket IL-7, hvilket lader formode, at et protein med Mr 80.000 var ansvarligt for binding af IL-1.1 modsætning hertil udviste IL-1 receptorer, der på denne måde blev karakteriseret på humane B-celler (Matsushima et al., J. Immunol.165: 70,1987) gives a major species in the size range Mr 97,000-100,000 when cross-linked with the label IL-7, suggesting that a protein with Mr 80,000 was responsible for binding IL-1.1 as opposed to IL-1 receptors , which was characterized in this way on human B cells (Matsushima et al., J. Immunol.

35 136:4496,1986), en tilsyneladende molekylvægt på 60.000.136: 4496, 1986), an apparent molecular weight of 60,000.

I DK 175810 B1 II DK 175810 B1 I

I II I

I Bron og MacDonald, FEBS Letters 219:365 (1987) beskriver immun- IIn Bron and MacDonald, FEBS Letters 219: 365 (1987) describe immune I

præcipitering af murin IL-1 receptor fra overfldemærkede EL-4 celler under anvendel- Iprecipitation of murine IL-1 receptor from surface-labeled EL-4 cells during use

I se af et polyklonalt kaninantiserum rettet mod IL-1. Dette arbejde viser, at den murineIn view of a polyclonal rabbit antiserum directed against IL-1. This work shows that the murine

I receptor er et glycoprotein med en tilsyneladende molekylvægt på ca. 82.000 dalton. IIn receptor, a glycoprotein with an apparent molecular weight of approx. 82,000 daltons. IN

I 5 Radiomærket IL-1 er blevet anvendt i kemiske tværbindingsunder- II 5 The radiolabelled IL-1 has been used in chemical crosslinking sub- I

I søgelser og til påvisning af receptor i detergentekstrakter af celler. Resultaterne af IIn searches and for the detection of receptor in detergent extracts of cells. The results of I

disse ovenfor anførte forsøg lader formode, at et protein med Mr 60.000 eller 80.000 Ithese experiments above suggest that a protein with Mr 60,000 or 80,000 I

I er ansvarligt for binding af IL-1. Tværbindingen af radiomærket IL-1 til celler har ogsåYou are responsible for the binding of IL-1. The cross-linking of radiolabeled IL-1 to cells also has

I ført til den lejlighedsvise påvisning af proteiner, som adskiller sig fra hovedarten med II led to the occasional detection of proteins that differ from the main species with I

I 10 Mr 80.000, hvilket lader formode, at IL-1 bindingsmolekylet kan forekomme i membra-In 10 Mr 80,000, which suggests that the IL-1 binding molecule may be present in membranes.

nen som del af et multi-underenhedsreceptorkompleks. Ias part of a multi-subunit receptor complex. IN

I Til undersøgelse af strukturen og de biologiske egenskaber af IL-1 re- II To study the structure and biological properties of IL-1 re- I

I ceptorer og den rolle, IL-1 receptorer spiller for responserne af forskellige cellepopula- II receptors and the role that IL-1 receptors play in the responses of different cell populations

I tioner over for IL-1 stimulering, eller den effektive anvendelse af IL-1 receptorer til te- II ions to IL-1 stimulation, or the effective use of IL-1 receptors for tea- I

15 rapi, diagnose eller analyse, er der brug for homogene IL-1 receptorsammensætnin-15 rapi, diagnosis or analysis, homogeneous IL-1 receptor composition is required

ger. Sådanne sammensætninger er teoretisk tilgængelige via oprensning af solubilise- Iger. Such compositions are theoretically available via purification of solubilization- I

I rede receptorer, der udtrykkes af dyrkede celler, eller ved kloning og ekspression af IIn prepared receptors expressed by cultured cells or by cloning and expression of I

I gener, der indkoder receptorerne. Hidtil har flere forhindringer imidlertid stået i vejen IIn genes that encode the receptors. So far, however, several obstacles have stood in the way

I for opnåelsen af disse mål. IIn order to achieve these goals. IN

20 Selv i cellelinier, der vides at udtrykke påviselige niveauer af IL-1 recep- I20 Even in cell lines known to express detectable levels of IL-1 receptor

tor, ér IL-1 receptoren til stede som en meget lille komponent af de samlede cellepro- IThe IL-1 receptor is present as a very small component of the total cell pro- I

I teiner. Desuden kendte man ingen cellelinier, der konstitutivt og kontinuert udtrykte IIn pots. Furthermore, no cell lines were known that constitutively and continuously expressed I

I høje niveauer af IL-1 receptorer. For eksempel udtrykker den murine EL-4 6.1 celleli- IIn high levels of IL-1 receptors. For example, the murine EL-4 expresses 6.1 cell-I

nie påviselige niveauer af IL-1 receptor, men niveauet af IL-1 receptorekspression har Inie detectable levels of IL-1 receptor, but the level of IL-1 receptor expression has I

I 25 en tendens til at nedbrydes med tiden, hvilket i høj grad komplicerer arbejdet met at II 25 tends to degrade over time, which greatly complicates the work met that I

opnå tilstrækkelige mængder af receptor til tilvejebringelse af et anvendeligt ud- Iobtain sufficient amounts of receptor to provide a useful release

gangsmateriale til oprensning. Således blev der tilvejebragt en fremgangsmåde til Igang material for purification. Thus, a method for I

fortløbende udvælgelse af celler til opnåelse af acceptable niveauer af IL-1 recepto- Icontinuous selection of cells to obtain acceptable levels of IL-1 receptor

rekspression under an-vendélse af fluorescensaktiveret cellesortering (FACS). Irepression using fluorescence activated cell sorting (FACS). IN

I 30 Yderligere problemer opstår, når man forsøger at klone mammale gener, II 30 Additional problems arise when trying to clone mammalian genes, I

I der indkoder IL-1 receptor. Selvom der kan opnås en proteinsammensætning med IIn which encodes IL-1 receptor. Although a protein composition with I can be obtained

I tilstrækkelig renhed til at tillade N-terminal proteinsekvensbestemmelse, tillader dege- IIn sufficient purity to allow N-terminal protein sequencing, allow dough- I

nereringen af den genetiske kode typisk ikke, at en egnet probe defineres uden om- Ithe generation of the genetic code typically does not mean that a suitable probe is defined without I-

fattende yderligere forsøg. Det kan kræve mange iterative forsøg at definere en probe Itaking further attempts. Defining a probe I may require many iterative attempts

35 med den fornødne specificitet til identificering af en hybridiserende sekvens i et cDNA- I35 with the necessary specificity to identify a hybridizing sequence in a cDNA-I

bibliotek. For at omgå dette problem blev der udtænkt en hidtil ukendt direkte recepto- Ilibrary. To circumvent this problem, a novel direct receptor was devised

DK 175810 B1 3 rekspressionskloningsteknik til undgåelse af behovet for gentagen screening under anvendelse af forskellige probér af ukendt specificitet. Denne teknik, som aldria tidligere er blevet anvendt, tillader direkte visualisering af receptorekspression efter trans-fektion af en mammal cellelinie med en højekspressionsvektor indeholdende en 5 cDNA-klon, der indkoder receptoren.DK 175810 B1 3 expression cloning technique to avoid the need for repeated screening using various probes of unknown specificity. This technique, which has never been used before, allows direct visualization of receptor expression after transfection of a mammalian cell line with a high expression vector containing a 5 cDNA clone encoding the receptor.

Rensede IL-1 receptorsammensaetninger vil være nyttige i diagnostiske assays for IL-1 eller IL-1 receptor og ligeledes til opnåelse af antistoffer mod IL-1 receptor til anvendelse i diagnose og terapi. Desuden kan rensede IL-1 receptorsammensætninger anvendes direkte i terapi til binding eller fjernelse af IL-1, hvorved der 10 tilvejebringes en metode til regulering af immunaktiviteterne eller de inflammatoriske aktiviteter af dette cytokin.Purified IL-1 receptor compositions will be useful in diagnostic assays for IL-1 or IL-1 receptor and also for obtaining antibodies to IL-1 receptor for use in diagnosis and therapy. In addition, purified IL-1 receptor compositions can be used directly in therapy to bind or remove IL-1, thereby providing a method of regulating the immune activities or the inflammatory activities of this cytokine.

Den foreliggende opfindelse tilvejebringer i det væsentlige homogene proteinsammensætninger, der omfatter human IL-1 receptor.The present invention provides substantially homogeneous protein compositions comprising human IL-1 receptor.

Den foreliggende opfindelse tilvejebringer også sammensætninger til 15 anvendelse ved terapi af IL-1 receptor eller til tilvejebringelse af antistoffer mod IL-1 receptorer omfattende virksomme mængder af opløselige native eller rekombinante receptorproteiner fremstillet ved en egnet fremgangsmåde. En egnet fremgangsmåde til resning af IL-1 receptor omfatter tilsætning af en prøve omfattende IL-1 receptor til en affinitetsmatrix omfattende et IL-1 molekyle bundet til en uopløselig bærer og elue-20 ring af bundet IL-1 receptor fra affinitetsmatrixen. Den delvist rensede IL-1 receptor kan renses yderligere ved overførsel til en lectinaffinitetskolonne og efterfølgende elu-ering af IL-1 receptoren fra lectinaffinitetskolonnen. Den delvist rensede IL-1 receptor kan derefter behandles ved revers fase højtryksvæskekromatografi og elueres som en enkelt absorbanstop ved 280 nm, der når den analyseredes ved hjælp af SDS-PAGE ! 25 og sølvfarvning, optrådte som et enkelt bånd. Som anført ovenfor havde den native murine IL-1 receptor en tilsyneladende molekylvægt på ca. 82.000 dalton ifølge bestemmelse ved SDS-PAGE. Egnede DNA-sekvenser til udøvelse af den foreliggende fremgangsmåde består i det væsentlige af en enkelt åben læseramme nukleotidse-kvens, der indkoder en mammal lnterleukin-1 receptor (IL-1 R) eller en underenhed 30 deraf. Sådanne DNA-sekvenser udvælges fortrinsvis blandt (a) cDNA-kloner med en nukleotidsekvens afledt af kodningsområdet for et nativt IL-1 R gen, (b) DNA-sekvenser, som er i stand til at hybridisere til cDNA-kloneme af (a) under moderat strenge betingelser og som indkoder biologisk aktive IL-1 R molekyler, og (c) DNA-sekvenser, der er degenereret som resultat af den genetiske kode for de under a) og 35 (b) definerede DNA-sekvenser og indkoder biologisk aktive IL-1 R molekyler. Egnede rekombinante ekspressionsvektorer omfatter de ovenfor definerede DNA-sekvenser,The present invention also provides compositions for use in the therapy of IL-1 receptor or for the provision of antibodies to IL-1 receptors comprising effective amounts of soluble native or recombinant receptor proteins prepared by a suitable method. A suitable method of raising IL-1 receptor comprises adding a sample comprising IL-1 receptor to an affinity matrix comprising an IL-1 molecule bound to an insoluble carrier and eluting bound IL-1 receptor from the affinity matrix. The partially purified IL-1 receptor can be further purified by transfer to a lectin affinity column and subsequent elution of the IL-1 receptor from the lectin affinity column. The partially purified IL-1 receptor can then be treated by reverse phase high pressure liquid chromatography and eluted as a single absorbance peak at 280 nm, which when analyzed by SDS-PAGE! 25 and silver staining, appeared as a single band. As stated above, the native murine IL-1 receptor had an apparent molecular weight of approx. 82,000 daltons as determined by SDS-PAGE. Suitable DNA sequences for carrying out the present method consist essentially of a single open reading frame nucleotide sequence encoding a mammalian interleukin-1 receptor (IL-1R) or a subunit thereof. Such DNA sequences are preferably selected from (a) cDNA clones having a nucleotide sequence derived from the coding region of a native IL-1R gene, (b) DNA sequences capable of hybridizing to the cDNA clones of (a) under moderately severe conditions and encoding biologically active IL-1R molecules, and (c) DNA sequences degenerate as a result of the genetic code of the DNA sequences defined in (a) and (b) and encoding biologically active IL-1R molecules. Suitable recombinant expression vectors include the DNA sequences defined above,

I DK 175810 B1 II DK 175810 B1 I

I 4 II 4 I

I rekombinante IL-1R molekyler fremstillet under anvendelse af de rekombinante eks- IIn recombinant IL-1R molecules prepared using the recombinant ex- I

I pressionsvektorer, samt fremgangsmåder til fremstilling af de rekombinante IL-1 R IIn pressure vectors, as well as methods for producing the recombinant IL-1 R I

I molekyler under anvendelse af ekspressionsvektoreme. IIn molecules using the expression vectors. IN

I De opløselige rekombinante receptormolekyler omfatter afkortede proteiner, hvori om- IThe soluble recombinant receptor molecules comprise truncated proteins in which om- I

I 5 rådeme af receptormolekylet, der ikke er nødvendige for IL-1 binding, er blevet ude- · IIn 5 regions of the receptor molecule that are not required for IL-1 binding, · I

I ladt. Disse og andre aspekter af opfindelsen vil fremgå af den efterfølgende detaljere- HI ladt. These and other aspects of the invention will become apparent from the following details

I de beskrivelse og tegningen. HIn the description and the drawing. H

I Fig. 1 er et restriktionskort over cDNA-konstruktioner omfattende kod- HIn FIG. 1 is a restriction map of cDNA constructs comprising code-H

I ningsområderne for de murine og humane IL-1 R gener. Det murine fragment, isoleret IIn the ranges of the murine and human IL-1R genes. The murine fragment, isolated I

I 10 fra EL-4 6.1 C10 celler og til stede som en indføjelse i klon GEMBL78, er blevet depo- II 10 from EL-4 6.1 C10 cells and present as an insert in clone GEMBL78, have been deposited.

I neret hos American Type Culture Collection under løbenummeret ATCC 67563. II neret at the American Type Culture Collection under serial number ATCC 67563. I

I Fig. 2 er en skematisk afbildning af det mammale højekspressi- IIn FIG. 2 is a schematic representation of the highly expressive mammalian I

onsplasmid pDC301, som er beskrevet mere detaljeret i eksempel 6.onsplasmid pDC301, which is described in more detail in Example 6.

I Fig. 3A-3C er en grafisk sammenligning mellem IL-1 bindings- IIn FIG. 3A-3C is a graphical comparison of IL-1 binding I

I 15 egenskaberne af naturlige og rekombinante IL-1 receptorer. Fig. 3A sammenligner IIn the properties of natural and recombinant IL-1 receptors. FIG. 3A compares I

I direkte binding af 125l-IL-1a til celler, der udtrykker nativ IL-1 receptor (EL4 6.1 C10) IIn direct binding of 125 I-IL-1α to cells expressing native IL-1 receptor (EL4 6.1 C10) I

I eller rekombinant receptor (COS-IL-1R), fig. 3B viser dataene fra fig. 3A indtegnet i II or recombinant receptor (COS-IL-1R), fig. 3B shows the data of FIG. 3A plotted in I

I Scatchard-kooridnatsystemet. Fig. 3C viser kompetitiv 125l-IL-1a binding mellem HIn the Scatchard coordinate system. FIG. 3C shows competitive 125 I-IL-1α binding between H

I umærket IL-1 α og IL-1 li. I fig. 3 angiver C koncentrationen af IL-1 sat til bindingsinku- IIn unlabeled IL-1 α and IL-1 li. In FIG. 3 indicates the C concentration of IL-1 added to binding incu- I

I 20 bationen (molær), r angiver molekyler af IL-1 bundet pr. celle. IIn the bation (molar), r indicates molecules of IL-1 bound per cell. IN

I IL-1 α og IL-1 R regulerer tilsyneladende cellers metabolisme gennem et IIn IL-1 α and IL-1 R apparently regulate the metabolism of cells through an I

I fælles plasmamembranreceptorprotein. IL-1 receptor fra detergent-opløsninger af EL-4 IIn common plasma membrane receptor protein. IL-1 receptor from detergent solutions of EL-4 I

I 6.1 C10 celler er blevet stabilt adsorberet til nitrocellulose under fuld bibeholdelse af IIn 6.1 C10 cells have been stably adsorbed to nitrocellulose while fully maintaining I

I IL-1 bindingsaktivitet. Dette assaysystem blev anvendt til overvågning af oprensningen IIn IL-1 binding activity. This assay system was used to monitor purification I

I 25 af IL-1 receptoren og til undersøgelse af virkningerne af adskillige kemiske modi- II 25 of the IL-1 receptor and to study the effects of several chemical modi- I

I fikationer på receptorbindingsaktiviteten. IL-1 receptorer ekstraheret fra EL-4 6.1 C10 IIn fixations on the receptor binding activity. IL-1 receptors extracted from EL-4 6.1 C10 I

I celler kan bindes til og specifikt elueres fra IL-1 koblet til Sepharose eller andre egne- HIn cells can be bound to and specifically eluted from IL-1 coupled to Sepharose or other self-H

de affinitetskromatografibærere. Ithe affinity chromatography carriers. IN

I Rensning ved den foregående fremgangsmåde resulterede ved IPurification by the previous procedure resulted in

30 sølvfarvning af polyacrylamidgeler i identifikation af et protein på Mr 82.000 dalton, I30 silver staining of polyacrylamide gels in identification of a protein of Mr 82,000 daltons, I

I som var til stede i fraktioner, der udviste IL-1 bindingsaktivitet. Forsøg, ved hvilke cel-In which were present in fractions showing IL-1 binding activity. Experiments at which cells

leoverfladeproteiner af EL-4 celler radiomærkedes og 125l-mærket receptor rensedes Iliver surface proteins of EL-4 cells were radiolabeled and 125 I-labeled receptor was purified

I ved affinitetskromatografi, lod formode, at proteinet med Mr 82.000 blev udtrykt påIn by affinity chromatography, it was assumed that the protein with Mr 82,000 was expressed on

I plasmamembranen. N-glycanasebehandling af dette materiale viste, at 21-35% af den IIn the plasma membrane. N-glycanase treatment of this material showed that 21-35% of the I

I 35 samlede Mr (82.000) af receptoren var N-bundet carbonhydrat. IIn 35 total Mr (82,000) of the receptor was N-linked carbohydrate. IN

I i II i I

11 I DK 175810 B111 I DK 175810 B1

Til definition af de kemiske egenskaber af IL-1 receptoren udtænktes et enkelt, reproducerbart og kvantitativt assaysystem til påvisning af IL-1 receptor i detergentopløsninger. Med denne assay kan receptorrensningen følges, og ændringer i ITo define the chemical properties of the IL-1 receptor, a simple, reproducible and quantitative assay system for the detection of IL-1 receptor in detergent solutions was devised. With this assay, the receptor purification can be followed and changes in I

receptorbindingsaktiviten som respons på kemisk modifikation af receptoren kan let Ithe receptor binding activity in response to chemical modification of the receptor can easily I

5 overvåges. I5 are monitored. IN

Bindinasassav for IL-1 receptor IBinding kinase saw for IL-1 receptor I

Rekombinant human IL-1 β og IL-1a kan fremstilles ved ekspression i E. IRecombinant human IL-1β and IL-1α can be prepared by expression in E.I.

coli og rensning til homogenitet som beskrevet af Kronheim et al. (Bio/Technology Icoli and purification to homogeneity as described by Kronheim et al. (Bio / Technology I

10 4:1078,1986). Rekombinant human IL-1a udtrykkes fortrinsvis som et polypeptid I4: 1078, 1986). Recombinant human IL-1α is preferably expressed as a polypeptide I

sammensat af de C-terminale 157-rester af IL-1 a, der svarer til Mr 17.500 formen af Icomposed of the C-terminal 157 residues of IL-1α corresponding to Mr 17,500 the form of I

proteinet, der afgives af aktiverede makrofager. Det rensede protein opbevares ved - Ithe protein released by activated macrophages. The purified protein is stored at - I

70°C i fosfatpufret saltvand som en forrådsopløsning på 3 mg/ml. 10 μΙ (30 pg) portio- I70 ° C in phosphate buffered saline as a stock solution of 3 mg / ml. 10 μΙ (30 pg) portion- I

ner af forrådsopløsningen mærkes med natrium (125l) iodid ved en modificeret chlora- IThe stock solution is labeled with sodium (125 L) iodide at a modified chlorine level.

15 min-T-metode beskrevet af Dover et al. (Nature 324:266,1986) og Segal et al. (J. Im- 115 min T-method described by Dover et al. (Nature 324: 266, 1986) and Segal et al. (J. Im- 1

munol. 118:1338, 1977). Ved denne procedure sættes 10 pg rlL-1a (0,57 nmol) i 10 μΙ Imunol. 118: 1338, 1977). In this procedure, 10 μg rlL-1a (0.57 nmol) is added to 10 μl I

fosfat (0,05 M)pufret saltvand (0,15 M), pH 7.2, (PBS) til 2,5 mCi (1,0 nmol) natriumio- Iphosphate (0.05 M) buffered saline (0.15 M), pH 7.2, (PBS) to 2.5 mCi (1.0 nmol) sodium iodine

did i 25 μΙ 0,05 M natriumfosfat, pH 7,0. Reaktionen indledes ved tilsætning af 30 μΙ Idid in 25 μΙ 0.05 M sodium phosphate, pH 7.0. The reaction is started by adding 30 μΙ I

1,4 x 10"4 M chloramin-T (.4,2 nmol, Sigma Chemical Co., St. Louis, MO, USA). Efter I1.4 x 10 -4 M chloramine-T (4.2 nmol, Sigma Chemical Co., St. Louis, MO, USA). After I

20 30 minutter på is fraktioneres reaktionsblandingen ved gelfiltrering på en Biogel P6 IFor 30 minutes on ice, the reaction mixture is fractionated by gel filtration on a Biogel P6 I

(Bio-Rad, Richmond, CA, USA) kolonne med 1 ml leje-volumen. Rutinemæssigt inkor- I(Bio-Rad, Richmond, CA, USA) column with 1 ml bed volume. Routinely incor- I

poreres 40-50% 125l i protein. Iporate 40-50% 125l in protein. IN

125l-IL-1a kan renses ved gelfiltrering eller andre egnede metoder og med I125 I-IL-1α can be purified by gel filtration or other suitable methods and by I

det samme fortyndes til en arbejdsforrådsopløsning på 3 x 10'® M i Roswell Park Me- Ithe same is diluted to a working stock solution of 3 x 10'® M in Roswell Park Me- I

25 mortal Institute (RPMI) 1640 medium omfattende 1 vægt/vol % bovin serumalbumin IMortal Institute (RPMI) 1640 medium comprising 1% w / v bovine serum albumin I

(BSA), 0,1 vægt/vol % natriumazid, 20 mM Hepes, pH 7,4 (bindingsmedium) for at I(BSA), 0.1 w / v% sodium azide, 20 mM Hepes, pH 7.4 (binding medium) to

undgå radiolyse. Sådanne fortyndede opløsninger kan lagres i op til 1 måned uden : Iavoid radiolysis. Such diluted solutions can be stored for up to 1 month without:

påviseligt tab af receptorbindingsaktivitet. Den specifikke aktivitet er rutinemæssigt i Idetectable loss of receptor binding activity. The specific activity is routinely in I

området 1-3 x 1015 cpm/mmol (ca. 1 atom iod pr. lL-1a molekyle). Typisk er det mær-range 1-3 x 1015 cpm / mmol (about 1 atom of iodine per IL-1α molecule). Typically, it is

30 kede protein i begyndelsen (før fortynding) 100% aktivt ifølge bestemmelse af dets I30 chain protein initially (before dilution) 100% active as determined by its I

evne til at fremkalde IL-2 produktion ud fra EL-4 6.1 C10 celler. Desuden kan 100% af Iability to induce IL-2 production from EL-4 6.1 C10 cells. In addition, 100% of I

125I cpm præcipiteres ved med trichlor-eddikesyre, og >95% kan absorberes af IL-1 I125 I cpm is precipitated by trichloroacetic acid and> 95% can be absorbed by IL-1 I

receptorbærende celler. Ireceptor-bearing cells. IN

EL-4 6.1 C10 celler propageres i suspensionskultur som beskrevet af IEL-4 6.1 C10 cells are propagated in suspension culture as described by I

35 MacDonald et al., J. Immunol. 135:3964 (1985). En IL-1 receptor negativ variantlinie af IMacDonald et al., J. Immunol. 135: 3964 (1985). An IL-1 receptor negative variant line of I

SDK 175810 B1 ISDK 175810 B1 I

de. Celler overvåges Ithe. Cells are monitored in

iceptorekspression kan Iiceptor expression can I

illesortering (FACS) og fluo- Isorting (FACS) and fluo- I

et rlL-1a (FITC IL-1a) frem- Iand rLL-1a (FITC IL-1a)

sceinisothiocyanat (Re- Isceinisothiocyanate (Re- I

70 μΙ borat(0,02 M)pufret I70 μΙ borate (0.02 M) buffered I

;illes fra ukonj ugeret farve- I; illes from ukonj ugeet color- I

m som beskrevet af Dover Im as described by Dover I

t EPICS C flowcytometer It EPICS C flow cytometer I

stærkning 20, PMT- Istrength 20, PMT- I

ieste fluorescensslgnalni- Iieste fluorescensslgnalni- I

s til etablering af cellekultu- Is for the establishment of cell culture- I

ifugering er høstet fra kultu- Iifugering is harvested from cultu- I

OO x g i 10 minutter til dan- IOO x g for 10 minutes to dan- I

ttes samme volumen PBS Ittes same volume PBS I

ihibitorer (2 mM phenyl- Iinhibitors (2 mM phenyl- I

mM O-phenanthrolin). Cel- ImM O-phenanthroline). Cel- I

g, og blandingen inkuberes Ig and the mixture is incubated

11.000 x g i 30 minutter ved I11,000 x g for 30 minutes at I

øres 0,02 vægt/vol % i na- I0.02 w / v% in na- I

der kan påvises tab af IL-1 Iloss of IL-1 I can be detected

rerne. Irerne. IN

isebindingsassays 1 μΙ (4 x Iice binding assays 1 μΙ (4 x I

nitrocellulosemembraner Initrocellulose membranes I

is ved stuetemperatur, indtil Iice at room temperature until I

leratur indtil brug. Under Iliterature until use. Under I

op til to måneder. Før brug - Iup to two months. Before use - I

pufret saltvand (0,15 M), pH Ibuffered saline (0.15 M), pH I

g af nonspecifikke bin- Ig of nonspecific bin- I

ml pr. filter), en gang med Iml pr. filter), once with I

m kvadrater med IL-1 re- Im squares with IL-1 re- I

ids bakker (Costar, Cam- Iids bakker (Costar, Cam- I

oldende 125I-IL-1 α eller12S- Iaging 125I-IL-1 α or 12S-I

ist på en nutator og inkube- Iist on a nutator and incube- I

DK 175810 B1 7 res j et køleskab (8°C) i to timer. Herefter kan der udtages en 60 μΙ portion fra hver brønd til bestemmelse af ubundet 125l-rlL-1a. Derefter bortsuges den resterende opløsning og kasseres, og nitrocellulosefiltrene vaskes ved tilsætning og bortsugning af i rækkefølge 1 ml bindingsmedium og tre gange 1 ml PBS til hvert brønd. Nitrocellulo-5 sekvadrateme fjernes dernæst og tørres på filterpapir. Derefter anbringes de enten på Kodak X-omat AR film i tolv timer ved -70°C, eller de anbringes i 12 x 75 cm glasrør og tælles på en gammatæller.DK 175810 B1 7 refrigerate (8 ° C) for two hours. A 60 μ. Aliquot can then be taken from each well to determine unbound 125l-rLL-1a. The remaining solution is then aspirated and discarded, and the nitrocellulose filters are washed by adding and aspirating 1 ml of binding medium and three times 1 ml of PBS to each well, respectively. The nitrocellulo-5 squares are then removed and dried on filter paper. Then they are either placed on Kodak X-omat AR film for twelve hours at -70 ° C, or they are placed in 12 x 75 cm glass tubes and counted on a gamma counter.

Tabel 1 viser cDNA-sekvensen for klon GEMBL78. Nukleotider nummereres fra begyndelsen af fragmentet. CTG-kodonen, der specificerer leucinresten, 10 som udgør N-terminaleri, er understreget ved position 282, og TAG-terminatorkodon-en, der afslutter den åbne læseramme, er understreget ved position 1953.Table 1 shows the cDNA sequence of clone GEMBL78. Nucleotides are numbered from the beginning of the fragment. The CTG codon specifying the leucine residue, which constitutes N-terminals, is underlined at position 282, and the TAG terminator codon terminating the open reading frame is underlined at position 1953.

Tabellerne 2A-2C viser cDNA-sekvensen og den afledte aminosyre-sekvens for kodningsområdet af den i tabel 1 viste cDNA. I tabellerne 2A-2C er nukleotider og aminosyrer nummereret fra leucinresten, der repræsenterer N-terminalen af 15 det modne protein. De alternative initiator-methioniner, N-terminalen og det formodede 21 -aminosyretransmembranornråde af den murine IL-1 receptor er understreget.Tables 2A-2C show the cDNA sequence and the deduced amino acid sequence for the coding region of the cDNA shown in Table 1. In Tables 2A-2C, nucleotides and amino acids are numbered from the leucine residue representing the N-terminus of the mature protein. The alternative initiator methionines, the N-terminus and the putative 21 amino acid transmembrane region of the murine IL-1 receptor are underlined.

Tabel 3 viser en cDNA-sekvens, der omfatter det komplette kodningsområde af det humane IL-1 R gen. Nukleotider er nummereret fra begyndelsen af et fragment, kaldet R3A, der omfatter N-terminalen og en kort sekvens 20 af 5' ikke-translateret DNA. CTG-kodonen, der specificerer leucinresten, som udgør N-terminalen, er understreget ved position 135, og TAG-terminatorkodonen, der afslutter den åbne læseramme, er understreget ved position 1791.Table 3 shows a cDNA sequence comprising the complete coding region of the human IL-1R gene. Nucleotides are numbered from the beginning of a fragment called R3A, which comprises the N-terminus and a short sequence 20 of 5 'untranslated DNA. The CTG codon specifying the leucine residue constituting the N-terminus is underlined at position 135 and the TAG terminator codon terminating the open reading frame is underlined at position 1791.

Tabellerne 4A-4C viser cDNA-sekvensen og den afledte aminosyre-sekvens af kodningsområdet af en cDNA-indkodende human IL-1 receptor. I tabeller-25 ne 4A-4C er nukleotider og aminosyrer nummereret fra leucinresten (understreget), der repræsenterer N-terminalen af det modne protein. 20-aminosyretransmembran-området er også understreget.Tables 4A-4C show the cDNA sequence and the deduced amino acid sequence of the coding region of a cDNA-encoding human IL-1 receptor. In Tables 25A-4C, nucleotides and amino acids are numbered from the leucine residue (underlined) representing the N-terminus of the mature protein. The 20-amino acid transmembrane region is also underlined.

Tabel 5 er en sammenligning af de fra murine og humane IL-1 receptorer afledte aminosyresekvenser. Transmembranområderne af hvert protein er understre-30 get, og bevarede cysteinrester er vist med en stjerne. Potentielle N-bundne glycosyle-ringssteder er vist med trekanter ved siden af asparaginrester.Table 5 is a comparison of the amino acid sequences derived from murine and human IL-1 receptors. The transmembrane regions of each protein are underlined and conserved cysteine residues are shown with an asterisk. Potential N-linked glycosylation sites are shown with triangles next to asparagine residues.

Definitioner "lnterleukin-1 receptor" og "IL-IR" betegner proteiner, som er i stand til at 35 binde lnterleukin-1 (IL-1) molekyler og i deres native konfiguration som mammale . plasmamembranproteiner antageligt spiller en rolle i omsætning af det af IL-1 tilveje-Definitions "Interleukin-1 receptor" and "IL-IR" denote proteins that are capable of binding interleukin-1 (IL-1) molecules and in their native configuration as mammals. Plasma membrane proteins are thought to play a role in the metabolism of IL-1.

I DK 175810 B1 II DK 175810 B1 I

I 8 II 8 I

I bragte signal til en celle. Som anvendt i det foreliggende omfatter betegnelsen analoge II brought signal to a cell. As used herein, the term analog I includes

I til native proteiner med IL-1-bindings- eller signalomsætningsaktivitet. Specifikt om- II to native proteins with IL-1 binding or signaling activity. Specifically about- I

I fattet er afkortede eller opløselige former af IL-1 receptorproteinet, som ikke har et IIn the form are truncated or soluble forms of the IL-1 receptor protein which do not have an I

I cytoplasma- eller transmembranområde. Den fomdsagte molekylvægt af det murine IIn cytoplasmic or transmembrane region. The predicted molecular weight of the murine I

I 5 protein, som svarer til sekvensen af det i tabellerne 2A-2B viste modne protein er II 5 protein corresponding to the sequence of the mature protein shown in Tables 2A-2B is I

I 64.597 dalton, mens den forudsagte molekylvægt af prækursoren er 66.697 dalton. IIn 64,597 daltons, while the predicted molecular weight of the precursor is 66,697 daltons. IN

Begge disse skøn er eksklusive glycosylering. Den forudsagte molekylvægt af det hu- IBoth of these estimates are exclusive of glycosylation. The predicted molecular weight of the hu- I

I mane protein, som svarer til sekvensen af det i tabellerne 4A-4C viste modne protein IIn mane protein corresponding to the sequence of the mature protein I shown in Tables 4A-4C

I er 63.486 dalton, mens den forudsagte molekylvægt af prækursoren er 65.402 dalton. II is 63,486 daltons, while the predicted molecular weight of the precursor is 65,402 daltons. IN

I 10 "I det væsentlige identisk" og "i det væsentlige lig" betyder, når udtrykke- II 10 "Substantially identical" and "substantially equal" means when express- I

ne anvendes til definering af aminosyresekvenser, at en given sekvens, fx. en mutant- Ine is used to define amino acid sequences that a given sequence, e.g. and mutant- I

I sekvens, adskiller sig fra en referencesekvens ved en eller flere substitutioner, udela- IIn sequence, differs from a reference sequence by one or more substitutions, except I

I delser eller tilføjelser, hvis nettoeffekt ikke resulterer i en ugunstig funktionel forskel IIn parts or additives the net effect of which does not result in an adverse functional difference

H mellem referencesekvens og omhandlet sekvens. I forbindelse med den foreliggende IH between reference sequence and referred sequence. In connection with the present I

15 opfindelse anses aminosyresekvenser med mere end 30% lighed for at være i det IAccording to the invention, amino acid sequences with more than 30% similarity are considered to be in the I

væsentlige lig hinanden, og aminosyresekvenser med mere end 80% lighed anses for Isubstantially similar to each other and amino acid sequences with more than 80% similarity are considered I

at være i det væsentlige identiske. Ved definitionen af nukleinsyresekvenser anses Ito be substantially identical. For the definition of nucleic acid sequences, I

alle omhandlede nukleinsyresekvenser, som er i stand til at indkode aminosyrese- Iall of the nucleic acid sequences referred to which are capable of encoding amino acid sequences

kvenser, der i det væsentlige er lig hinanden, for at være i det væsentlige lig med en Isequences substantially equal to each other to be substantially equal to an I

20 referencenukleinsyresekvens, og alle nukleinsyresekvenser, som er i stand til at ind- I20 reference nucleic acid sequence, and all nucleic acid sequences capable of

kode i det væsentlige identiske aminosyresekvenser, anses for at være i det Icode essentially identical amino acid sequences are considered to be in the I

H væsentlige identiske med en referencesekvens. Ved bestemmelse af lighed skal der IH essentially identical to a reference sequence. In determining equality, I must

ses bort fra forkortelser eller interne udeladelser af referencesekvensen. Sekvenser Iignores abbreviations or internal omissions of the reference sequence. Sequences I

med en mindre grad af lighed, sammenlignelig biologisk aktivitet og ækvivalente eks- Iwith a lesser degree of similarity, comparable biological activity and equivalent ex- I

25 pressionskarakteristika anses for at være ækvivalenter. I forbindelse med den forelig- I25 pressure characteristics are considered to be equivalents. In connection with the present- I

gende opfindelse anses en "underenhed" af en IL-1 R for at udgøre en aminosyrese- IAccording to the present invention, a "subunit" of an IL-1R is considered to constitute an amino acid

Som anvendt i det foreliggende betyder "rekombinant", at et protein hid- IAs used herein, "recombinant" means that a protein hereto- I

H rører fra rekombinante (fx. mikrobelle eller mammale) ekspressionssytemer. "Mikrobi- IH stems from recombinant (eg microbial or mammalian) expression systems. "Mikrobi- I

30 el" henviser til rekombinante proteiner produceret i bakterie- eller svampe- (fx. gær) I30 el "refers to recombinant proteins produced in bacterial or fungal (eg yeast) I

H ekspressionssytemer. Som et produkt definerer "rekombinant mikrobielt" et protein, IH expression systems. As a product, "recombinant microbially" defines a protein, I

der i det væsentlige er fri for native endogene substanser og ikke ledsaget af associ- Iwhich is essentially free of native endogenous substances and not accompanied by associ- I

eret nativ glycosylering. Protein udtrykt i de fleste bakteriekulturer, fx. E. coli, vil være Inative glycosylation. Protein expressed in most bacterial cultures, e.g. E. coli, will be I

frit for glycan; protein udtrykt i gær kan have et glycosyleringsmønster, der adskiller sig Iglycan free; protein expressed in yeast may have a glycosylation pattern different from I

DK 175810 B1 9DK 175810 B1 9

Som anvendt i beskrivelsen som en karakterisering af IL-1 receptorer betyder "biologisk aktiv" enten, at et givet molekyle har en tilstrækkelig aminosvrese-kvenslighed til fælles med udførelsesformeme af opfindelsen til at være i stand til at binde mindst 0,01 nmol IL-1 pr. nmol IL-1 receptor eller IL-1 receptoranalog, eller al-5 ternativt har en tilstrækkelig aminosyresekvenslighed til fælles til at være i stand til at transmittere en IL-1 stimulus til en celle, fx. som en komponent i en hybridreceptor-konstruktion. Fortrinsvis er biologisk aktive IL-1 receptorer ifølge opfindelsen i stand til at binde mere end 0,1 nmol IL-1 pr. nmol receptor, og mest foretrukket mere end 0,5 nmol IL-1 pr. nmol receptor.As used herein as a characterization of IL-1 receptors, "biologically active" either means that a given molecule has sufficient amino frequency in common with the embodiments of the invention to be able to bind at least 0.01 nmol of IL-1 1 pr. nmol IL-1 receptor or IL-1 receptor analog, or alternatively has a sufficient amino acid sequence in common to be able to transmit an IL-1 stimulus to a cell, e.g. as a component of a hybrid receptor construct. Preferably, biologically active IL-1 receptors of the invention are capable of binding more than 0.1 nmol IL-1 per nmol receptor, and most preferably more than 0.5 nmol IL-1 per nmol receptor.

10 "DNA-sekvens" henviser til en DNA-polymer i form af et separat fragment eller som en komponent af en større DNA-konstruktion, som er blevet afledt af DNA, som mindst en gang er blevet isoleret i i det væsentlige ren form, dvs. fri for kontami-nerende endogene materialer og i en mængde eller koncentration, der tillader identifikation, manipulation og udvinding af sekvensen og dens nukleotidsekvenskomponen-15 ter ved biokemiske standardmetoder, fx. under anvendelse af en kloningsvektor. Sådanne sekvenser tilvejebringes fortrinsvis i form af en åben læseramme, som ikke er afbrudt af interne ikke-translaterede sekvenser, eller introner, som typisk er til stede i eukaryotiske gener. Det vil imidlertid være åbenlyst, at genom-DNA indeholdende de relevante sekvenser, også vil kunne anvendes. Sekvenser af ikke-translateret DNA 20 kan være til stede 5’ eller 3' fra den åbne læseramme, hvor disse sekvenser ikke forstyrrer manipulation eller ekspression af kodningsområderne."DNA sequence" refers to a DNA polymer in the form of a separate fragment or as a component of a larger DNA construct which has been derived from DNA which has been isolated at least once in the substantially pure form, i.e. . free of contaminating endogenous materials and in an amount or concentration that allows identification, manipulation and recovery of the sequence and its nucleotide sequence components by standard biochemical methods, e.g. using a cloning vector. Such sequences are preferably provided in the form of an open reading frame that is not interrupted by internal untranslated sequences, or introns that are typically present in eukaryotic genes. However, it will be apparent that genomic DNA containing the relevant sequences may also be used. Sequences of untranslated DNA 20 may be present 5 'or 3' from the open reading frame, where these sequences do not interfere with manipulation or expression of the coding regions.

"Nukleotidsekvenser" henviser til en heteropolymer af deoxyrbonukleo-tider. DNA-sekvenser, der indkoder de i overensstemmelse med opfindelsen tilvejebragte proteiner, samles af cDNA-fragmenter og korte oligonukleotidlinkere eller af en 25 række oligonukleotider til opnåelse af et syntetisk gen, som kan udtrykkes i en rekom-binant transkriptionel enhed."Nucleotide sequences" refers to a heteropolymer of deoxyrbonucleotides. DNA sequences encoding the proteins provided in accordance with the invention are assembled by cDNA fragments and short oligonucleotide linkers or by a series of oligonucleotides to obtain a synthetic gene which can be expressed in a recombinant transcriptional unit.

"Rekombinat ekspressionsvektor" henviser til et plasmid, der omfatter en transkriptionel enhed omfattende en samling af (1) et eller flere genetiske elementer med en regulatorisk rolle ved genekspression, fx. promotorer eller forstærkere, (2) en 30 strukturel eller kodningssekvens, som transkriberes til mRNA og translateres til protein, og (3) passende transkriptions- og translationsinitierings- og termineringsekvenser. Strukturelle elementer til anvendelse i gærekspressionssystemer, omfatter fortrinsvis en ledersekvens, der muliggør extracellulær udskillelse af translateret protein ved en værtscelle. Alternativt kan rekombinant protein, når det bliver udtrykt uden en leder-35 eller transportsekvens, omfatte en N-terminal methioninrest. Denne rest kan eventuelt"Recombinant expression vector" refers to a plasmid comprising a transcriptional unit comprising a collection of (1) one or more genetic elements having a regulatory role in gene expression, e.g. promoters or enhancers, (2) a structural or coding sequence which is transcribed into mRNA and translated into protein, and (3) appropriate transcriptional and translational initiation and termination sequences. Structural elements for use in yeast expression systems preferably comprise a leader sequence that enables extracellular secretion of translated protein by a host cell. Alternatively, recombinant protein, when expressed without a leader or transport sequence, may comprise an N-terminal methionine residue. This residue may

I DK 175810 B1 II DK 175810 B1 I

I 10 II 10 I

I derefter spaltes fra det udtrykte rekombinante protein til tilvejebringelse af et slutpro- II is then cleaved from the expressed recombinant protein to provide a final protein

I dukt. IIn duct. IN

I "Rekombinant mikrobielt ekspressionssytem" betegner en i det IIn "Recombinant microbial expression system", one in the I

væsentlige homogen monokultur af egnede værtsmikroorganismer, fx. bakterier så- Isubstantially homogeneous monoculture of suitable host microorganisms, e.g. bacteria so- I

I 5 som E. coli eller gær såsom S. cerevisiae, som har en stabilt i kromosomal DNA inte- II 5 as E. coli or yeast such as S. cerevisiae, which has a stable in chromosomal DNA inte- I

I greret rekombinant transkriptione! enhed eller bærer den transkriptionelle enhed som IIn Greater Recombinant Transcription! entity or carries the transcriptional entity as I

I en komponent i et deri værende plasmid. Generelt er celler, der udgør systemet, af- IIn a component of a plasmid contained therein. In general, cells that make up the system are of- I

I kommet af en enkelt ophavstransformant. Rekombinante ekspressionssystemer som II come from a single parent transformant. Recombinant expression systems such as I

I defineret i det foreliggende vil udtrykke heterologt protein ved induktion af de regu- II defined herein will express heterologous protein by induction of the regulatory I

I 10 latoriske elementer, som er bundet til DNA-sekvensen eller det syntetiske gen, som IIn 10 latoric elements linked to the DNA sequence or the synthetic gene which I

skal udtrykkes. Imust be expressed. IN

I Isolation af cDNA'er. der indkoder 1L-1 receptorer IIn Isolation of cDNAs. encoding 1L-1 receptors I

Til opnåelse af den murine kodningssekvens isoleredes en DNA- ITo obtain the murine coding sequence, a DNA-I was isolated

I 15 sekvens, der indkoder murin IL-1R (mlL-1 R), fra et cDNA-bibliotek, der var fremstillet IIn 15 sequence encoding murine IL-1R (mlL-1R) from a cDNA library prepared in

ved revers transkription af polyadenyleret RNA isoleret fra den murine cellelinie EL-4 Iby reverse transcription of polyadenylated RNA isolated from the murine cell line EL-4 I

I 6.1 C10. Biblioteket screendes ved direkte ekspression af kombinerede cDNA- II 6.1 C10. The library is screened by direct expression of combined cDNA-I

I fragmenter i COS-7 abeceller under anvendelse af en mammal ekspressionvektor IIn fragments of COS-7 monkey cells using a mammalian expression vector I

(pDC201), der anvender regulatoriske sekvenser hidrørende fra SV40 og Adenovirus I(pDC201) using regulatory sequences derived from SV40 and Adenovirus I

20 2. Transfektanter, der udtrykker biologisk aktiv IL-1 R, blev identificeret ved inkubering I20 2. Transfectants expressing biologically active IL-1R were identified by incubation I

af transficerede COS-7 celler med medium indeholdende 125l-IL-1a, vask af cellerne til Iof transfected COS-7 cells with medium containing 125 I-IL-1α, washing the cells to I

fjernelse af ubundet mærket IL-1a og ved at bringe cellemonolagene i kontakt med Iremoval of unbound labeled IL-1α and by contacting the cell monolayers with I

røntgenfilm til påvisning af koncentrationer af IL-1cx binding. På denne måde påviste IX-ray film to detect concentrations of IL-1cx binding. In this way you proved

transfektanter optræder som mørke steder mod en relativt lys baggrund. Itransfectants appear as dark places against a relatively light background. IN

H 25 Under anvendelse af denne teknik screenedes ca. 150.000 cDNA'er i IH 25 Using this technique, approx. 150,000 cDNAs in I

puljer på ca. 350 cDNA'er indtil assay af en transfektantpulje viste positive IL-1 a bin- Ipools of approx. 350 cDNAs until assay of a transfectant pool showed positive IL-1 a bin- I

dingssteder. En nedfrosset bakteriebeholdning fra denne positive pulje dyrkedes i Idingssteder. A frozen bacterial stock from this positive pool was grown in I

kultur og udpladedes til tilvejebringelse af individuelle kolonier, der screenedes indtil Iculture and plated to provide individual colonies screened until I

H der blev identificeret en enkelt klon (klon 78), som styrede syntese af et overfladepro- IH a single clone (clone 78) was identified which controlled the synthesis of a surface pro-

30 tein med påviselig IL-1 bindingsaktivitet. Denne klon isoleredes, og dens indføjelse I30 tein with detectable IL-1 binding activity. This clone was isolated and its insertion I

sekvensbestemtes til bestemmelse af sekvensen af den i tabel 1 anførte murine Isequenced to determine the sequence of the murine I listed in Table 1

H cDNA. Initiatormethioninen for det uforkortede translationsprodukt af det native murine IH cDNA. The initiator methionine for the unabridged translation product of the native murine I

H gen er en af to alternative methioninrester, der findes ved positionerne -19 og -16 i IH gene is one of two alternative methionine residues found at positions -19 and -16 in I

H tabel 2 A. Den første aminosyrerest af det modne receptorprotein blev udledt ved IH Table 2 A. The first amino acid residue of the mature receptor protein was deduced by I

35 sammenligning med en N-terminal aminosyresekvens opnået fra højt rensede IL-1 R I35 comparison with an N-terminal amino acid sequence obtained from highly purified IL-1R I

H præparater hidrørende fra EL-4 6.1 C10 celler. Denne rest er en leucinrest vist ved IH preparations derived from EL-4 6.1 C10 cells. This residue is a leucine residue shown at I

DK 175810 B.1 11 position 1 i tabel 2A. 1671 nukleotidkodningsområdet, der svarer til det modne protein, indkoder 576 aminosyrer, inklusive 15 cvsteinrester og et formodet 21-aminosvretrans-membranområde. Lokaliseret N-terminal til transmembranområdet er 7 potentielle N-glycosyleringssteder. En kloningsvektor omfattende den uforkortede murine cDNA, 5 kaldet GEMBL78, er blevet deponeret hos American Type Culture Collection,DK 175810 B.1 11 position 1 in table 2A. The 1671 nucleotide coding region, corresponding to the mature protein, encodes 576 amino acids, including 15 cysteine residues and a putative 21 amino acid trans membrane region. Localized N-terminus to the transmembrane region are 7 potential N-glycosylation sites. A cloning vector comprising the unabridged murine cDNA, called GEMBL78, has been deposited with the American Type Culture Collection.

Rockville, MD, USA under løbenummeret ATCC 67563. Deponeringen blev foretaget under Budapestkonventionens betingelser.Rockville, MD, USA under serial number ATCC 67563. The deposit was made under the terms of the Budapest Convention.

En probe opbyggedes ud fra den murine sekvens og anvendtes til screening af humane cDNA-biblioteker, der var fremstillet ud fra kulturer af en human T-10 celleklon dyrket i nærvær af OKT3-antistof og IL-2. Dernæst isoleredes og sekvensbestemtes cDNA-kloner, der hybridiserede til den murine probe. Under anvendelse af et fragment afledt af humane cDNA-kloner opnåedes og sekvensbestemtes en 1707 nukleotid human kodningssekvens. Nukleotidsekvensen af den humane cDNA, inklusive 5' og 3' utranslaterede sekvenser, er vist i tabel 3. Nukleotidsekvensen af den 15 humane åbne læseramme og den afledte aminosyresekvens af det humane protein er anført i tabellerne 4A-4C. Denne sekvens omfatter 569 aminosyrer (inklusive et signalpeptid på 17 aminosyrer), inklusive 16 cysteinrester, hvoraf de 13 er bevaret mellem de murine og humane gener. Den humane sekvens omfatter desuden 6 potentielle N-glycosyleringssteder, hvoraf de 5 er bevaret mellem murine og humane. Ami-20 nosyresekvensen i tabellerne 4A-4C er nummereret fra en leucinrest, der anses for at være den sandsynlige N-terminal på basis af sammenligninger med det murine protein. Det formodede transmembranområde af det humane gen har en længde på 20 aminosyrer. Sekvenserne af de antagede intracellulære dele af de murine og humane gener er i høj grad (87%) bevaret, de extracellulære områder (78%) og transmembra-25 . nområderne (63%) er bevaret lidt mindre bortset fra lokaliseringen af cysteiner, der antageligt er involveret i intramolekylær disulfidbinding og visse N-glycosyleringssteder. De fra de humane og murine gener udledte aminosyresekvenser er sammenlignet i tabel 5.A probe was constructed from the murine sequence and used to screen human cDNA libraries prepared from cultures of a human T-10 cell clone grown in the presence of OKT3 antibody and IL-2. Next, cDNA clones that hybridized to the murine probe were isolated and sequenced. Using a fragment derived from human cDNA clones, a 1707 nucleotide human coding sequence was obtained and sequenced. The nucleotide sequence of the human cDNA, including 5 'and 3' untranslated sequences, is shown in Table 3. The nucleotide sequence of the 15 human open reading frame and the deduced amino acid sequence of the human protein are listed in Tables 4A-4C. This sequence comprises 569 amino acids (including a signal peptide of 17 amino acids), including 16 cysteine residues, 13 of which are conserved between the murine and human genes. The human sequence further comprises 6 potential N-glycosylation sites, 5 of which are conserved between murine and human. The amino acid sequence in Tables 4A-4C is numbered from a leucine residue that is considered to be the probable N-terminus based on comparisons with the murine protein. The putative transmembrane region of the human gene is 20 amino acids in length. The sequences of the putative intracellular portions of the murine and human genes are highly conserved (87%), the extracellular regions (78%) and transmembrane-25. the n areas (63%) are retained slightly less except for the localization of cysteines presumably involved in intramolecular disulfide bonding and certain N-glycosylation sites. The amino acid sequences derived from the human and murine genes are compared in Table 5.

De murine og humane gener, der indkoder integrate membranproteiner, 30 omfatter intracellulære områder uden nogen tilsyneladende homologi med nogen kendt proteinsekvens og extracellulære dele, der synes at være organiseret i områder, der ligner dem for medlemmerne af immunglobulin-gensuperfamilien. Immunglobulin-lignende områder har typisk kun minimal aminosyrelighed, men har en fælles tredimensional struktur bestående af to li-flader holdt sammen af en disulfidbinding. Den i 35 dannelse af denne disulfidbinding involverede cysteinrest samt nogle andre kritiske rester er bevaret i høj grad og optræder i samme relative position i næsten alle med-The murine and human genes encoding integrated membrane proteins comprise intracellular regions without any apparent homology to any known protein sequence and extracellular moieties that appear to be organized in regions similar to those of the members of the immunoglobulin gene superfamily. Immunoglobulin-like regions typically have only minimal amino acidity, but have a common three-dimensional structure consisting of two li-surfaces held together by a disulfide bond. The cysteine residue involved in the formation of this disulfide bond as well as some other critical residues is highly conserved and occurs in the same relative position in almost all

I DK 175810 B1 II DK 175810 B1 I

I iI i

I lemmer af familien. Medlemmer af immunglobulinsuperfamilien omfatter ikke kun kon- IIn members of the family. Members of the immunoglobulin superfamily include not only con- I

stante og variable immunglobulinområder, men også et antal andre celleoverflademo- Iconstant and variable immunoglobulin regions, but also a number of other cell surface mo- I

I lekyler, hvoraf mange er involveret i celle-celle interaktioner. IIn lesions, many of which are involved in cell-cell interactions. IN

I Som de fleste mammale gener indkodes mammale IL-1 R'er antageligt af ILike most mammalian genes, mammalian IL-1Rs are presumably encoded by I

I 5 multi-exon gener. Alternative mRNA-konstruktioner, som kan tilskrives forskellige II 5 multi-exon genes. Alternative mRNA constructs attributable to different I

I mRNA-splejsningstilfælde efter transkription og som har store identitets- eller ligheds- IIn mRNA splice cases after transcription and which have large identity or similarity I

I områder til fælles med cDNA'eme ifølge opfindelsen, anses for at falde inden for op- IIn regions common to the cDNAs of the invention, are considered to fall within the scope of I-I

I findeisens rammer. IIn the framework of the fine ice. IN

I I sine nukleinsyreudførelsesformer tilvejebringer den foreliggende opfin- IIn its nucleic acid embodiments, the present invention provides

I 10 delse DNA-sekvenser, der indkoder mammale IL-1 R’er. Eksempler på mammale IL- IIn 10 parts DNA sequences encoding mammalian IL-1 Rs. Examples of mammalian IL-I

1 R’er omfatter primat IL-1 R, human IL-1 R, murin, canin, felin, bovin, ovin, equin og I1 Rs include primate IL-1R, human IL-1R, murine, canine, feline, bovine, ovine, equine and I

I porcin IL-1 R. IL-1 R DNA'er tilvejebringes fortrinsvis i en form, som kan udtrykkes i en IIn porcine IL-1 R. IL-1 R DNAs are preferably provided in a form which can be expressed in an I

I rekombinant transkriptionel enhed under kontrol af mammale, mikrobielle eller virale IIn recombinant transcriptional unit under the control of mammalian, microbial or viral I

I transkriptionelle eller translationelle kontrolelementer. For eksempel vil en sekvens, IIn transcriptional or translational controls. For example, a sequence, I

I 15 som skal udtrykkes i en mikroorganisme, ikke indeholde intraner. I foretrukne aspekter IIn 15 to be expressed in a microorganism, do not contain intranes. In preferred aspects I

I omfatter DNA-sekvenseme mindst en, men eventuelt mere end en sekvenskompo- IThe DNA sequences comprise at least one, but optionally more than one sequence component

nenter afledt af en cDNA-sekvens eller en kopi deraf. Sådanne sekvenser kan være Iderivatives derived from a cDNA sequence or a copy thereof. Such sequences may be I

I bundet til eller flankeret af DNA-sekvenser fremstillet ved samling af syntetiske oligo- II bound to or flanked by DNA sequences prepared by assembling synthetic oligo- I

nukleotider. Syntetiske gener, der udelukkende er samlet af oligonukleotider, kunne Inucleotides. Synthetic genes assembled exclusively from oligonucleotides could I

20 imidlertid blive opbygget under anvendelse af den i det foreliggende beskrevne se- I20 can be constructed using the se- I described herein

kvensinformation. Eksempler på sekvenser omfatter sådanne, der i det væsentlige er Igender information. Examples of sequences include those which are essentially I

I identiske med de i tabellerne 2A-2C viste nukleotidsekvenser. Alternativt kan kod- IIn identical to the nucleotide sequences shown in Tables 2A-2C. Alternatively, code- I

ningssekvenserne omfatte kodoner, der indkoder en eller flere yderligere aminosyrer, IThe sequences comprise codons encoding one or more additional amino acids, I

som befinder sig ved N-terminalen, fx. en N-terminal ATG-kodon, der specificerer Iwhich is located at the N-terminal, e.g. an N-terminal ATG codon specifying I

25 methionin bundet i læseramme med nukleotidsekvensen. P.g.a. kodedegeneration kan I25 methionine bound in reading frame with the nucleotide sequence. P.g.a. code degeneration can I

der forekomme betragtelige variationer i nukleotidsekvenser, der indkoder samme Ithere are considerable variations in nucleotide sequences encoding the same I

aminosyresekvens; eksempler på DNA-udførelsesformer er sådanne, der svarer til Iamino acid sequence; examples of DNA embodiments are those corresponding to I

sekvensen af nukleotiderne 1-1671 i tabellerne 2A-2C og nukleotideme 1-1656 i ta- Ithe sequence of nucleotides 1-1671 in Tables 2A-2C and nucleotides 1-1656 in Table I

bellerne 4A-4C. Andre udførelsesformer omfatter sekvenser, som kan hybridisere til IBells 4A-4C. Other embodiments include sequences that can hybridize to I

30 sekvensen i tabellerne 2A-2C eller 4A-4C under moderat strenge betingelser (50°C, 2 IThe sequence in Tables 2A-2C or 4A-4C under moderately severe conditions (50 ° C, 2 L

x SSG), og andre sekvenser degenererer til de ovenfor beskrevne, der indkoder biolo- Ix SSG), and other sequences degenerate into those described above that encode biological I

gisk aktive IL-1 R polypeptider. Iactive IL-1 R polypeptides. IN

Den foreliggende opfindelse tilvejebringer også ekspressionsvektorer til IThe present invention also provides expression vectors for I

H fremstilling af renset IL-1 R i nyttige mængder. Vektorerne kan omfatte syntetiske eller IH preparation of purified IL-1R in useful amounts. The vectors may comprise synthetic or I

35 cDNA-afledte DNA-fragmenter, der indkoder mammale IL-1 R'er eller bioækvivalente I35 cDNA-derived DNA fragments encoding mammalian IL-1 Rs or bioequivalent I

H homologer, der operativt er koblet til regulatoriske elementer afledt af mammale, bak- IH homologues operatively linked to regulatory elements derived from mammalian, bak- I

DK 175810 B1 13 terielle, virale, gær- eller bakteriofag-gener. Nyttige regulatoriske elementer er beskrevet mere detaljeret nedenfor. Efter transformation, transfektion eller infektion af Dassende cellelinier kan sådanne vektorer induceres til at udtrykke rekombinant protein.DK 175810 B1 13 terial, viral, yeast or bacteriophage genes. Useful regulatory elements are described in more detail below. Following transformation, transfection, or infection of Dassende cell lines, such vectors can be induced to express recombinant protein.

Mammale IL-1 R'er kan udtrykkes i mammale celler, gær, bakterier eller 5 andre celler under kontrol af passende promotorer. Cellefrie translationssystemer vil også kunne anvendes til fremstilling af mammal IL-1 R under anvendelse af RNA'er afledt af DNA-konstruktionerne ifølge opfindelsen. Passende klonings- og ekspressionsvektorer til anvendelse med bakterielle, mammale, svampe- og gærcelleværter er beskrevet af Pouvels et al. (Cloning Vectors: A Laboratory Manual, Elsevier, New 10 York, 1985), idet de relevante dele af beskrivelsen hermed inkorporeres i det foreliggende ved henvisning.Mammalian IL-1Rs can be expressed in mammalian cells, yeast, bacteria or other cells under the control of appropriate promoters. Cell-free translation systems could also be used to produce mammalian IL-1R using RNAs derived from the DNA constructs of the invention. Suitable cloning and expression vectors for use with bacterial, mammalian, fungal and yeast cell hosts are described by Pouvels et al. (Cloning Vectors: A Laboratory Manual, Elsevier, New 10 York, 1985), the relevant parts of the description being incorporated herein by reference.

Forskellige mammale cellekultursystemer kan anvendes til ekspression af rekombinant protein. Ekempler på egnede mammale værtscellelinier omfatter COS-7 linierne af nyreceller fra aber beskrevet af Gluzman (Cell 23:175,1985), og andre 15 cellelinier, som kan udtrykke en passende vektor, fx. C127-, 3T3-, CHO-, HeLa- og BHK-cellelinieme. Mammale ekspressionsvektorer kan omfatter ikke-transkriberede elementer såsom et replikationsområde, en egnet promotor og forstærker og andre 5'-og 3'-flankerende ikke-transkriberede sekvenser og 5 - eller 3' ikke-translaterede sekvenser såsom nødvendige ribosombindingssteder, et polyadenyleringssted, splejs-20 ningsdonor- og acceptorsteder samt termineringssekvenser. Fra det virale SV40 genom hidrørende DNA-sekvenser, fx. SV40-origin-, tidlig promotor-, forstærker-, splejsnings- og polyadenyleringssteder kan anvendes til tilvejebringelse af andre genetiske elementer, der kræves til ekspression af en heterolog DNA-sekvens. Yderligere detaljer vedrørende anvendelsen af en mammal højekspressionsvektor til fremstilling 25 af en rekombinant mammal IL-1 R er anført i eksemplerne 4 og 6 nedenfor. Eksempler på vektorer kan opbygges som beskrevet af Okayama og Berg (Mol. Cell. Biol. 3:280, 1983).Various mammalian cell culture systems can be used to express recombinant protein. Examples of suitable mammalian host cell lines include the COS-7 lines of monkey kidney cells described by Gluzman (Cell 23: 175, 1985), and other cell lines which may express an appropriate vector, e.g. C127, 3T3, CHO, HeLa and BHK cell lines. Mammalian expression vectors may include non-transcribed elements such as a replication region, a suitable promoter and enhancer and other 5 'and 3' flanking non-transcribed sequences and 5- or 3 'untranslated sequences such as required ribosome binding sites, a polyadenylation site, splice 20 donor and acceptor sites as well as termination sequences. From the viral SV40 genome-derived DNA sequences, e.g. SV40 origin, early promoter, enhancer, splice, and polyadenylation sites can be used to provide other genetic elements required for expression of a heterologous DNA sequence. Further details regarding the use of a mammalian high expression vector for the production of a recombinant mammalian IL-1R are given in Examples 4 and 6 below. Examples of vectors can be constructed as described by Okayama and Berg (Mol. Cell. Biol. 3: 280, 1983).

Et nyttigt system til stabil ekspression af et højt niveau af mammale re-ceptor-cDNA'er i murine C127 epitheliale brystceller kan opbygges j det væsentlige 30 som beskrevet af Cosman et al. (Molecular Immunol. 23:935,1986).A useful system for stable expression of a high level of mammalian receptor cDNAs in murine C127 epithelial breast cells can be constructed substantially as described by Cosman et al. (Molecular Immunol. 23: 935, 1986).

Gærsystemer, der fortrinsvis anvender Saccharomycesarter såsom S.Yeast systems that preferably use Saccharomyces species such as S.

, cerevisiae, kan også anvendes til ekspression af de rekombinante proteiner ifølge op findelsen. Gær af andre slægter, fx. Pichia eller Kluyveromyces, er også blevet anvendt som produktionsstammer for rekombinante proteiner., cerevisiae, can also be used to express the recombinant proteins of the invention. Yeasts of other genera, e.g. Pichia, or Kluyveromyces, have also been used as production strains for recombinant proteins.

35 Generelt vil nyttige gærvektorer omfatte replikationsområder og valgbare markører, der tillader transformation af både gær og E. coli, fx. ampicillinresistensge-In general, useful yeast vectors will include replication regions and selectable markers that allow transformation of both yeast and E. coli, e.g. ampicillin resistance

I DK 175810 B1 II DK 175810 B1 I

I 14 II 14 I

I net fra E. coli og S. cerevisiae TRP1 gen, og en promotor hidrørende fra et gaergen IIn networks from E. coli and S. cerevisiae TRP1 gene, and a promoter derived from a yeast I

I med høj ekspression til fremkaldelse af transkription af en nedenstrøms strukturel se* II with high expression to induce transcription of a downstream structural see * I

kvens. Sådanne promotorer kan afledes af transkriptionelle gærenheder, der indkoder Ikvens. Such promoters may be derived from transcriptional yeasts encoding I

I gener med høj ekspression såsom bl.a. 3-phosphoglyceratkinase (PGK), α-faktor, sur IIn genes with high expression such as i.a. 3-phosphoglycerate kinase (PGK), α-factor, acid I

I 5 phosphatase eller varmechockproteiner. Den heterologe strukturelle sekvens samles i IIn 5 phosphatase or heat shock proteins. The heterologous structural sequence is assembled in I

en passende læseramme med translationsinitierings- og termineringssekvenser og Ian appropriate reading frame with translation initiation and termination sequences and I

I fortrinsvis en ledersekvens, som kan styre udskillelse af translateret protein i det ex- II preferably a leader sequence that can control secretion of translated protein in the ex- I

I tracellulære medium. Eventuelt kan den heterologe sekvens indkode et fusionsprotein, IIn tracellular medium. Optionally, the heterologous sequence may encode a fusion protein, I

der indeholder et N-terminalt identifikationsprptid (fx. Asp-Tyr-Lys-(Asp)4-Lys) eller en Icontaining an N-terminal identification peptide (eg Asp-Tyr-Lys- (Asp) 4-Lys) or an I

I 10 anden sekvens, der resulterer i de ønskede karakteristika, fx. stabilisering eller for- IIn 10 second sequence resulting in the desired characteristics, e.g. stabilization or pre- I

I enklet rensning af udtrykt rekombinant produkt. IIn simple purification of expressed recombinant product. IN

Nyttige gærvektorer kan samles under anvendelse af DNA-sekvenser fra IUseful yeast vectors can be assembled using DNA sequences from I

pBR322 til udvælgelse og repiikation i E. coli (Ampr-gen og replikationsområde) og IpBR322 for selection and replication in E. coli (Ampr gene and replication region) and I

I gær-DNA-sekvenser indeholdende en glucoseundertrykbar alkoholdehydrogenase 2 IIn yeast DNA sequences containing a glucose repressible alcohol dehydrogenase 2 I

I 15 (ADH2) promotor. ADH2-promotoren er blevet beskrevet af Russell et al. (J. Biol. II 15 (ADH2) promoter. The ADH2 promoter has been described by Russell et al. (J. Biol. I

I | Chem. 258:2674,1982) og Beier et al. (Nature 300:724,1982). Sådanne vektorer kan II | Chem. 258: 2674, 1982) and Beier et al. (Nature 300: 724, 1982). Such vectors can I

også omfatte et gær-TRP1-gen som en valgbar markør og gær-2p-replikations- Ialso include a yeast TRP1 gene as a selectable marker and yeast 2p replication I

I | området. En gærledersekvens, fx. α-faktorlederen, der styrer udskillelse af heterologe II | the area. A yeast leader sequence, e.g. the α-factor leader that controls the secretion of heterologous I

I I proteiner fra en gærvært, kan indføjes mellem promotoren og det strukturelle gen, som II I proteins from a yeast host can be inserted between the promoter and the structural gene that I

I 1 20 skal udtrykkes (se. Kurjan et al., US-patentskrift 4.546.082, Kurjan et al., Cell 30:933 II 1 20 to be expressed (see Kurjan et al., U.S. Patent 4,546,082, Kurjan et al., Cell 30: 933 I

I (1982), og Bitter et al., Proc. Natl. Acad. Sci. USA 81:5330, 1984). Ledersekvensen II (1982), and Bitter et al., Proc. Natl. Acad. Sci. USA 81: 5330, 1984). The leader sequence I

kan modificeres til nær sin 3'-ende at indeholde et eller flere nyttige restriktionssteder Imay be modified to contain near its 3 'end one or more useful restriction sites I

til lettelse af fusionen af ledersekvensen med fremmede gener. Ito facilitate the fusion of the leader sequence with foreign genes. IN

H Egnede gærtransformationsprotokoller er keridte for fagmanden. Et ek- IH Suitable yeast transformation protocols are skilled in the art. Et ek- I

25 sempel på en teknik er beskrevet af Hinne et al. (Proc. Natl, Acad. Sci. USA 75:1929, I25 samples of a technique are described by Hinne et al. (Proc. Natl, Acad. Sci. USA 75: 1929, I

1978), ved hvilken Trp+-transformanter udvælges i et selektivt medium bestående af I1978), in which Trp + transformants are selected in a selective medium consisting of I

0,67% gæmitrogenbase, 0,5% casaminosyrer, 2% glucose, 10 pg/ml adenin og 20 I0.67% gemitrogen base, 0.5% casamino acids, 2% glucose, 10 pg / ml adenine and 20 l

pg/ml uracil. Ipg / ml uracil. IN

Værtsstammer, som er transformeret med vektorer, der omfatter ADH2- IHost strains transformed with vectors comprising ADH2-I

30 promotoren, kan dyrkes for ekspression i et beriget medium bestående af 1 % gæreks- IPromoter, can be grown for expression in an enriched medium consisting of 1% yeast extract

trakt, 2% pepton og 1% glucose suppleret med 80 pg/ml adenin og 80 pg/ml uracil. Iextract, 2% peptone and 1% glucose supplemented with 80 pg / ml adenine and 80 pg / ml uracil. IN

Derepression af ADH2-promotoren optræder, når mediets glucose er opbrugt. Rå IDerepression of the ADH2 promoter occurs when the glucose of the medium is depleted. Raw I

gærsupernatanter høstes ved filtrering og holdes ved 4° C før yderligere rensning. Iyeast supernatants are harvested by filtration and kept at 4 ° C before further purification. IN

Nyttige ekspressionsvektorer til bakteriel anvendelse opbygges ved ind- IUseful expression vectors for bacterial use are built up by ind- I

35 føjelse af en DNA-sekvens, der indkoder mammal IL-1R sammen med egnede trans- IAddition of a DNA sequence encoding mammalian IL-1R together with suitable trans- I

lationsinitierings- og termineringssignaler i operativ læsefase med en funktionel pro- Ilation initiation and termination signals in operational read phase with a functional pro- I

DK 175810 B1 15 motor. Vektoren vil omfatte en eller flere fænotypiske valgbare markører og et replika-tionsområde for at sikre forstærkning i værten. Egnede prokaryotiske værter for transformation omfatter E. coli, Bacillus subtilis, Salmonella typhimurium og forskellige arter af slægterne Pseudomonas, Streptomyces og Staphylococcus, selvom andre værter 5 om ønsket også kan anvendes.DK 175810 B1 15 engine. The vector will comprise one or more phenotypically selectable markers and a replication region to ensure amplification in the host. Suitable prokaryotic hosts for transformation include E. coli, Bacillus subtilis, Salmonella typhimurium and various species of the genera Pseudomonas, Streptomyces and Staphylococcus, although other hosts may also be used if desired.

Ekspressionsvektorer opbygges hensigtsmæssigt ved spaltning af cDNA-kloner på steder nær ved kodonen, der indkoder den N-terminale rest af det modne protein. Syntetiske oligonukleotider kan dernæst anvendes til "tilbageføring" af udeladte afsnit af kodningsområdet og tilvejebringelse af en bindingssekvens for ligering | ' 10 af kodningsfragmentet i passende læseramme i ekspressionsvektoren og eventuelt en kodon, der specificerer en initiatormethionin.Expression vectors are conveniently constructed by cleaving cDNA clones at sites near the codon encoding the N-terminal residue of the mature protein. Synthetic oligonucleotides can then be used to "reverse" omitted portions of the coding region and to provide a binding sequence for ligation | '10 of the coding fragment in the appropriate reading frame of the expression vector and optionally a codon specifying an initiator methionine.

Som et repræsentativt, men ikke begrænsende eksempel kan nyttige ekspressionsvektorer til bakteriel anvendelse omfatte en valgbar markør og et bakterielt replikationsområde hidrørende fra kommercielt tilgængelige plasmider omfattende 15 genetiske elementer af den velkendte kloningsvektor pBR322 (ATCC 37017). Sådanne kommercielle vektorer omfatter fx. pKK223-3 (Pharmacia Fine Chemicals, Uppsala,As a representative but non-limiting example, useful expression vectors for bacterial use may comprise a selectable marker and a bacterial replication region derived from commercially available plasmids comprising 15 genetic elements of the well-known cloning vector pBR322 (ATCC 37017). Such commercial vectors include e.g. pKK223-3 (Pharmacia Fine Chemicals, Uppsala,

Sverige9 og pGEM1 (Promega Biotec, Madison, Wl, USA). Disse pBR322 "ryggrads"-afsnit kombineres med en passende promotor og den strukturelle sekvens, som skal udtrykkes.Sweden9 and pGEM1 (Promega Biotec, Madison, Wl, USA). These pBR322 "backbone" sections are combined with an appropriate promoter and the structural sequence to be expressed.

20 Et specielt nyttigt bakterielt ekspressionssystem anvender fag λ PLA particularly useful bacterial expression system uses phage λ PL

promotoren og den termolabile cl857-repressor. Plasmidvektorer, som kan fås fra American Type Culture Collection og som indbefatter derivater af λ PL promotoren, omfatter plasmid pHUB2, der forefindes i E. coli stamme JMB9 (ATCC 37092), og pPLc28, der forefindes i E. coli RR1 (ATCC 53082). Andre nyttige promotorer for eks-25 pression i E. coli omfatter den af Studier et al. (J. Mol. Biol. 189:113, 1986) beskrevne T7 RNA-polymerasepromotor, den af Lauer (J. Mol. Appl. Genet. 1:139-147,1981) beskrevne lacZ-promotor. der er tilgængelig som ATCC 37121, og den af Maniatis (Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, 1982, p.the promoter and the thermolabile cl857 repressor. Plasmid vectors available from the American Type Culture Collection which include derivatives of the λ PL promoter include plasmid pHUB2 present in E. coli strain JMB9 (ATCC 37092) and pPLc28 present in E. coli RR1 (ATCC 53082) . Other useful promoters for expression in E. coli include that of Studier et al. (J. Mol. Biol. 189: 113, 1986) described T7 RNA polymerase promoter, the lacZ promoter described by Lauer (J. Mol. Appl. Genet. 1: 139-147, 1981). available as ATCC 37121, and that of Maniatis (Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, 1982, p.

412) beskrevne tac-promotor, der er tilgængelig som ATCC 37138.412) described tac promoter available as ATCC 37138.

30 Efter transformation af en egnet værtsstamme og dyrkning af værtsstammen til en passende celletæthed udsættes den valgte promotor for derepression med passende midler (fx. temperaturændring eller kemisk induktion), og celler dyrkes i endnu et stykke tid. Celler høstes typisk ved centrifugering, brydes med fysiske eller kemiske midler, og den resulterende rå ekstrakt tilbageholdes for yderlige-35 re rensning. Celler dyrkes fx. i en 101 fermenteringsbeholder under anvendelse af maksimal luftning og kraftig omrøring. Der anvendes fortrinsvis et antiskum-After transforming a suitable host strain and culturing the host strain to an appropriate cell density, the selected promoter is subjected to derepression by appropriate means (e.g., temperature change or chemical induction), and cells are cultured for an additional period of time. Cells are typically harvested by centrifugation, disrupted by physical or chemical means, and the resulting crude extract is retained for further purification. Cells are grown e.g. in a 101 fermentation vessel using maximum aeration and vigorous stirring. An antifoam is preferably used.

I DK 175810 B1 II DK 175810 B1 I

I II I

I dannelsesmiddel (Antifoam A). Kulturer dyrkes ved 30°C i det af Mott et al. (Proc. Natl. IIn formative (Antifoam A). Cultures are grown at 30 ° C in that of Mott et al. (Proc. Natl. I

I Acad. Sci. USA 82:88, 1985) beskrevne superinduktionsmedium, der alternativt om- II Acad. Sci. USA 82:88, 1985) described superinduction medium which alternatively re- I

I fatter antibiotika, udsættes for derepression ved en celletæthed svarende til A600 = II fatter antibiotics, exposed to derepression at a cell density corresponding to A600 = I

0,4-0,5 ved forhøjelse af temperaturen til 42°C og høstes fra 2-20, fortrinsvis 3-6, timer I0.4-0.5 by raising the temperature to 42 ° C and harvesting from 2-20, preferably 3-6, hours I

I 5 efter temperaturforøgelsen. Cellemassen koncentreres indledningsvis ved filtrering IIn 5 after the temperature increase. The cell mass is initially concentrated by filtration

I eller anden måde og centrifugeres dernæst ved 10.000 x g i 10 minutter ved 4°C ef- ISomehow and then centrifuged at 10,000 x g for 10 minutes at 4 ° C ef-I

I terfulgt af hurtig nedfrysning af cellepelieten. II followed by rapid freezing of the cell pellet. IN

I Rensede mammale I L-1R'er eller bioækvivalente homologer fremstilles IIn Purified mammal I L-1Rs or bioequivalent homologues are prepared

I fortrinsvis ved dyrkning af egnede vært/vektorsystemer til ekspression af de rekombi- ' II preferably by culturing suitable host / vector systems for expression of the recombi 'I

I 10 nante translationsprodukter af de syntetiske gener ifølge opfindelsen, som derefter IIn nant translation products of the synthetic genes of the invention, which then I

I oprenses fra kulturmedier. IYou are purified from cultural media. IN

I En alternativ fremgangsmåde til fremstilling af renset 11-1R omfatter op- IAn alternative method of making purified 11-1R comprises op- I

I rensning fra cellekultursupernatanter eller ekstrakter. Ved denne fremgangsmåde an- IIn purification from cell culture supernatants or extracts. By this method an- I

I vendes en cellelinie, der fremtider nyttige mængder af proteinet. Supematanter fra IIn turns a cell line that future useful amounts of the protein. Superfoods from I

15 sådanne cellelinier kan eventuelt koncentreres under anvendelse af et kommercielt I15 such cell lines may optionally be concentrated using a commercial I

I tilgængeligt proteinkoncentrationsfilter, fx. en Amicon eller Millipore Pellicon ultrafil- IIn available protein concentration filter, e.g. an Amicon or Millipore Pellicon ultrafil- I

treringsenhed. Efter koncentrationstrinnet kan koncentratet anbringes på en egnet Itration unit. After the concentration step, the concentrate can be placed on a suitable I

I rensningsmatrix som tidligere beskrevet. For eksempel kan en egnet affinitetsmatrix IIn purification matrix as previously described. For example, a suitable affinity matrix I

omfatte et IL-1 - eller lectin- eller antistofmolekyle, som er bundet til en egnet bærer. Icomprise an IL-1 or lectin or antibody molecule bound to a suitable carrier. IN

B 20 Alternativt kan der anvendes en anionbytterharpiks, fx. en matrix eller et substrat med IB 20 Alternatively, an anion exchange resin may be used, e.g. a matrix or substrate with I

diethylaminoethyl (DEAE) sidegrupper. Matricerne kan være acrylamid, agarose, dex- Idiethylaminoethyl (DEAE) side groups. The matrices may be acrylamide, agarose, dex- I

tran, cellulose eller andre typer, der sædvanligvis anvendes til proteinrensning. Alter- Icod liver oil, cellulose or other types commonly used for protein purification. Alter- I

B nativt kan der anvendes et kationbytningtrin. Egnede kationbyttere omfatter forskellige IAlternatively, a cation exchange step may be used. Suitable cation exchangers include various I

B uopløselige matricer omfattende sulfopropyl- eller carboxymethylgrupper. Sulfopropyl- IB insoluble matrices comprising sulfopropyl or carboxymethyl groups. Sulfopropyl- I

I 25 grupper er foretrukket. IIn 25 groups is preferred. IN

B Til sidst kan der til yderligere rensning af en IL-1 R sammensætning an- IB Finally, for further purification of an IL-1R composition, I- I

B vendes et eller flere revers fase højtryksvæskekromatografi (RP-HPLC) trin under an- IB, one or more reverse phase high performance liquid chromatography (RP-HPLC) steps are performed during

B vendelse af hydrofobe RP-HPLC-medier, fx. silicagel med methyl- eller andre alifatiske IB use of hydrophobic RP-HPLC media, e.g. silica gel with methyl or other aliphatic I

B sidegrupper. Nogle af eller alle de foregående rensningstrin kan i forskellige kombina- IB side groups. Some or all of the previous purification steps may be in various combinations

B 30 tioner også anvendes til tilvejebringelse af et homogent rekombinant protein. IB ions are also used to provide a homogeneous recombinant protein. IN

B I bakteriekultur fremstillet rekombinant protein isoleres sædvanligvis ved IB In bacterial culture, recombinant protein produced is usually isolated by I

B indledningsvis ekstraktion fra cellepellets efterfulgt af et eller flere koncentrerings-, IB initial extraction from cell pellets followed by one or more concentrations, I

B udsaltnings-, vandig ionbytnings- eller størrelseseksklusionskromatografitrin. Endelig IB desalination, aqueous ion exchange or size exclusion chromatography steps. Finally I

B kan højtryksvæskekromatografi (HPLC) udføres som sidste rensningstrin. Mikrobielle IB, high pressure liquid chromatography (HPLC) can be performed as the final purification step. Microbial I

B 35 celler, der anvendes til ekspression af rekombinant mammal IL-1 R, kan brydes ved en IB 35 cells used to express recombinant mammalian IL-1R can be disrupted by an I

17 DK 175810 B1 hvilken som helst passende fremgangsmåde, inklusive skiftende nedfrysning/optøning, sonikering, mekanisk brydning eller anvendelse af cellelvserende midler.17 DK 175810 B1 any suitable method, including alternating freezing / thawing, sonication, mechanical breaking or the use of cell disintegrants.

Fermentering af gær, der udtrykker mammal IL-IR som et udskilt protein, gør rensning meget enklere. Udskilt rekombinant protein, der stammer fra en fermen- , 5 tering i stor målestok, kan renses ved fremgangsmåder, som er analoge med de af Urdal et al. (J. Chromatog. 296:171,1964), beskrevne. Denne reference beskriver to sekventielle, revers fase HPLC-trin til rensning af rekombinant human GM-CSF på en præparativ HPLC-kolonne.Fermentation of yeast that expresses mammalian IL-IR as a secreted protein makes purification much simpler. Secreted recombinant protein derived from a large scale fermentation can be purified by methods analogous to those of Urdal et al. (J. Chromatog. 296: 171, 1964), described. This reference describes two sequential, reverse phase HPLC steps for purification of recombinant human GM-CSF on a preparative HPLC column.

I dens forskellige udførelsesformer tilvejebringer den foreliggende opfin-10 delse i det væsentlige homogene, rekombinante mammale IL-1R polypeptider, som er fri for kontaminerende endogene materialer, med eller uden associeret glycosylering af det native mønster. Det native murine IL-IR molekyle udvindes fra cellekulturekstrakter som et glycoprotein med en tilsyneladende molekylvægt på ca. 82 kD bestemt ved SDS-PAGE. I mammale ekspressionssytemer udtrykte IL-1R'er, fx. COS-7 celler, kan 15 have en molekylvægt og et glycosyleringsmøsnter, som ligner eller er lidt forskellige fra de native molekylers afhængigt af ekspressionssystemet. Ekspression af IL-1R DNA'er i bakterier såsom E. coli tilvejebringer ikke-glycosylerede molekyler med en tilsyneladende molekylvægt på ca. 60 kD ifølge bestemmelse ved SDS-PAGE under ikke-reducerende betingelser.In its various embodiments, the present invention provides substantially homogeneous, recombinant mammalian IL-1R polypeptides that are free of contaminating endogenous materials, with or without associated glycosylation of the native pattern. The native murine IL-IR molecule is recovered from cell culture extracts as a glycoprotein with an apparent molecular weight of approx. 82 kD determined by SDS-PAGE. In mammalian expression systems, IL-1Rs expressed e.g. COS-7 cells, may have a molecular weight and a glycosylation pattern that are similar or slightly different from those of the native molecules depending on the expression system. Expression of IL-1R DNAs in bacteria such as E. coli provides non-glycosylated molecules with an apparent molecular weight of approx. 60 kD as determined by SDS-PAGE under non-reducing conditions.

20 Rekombinante IL-1 R proteiner ifølge opfindelsen omfatter også N- terminal methionyl murine og humane IL-1 R; Yderligere udførelsesformer omfatter opløselige forkortede versioner, hvori visse områder, fx. transmembranområdet og de intracellulære områder, er udeladt, hvorved der tilvejebringes et molekyle, der kun har et IL-1-bindingsområde. Mammale IL-1 R'er udtrykt som fusionsproteiner med en poly-25 peptidleder, der omfatter sekvensen Asp-Tyr-Lys-(Asp4)-Lys, eller med andre egnede peptid- eller proteinsekvenser, der anvendes som hjælpemidler til ekspression i mikroorganismer eller oprensning af mikrobielt udtrykte proteiner, er også omfattet.Recombinant IL-1R proteins of the invention also include N-terminal methionyl murine and human IL-1R; Additional embodiments include soluble abbreviated versions in which certain ranges, e.g. the transmembrane region and the intracellular regions are omitted, thereby providing a molecule having only one IL-1 binding region. Mammalian IL-1 Rs expressed as fusion proteins with a polypeptide leader comprising the sequence Asp-Tyr-Lys- (Asp4) -Lys, or with other suitable peptide or protein sequences used as aids for expression in microorganisms or purification of microbially expressed proteins is also included.

Bioækvivalente homologer af proteinerne ifølge opfindelsen omfatter forskellige analoge, fx. forkortede versioner af IL-1 R'er, hvori terminale eller interne 30 rester eller sekvenser, der ikke er nødvendige for biologisk aktivitet, er udeladt. Andre omhandlede analoger er sådanne, hvori en eller flere cysteinrester er blevet udeladt eller erstattet med andre aminosyrer, fx. neutrale aminosyrer. Andre mutagenese-fremgangsmåder omfatter modifikation af nabostillede dibasiske aminosyrerester til I forøgelse af ekspression i gærsystemer, hvori KEX2-proteaseaktivitet er til stede, eller 35 modifikation af proteinsekvensen til eliminering af et eller flere N-bundne glycosyle-ringssteder.Bioequivalent homologues of the proteins of the invention include various analogs, e.g. abbreviated versions of IL-1 Rs in which terminal or internal residues or sequences not necessary for biological activity are omitted. Other analogues are those in which one or more cysteine residues have been omitted or replaced with other amino acids, e.g. neutral amino acids. Other mutagenesis methods include modification of adjacent dibasic amino acid residues to increase expression in yeast systems in which KEX2 protease activity is present, or modification of the protein sequence to eliminate one or more N-linked glycosylation sites.

I DK 175810 B1 II DK 175810 B1 I

I 18 II 18 I

I Som anvendt i det foreliggende henviser "mutant aminosyresekvens" til IAs used herein, "mutant amino acid sequence" refers to I

I et polypeptid, som er indkodet af en nukleotidsekvens, der bevidst er gjort forskellig fra IIn a polypeptide encoded by a nucleotide sequence deliberately differentiated from I

I en nativ sekvens. "Mutant protein" eller "analog" betyder et protein omfattende en IIn a native sequence. "Mutant protein" or "analog" means a protein comprising an I

I mutant aminosyresekvens. "Nativ sekvens" henviser til en aminosyre- eller nukleinsy- IIn mutant amino acid sequence. "Native sequence" refers to an amino acid or nucleic acid I

I 5 esekvens, som er identisk med en vild type eller nativ form af et gen eller protein. IIn 5 sequence which is identical to a wild type or native form of a gene or protein. IN

I Udtrykkene "KEX2-proteasegenkendelsessted" og "N-glycosyleringssted" er defineret II The terms "KEX2 protease recognition site" and "N-glycosylation site" are defined in

I nedenfor. Som anvendt til definering af specielle aspekter af opfindelsen betyder ud- IIn below. As used to define particular aspects of the invention, ud- I

I trykket "inaktivering", ændring af et udvalgt KEX2-proteasegenkendelsessted for at IIn the pressure "inactivation", change of a selected KEX2 protease recognition site to I

retardere eller hindre spaltning med KEX2-proteasen af Saccharomyces cerevisiae, Iretard or prevent cleavage by the KEX2 protease of Saccharomyces cerevisiae, I

I 10 eller ændring af et N-glycosyleringssted for at udelukke covalent binding af oligosac- II 10 or alteration of an N-glycosylation site to exclude covalent binding of oligosac- I

chariddele til specielle aminosyrerester ved cellen. Icharid moieties for special amino acid residues at the cell. IN

I Stedspecifikke mutageneseprocedurer kan anvendes til inaktivering af ISite-specific mutagenesis procedures can be used to inactivate I

I KEX2-proteasebehandlingssteder ved udeladelse, tilføjelse eller erstatning af rester IIn KEX2 protease treatment sites by omission, addition or replacement of residues I

I for at ændre Arg-Arg, Arg-Lys og Lys-Arg par for at eliminere forekomsten af disse II to change Arg-Arg, Arg-Light and Light-Arg pairs to eliminate the occurrence of these I

15 nabostillede basiske rester. Lys-Lys par er betydeligt mindre tilbøjelige til KEX2- I15 adjacent alkaline residues. Light-Light pairs are significantly less prone to KEX2-I

I spaltning, og omdannelse af Arg-Lys eller Lys-Arg til Lys-Lys repræsenterer en kon- IIn cleavage, and conversion of Arg-Lys or Lys-Arg to Lys-Lys represents a con- I

I servativ og foretrukket fremgangsmåde til inaktivering af KEX2-steder. De resulteren- IIn servative and preferred method of inactivating KEX2 sites. The result- I

de analoge er mindre tilbøjelige til at blive spaltet med KEX2-protease på andre steder Ithe analogues are less likely to be cleaved with KEX2 protease elsewhere I

I end i gær α-faktorledersekvensen, hvor spaltning ved udskillelse er tilsigtet. : II than in yeast the α-factor leader sequence, where cleavage by secretion is intentional. : I

I 20 Mange udskilte proteiner antager covalent bundne carbonhydratenheder i II 20 Many secreted proteins assume covalently bound carbohydrate moieties in I

efter translation, hyppigt i form af oligosaccharidenheder, der ved N-glycosidbindinger Iafter translation, frequently in the form of oligosaccharide units which by N-glycoside bonds I

er bundet til asparaginsidekæder. Både strukturen og antallet af oligosaccharidenhe- Iis bound to asparagine side chains. Both the structure and the number of oligosaccharide units

I der, som er bundet til et givet udskilt protein, kan variere betragteligt, hvilket resulterer IIn that, which is bound to a given secreted protein can vary considerably, resulting in I

i mange forskellige tilsyneladende molekylmasser, der kan tilskrives et enkelt gly- Iin many different apparent molecular masses attributable to a single gly- I

H 25 coprotein. mlL-1 R er et glycoprotein af denne type. Forsøg på at udtrykke glycoprotei- IH 25 coprotein. mlL-1R is a glycoprotein of this type. Attempts to express glycoprotei- I

ner i rekombinante systemer kan kompliceres af den heterogenitet, der kan tilskrives Irecombinant systems can be complicated by the heterogeneity attributable to I

denne variable carbonhydratkomponent. For eksempel kan rensede blandinger af re- Ithis variable carbohydrate component. For example, purified mixtures of re- I

kombinante glycoproteiner såsom human eller murin granulocytmakrofagkoloni- ' Icombining glycoproteins such as human or murine granulocyte macrophage colonies

stimulerende faktor (GM-CSF) bestå af 0-50 vægt-% carbonhydrat. Miyajima et al. : Istimulating factor (GM-CSF) consist of 0-50% by weight of carbohydrate. Miyajima et al. : I

30 (EMBO Journal 5:1195,1986) rapporterede ekspression af en rekombinant murin GM- I30 (EMBO Journal 5: 1195,1986) reported expression of a recombinant murine GM-I

CSF, hvori N-glycosyleringssteder var blevet muteret for at udelukke glycosylering og ICSF in which N-glycosylation sites had been mutated to exclude glycosylation and I

reducere heterogeniteten af det gærudtrykte produkt. Ireduce the heterogeneity of the yeast expressed product. IN

Tilstedeværelsen af variable mængder af associeret carbonhydrat i re- IThe presence of variable amounts of associated carbohydrate in re- I

kombinante glycoproteiner komplicerer rensningsprocedurerne, hvorved udbyttet re- Icombined glycoproteins complicate the purification procedures, whereby the yield re- I

35 duceres. Desuden er der, hvis glycoproteinet anvendes som et terapeutisk middel, i I35 duceres. In addition, if the glycoprotein is used as a therapeutic agent, in I

mulighed for, at modtageren vil udvikle immunreaktioner over for gærcarbonhydratde- : Ipossibility that the recipient will develop immune reactions to yeast carbohydrate de-: I

Η ' II 'I

I DK 175810 B1 lene, hvilket kræver, at terapien afbrydes. Af disse grunde kan biologisk aktive, homogene analoge af immunregulatoriske glycoproteiner med reduceret carbonhvriratinH-hold være ønskelige til terapeutisk anvendelse.In DK 175810 B1 lene, which requires that the therapy be interrupted. For these reasons, biologically active, homogeneous analogs of immunoc regulatory glycoproteins with reduced carbon hydratinH content may be desirable for therapeutic use.

Funktionelle mutantanaloger til mammale IL-1R'er med inaktiverede N-5 glycosyleringssteder kan fremstilles ved oligonukleotidsyntese og ligering eller ved stedspecifikke mutageneseteknikker som beskrevet nedenfor. Disse analogproteiner kan med god udbytte fremstilles i en homogen, carbonhydratreduceret form under anvendelse af gærekspressionssystemer. N-glycosyleringssteder i eukaryotiske proteiner er karakteriseret ved aminosyretripletten Asn-A1-Z, hvor A1 er en aminosyre 10 bortset fra Pro, og Z er Ser eller Thr. I denne sekvens tilvejebringer asparagin en side-kædeaminogruppe til covalent binding af carbonhydrat. Et sådant sted kan elimineres ved substituering af Asn eller resten Z med en anden aminosyre, udeladelse af Asn eller Z, eller indføjelse af en ikke-Z aminosyre mellem A1 og Z, eller en aminsyre, som ikke er Asn, mellem Asn og A1. Fortrinsvis udføres substitueringer på konservativ må-15 de, dvs. de mest foretrukne substitueringsaminosyrer er sådanne, hvis fysisk-kemiske egenskaber ligner egenskaberne af den rest, som skal erstattes. På lignende måde bør den potentielle virkning af udeladelsen eller indføjelsen på den biologiske aktivitet tages i betragtning, når en udeladelses- eller indføjelsesstrategi tages i anvendelse.Functional mutant analogs of mammalian IL-1Rs with inactivated N-5 glycosylation sites can be prepared by oligonucleotide synthesis and ligation or by site-specific mutagenesis techniques as described below. These analogous proteins can be produced in good yield in a homogeneous, carbohydrate-reduced form using yeast expression systems. N-glycosylation sites in eukaryotic proteins are characterized by the amino acid triplet Asn-A1-Z, where A1 is an amino acid 10 except Pro and Z is Ser or Thr. In this sequence, asparagine provides a side chain amino group for the covalent bonding of carbohydrate. Such a site can be eliminated by substituting Asn or the residue Z with another amino acid, omitting Asn or Z, or inserting a non-Z amino acid between A1 and Z, or a non-Asn amino acid between Asn and A1. Preferably, substitutions are performed in a conservative manner, i.e. the most preferred substitution amino acids are those whose physicochemical properties are similar to those of the residue to be replaced. Similarly, the potential effect of the deletion or inclusion on the biological activity should be considered when applying an exclusion or insertion strategy.

Udover de ovenfor beskrevne specielle analoger kan der bekvemt frem-20 stilles talrige DNA-konstruktioner omfattende alle eller en del af de i tabellerne 2A-2C eller 4A-4C viste nukleotidsekvenser, sammen med oligonukleotidkassetter, der omfatter yderligere nyttige restriktionssteder. Mutationer kan indføres på specielle steder ved syntetisering af oligonukleotider, der indeholder en mutantsekvens, flankeret af restriktionssteder, som muliggør ligering til fragmenter af den native sekvens. Efter 25 ligering indkoder den resulterende rekonstruerede sekvens en analog med den ønskede aminosyreindføjelse, -substituering eller -udeladelse.In addition to the particular analogs described above, numerous DNA constructs can be conveniently prepared comprising all or part of the nucleotide sequences shown in Tables 2A-2C or 4A-4C, together with oligonucleotide cassettes comprising additional useful restriction sites. Mutations can be introduced at particular sites by synthesizing oligonucleotides containing a mutant sequence flanked by restriction sites that allow ligation to fragments of the native sequence. After ligation, the resulting reconstructed sequence encodes an analog with the desired amino acid insertion, substitution, or deletion.

Alternativt kan der anvendes oligonukleotidstyrede stedspecifikke muta-geneseprocedurer til tilvejebringelse af et ændret gen med specielle kodoner, som er ændret iht. den krævede substituering, udeladelse eller indføjelse. Som eksempler 30 beskriver Walder et al. (Gene 42:133,1986), Bauer et al. (Gene 37:73, 1985), Craik (Biotechniques, January 1985,12-19), Smith et al. (Genetic Engineering: Principles and Methods, Plenum Press, 1981) og US-patentskrift nr. 4.518.584 egnede teknikker, som inkorporeres i det foreliggende ved henvisning.Alternatively, oligonucleotide-directed site-specific mutagenesis procedures can be used to provide an altered gene with particular codons that have been altered according to the required substitution, deletion, or insertion. As Examples 30, Walder et al. (Gene 42: 133, 1986), Bauer et al. (Gene 37:73, 1985), Craik (Biotechniques, January 1985, 12-19), Smith et al. (Genetic Engineering: Principles and Methods, Plenum Press, 1981) and U.S. Patent No. 4,518,584 suitable techniques, which are incorporated herein by reference.

I en udførelsesform af opfindelsen er aminosyresekvensen af IL-1R bun-35 det til en gær α-faktorledersekvens via en N-terminal fusionskonstruktion, der omfatter et nukleotid, som indkoder peptidet Asp-Tyr-Lys-Asp-Asp-Asp-Asp-Lys (DYKDDDDK).In one embodiment of the invention, the amino acid sequence of IL-1R is bound to a yeast α-factor leader sequence via an N-terminal fusion construct comprising a nucleotide encoding the peptide Asp-Tyr-Lys-Asp-Asp-Asp-Asp-Asp- Light (DYKDDDDK).

I DK 175810 B1 II DK 175810 B1 I

I 20 II 20 I

I Sidstnævnte sekvens er stærkt antigenisk og tilvejebringer en epitop, der bindes re- IThe latter sequence is highly antigenic and provides an epitope that binds re- I

I versibelt af specifik monoklonalt antistof, hvilket muliggør en hurtig assay og en let II versible of specific monoclonal antibody, enabling a rapid assay and an easy I

I rensning af udtrykt rekombinant protein. Denne sekvens spaltes også specifikt af bovin IIn purification of expressed recombinant protein. This sequence is also specifically cleaved by bovine I.

mucosal enterokinase ved resten, der følger umiddelbart efter Asp-Lys parret. Fusi- Imucosal enterokinase by the residue immediately following the Asp-Lys pair. Fusi- I

I 5 onsproteiner, som er maskeret med dette peptid, kan også være resistente over for II 5 onsproteins masked with this peptide may also be resistant to I

I intracellulær nedbrydning i E. coli. En alternativ konstruktion er Asp-Tyr-Lys-Asp-Asp- IIn intracellular degradation in E. coli. An alternative construction is Asp-Tyr-Lys-Asp-Asp-I

I Asp-Asp-Lys-Glu-lle-Gly-Arg, der tilvejebringer et faktor X genkendelsessted umiddel- IIn the Asp-Asp-Lys-Glu-lle-Gly-Arg which provides a factor X recognition site immediately

I bart nedenstrøms for enterokinasestedeL II bare downstream of enterokinase siteL I

I Opfindelsen beskrives nærmere i det følgende eksempler, som skal tjene IThe invention is further described in the following examples, which are to serve I

I 10 til belysning, men ikke til begrænsning af opfindelsen. II 10 for lighting, but not for limiting the invention. IN

I Eksempel 1 IIn Example 1 I

Fremstilling af IL-1 α affinitetsmatrix og affinitetsoprensnina af receptor fra overflade- IPreparation of IL-1 α affinity matrix and affinity purification of surface I receptor

I mærkede EL-4 6.1 C10 celler II labeled EL-4 6.1 C10 cells I

15 Celleoverladeproteiner på EL-4 6.1 C10 celler radiomærkedes med 125l I15 Cell transfer proteins on EL-4 6.1 C10 cells were radiolabeled with 125 L

ved den af Cosman et al. (Molecular Immunol. 23:935,1986) beskrevne glucoseoxt- Iby that of Cosman et al. (Molecular Immunol. 23: 935,1986) described glucoseoxt- I

I dase-lactoperoxidasemetode. Mærkede celler pelleteredes ved centrifugering, vaske- IIn the dase lactoperoxidase method. Labeled cells were pelleted by centrifugation, wash- I

des tre gange med PBS og ekstraheredes med PBS indeholdende 1% Triton X-100 og Ithree times with PBS and extracted with PBS containing 1% Triton X-100 and I

I den i den ovenfor specificerede assayprotokol beskrevne cocktail af proteaseinhibito- IIn the cocktail of protease inhibitory I described in the assay protocol specified above

20 rer. Triton X-100 ekstrakten centrifugeredes i 10 minutter i en Eppendorf mikrocentri- I20 rer. The Triton X-100 extract was centrifuged for 10 minutes in an Eppendorf microcentric

fuge, og supematanten opbevaredes ved -70°C. Ijoint and the supernatant was stored at -70 ° C. IN

Rekombinant IL-1 α blev bundet til cyanogenbromidaktiveret Sepharose IRecombinant IL-1α was bound to cyanogen bromide-activated Sepharose I.

4B (Pharmacia, Piscataway, NJ, USA) eller til Affigel-10 (Bio-Rad, Richmond, CA, I4B (Pharmacia, Piscataway, NJ, USA) or to Affigel-10 (Bio-Rad, Richmond, CA, I

USA) iht. producentens forslag. For eksempel sattes til en opløsning af IL-1 α (1,64 IUSA) according to the manufacturer's proposal. For example, a solution of IL-1α (1.64 L) was added

25 mg/ml i 9,5 ml PBS) 3 ml kvældet, syrevasket, CNBR-aktiveret Sepharose. Opløsnin- I25 mg / ml in 9.5 ml PBS) 3 ml swollen, acid-washed, CNBR-activated Sepharose. Resolution- I

gen rystedes natten over ved 4°C, og en portion af supematanten testedes for protein IThe gene was shaken overnight at 4 ° C and a portion of the supernatant was tested for protein I

ved en fluorescaminproteinassay som beskrevet af Udenfriend et al. (Science Iby a fluorescamine protein assay as described by Udenfriend et al. (Science I

178:871,1972) under anvendelse af BSA som standard. 98% af proteinet var blevet I178: 871,1972) using BSA as a standard. 98% of the protein had become I

bundet til gelen, hvilket lod formode, åt kolonnen havde en slutladning på 5,1 mg IL-1a Ibound to the gel, which suggested that the column had a final charge of 5.1 mg IL-1a I

H 30 pr. ml gel. 300 pi 1 M glycinethylester (Sigma Chemical Co., St. Louis, MO, USA) sat- IH 30 pr. ml gel. 300 μl of 1 M glycine ethyl ester (Sigma Chemical Co., St. Louis, MO, USA) sat- I

tes til opslæmningen til blokering af uomsatte steder på gelen. Ito the slurry to block unreacted sites on the gel. IN

Gelen vaskedes grundigt med 0,1 M glycinpuffer, pH 3,0, indeholdende IThe gel was washed thoroughly with 0.1 M glycine buffer, pH 3.0, containing I

0,1% Triton X-100, PBS indeholdende 0,1% Triton X-100, RIPA-puffer (0,05 M Tris- I0.1% Triton X-100, PBS containing 0.1% Triton X-100, RIPA buffer (0.05 M Tris-I

H HCI, pH 7,5, 0,15 M NaCI, 1% NP40,1% natriumdeoxycholat, 0,1% SDS) og PBS in- IHCl, pH 7.5, 0.15 M NaCl, 1% NP40.1% sodium deoxycholate, 0.1% SDS) and PBS in

35 deholdende 0,1 % Triton X-100 og 10 mM ATP. Små kolonner (200 μΙ) fremstilledes i IContaining 0.1% Triton X-100 and 10 mM ATP. Small columns (200 μΙ) were prepared in I

polypropylenholdere til engangsbrug (Bio-Rad, Richmond, CA, USA) og vaskedes Idisposable polypropylene holders (Bio-Rad, Richmond, CA, USA) and washed I

I DK 175810 B1 : med PBS indeholdende 1% Triton X-100. Portioner på 100 μΙ 125l-mærket ekstrakt ! overførtes til en kolonne, der dernæst vaskedes med PBS indeholdende 1% Triton X-I DK 175810 B1: with PBS containing 1% Triton X-100. Portions of 100 μΙ 125l-labeled extract! was transferred to a column which was then washed with PBS containing 1% Triton X

I 100, RIPA-puffer, PBS indeholdende 0,1 % Triton X-100 og 10 mM ATP, og PBS med II 100, RIPA buffer, PBS containing 0.1% Triton X-100 and 10 mM ATP, and PBS with I

i Ii I

j 1% Triton X-100. Ij 1% Triton X-100. IN

!' 5 IL-1 receptoren på murine T-celler er en robust struktur, som kan binde I! ' The IL-1 receptor on murine T cells is a robust structure that can bind I

i 125l-IL-1a i Triton X-100 detergentopløsninger. For at kunne udvinde receptor fra en Iin 125 I-IL-1α in Triton X-100 detergent solutions. In order to extract receptor from an I

; sådan affinitetsmatrix er der behov for en mild elueringsprocedure. Mild syrebehand- I; such an affinity matrix requires a mild elution procedure. Mild acid treatment- I

ling kan resultere i hurtig dissociering af forud dannede IL-1 cx/IL-1 receptorkomplekser. Iling can result in rapid dissociation of preformed IL-1 cx / IL-1 receptor complexes. IN

Baseret på denne iagttagelse anvendtes pH 3,0 glycin HCI puffer indeholdende 0,1 % IBased on this observation, pH 3.0 glycine HCl buffer containing 0.1% I was used

10 Triton X-100 til eluering af receptor fra IL-1 α affinitetskolonneme, hvilken receptor op- ITriton X-100 for eluting receptor from the IL-1 α affinity columns, which receptor op- I

samledes i 0,05 ml fraktioner. Tilstedeværelsen af receptor i fraktionerne påvistes ved Iwas collected in 0.05 ml fractions. The presence of receptor in the fractions was detected by I

dot-blot som beskrevet ovenfor under anvendelse af 125l-mærket IL-1 α. Idot blot as described above using 125 I-labeled IL-1 α. IN

Analyse ved SDS-PAGE forløb som følger. Til 50 μΙ af hver kolon- IAnalysis by SDS-PAGE procedure as follows. To 50 μΙ of each colon- I

nefraktion sattes 50 μΙ 2 x SDS prøvepuffer (0,125 M Tris HCI, pH 6,8,4% SDS, 20% Inefraction was added 50 μΙ 2 x SDS sample buffer (0.125 M Tris HCl, pH 6.8.4% SDS, 20% I

15 glycerol, 10% 2-mercaptoethanol). Opløsningen anbragtes i et kogende vandbad i 3 IGlycerol, 10% 2-mercaptoethanol). The solution was placed in a boiling water bath for 3 l

j minutter, og portioner på 40 μΙ anbragtes i en prøvebrønd med 10% polyacrylamidgel, Ij minutes and 40 μ portion aliquots were placed in a sample well with 10% polyacrylamide gel, I

hvilken prøveanordning blev opstillet og kørt iht. den af Laemmli (Nature 227:680, Iwhich test device was set up and run according to that of Laemmli (Nature 227: 680, I

1970) beskrevne fremgangsmåde. Geler fikseredes og farvedes under anvendelse af I1970). Gels were fixed and stained using I

0,25% Coomassie brilliant blue i 25% isopropanol og 10% eddikesyre, affarvedes i I0.25% Coomassie brilliant blue in 25% isopropanol and 10% acetic acid, decolorized in I

20 25% isopropanol og 10% eddikesyre, behandledes med Enhance (New England Nu- I25 25% isopropanol and 10% acetic acid, treated with Enhance (New England Nu- I

clear, Boston, MA, USA), tørredes og eksponeredes til Kodak X-omat AR film ved - Iclear, Boston, MA, USA), dried and exposed to Kodak X-omat AR film by - I

70°C. Molekylvægtsmarkører, mærket med 14C, opnåedes fra New England Nuclear I70 ° C. Molecular weight markers, labeled 14C, were obtained from New England Nuclear I

og omfattede cytochrom C (Mr 12.300), lactoglobulin A (Mr 18.367), carbonsyreanhy- Iand included cytochrome C (Mr 12,300), lactoglobulin A (Mr 18,367), carboxylic acid

drase (Mr 31.000), ovålbuman (Mr 46.000), bovinserumalbomin (M2 69.000), phos- . Idrase (Mr 31,000), ovalbuman (Mr 46,000), bovine serum albumin (M2 69,000), phos-. IN

25 phorylase B (M2 97.400) og myosin (Mr 200.000). Alternativt analyseredes fraktioner IPhorylase B (M2 97,400) and myosin (Mr 200,000). Alternatively, fractions I were analyzed

med receptoraktivitet ved SDS-polyacrylamidgelelektroforese efterfulgt af sølvfarvning Iwith receptor activity by SDS-polyacrylamide gel electrophoresis followed by silver staining I

som tidligere beskrevet af Urdal et al. (Proc. Natl. Acad. Sci. USA 81:6481,1984). Ias previously described by Urdal et al. (Proc. Natl. Acad. Sci. USA 81: 6481, 1984). IN

Dot-blot analyse af fraktioner elueret fra IL-1 α affinitetsmatrixen viste, at IDot-blot analysis of fractions eluted from the IL-1 α affinity matrix showed that I

IL-1 bindingsaktivitet blev påvist i fraktioner, der opsamledes efter at pH 3,0 glycin- IIL-1 binding activity was detected in fractions collected after pH 3.0 glycine-I

30 puffer var blevet sat til kolonnen. Fraktioner, der gav positivt resultat ved denne assay,30 buffers had been added to the column. Fractions that gave positive results in this assay

afslørede ved analyse med SDS-PAGE, at et protein med Mr 82.000 kunne påvises Irevealed by analysis by SDS-PAGE that a protein with Mr 82,000 could be detected in

ved fremkaldelse af gelen med sølvfarve. Til bestemmelse af, hvilke af de ved sølv- Iby developing the gel with silver color. To determine which of them by silver- I

farvning påviste proteiner, der blev udtrykt på celleoverfladen, overflademærkedes El- Istaining detected proteins expressed on the cell surface were surface-labeled El- I

4 6.1 celler med 125l ved lactoperoxidaseglucoseoxidaseproceduren. Radiomærkede I4 6.1 cells with 125 I by the lactoperoxidase glucose oxidase procedure. Radiolabeled I

35 celler ekstraheredes dernæst med PBS indeholdende 1% Triton X-100, og portioner af I35 cells were then extracted with PBS containing 1% Triton X-100, and aliquots of I

detergentekstrakten tilførtes en IL-1 α affinitetsmatrix. Fraktioner, der blev opsamlet fra Ithe detergent extract was added to an IL-1 α affinity matrix. Fractions collected from I

SDK 175810 B1SDK 175810 B1

>ldt et radio- I> ldt et radio- I

isoleret fra Iisolated from I

ne af IL-1 re- Ine of IL-1 re- I

c 10B EL-4 6.1 ! Ic 10B EL-4 6.1! IN

ss som be- Iss as be- I

r/ml og an- Ir / ml and an- I

irocellulose og Iirocellulose and I

Hige koncen- IHige koncen- I

taltes nitro- Italtes nitro- I

dr autoradio- Idr autoradio- I

IL-1IJ. De op- IIL-1IJ. The op- I

på en IL-1 Ion an IL-1 I

et området af Ian area of I

skning bloke- Iskning bloke- I

saueme var de Isaueme var de I

ulose udviste Iulose expelled I

i i intakte cel- Ii i intact cell- I

vist på inakte Ishown on inakte I

jrens med den Ijrens with the I

flade af plas- Isurface of plas- I

filtre, tørredes, Ifilters, dried, I

ier testedes Iier tested I

10-7 M), hu- I10-7 M), hu- I

; 10-4 M), mu- I; 10-4 M), mu- I

i epidermal Iand epidermal I

ilnerve- Iilnerve- I

ormon (1 Iormon (1 I

jshormon (1 Ijshormon (1 I

I DK 175810 B1 1 μς/ml) og follikelstimuleringshormon (1 pg/-ml). Alle inkubationer udførtes ved 1,9 x 10-10 M 125I-IL-1 a.In DK 175810 B1 1 μς / ml) and follicle stimulation hormone (1 pg / ml). All incubations were performed at 1.9 x 10-10 M 125 I-IL-1α.

Dette forsøg viste, at ekstraheret receptor bibeholder samme specificitet som tidligere påvist for intakte celler. Som det viste sig at være tilfælde med intakte 5 celler frembragte kun IL-1 α og IL-1 β signifikant inhibering af 125I-IL-1 α binding. Datae- i ne viste, at umærket IL-1 α og IL-1 β frembragte >90% inhibering af 125l-IL-1cc binding, mens der ikke iagttages nogen signifikant blokade med nogen af de andre hormoner.This experiment showed that extracted receptor retains the same specificity as previously demonstrated for intact cells. As was found to be the case with intact 5 cells, only IL-1 α and IL-1 β produced significant inhibition of 125 I-IL-1 α binding. The data showed that unlabeled IL-1α and IL-1β produced> 90% inhibition of 125 I-IL-1cc binding, while no significant blockade of any of the other hormones was observed.

Til bestemmelse af, om receptor i detergentopløsning binder IL-1 med en affinitet, der svarer til den af receptor i cellemembraner eller adsorberet til nitrocellulo-10 se, udførtes et tredje forsøg, i hvilket der anventes en nitrocellulose dot-blot bindings-assay til testning af evnen afen EL-4 6.1 C10 ekstrakt i Triton X-100 opløsning til at inhibere binding af 125l-IL-1a til den faste fase. EL-4 6.1 C10 ekstrakter adsorberedes til nitrocellulose, tørredes, blokeredes og inkuberedes med en blanding af l2Sl-IL-1aog ekstrakter indeholdende receptorer i detergentopløsning.To determine whether receptor in detergent solution binds IL-1 with an affinity similar to that of receptor in cell membranes or adsorbed to nitrocellulose, a third experiment was performed in which a nitrocellulose dot-blot binding assay was used for testing the ability of EL-4 6.1 C10 extract in Triton X-100 solution to inhibit binding of 125 I-IL-1a to the solid phase. EL-4 6.1 C10 extracts were adsorbed to nitrocellulose, dried, blocked and incubated with a mixture of 12S1-IL-1α and extracts containing receptors in detergent solution.

15 Koncentrationen af receptor i opløsningsfasen bestemtes ud fra en mæt ningsbindingskurve til 1 pi portioner blottet på nitrocellulose, hvilket gjorde det muligt af beregne receptorer/μΙ og dermed IL-1 receptorkoncentration (M). Ekstrakten fortyndedes gennem PBS Triton X-100 opløsning (0,5% Triton) for at holde detérgenkoncen-trationen konstant. Inhiberingskurven viste, at receptoren i opløsning bandt til 125l-IL-1a 20 med en Ka (4,5 ± 0,5 x 109 M-1), som svarer til den for receptoren på den faste fase eller i membraner. Endvidere var den gode overensstemmelse mellem den teoretiske kurve, som er baseret på en enkelt kompetitiv inhiberingsmodel, og dataene samstemmende med den hypotese, at en enkelt type IL-1 bindingsprotein var til stede i membranekstrakten.The concentration of receptor in the solution phase was determined from a saturation binding curve to 1 μl aliquots blotted onto nitrocellulose, which made it possible to calculate receptors / μΙ and thus IL-1 receptor concentration (M). The extract was diluted through PBS Triton X-100 solution (0.5% Triton) to keep the detergent concentration constant. The inhibition curve showed that the receptor in solution bound to 125 I-IL-1a 20 with a Ka (4.5 ± 0.5 x 109 M-1), which corresponds to that of the receptor on the solid phase or in membranes. Furthermore, the good agreement between the theoretical curve, which is based on a single competitive inhibition model, and the data was consistent with the hypothesis that a single type of IL-1 binding protein was present in the membrane extract.

25 Til undersøgelse af integriteten af receptoren som en funktion af koncen trationen af totale EL-4 6.1 C10 membranproteiner udførtes et fjerde forsøg. Blandinger af EL-4 6.1 C10 ekstrakt i forskellige forhold i området fra 10 til 100% fremstilledes enten med en ekstrakt fra celler, der ikke udtrykker IL-1 receptoren, EL-4 (M) celler, eller med PBS Triton X-100 (0,5%). Hver blanding analyseredes for receptorkoncen-30 tration, og affinitet af 125l-IL-1a binding analyseredes ved kvantitativ dot-blot binding. Receptorkoncentration aftog lineært med procentdelen den tilstedeværende EL-4 6.1 C10 ekstrakt, uanset om membranproteinkoncentration holdtes på et konstant niveau eller ikke. I begge blandingsserier forblev affiniteten af receptoren for 125I-IL-1 α konstant. Disse data stemmer overens med en af to hypoteser, enten er receptorbin-35 dingsfunktionen indeholdt i en enkelt polypeptidkæde eller, hvis den funktionale re- I DK 175810 B1To investigate the integrity of the receptor as a function of the concentration of total EL-4 6.1 C10 membrane proteins, a fourth experiment was performed. Mixtures of EL-4 6.1 C10 extract in various ratios ranging from 10 to 100% were prepared either with an extract from cells not expressing the IL-1 receptor, EL-4 (M) cells, or with PBS Triton X-100 ( 0.5%). Each mixture was assayed for receptor concentration and affinity of 125 I-IL-1α binding was assayed by quantitative dot-blot binding. Receptor concentration decreased linearly by the percentage of the EL-4 6.1 C10 extract present, whether or not membrane protein concentration was maintained at a constant level. In both mixing series, the affinity of the 125 I-IL-1 α receptor remained constant. These data are consistent with one of two hypotheses, either the receptor binding function is contained in a single polypeptide chain or if the functional re- I DK 175810 B1

I 24 II 24 I

ceptor kræver to eller flere underenheder for IL-1 binding, er kæderne tilstrækkeligt tæt Iceptor requires two or more subunits for IL-1 binding, the chains are sufficiently dense I

I forbundet til, at fortynding via detergent ikke adskiller dem. IIn connection with that dilution via detergent does not separate them. IN

I Eksempel 3 IIn Example 3 I

I 5 Rensning af IL-1 receptor til homogenitet og bestemmelse af N-terminal sekvens II 5 Purification of IL-1 receptor to homogeneity and determination of N-terminal sequence I

300-500 I EL-4 6.1 C10 celler dyrkedes til mætning under de tidligere I300-500 I EL-4 6.1 C10 cells were grown to saturation during the previous I

beskrevne betingelser, høstedes og ekstraheredes med PBS*1 % Triton X-100. Deter- Idescribed conditions, were harvested and extracted with PBS * 1% Triton X-100. It is in

gentekstrakten overførtes til en IL-1a affinitetskolonne, og kolonnen vaskedes som Ithe gene extract was transferred to an IL-1α affinity column and the column was washed as I

tidligere beskrevet. Fraktioner indeholdende IL-1 receptor påvistes ved 125l-IL-1a dot- Ipreviously described. Fractions containing IL-1 receptor were detected at 125 I-IL-1α dot-I

I 10 blot proceduren efterfulgt af eluering af kolonnen med 0,1 M glycin HCI, pH 3,0, inde- IIn just the procedure followed by eluting the column with 0.1 M glycine HCl, pH 3.0, containing

I holdende 0,1 % Triton X-100. Portioner af fraktionerne analysedes ved SDS-po- : IIn holding 0.1% Triton X-100. Aliquots of the fractions were analyzed by SDS-po-: I

lyacrylamidgelelektroforese. Ilyacrylamide gel electrophoresis. IN

I Denne ved affinitetskromatografi på Affigel-IL-1a fremstillede, delvist IThis prepared by affinity chromatography on Affigel-IL-1a, partially I

rensede IL-1 receptorsammensætning indstilledes således, at den indehold følgende Ipurified IL-1 receptor composition was adjusted to contain the following I

I 15 puffersammensætning: 10 mM Tris-HCI, pH 8, 250 mM NaCI, 0,5 mM MgCI2, 0,5 mM IIn buffer composition: 10 mM Tris-HCl, pH 8, 250 mM NaCl, 0.5 mM MgCl 2, 0.5 mM I

I MnCI2, 0,5 mM CaCI2 og 0,01% (vol/vol) Triton X-100 (WGA-puffer). IL-1 receptor- IIn MnCl 2, 0.5 mM CaCl 2 and 0.01% (v / v) Triton X-100 (WGA buffer). IL-1 receptor- I

sammensætningn overførtes dernæst til en 1 ml kolonne med hvedekimaggluitinin Ithe composition was then transferred to a 1 ml column of wheat germ glutinin I.

(WGA) bundet til Sepharose C1-6B, ækvilibreret med WGA-puffer. Efter overførsel af I(WGA) bound to Sepharose C1-6B, equilibrated with WGA buffer. After the transfer of I

IL-1 receptorsammensætningen vaskedes WGA-kolonnen med 20 ml WGA-puffer IThe IL-1 receptor composition was washed in the WGA column with 20 ml of WGA buffer I

I 20 efterfulgt af 10 mM Tris HCI, pH 8,0,01% (vol/vol) Triton X-100. IL-1 receptorproteinet IIn 20 followed by 10 mM Tris HCl, pH 8.0.01% (v / v) Triton X-100. IL-1 receptor protein I

H elueredes fra WGA-kolonnen med 10 mM Tris-HCI, pH 8, 0,5 M N-acetylglucosamin IH was eluted from the WGA column with 10 mM Tris-HCl, pH 8, 0.5 M N-acetylglucosamine I

og 0,01 % (vol/vol) Triton X-100. Tilstedeværelsen af biologisk aktiv IL-1 receptor påvi- Iand 0.01% (v / v) Triton X-100. The presence of biologically active IL-1 receptor on- I

stes ved 125l-IL-1a dot-blot proceduren. Fraktioner analyseredes også ved SDS- Iby the 125 I-IL-1α dot-blot procedure. Fractions were also analyzed by SDS-I

polyacryfamidgelelektroforese efterfulgt af sølvfarvning. Ipolyacryphamide gel electrophoresis followed by silver staining. IN

25 Materiale, der elueredes fra WGA-kolonnen, overførtes til en C8 RP- IMaterial eluting from the WGA column was transferred to a C8 RP-I

HPLC-kolonne. C8 RP-HPLC-kolonnen (Brownlee Labs RP-300,1 mm x 50 mm) var IHPLC column. The C8 RP-HPLC column (Brownlee Labs RP-300.1 mm x 50 mm) was I

forud blevet ækvilibreret med 0,1% (vol/vol) trifluoreddikesyre (TFA) i H20 af HPLC- Ipreviously equilibrated with 0.1% (v / v) trifluoroacetic acid (TFA) in H 2 O of HPLC-I

kvalitet ved en strømningshastighed på 50 pl/minut. Efter overførsel af det IL-1 recep- Iquality at a flow rate of 50 pl / minute. After transfer of the IL-1 receptor

torholdige materiale vaskedes C8 RP-HPLC-kolonnen med 0,1% (vol/vol) TFA i H20 Idry material, the C8 RP-HPLC column was washed with 0.1% (v / v) TFA in H

30 ved 50 μΙ/minut indtil absorbansen ved 280 nm vendte tilbage til basislinien. IL-1 re- I30 at 50 μΙ / minute until the absorbance at 280 nm returned to baseline. IL-1 re- I

H ceptorproteinet elueredes fra kolonnen ved at køre en lineær gradient med 0,1 % IThe H receptor protein was eluted from the column by running a linear gradient of 0.1% I

(vol/vol) TFA i acetonitril fra 0-100% med en hastighed på 1 %/minut. Portioner af frak- I(v / v) TFA in acetonitrile from 0-100% at a rate of 1% / minute. Portions of frak- I

tionerne analyseredes ved SDS-polyacrylamidgelelektroforese. Det viste sig, at IL-1 Ithe ions were analyzed by SDS-polyacrylamide gel electrophoresis. It turned out that IL-1 I

receptorproteinet bestod af et enkelt bånd på en SDS-polyarylamidgel, der migrerede Ithe receptor protein consisted of a single band on an SDS-polyarylamide gel that migrated I

H 35 med en molekylvægt på 82.000. IH 35 with a molecular weight of 82,000. IN

DK 175810 B1 25DK 175810 B1 25

Det rensede IL-1 receptorprotein analyseredes ved Edmannedbrydning under anvendelse af et Applied Biosystems Model 470A proteisekvensbestemmelses-apparat. Proteinet (150 picomol) blev ikke modificeret før analyse. Resultaterne af N-terminal proteinsekvensanalysen af IL-1 receptoren viser den følgende sekvens af 5 aminosyrerester: NH2-Leu-Glu-lle-Asp-Val-Cys-Thr-Glu-Tyr-Pro-Asn-Gln-lle-Val-Leu-Phe-Leu-Ser-Val-Asn-Glu-lle-Asp-lle-Arg-Lys.The purified IL-1 receptor protein was analyzed by Edmann degradation using an Applied Biosystems Model 470A protein sequencer. The protein (150 picomoles) was not modified before analysis. The results of the N-terminal protein sequence analysis of the IL-1 receptor show the following sequence of 5 amino acid residues: NH2-Leu-Glu-lle-Asp-Val-Cys-Thr-Glu-Tyr-Pro-Asn-Gln-lle-Val-Leu -Phe-Leu-Ser-Val-Asn-Glu-lle-Asp-lle-Arg-Lys.

Denne proteinsekvens fandtes at være enestående, når den sammenlignedes med den information, der den 17. marts 1987 var tilgængelig i proteinse-kvensdatabasen i Protein Identificatin Resource National Biomedical Research Foun-10 dation. Den tilgængelige information i databasen rummede 4.253 sekvenser bestående af 1.029.056 rester.This protein sequence was found to be unique when compared to the information available on March 17, 1987 in the Protein Identification Resource National Biomedical Research Foundation's Protein Sequence Database. The available information in the database contained 4,253 sequences consisting of 1,029,056 residues.

Eksempel 4Example 4

Isolering af cDNA-indkodende murin IL-1 R ved direkte ekspression af aktivt protein i 15 COS-7 cellerIsolation of cDNA-encoding murine IL-1R by direct expression of active protein in 15 COS-7 cells

Et cDNA-bibliotek opbyggedes ved revers transkription af polyadenyleret mRNA isoleret fra total RNA ekstraheret fra EL-4 6.1 C10 celler ved en fremgangsmåde lig den af Chirgwin et al. beskrevne (Biochem. 18:5294,1979). I korte træk lyseredes cellerne i en guanidiniumisothio-cyanatopløsning, og lysatet lejredes over en pude 20 af CsCI og centrifugeredes indtil RNA’en var pelleteret. RNA-pelleten resuspendere-des og rensedes yderligere ved proteasenedbrydning, organisk ekstraktion og al-koholpræcipitation. Poly A+ RNA isoleredes ved oligo dT cellulosekromatografi, og dobbeltstrenget cDNA fremstilledes ved en fremgangsmåde, der lig den af Gubier og Hoffman beskrevne (Gene 25:263,1983). I korte træk kopieredes RNA'en til cDNA 25 ved revers transkriptase under anvendelse af enten oligo dT eller tilfældige oligo-' nukleotider som primer. cDNA’en gjordes dobbeltstrenget ved inkubation med E. coli DNA-polymerase I og RNase H, og enderne gjordes stumpe ved yderligere inkubation med T4 DNA-polymerase. Den stumpendede cDNA ligeredes i Smalskåret dephos-phoryleret pDC201 vektor DNA.A cDNA library was constructed by reverse transcription of polyadenylated mRNA isolated from total RNA extracted from EL-4 6.1 C10 cells by a method similar to that of Chirgwin et al. described (Biochem. 18: 5294,1979). Briefly, the cells were lysed in a guanidinium isothiocyanate solution, and the lysate was deposited over a pad 20 of CsCl and centrifuged until the RNA was pelleted. The RNA pellet was resuspended and further purified by protease degradation, organic extraction and alcohol precipitation. Poly A + RNA was isolated by oligo dT cellulose chromatography, and double-stranded cDNA was prepared by a method similar to that described by Gubier and Hoffman (Gene 25: 263,1983). Briefly, the RNA was copied to cDNA 25 by reverse transcriptase using either oligo dT or random oligonucleotides as primer. The cDNA was double-stranded by incubation with E. coli DNA polymerase I and RNase H, and the ends were blunt-ended by further incubation with T4 DNA polymerase. The blunt-ended cDNA was ligated into Narrow-cut dephosphorylated pDC201 vector DNA.

30 Den eukaryotiske højekspressionsvektor pDC201 samledes fra SV40, adenovirus 2 og pBR322 DNA, der i rækkefølge omfattede (1) et SV40-fragment indeholdende replikationsområdet, tidlige og sene promotorer samt forstærker, (2) et adenovirus 2 fragment indeholdende den sene hovedpromotor, den første exon og en del af den første intran af den tredelte sene leder, (3) en syntetisk sekvens omfattende 35 et Hindlll- sted, et splejsningsacceptorsted, anden og tredje exon af den tredelte adenovirus 2 leder og et multipelt kloningssted omfattende et Smal-sted, (4) yderligereThe eukaryotic high expression vector pDC201 was assembled from SV40, adenovirus 2 and pBR322 DNA, which sequentially comprised (1) an SV40 fragment containing the replication region, early and late promoters and enhancer, (2) an adenovirus 2 fragment containing the late main promoter, the first exon and a portion of the first intran of the three-part late leader, (3) a synthetic sequence comprising a HindIII site, a splice acceptor site, second and third exons of the three-part adenovirus 2 leader, and a multiple cloning site comprising a SmaI site, (4) further

DK 175810 B1 IDK 175810 B1 I

26 I26 I

SV40-sekvenser indeholdende tidlige og sene potyadenyleringssteder, (5) adenovirus ISV40 sequences containing early and late potyadenylation sites, (5) adenovirus I

2 sekvenser omfattende de virusassocierede RNA-gener, og (6) pBR322 elementer for I2 sequences comprising the virus-associated RNA genes, and (6) pBR322 elements for I

replikation i E. coli. Ireplication in E. coli. IN

Det resulterende EL-4 6.1 C10 cDNA-bibliotek i pDC201 anvendtes til | IThe resulting EL-4 6.1 C10 cDNA library in pDC201 was used for | IN

5 transformering af E. coli stamme DH5a, og rekombinanter udpladedes til tilvejebrin- ' ITransformation of E. coli strain DH5α, and recombinants were plated to provide

gelse af ca. 350 kolonier pr. plade og tilstrækkeligt mange plader til at tilvejebringe ca. Iapprox. 350 colonies per. plate and sufficient plates to provide approx. IN

25.000 totale kolonier pr. screen. Kolonier skrabedes fra hver plade, kombineredes, og I25,000 total colonies per. screen. Colonies were scraped from each plate, combined, and I

ud fra hver pulje fremstilledes plasmid DNA. Den kombinerede DNA anvendtes der-from each pool plasmid DNA was prepared. The combined DNA was then used

næst til transfektion af subkonfluente lag af abe COS-7 celler under anvendelse af Inext for transfection of subconfluent layers of monkey COS-7 cells using I

10 DEAE-dextran efterfulgt af chlorquinbehandling som beskrevet af Luthman et al. (Nu- HDEAE-dextran followed by chlorquin treatment as described by Luthman et al. (Nu- H

cleic Acids Res. 11:1295, 1983) og McCutchan et al. (J: Natl. Cancer Inst. 41:351, Icleic Acids Res. 11: 1295, 1983) and McCutchan et al. (J: Natl. Cancer Inst. 41: 351, I

1986). Cellerne dyrkedes dernæst i kultur i tre dage for at muliggøre forbigående eks- I1986). The cells were then cultured for three days to allow transient ex- I

pression af de indføjede sekvenser. Efter tre dage kasseredes cellekultursupeman- Ipressure of the inserted sequences. After three days, the cell culture superman- I was discarded

tanter, og cellemonolagene i hver plade analyseredes for IL-1 binding som følger. 3 ml Hand the cell monolayers in each plate were analyzed for IL-1 binding as follows. 3 ml H

15 RPMI-medium indeholdende 3 x 10-10M 125l-IL-1a sattes til hver plade, og pladerne I15 RPMI medium containing 3 x 10-10M 125 I-IL-1a was added to each plate and the plates I

inkuberedes i 2 timer ved 8°C. Dette medium kasseredes derefter, og hver plade va- Iincubated for 2 hours at 8 ° C. This medium was then discarded and each plate was removed

skedes med 10 ml RPMI 1640 medium (ikke indeholdende mærket IL-1a). Kanterne af Iwas done with 10 ml of RPMI 1640 medium (not containing labeled IL-1a). The edges of I

hver plade blev så knækket af, hvilket efterlod en flad skive, der bragtes i kontakt medeach plate was then broken off, leaving a flat disc which was brought into contact with

røntgenfilm i 72 timer ved -70°C under anvendelse af en forstærkende screen. IL-1 IX-ray film for 72 hours at -70 ° C using an amplifying screen. IL-1 I

20 bindingsaktivitet blev synlig på de fremkaldte film som et mørkt sted mod en relativt I20 binding activity became visible on the developed films as a dark spot against a relative I

ensartet baggrund. Iuniform background. IN

Efter screening af ca. 150.000 rekombinanter fra biblioteket på denne HAfter screening approx. 150,000 recombinants from the library on this H

måde blev der iagttaget, at en transfektantpulje tilvejebragte IL-1 bindingssteder, som IThus, it was observed that a transfectant pool provided IL-1 binding sites which in

var klart synlige mod baggrunden. Iwere clearly visible against the background. IN

25 Et nedfrosset lager af bakterier fra den positive pulje anvendtes dernæst IA frozen stock of bacteria from the positive pool was then used

til opnåelse af plader med ca. 350 kolonier. Replika af disse plader fremstilledes på Ito obtain plates with approx. 350 colonies. Replicas of these plates were made on I

nitrocellulosefiltre, hvorefter pladerne skrabedes, og plasmid DNA fremstilledes og Initrocellulose filters, after which the plates were scraped and plasmid DNA was prepared and I

transficeredes som beskrevet ovenfor til identificering af en positiv plade. Bakterier fra Iwas transfected as described above to identify a positive plate. Bacteria from I

individuelle kolonier fra nitrocellulosereplikaeme af denne plade dyrkedes i 2 ml kultu- Iindividual colonies from the nitrocellulose replicas of this plate were grown in 2 ml of culture medium.

30 rer, der anvendtes til opnåelse af plasmid DNA, som transficeredes i COS-7 celler som H30 rers used to obtain plasmid DNA which was transfected into COS-7 cells as H

beskrevet ovenfor. På denne måde isoleredes en enkelt klon, klon 78, som var i stand Idescribed above. In this way, a single clone, clone 78, which was capable I was isolated

til at inducere ekspression af 11-1R i COS-celler. Indføjedelsen subklonedes i et plas- Ito induce expression of 11-1R in COS cells. The insert was subcloned into a place- I

mid afledt af pBR322 (GEMBL) og sekvensanalyseredes ved konventionelle teknikker. Imid derived from pBR322 (GEMBL) and sequenced by conventional techniques. IN

Sekvensen er vist i tabel 1.The sequence is shown in Table 1.

27 DK 175810 B1 \27 DK 175810 B1 \

Eksempel 5 j iExample 5 j i

Isolering af humane cDNA-kloner. der hvbridiserer til murin IL-1 receptorprobe DNA'erIsolation of human cDNA clones. which hybridizes to murine IL-1 receptor probe DNAs

En cDNA-polynukleotidprobe fremstilledes ud fra 2356 basepar (bp) fragmentet af klon 78 (se eksempel 4) ved nick-translation under anvendelse af DNA-5 polymerase I. Den anvendte metode var i det væsentlige lig den af Maniatis et al.A cDNA polynucleotide probe was prepared from the 2356 base pair (bp) fragment of clone 78 (see Example 4) by nick translation using DNA-5 polymerase I. The method used was substantially similar to that of Maniatis et al.

(ovenfor, p. 109) beskrevne.(above, p. 109) described.

Et cDNA-bibliotek opbyggedes ved revers transkription af polyadenyleret mRNA isoleret fra total RNA ekstraheret fra de dyrkede celler af en human T-cellelinie kaldet klon 22, beskrevet af Acres et al. (J. Immunol. 138:2132,1987). Disse celler 10 dyrkedes i RPM11640 medium plus 10% kalvefosterserum som beskrevet af Acres et al. (ovenfor), i nærvær af 10 ng/ml OKT3 antistof og 10 ng/ml human IL-2. cDN’en gjordes dobbeltstrenget under anvendelse af DNA-polymerase I, gjordes stumpendet med T4 DNA-polymerase, methyleredes med EcoRI methylase til beskyttelse af EcoRI spaltningsstedeme i cDNA'en, og ligeredes til EcoRI-linkere. De resulterende kon-15 struktioner blev nedbrudt med EcoRI til fjernelse af eksemplarerne af linkeme ved hver ende af cDNA’en på nær ét, og ligeret til EcoRI-skårne og dephosphorylerede arme af bakteriofag Agt10 (Huynh et al., DNA Cloning: A Practical Approach, Glover, ed., IRL Press, pp. 49-78). Den ligerede DNA pakkedes i fagpartikler under anvendelse af et kommercielt tilgængeligt sæt (Stratagene Cloning Synstems, San Diego, CA, USA 20 92121) til dannelse af et bibliotek af rekombinanter. Rekombinanteme udpladedes på E. coli stamme C600(hf1-) og screenedes ved standard plaquehybridiseringsteknikker under moderat strenge betingelser (50°C, 6 x SSC).A cDNA library was constructed by reverse transcription of polyadenylated mRNA isolated from total RNA extracted from the cultured cells by a human T cell line called clone 22, described by Acres et al. (J. Immunol. 138: 2132, 1987). These cells were grown in RPM11640 medium plus 10% fetal calf serum as described by Acres et al. (above), in the presence of 10 ng / ml OKT3 antibody and 10 ng / ml human IL-2. The cDN was double-stranded using DNA polymerase I, blunt-ended with T4 DNA polymerase, methylated with EcoRI methylase to protect the EcoRI cleavage sites in the cDNA, and ligated to EcoRI linkers. The resulting constructs were digested with EcoRI to remove the copies of the links at each end of the cDNA except one, and ligated to EcoRI-cut and dephosphorylated arms of bacteriophage Agt10 (Huynh et al., DNA Cloning: A Practical Approach, Glover, ed., IRL Press, pp. 49-78). The ligated DNA was packaged into phage particles using a commercially available kit (Stratagene Cloning Synstems, San Diego, CA, USA 92121) to form a library of recombinants. The recombinants were plated on E. coli strain C600 (hf1-) and screened by standard plaque hybridization techniques under moderately severe conditions (50 ° C, 6 x SSC).

Efter flere screeningsrunder isoleredes ni kloner fra biblioteket, der hybri-diserede til cDNA-proben. Klonerne plaque-rensedes og anvendtes til fremstilling af 25 bakteriofag DNA, som blev nedbrudt med EcoRI. Nedbrydningsprodukteme underkastedes elektroforese på en agarosegel, blottedes på nylonfiltre og testedes igen for hybridisering. Klonerne blev nedbrudt med EcoRI efterfulgt af præparativ agarose-gelelektroforese, subklonedes dernæst i et EcoRI-skåret derivat (pGEMBL) af standard kloningsvektoren pBR322, der indeholdt en polylinker med et enestående EcoRI-30 sted, et BamH1-sted og talrige andre enestående restriktionssteder. Et eksempel på en vektor af denne type er beskrevet af Dente et al. (Nucleic Acids Research 11:1645, 1983).After several rounds of screening, nine clones were isolated from the library that hybridized to the cDNA probe. The clones were plaque purified and used to prepare 25 bacteriophage DNA, which was digested with EcoRI. The degradation products were electrophoresed on an agarose gel, blotted onto nylon filters and tested again for hybridization. The clones were digested with EcoRI followed by preparative agarose gel electrophoresis, then subcloned into an EcoRI-cut derivative (pGEMBL) of the standard cloning vector pBR322, which contained a polylinker with a unique EcoRI site, a BamH1 site and numerous other single sites. An example of a vector of this type is described by Dente et al. (Nucleic Acids Research 11: 1645, 1983).

Restriktionskortlægning og sekvensbestemmelse af en 4,8 kb human IL-1R klon viste, at klonen omfattede en sekvens, der indkoder 518 aminosyrer, som ud-35 viste 80% aminosyresekvensidentititet med den tilsvarende murine sekvens i det ex-tracellulære eller N-terminale område distalt til transmembranområdet, 63% identitet iRestriction mapping and sequencing of a 4.8 kb human IL-1R clone showed that the clone comprised a sequence encoding 518 amino acids that showed 80% amino acid sequence identity with the corresponding murine sequence in the extracellular or N-terminal region. distal to the transmembrane region, 63% identity in

DK 175810 B1 IDK 175810 B1 I

28 I28 I

transmembranområdet og 87% identitet i det cytoplasmiske eller C-terminale område. i mtransmembrane region and 87% identity in the cytoplasmic or C-terminal region. i m

IIN

Desuden var flere cysteinrester og de fleste N-bundne glycosyleringssteder mellem de IIn addition, several cysteine residues and most N-linked glycosylation sites were between the I

murine og humane sekvenser. Et 440 bp EcoRI-Nsil fragment afledt af 5-delen af den Imurine and human sequences. A 440 bp EcoRI-Nsil fragment derived from the 5 part of the I

humane IL-IR klon 32P-mærkedes ved nick-translation som beskrevet ovenfor og Ihuman IL-IR clone 32P was labeled by nick translation as described above and I

5 anvendtes til screening af et cDNA-bibliotek fremstillet ved randomiseret priming af I5 was used to screen a cDNA library prepared by random priming of I

klon 22 mRNA fremstillet som beskrevet ovenfor. 23 kloner, der hydbridiserede til pro- Iclone 22 mRNA prepared as described above. 23 clones that hybridized to pro- I

ben, blev isoleret og analyseret ved restriktionskortlægning. Sekvensbestemmelse af Ibones, were isolated and analyzed by restriction mapping. Sequencing of I

en af disse kloner tilvejebragte den sekvensinformation, der svarer til de resterende N- Ione of these clones provided the sequence information corresponding to the remaining N-I

terminale 34 aminosyrer af det humane protein. Kodningen og de udledte aminosyre- Iterminal 34 amino acids of the human protein. The coding and the deduced amino acid- I

10 sekvenser af det komplette kodningsområde af human IL-1R er vist i tabellerne 4A-4C. I10 sequences of the complete coding region of human IL-1R are shown in Tables 4A-4C. IN

Eksempel 6 IExample 6 I

Ekspression af rekombinant IL-1 receptor under anvendelse af et høieffektivt mammalt IExpression of recombinant IL-1 receptor using a highly efficient mammalian I

ekspressionssvtem Iexpression svtem I

15 Det mammale ekspressionsplasmid pDC201, afbildet i fig. 2, er udformet IThe mammalian expression plasmid pDC201, depicted in FIG. 2, is designed I

til at udtrykke cDNA-sekvenser indføjet ved dets multiple kloningssted (MCS) ved Ito express cDNA sequences inserted at its multiple cloning site (MCS) at I

transfektion i mammale celler. Idet der nu henvises til fig. 2 omfatter pDC201 følgende Itransfection into mammalian cells. Referring now to FIG. 2, pDC201 comprises the following I

komponenter: SV40 (skraveret felt) indeholder SV40-sekvenser fra koordinater 5171- Icomponents: SV40 (shaded field) contains SV40 sequences from coordinates 5171- I

270 inklusive replikationsområdet, forstærkersekvenser og tidlige og sene promotorer. I270 including the replication region, amplifier sequences, and early and late promoters. IN

20 Fragmentet er orienteret således, at transkriptionsretningen fra den tidlige promoter er HThe fragment is oriented so that the direction of transcription from the early promoter is H

som vist ved pilen. Ad-MLP (uskraveret felt) indeholder adenovirus-2 sekvenser fra Ias shown by the arrow. Ad-MLP (unshaded field) contains adenovirus-2 sequences from I

koordinater 5779-6231 inklusive den sene hovedpromotor, den første exon og en del Icoordinates 5779-6231 including the late main promoter, the first exon and part I

af intronen mellem den første og den anden exon af den tredelte leder. TPL (stiplet Iof the intron between the first and the second exon of the three-part conductor. TPL (dashed I

felt) indeholder en syntetisk DNA-sekvens, der specificerer adenovirus-2 sekvenser Hfield) contains a synthetic DNA sequence specifying adenovirus-2 sequences H

25 7056-7172, 9634-9693 (indeholdende acceptorsplejsningsstedet af den anden exon af I25 7056-7172, 9634-9693 (containing the acceptor splice site of the second exon of I

den tredelte leder, den anden exon og en del af den tredje exon af den tredelte leder) Ithe three-part conductor, the second exon and part of the third exon of the three-part conductor)

og et multipelt kloningssted (MCS) indeholdende steder for Kpnl, Smal og Bglll. pA Iand a multiple cloning site (MCS) containing sites for Kpnl, Smal and Bglll. pA I

(skraveret felt) indeholder SV40-sekvenser fra 4127-4100 og 2770-2533, der omfatter I(shaded box) contains SV40 sequences from 4127-4100 and 2770-2533 that include I

polyadenyleringen og termineringssignaleme for tidlige transkription. VA (udfyldt felt) Ithe polyadenylation and the early transcription termination signals. VA (filled in field) I

30 indeholder adenovirus-2 sekvenser fra 10226-11555, der omfatter de virusassociere- I30 contains adenovirus-2 sequences from 10226-11555 comprising the virus associate I

de RNA-gener (VAI og VAII). De fuldt optrukne linier stammer fra pBR322 og repræ- Ithe RNA genes (VAI and VAII). The solid lines are derived from pBR322 and repre- I

senterer (begyndende efter pA-sekvenseme og i retning med uret) koordinater 29-23, Icenters (starting after the pA sequences and clockwise) coordinates 29-23, I

651-185 (på hvilket punkt VA-sekvenseme bliver indføjet), 29-1,4363-2486 og 1094- I651-185 (at which point the VA sequences are inserted), 29-1,4363-2486 and 1094- I

375. pDC201 er et derivat af pMLSV, der tidligere er beskrevet af Cosman et al., Mo- I375. pDC201 is a derivative of pMLSV previously described by Cosman et al., Mo- I

35 lec. Immunol. 23:935 (1986). I35 lec. Immunol. 23: 935 (1986). IN

DK 175810 B1 29DK 175810 B1 29

Til ekspression af rekombinant IH receptor dyrkedes COS-celler og transficeredes som beskrevet af Cosman et al., ovenfor, med plasmid DNA’en fra en 1,5 ml kultur af E. coli transformeret med pDC201, som har en IL-1R cDNA-indføjelse (klon 78). Efter 72 timers dyrkning høstedes celler ved vaskning en gang med 10 ml j 5 PBS og efterfølgende behandling med en EDTA-opløsning (natriumphosphat 0,05 M, | natriumchlorid 0,15 M, EDTA 0,005 M, pH 7,4) i 20 minutter ved 37°C efterfulgt af skrabning. Til sammenligning transficeredes COS-celler med en pDC201 kontrol vektor, der ikke indeholdt nogen indføjelse, og EL-4 6.1 C10 celler og EL-4 M celler (en 11-1 receptornegativ variant af EL-4 celler) dyrkedes og høstedes som beskrevet af 10 McDonald et al., J. Immunol. 135:3964 (1985).To express recombinant IH receptor, COS cells were cultured and transfected as described by Cosman et al., Supra, with the plasmid DNA from a 1.5 ml culture of E. coli transformed with pDC201, which has an IL-1R cDNA insertion (clone 78). After 72 hours of culture, cells were harvested by washing once with 10 ml of 5 PBS and subsequent treatment with an EDTA solution (sodium phosphate 0.05 M, | sodium chloride 0.15 M, EDTA 0.005 M, pH 7.4) for 20 minutes. at 37 ° C followed by scraping. In comparison, COS cells were transfected with a pDC201 control vector containing no insert and EL-4 6.1 C10 cells and EL-4 M cells (an 11-1 receptor negative variant of EL-4 cells) were cultured and harvested as described by McDonald et al., J. Immunol. 135: 3964 (1985).

Ved mættende DNA-koncentrationer indeholdt det transficerede COS-cellemonolag gennemsnitligt 45.000 steder pr. celle. Da de parentale COS-celler udtrykte kun ca. 500 receptorer pr. celle, kan det beregnes, at mere end 98% af alle IL-1 receptorer i den transficerede population var rekombinante. Flowcytometri under an-15 vendelse af FITC-IL-1a afsløre-de, at kun 4,2% af cellerne blev farvet klart, hvorfor hver af disse transficerede COS-celler indeholdt ca. 1,1 x 106 IL-1 bindingssteder.At saturating DNA concentrations, the transfected COS cell monolayer contained an average of 45,000 sites per well. cell. Since the parental COS cells expressed only approx. 500 receptors per cell, it can be estimated that more than 98% of all IL-1 receptors in the transfected population were recombinant. Flow cytometry using FITC-IL-1a revealed that only 4.2% of the cells were stained clear, so that each of these transfected COS cells contained approx. 1.1 x 106 IL-1 binding sites.

Plasmamembranproteiner af EL-4 6.1 C10 celler og af COS celler trans-ficeret med vektor DNA indeholdende cDNA, der indkoder IL-1 receptoren (klon 78), mærkedes med 125l som beskrevet i eksempel 1 ovenfor. Celler ekstraheredes derefter 20 med PBS indeholdende 1% Triton X-100 og en cocktail af proteaseinhibitorer (2 mM phenylmethylsulphonylfluorid, 1 mM pepstatin, 1 mM leupeptin og 2 mM O-phenanthrolin). Detergentekstrakter underkastedes affinitetskromatografi som beskrevet i eksempel 1 på Affigel-10 (Biorad, Richmond, CA), hvortil der var blevet bundet rekombinant human IL-1a 125l -mærket receptor elueredes dernæst med prøvepuffer 25 (0,0625 M Tris-HCI, pH 6,8, 2% SDS, 10% glycerol, 5% 2-mercaptoethanol) og analy seredes ved SDS-polyacrylamidgelelektroforese på en 10% gel. Geler underkastedes dernæst autoradiografi. Den ved affinitetskromatografi på IL-1a kolonner rensede rekombinante IL-1 receptor migrerede med en relativ mobilitet på ca. 80.000 på SDS-polyacrylamidgeler, hvilket var sammenligneligt med den mobilitet, der udvistes af den 30 på samme måde fra EL-4 6.1 C10 celler oprensede IL-1 receptor.Plasma membrane proteins of EL-4 6.1 C10 cells and of COS cells transfected with vector DNA containing cDNA encoding the IL-1 receptor (clone 78) were labeled with 125 I as described in Example 1 above. Cells were then extracted with PBS containing 1% Triton X-100 and a cocktail of protease inhibitors (2 mM phenylmethylsulphonyl fluoride, 1 mM pepstatin, 1 mM leupeptin and 2 mM O-phenanthroline). Detergent extracts were subjected to affinity chromatography as described in Example 1 of Affigel-10 (Biorad, Richmond, CA) to which recombinant human IL-1α 125 I-labeled receptor had been bound, then eluted with sample buffer 25 (0.0625 M Tris-HCl, pH 6). , 8, 2% SDS, 10% glycerol, 5% 2-mercaptoethanol) and analyzed by SDS-polyacrylamide gel electrophoresis on a 10% gel. Gels were then subjected to autoradiography. The recombinant IL-1 receptor purified by affinity chromatography on IL-1α columns migrated with a relative mobility of approx. 80,000 on SDS-polyacrylamide gels, which was comparable to the mobility exhibited by the 30 similarly from EL-4 6.1 C10 cells purified IL-1 receptor.

DNA'en fra klon 78 førte, når den transficeredes i COS-celler, til ekspression af IL-1 bindingsaktivitet, der praktisk taget var identisk med den, der udvistes af EL-4 6.1 C10 celler, som vist i fig. 3A-3C.The DNA from clone 78, when transfected into COS cells, led to expression of IL-1 binding activity that was virtually identical to that exhibited by EL-4 6.1 C10 cells, as shown in Figs. 3A-3C.

Til bindingsassays resuspenderedes COS-celler ved 1,7 x 106 celler/ml til 35 EL-4 M (1,5 x 107 celler/ml) celler som bærere. EL-4 M og EL-4 6.1 C10 resuspenderedes ved 1.5 x 107 celler/ml. Alle cellesuspensioner og bindingsanalyser udførtes iFor binding assays, COS cells were resuspended at 1.7 x 10 6 cells / ml to 35 EL-4 M (1.5 x 10 7 cells / ml) cells as carriers. EL-4 M and EL-4 6.1 C10 were resuspended at 1.5 x 107 cells / ml. All cell suspensions and binding assays were performed in

I DK 175810 B1 II DK 175810 B1 I

HH

I II I

I RPM11640/10% BSA/0,1% natriumazid/20 mM HEPES, pH 7,4. Bindingsinkubationer IIn RPM11640 / 10% BSA / 0.1% sodium azide / 20 mM HEPES, pH 7.4. Binding incubations I

I med 125l-IL-1a eller 125I-IL-1 β og umærket IL-1aog IL-1 β udførtes som beskrevet II with 125 I-IL-1α or 125 I-IL-1 β and unlabeled IL-1α and IL-1 β were performed as described in I

I andetsteds i beskrivelsen. 125l-IL-1a bandt til de transficerede COS-celler med en Ka IElsewhere in the description. 125 I-IL-1α bound to the transfected COS cells with a Ka I

I på 3,0 ± 0,2 x 109 M-1 (Fig. 3B). Ka'en for den native receptor på EL-4 6.1 C10 celler II at 3.0 ± 0.2 x 109 M-1 (Fig. 3B). The Ka for the native receptor on EL-4 6.1 C10 cells I

5 var 4,3 ± 3 x 109 M-1. Alle bindinger var til rekombinante receptorer (se fig. 3A), den I5 was 4.3 ± 3 x 109 M-1. All bonds were to recombinant receptors (see Fig. 3A), the I

parentale COS-cellepopulation bandt ikke påviseligt 125I-IL-1 α i dette forsøg. Iparental COS cell population did not detectably bind 125I-IL-1 α in this experiment. IN

I I et koldt sammenligningsforsøg var koncentrationen af fri 1251-1 L-1a IIn a cold comparative experiment, the concentration of free 1251-1 L-1a I

I 7,72 ± 0,13 x 10-10 M. På de transficerede COS-celler var den maksimale binding II 7.72 ± 0.13 x 10-10 M. On the transfected COS cells, the maximum binding was I

2,98 ± 0,3 x 104 molekyler/celle (ingen inhibering), og baggrunden (målt i nærvær af 6 I2.98 ± 0.3 x 104 molecules / cell (no inhibition), and the background (measured in the presence of 6 L

I 10 x 10-7 M umærket IL-1a) var 921 ± 60 molekyler/celle (100% inhibering). På EL-4 6.1 IIn 10 x 10-7 M unlabeled IL-1α) was 921 ± 60 molecules / cell (100% inhibition). On EL-4 6.1 I

I C10 cellerne varden maksimale binding 1,33 ±0,02 x 104 molekyler/celle, og bag- IIn the C10 cells, the maximum binding was 1.33 ± 0.02 x 104 molecules / cell, and

I grunden (se ovenfor) var 47 + 2 molekyler/celle. Binding af 125l-IL-1a, både til de IBasically (see above) was 47 + 2 molecules / cell. Binding of 125 I-IL-1α, both to the I

transficerede COS-celler og til EL-4 6.1 C10 celler, kunne udkonkurreres fuldstændigt Itransfected COS cells and to EL-4 6.1 C10 cells, could be completely outcompeted I

I af et overskud af enten umærket IL-1 α eller umærket IL-1 β (fig. 3C). Inhiberingskon- II of an excess of either unlabeled IL-1 α or unlabeled IL-1 β (Fig. 3C). Inhibition con- I

I 15 stanterne for IL-1 α og for IL-1 β var meget lig hinanden for hver celletype (fig. 3C). IThe 15 stants for IL-1 α and for IL-1 β were very similar for each cell type (Fig. 3C). IN

Eksempel 7 IExample 7 I

I Fremstilling af monoklonale antistoffer mod IL-1 R II Preparation of monoclonal antibodies to IL-1 R I

I Præparater af renset rekombinant IL-1 R, fx. human IL-1 R, eller transfice- IIn Preparations of purified recombinant IL-1R, e.g. human IL-1R, or transfice- I

I 20 rede COS-celler, der udtrykker høje niveauer af IL-1 R, anvendes til dannelse af mo- IIn 20 ready COS cells expressing high levels of IL-1R are used to form

noklonale antistoffer mod IL-1 R under anvendelse af konventionelle teknikker, fx. de i Inoclonal antibodies to IL-1R using conventional techniques, e.g. de i I

I US-patentskrift nr. 4.411.993 beskrevne. Sådanne antistoffer er sandsynligvis anven- IU.S. Pat. No. 4,411,993. Such antibodies are likely to be used

I delige til indvirkning på IL-1 binding til IL-1 receptorer, fx. til forbedring af toxiske eller IIn delusion to affect IL-1 binding to IL-1 receptors, e.g. to improve toxic or I

I andre uønskede virkninger af IL-1.In other adverse effects of IL-1.

I 25 Til immunisering af mus emulgeres IL-1 R immunogen i komplet Freund's IFor immunization of mice, the IL-1 R immunogen is emulsified in complete Freund's I

I ! adjuvans og injiceres i Baib/c mus i mængder fra 10-100 pg. 10 tiM 2 dage senere II! adjuvant and injected into Baib / c mice in amounts from 10-100 pg. 10 to 2 days later I

I boostedes de immuniserede dyr med yderligere immunogen emulgeret i ukomplet HIn, the immunized animals were boosted with additional immunogen emulsified in incomplete H

I Freund's adjuvans og boostes periodisk derefter iht. et ugentligt eller tougentligt im- IIn Freund's adjuvant and is then periodically boosted according to a weekly or weekly im-

I muniseringsskema. Serumprøver udtages periodisk ved retroorbital åreladning ellerIn munitions form. Serum samples are taken periodically by retroorbital vein loading or

I 30 halespidsexcision for testning ved dot-blot assay, ELISA-test (enzymbundet immun- HIn 30 tail tip excision for testing by dot-blot assay, ELISA test (enzyme-linked immune H

I sorbent-assay) eller inhibering af binding af 1251-IL-loc til ekstrakter af EL-4 6.1 C10 IIn sorbent assay) or inhibition of binding of 1251-IL-loc to extracts of EL-4 6.1 C10 I

I celler (som beskrevet ovenfor). Andre assayfremgangsmåder er også egnede. Efter IIn cells (as described above). Other assay methods are also suitable. After I

I påvisning af en passende antistoftiter indgives en intravenøs injektion af antigen i salt- HUpon detection of an appropriate antibody titer, an intravenous injection of antigen into saline-H is administered

I vand til positive dyr. 3 til 4 dage senere aflives dyrene, splenocyter høstes og fusione- IIn water for positive animals. 3 to 4 days later the animals are sacrificed, splenocytes are harvested and fused

I 35 res til den murine myelomacellelinie NS1. Ved denne fremgangsmåde frembragte hy- IIn 35 res to the murine myeloma cell line NS1. By this method, hy- I

I bridomacellelinier udplades i multiple mikrotiterplader i et HAT-selektivt medium (hy- DK 175810 B1 31 poxanthin, aminopterin og thymidin) til inhibering af proliferation af ikke-fusionerede celler, mvelomahvbrider oa miltcellehvbrider.In bridoma cell lines, plated in multiple microtiter plates in a HAT-selective medium (hyx DK 175810 B1 31 poxanthin, aminopterin and thymidine) to inhibit proliferation of non-fused cells, mveloma hybrids and spleen cell hybrids.

Således frembragte hybridomakloner kan screenes ved en ELISA-test for reaktivitet med IL-1R, fx. ved tilpasning af de af Engvall et al., Immunochmeistry 8:871 5 (1971) og i US-patentskrift nr. 4.703.004 beskrevne teknikker. Positive kloner injiceres dernæst i de peritoneale caviteter af syngeniske Balb/c-mus til fremstilling af ascites indeholdende høje koncentrationer (>1 mg/ml) anti-IL-1 R monoklonalt antistof. Det resulterende monoklonale antistof kan renses ved ammoniumsulfatpræcipitation efterfulgt af geleksklusionskromatografi og/eller affinitetskromatografi baseret på binding 10 af antistof til protein A af Staphylococcus aureus.Hybridoma clones thus generated can be screened by an ELISA assay for reactivity with IL-1R, e.g. by adapting the techniques described by Engvall et al., Immunochmeistry 8: 871 5 (1971) and in U.S. Patent No. 4,703,004. Positive clones are then injected into the peritoneal cavities of syngeneic Balb / c mice to produce ascites containing high concentrations (> 1 mg / ml) of anti-IL-1R monoclonal antibody. The resulting monoclonal antibody can be purified by ammonium sulfate precipitation followed by gel exclusion chromatography and / or affinity chromatography based on binding of antibody to protein A of Staphylococcus aureus.

Eksempel 8Example 8

Ekspression af IL-1R i gærExpression of IL-1R in yeast

Til ekspression af human eller murin IL-1R i gær opbygges en fra 15 plXY120 afledt gærekspressionsvektor som følger. plXY120 er identisk med pYo-HuGM (ATCC 53157), bortset fra, at den ikke indeholder nogen cDNA-indføjelse og omfatter et polylinker/multipelt kloningssted med et Ncol sted. Denne vektor omfatter DNA-sekvenser fra følgende kilder: (1) et stort Sphl (nukleotid 562) til EcoRI (nukleotid 4361) fragment udskåret fra plasmid pBR322 (ATCC 37017), inklusive replikationsom-20 rådet og ampiciilinresistensmarkøren for udvælgelse i E. coli, (2) S. cerevisiae DNA, der omfatter TRP-1 markøren, 2 pm replikationsområdet, ADH2-promotoren, og (3) DNA, der indkoder et 85 aminosyresignalpeptid afledt fra genet, der indkoder den udskilte peptid-a-faktor (se Kurjan et al., US-patent 4.546.082). Et Asp718 restriktionssted blev indført ved position 237 i a-faktorsignalpeptidet for at lette fusion til heterolo-25 ge gener. Dette tilvejebragtes ved ændring af thymidinresten ved nukleotid 241 til en cytosinrest ved oligonukleotidstyret in vitro mutagenese som beskrevet af Craik, Bio-techniques:12 (1985). Et syntetisk oligonukleotid indeholdende multiple kloningssteder og med følgende sekvenser indføjedes fra Asp718-stedet ved aminosyre 79 nær ved 3-enden af α-faktorsignalpeptidet til et Spel-sted i 2 pm sekvensen:For expression of human or murine IL-1R in yeast, a yeast expression vector derived from 15 pXY120 is constructed as follows. plXY120 is identical to pYo-HuGM (ATCC 53157) except that it contains no cDNA insert and comprises a polylinker / multiple cloning site with an NcoI site. This vector comprises DNA sequences from the following sources: (1) a large SphI (nucleotide 562) to EcoRI (nucleotide 4361) fragment excised from plasmid pBR322 (ATCC 37017), including the replication region and the ampicillin resistance marker for selection in E. coli, (2) S. cerevisiae DNA comprising the TRP-1 marker, the 2 μm replication region, the ADH2 promoter, and (3) DNA encoding an 85 amino acid signal peptide derived from the gene encoding the secreted peptide-α factor (see Kurjan et al., U.S. Patent 4,546,082). An Asp718 restriction site was introduced at position 237 of the α-factor signal peptide to facilitate fusion to heterologous genes. This was accomplished by changing the thymidine residue at nucleotide 241 to a cytosine residue by oligonucleotide-directed in vitro mutagenesis as described by Craik, Bio-techniques: 12 (1985). A synthetic oligonucleotide containing multiple cloning sites and having the following sequences was inserted from the Asp718 site at amino acid 79 near the 3-terminus of the α-factor signal peptide to a SpeI site in the 2 μm sequence:

I DK 175810 B1 II DK 175810 B1 I

I 11I 11

Asp718 Stul Ncol BamHI IAsp718 Stul Ncol BamHI I

GTACCTTTGGATAAAAGAGACTACAAGGACGACGATGACAAGAGGCCTCCATGGAT...GTACCTTTGGATAAAAGAGACTACAAGGACGACGATGACAAGAGGCCTCCATGGAT ...

GAAACCTATTTTCTCTGATGTTCCTGCTGGTACTGTTCTCCGGAGGTACCTA...GAAACCTATTTTCTCTGATGTTCCTGCTGGTACTGTTCTCCGGAGGTACCTA ...

j <——Polylinker— Ij <—— Polylinker— I

I Smal Spel II Narrow Games I

...CCCCCGGGACA... CCCCCGGGACA

...GGGGGCCCTGTGATC... GGGGGCCCTGTGATC

I —Polylinker—-»| i II —Polylinker —- »| i I

IIN

pBC120 adskiller sig også fra pYoHuGM ved tilstedeværelsen af et 514 bp DNA-pBC120 also differs from pYoHuGM in the presence of a 514 bp DNA

I 5 fragment afledt af den enkeltstrengede fag f1, der indeholder replikationsområdet og j II 5 fragment derived from the single-stranded phage f1 containing the replication region and j I

I det intergeniske område, som er blevet indføjet ved Nru 1-stedet i pBR322-sekvensen. IIn the intergenic region that has been inserted at the Nru 1 site in the pBR322 sequence. IN

I Tilstedeværelsen af et f1 replikationsområde tillader frembringelse af enkeltstregedeThe presence of an f1 replication area allows the creation of single lines

DNA-kopier af vektoren ved transformation i passende stammer af E. coli og superin- IDNA copies of the vector by transformation into appropriate strains of E. coli and superin- I

fektion med bakteriofag f1, hvilket letter DNA-sekvensbestemmelse af vektoren oginfection with bacteriophage f1, which facilitates DNA sequencing of the vector and

I 10 tilvejebringer et grundlag for in vitro mutagenese. Til indføjelse af en cDNA nedbrydes II 10 provides a basis for in vitro mutagenesis. To insert a cDNA, I is broken down

I pIXY 120 med Asp718, der spalter nær ved 3'-enden af α-faktorlederpeptidet (nukieotidIn pIXY 120 with Asp718 cleaving near the 3 'end of the α-factor leader peptide (nucleotide

I 237), og fx. Ncol, der spalter i polylinkeren. Det store vektorfragment renses dernæst II 237), and e.g. Ncol that splits in the polylinker. The large vector fragment is then purified

I og ligeres til et DNA-fragment, der indkoder proteinet, som skal udtrykkes. HI and ligated to a DNA fragment encoding the protein to be expressed. H

Til skabelse af en udskillelsesvektor til ekspression af human IL-1R ITo create a secretion vector for expression of human IL-1R I

15 spaltes et cDNA-fragment, som indeholder den komplette åbne læseramme, der ind- I15, a cDNA fragment is digested which contains the complete open reading frame contained in I

I koder hlL-1 R, med en passende restriktionsendonuklease proximalt til N-terminalen af II encodes hIL-1 R, with an appropriate restriction endonuclease proximal to the N-terminus of I

det modne protein. Derefter syntetiseres et eller flere oligonukleotider, som er i stand Ithe mature protein. Then one or more oligonucleotides capable of synthesis I are synthesized

I til at ligere til 5'- og 3'-endeme af hlL-1R-fragmentet, idet eventuelle kodoner, der er HI to ligate to the 5 'and 3' ends of the hIL-1R fragment, any codons being H

I udeladt ved isolering af fragmentet, regenereres, og der også tilvejebringes cohæsive II omitted by isolating the fragment, regenerates and also provides cohesive I

I 20 terminaler til Sigering til plXY120 for tilvejebringelse af en kodningssekvens, som befin- IIn 20 terminals for Siging to pXY120 to provide a coding sequence which is located in

I der sig i ramme med hensyn til en intakt α-faktorledersekvens. IIn there in frame with respect to an intact α-factor leader sequence. IN

I De resulterende ekspressionsvektorer renses dernæst og anvendes tilI The resulting expression vectors are then purified and used for

I transformation af en diploid gærstamme af S. cerevisiae (XV2181) ved standardtek- IIn transformation of a diploid yeast strain of S. cerevisiae (XV2181) by standard technique, I

I nikker, såsom de i EPA 0165654 beskrevne, idet der udvælges på grundlag af tryp- II nods, such as those described in EPA 0165654, selecting on the basis of tryp- I

I 25 tophanprototropher. De resulterende transformanter dyrkes for ekspression af et hIL- II 25 tophan prototropher. The resulting transformants are grown for expression of a hIL-I

I 1R protein som et udskilt eller ekstraheret produkt. Kulturer, som skal analyseres for IIn 1R protein as a secreted or extracted product. Cultures to be analyzed for I

I hlL-1R ekspression, dyrkes i 20-50 ml YPD-medium (1% gærekstrakt, 2% pepton, 1% IIn hlL-1R expression, grown in 20-50 ml YPD medium (1% yeast extract, 2% peptone, 1% I

I glucose) ved 37°C til en celledensitet på 1-5 x 108 celler/ml. Til adskillelse af celler fra IIn glucose) at 37 ° C to a cell density of 1-5 x 108 cells / ml. For separation of cells from I

I medium fjernes celler ved centrifugering, og mediet filtreres gennem et 0,45 pm cellu- DK 175810 B1 33 loseacetatfilger før analyse. Supematanter fremstillet af den transformerede gærstamme, eller ekstrakter fremstillet ud fra desintegrerede gærceller analyseres for tilstedeværelsen af hlL-1R under anvendelse af bindsassays som beskrevet ovenfor.In medium, cells are removed by centrifugation and the medium is filtered through a 0.45 μm cellulose acetate filter before analysis. Supernatants prepared from the transformed yeast strain, or extracts prepared from disintegrated yeast cells are assayed for the presence of hIL-1R using binding assays as described above.

5 Eksempel 9Example 9

Konstruktion, ekspression oa rensning af afkortet rekombinant murin IL-1 receptor En afkortet version af IL-1 receptorproteinet fremstilledes under anvendelse af et ekspressionssystem, som var kompatibelt med HELA-EBNA1 cellelinien, der konstitutivt udtrykker Epstein-Barr virusnukleusantigen drevet fra CMV-10 umiddelbartidlig forstærker promotoren. Den anvendte ekspressionsvektor betegnedes HAV-EO, et derivat af pDC201, der indeholder Epstein-Barr virus origin og tillader et højt niveau af ekspression i HELA-EBNA cellelinien. HAV-EO er afledt af pDC201 ved erstatning af den sene adenovirus hovedpromotor med syntetiske sekvenser fra HIV-1, der strækker sig fra cap-stedet af den virale mRNA, under anvendelse af den tidlige 15 SV40-promotor til at drive ekspression af HIV-1 tat genet.Construction, expression, and purification of truncated recombinant murine IL-1 receptor An truncated version of the IL-1 receptor protein was prepared using an expression system compatible with the HELA-EBNA1 cell line that constitutively expresses the Epstein-Barr virus nucleus antigen driven by CMV-10 immediately. amplifies the promoter. The expression vector used was designated HAV-EO, a derivative of pDC201 that contains Epstein-Barr virus origin and allows a high level of expression in the HELA-EBNA cell line. HAV-EO is derived from pDC201 by replacing the late adenovirus major promoter with synthetic sequences from HIV-1 extending from the cap site of the viral mRNA, using the early SV40 promoter to drive expression of HIV 1 tat gene.

Ekspressionskonstruktionen for den opløselige afkortede IL-1 receptor frembragtes trinvist. Hele kodningsområdet af receptoren og en del af det utranslate-rede 5'-område fjernedes fra den oprindelige IL-1 receptorklon 78 ved nedbrydning med Asp 718 og Ndel. Dette fragment, der ikke indeholdt utranslaterede 3'-sekvenser, 20 klonedes i HAV-EO til dannelse af HAV-EO-FL9. En variant af dette plasmid, der indeholdt en translationei stopkodon umiddelbart efter kodonen for prolin 316 og som manglede hele kodningssekvensen 3' herfor, opbyggedes derefter ved standardmetoder og kaldtes for HAV-EO-MEXT.The expression construct for the soluble truncated IL-1 receptor was generated stepwise. The entire coding region of the receptor and a portion of the untranslated 5 'region was removed from the original IL-1 receptor clone 78 by digestion with Asp 718 and NdeI. This fragment, which did not contain untranslated 3 'sequences, was cloned into HAV-EO to give HAV-EO-FL9. A variant of this plasmid, which contained a translational stop codon immediately after the codon for proline 316 and which lacked the entire coding sequence 3 'for it, was then constructed by standard methods and called HAV-EO-MEXT.

HAV-EO-MEXT vektor DNA indførtes i HELA-EBNA celler ved en modi-25 ficeret polybrentransfektion som beskrevet af Kavai og Nishizava (Mol. Cell Biol.HAV-EO-MEXT vector DNA was introduced into HELA-EBNA cells by a modified polybrene transfection as described by Kavai and Nishizava (Mol. Cell Biol.

4:1172, 1984). 1,5 x 106 celler podedes i 10 ml DMEM + 10% FCS i en 10 cm vævskulturskål, Celler inkuberedes ved 37°C, 10% C02 i 16 timer. Medierne fjernedes dernæst, og der tilsattes 3 ml serumfri DMEM indeholdende 10 pg/ml DNA og 30 pg/ml polybren (Sigma). Skålene inkuberedes dernæst ved 37°C/10% C02 i yderligere 6 30 timer, på hvilket tidspunkt DNA-blandingen fjernedes og cellerne udsattes for glyce-rolchock ved tilsætning af 3 ml serumfri DMEM + 25% glycerol (vol/vol) i 1 minut. Glycerol fjernedes, og cellerne vaskedes to gange med medium. Dernæst tilsattes 10 ml DMEM + 10% FCS, og cellerne inkuberedes ved 37°C/10% C02 i 18 timer.4: 1172, 1984). 1.5 x 10 6 cells were seeded in 10 ml DMEM + 10% FCS in a 10 cm tissue culture dish, Cells were incubated at 37 ° C, 10% CO 2 for 16 hours. The media was then removed and 3 ml of serum-free DMEM containing 10 pg / ml DNA and 30 pg / ml polybrene (Sigma) was added. The dishes were then incubated at 37 ° C / 10% CO 2 for an additional 6 hours, at which time the DNA mixture was removed and the cells were subjected to glycerol shock by adding 3 ml of serum-free DMEM + 25% glycerol (v / v) for 1 minute. . Glycerol was removed and the cells were washed twice with medium. Then, 10 ml of DMEM + 10% FCS was added and the cells were incubated at 37 ° C / 10% CO 2 for 18 hours.

Transficerede celler fjernedes dernæst med trypsin og opdeltes i et for-35 hold på 1:9 i T175 cm2 kolber (til opnåelse af ca. 10% konfluens), der indeholdt 25 mlTransfected cells were then removed with trypsin and divided into a ratio of 1: 9 in T175 cm 2 flasks (to obtain about 10% confluence) containing 25 ml

DK 175810 B1 IDK 175810 B1 I

3434

DMEM + 1% FCS. Supematanter indeholdende midlertidigt udtrykt opløselig murin IL- IDMEM + 1% FCS. Supernatants containing temporarily expressed soluble murine IL-I

1 receptor høstedes hver 24. time i indtil 10 dage. I1 receptor was harvested every 24 hours for up to 10 days. IN

IL-1a bindingsaktivitet i mediet måltes ved inhibering af 125IL-1a til EL4 IIL-1α binding activity in the medium was measured by inhibition of 125IL-1α to EL4 I

6.1 C10 celler som beskrevet af Mosley et al. (J. Biol. Chem. 267:2941,1987) med I6.1 C10 cells as described by Mosley et al. (J. Biol. Chem. 267: 2941, 1987) with I

5 undtagelse, af at mærket IL-1a (2x10-11, 50 pi) først inkuberedes med testprøven I5 exception, that the label IL-1a (2x10-11, 50 μl) was first incubated with test sample I

(50 μΙ) i to timer ved 8°C før tilsætning af celler (2,5 x 10e celler, 50 μΙ). Hver testprøve(50 μΙ) for two hours at 8 ° C before adding cells (2.5 x 10e cells, 50 μΙ). Each test sample

analyseredes i 6 fortyndinger (X3), og inhiberingsdosisresponskurven anvendtes til Hwas analyzed in 6 dilutions (X3) and the inhibitory dose-response curve was used for H

bestemmelse af den relative inhibitoriske titer. Hdetermination of the relative inhibitory titer. H

^ Opløselig IL-1 receptor oprensedes fra kultursupematanter som HSoluble IL-1 receptor was purified from culture supernatants such as H

10 beskrevet for naturlig receptor af Urdal et al. (J. Biol. Chem. 263:280, 1988). Kultursu- I10 described for natural receptor by Urdal et al. (J. Biol. Chem. 263: 280, 1988). Kultursu- I

pematanter ledtes over en 1 ml leje volumen IL-1 oc kolonne, kolonnen vaskedes med Hpematants were passed over a 1 ml bed volume IL-1 oc column, the column was washed with H

PBS og elueredes med 0,1 M glycin-HCI. Syreeluatfraktioner neutraliseredes med det IPBS and eluted with 0.1 M glycine-HCl. Acid eluate fractions were neutralized with the I

samme og testedes derefter for IL-1 bindingsaktivitet under anvendelse af radiore- Isame and then tested for IL-1 binding activity using radiore- I

ceptorinhiberingsanalyse. SDS-polyacrylamidgelelektroforese af det ved syrebehand- Ireceptor inhibition assay. SDS-polyacrylamide gel electrophoresis of the acid-treated I

15 ling eluerede materiale viste, at det indeholdt to bånd med Mr 60.000 og 54.000. N- I15 ling eluted material showed that it contained two bands with Mr 60,000 and 54,000. N- I

glycanasebehandling af dette materiale viste, at størrelsesheterogeniteten skyldes Hglycanase treatment of this material showed that the size heterogeneity is due to H

forskelle i N-bundet glycosylering mellem det to arter. Opløselig IL-1 receptor bibehol- Idifferences in N-linked glycosylation between the two species. Soluble IL-1 receptor maintained- I

der fuld IL-1 bindingsaktivitet. Hthere full IL-1 binding activity. H

DK 175810 B1 35DK 175810 B1 35

Tabel 1: cDNA-sekvens af IL-1R klon i GEMBI78 1 5' -TGGGTCGTCT GACTAGAAGT GAGCTGTCTG ΤΠΑΤΤΓΤΤΓΓΓ artrr.iy^hnrTable 1: cDNA sequence of IL-1R clone in GEMBI78 1 5 '-TGGGTCGTCT GACTAGAAGT GAGCTGTCTG ΤΠΑΤΤΓΤΤΓΓΓ artrr.iy ^ hnr

51 CCAGTAATCA TTTGGAGGCA AAGCAAACTG TAAGTAATGC TGTCCTGGGC51 CCAGTAATCA TTTGGAGGCA AAGCAAACTG TAAGTAATGC TGTCCTGGGC

101 TGACTTCAGG AGGCAGITTT CGTTTTAACA GCCAGTGTTT ATTTGCTCAG101 TGACTTCAGG AGGCAGITTT CGTTTTAACA GCCAGTGTTT ATTTGCTCAG

151 CAAACGTTGT CTCGGGGAGA AATGTCGCTG GATGTCATCA GAGTTCCCAG151 CAAACGTTGT CTCGGGGAGA AATGTCGCTG GATGTCATCA GAGTTCCCAG

201 TGCCCCGAAC CGTGAACAAC ACAAATGGAG AATATGAAAG TGCTACTGGG201 TGCCCCGAAC CGTGAACAAC ACAAATGGAG AATATGAAAG TGCTACTGGG

251 GCTCATTTGT CTCATGCTGC CTCTCCTGTC CCTCCACATT CACCTATGTA251 GCTCATTTGT CTCATGCTGC CTCTCCTGTC CCTCCACATT CACCTATGTA

301 CAGAATATCC AAATCAGATC GTTTTGXTTT TATCTGTAAA TGAAATTGAT301 CAGAATATCC AAATCAGATC GTTTTGXTTT TATCTGTAAA TGAAATTGAT

351 ATTCGCAAGT GTCCTCTTAC TCCAAATAAA ATGCACGGCG ACACCATAAT351 ATTCGCAAGT GTCCTCTTAC TCCAAATAAA ATGCACGGCG ACACCATAAT

401 TTGGTACAAG AATGACAGCA AGACCCCCAT ATCAGCGGAC CGGGACTCCA401 TTGGTACAAG AATGACAGCA AGACCCCCAT ATCAGCGGAC CGGGACTCCA

451 GGATTCATCA GCAGAATGAA CATCTTTGGT TTGTACCTGC CAAGGTGGAG451 GGATTCATCA GCAGAATGAA CATCTTTGGT TTGTACCTGC CAAGGTGGAG

501 GACTCAGGAT ATTACTATTG TATAGTAAGA AACTCAACTT ACTGCCTCAA501 GACTCAGGAT ATTACTATTG TATAGTAAGA AACTCAACTT ACTGCCTCAA

551 AACTAAAGTA ACCGTAACTG TGTTAGAGAA TGACCCTGGC TTGTGTTACA551 AACTAAAGTA ACCGTAACTG TGTTAGAGAA TGACCCTGGC TTGTGTTACA

601 GCACACAGGC CACCTTCCCA CÅGCGGCTCC ACATTGCCGG GGATGGAAGT601 GCACACAGGC CACCTTCCCA CÅGCGGCTCC ACATTGCCGG GGATGGAAGT

651 CTTGTGTGCC CTTATGTGAG TTATTTTAAA GATGAAAATA ATGAGTTACC651 CTTGTGTGCC CTTATGTGAG TTATTTTAAA GATGAAAATA ATGAGTTACC

701 CGAGGTCCAG TGGTATAAGA ACTGTAAACC TCTGCTTCTT GACAACGTGA701 CGAGGTCCAG TGGTATAAGA ACTGTAAACC TCTGCTTCTT GACAACGTGA

751 GCTTCTTCGG AGTAAAAGAT AAACTGTTGG TGAGGAATGT GGCTGAAGAG751 GCTTCTTCGG AGTAAAAGAT AAACTGTTGG TGAGGAATGT GGCTGAAGAG

801 CACAGAGGGG ACTATATATG CCGTATGTCC TATACGTTCC GGGGGAAGCA801 CACAGAGGGG ACTATATATG CCGTATGTCC TATACGTTCC GGGGGAAGCA

851 ATATCCGGTC ACACGAGTAA TACAATTTAT CACAATAGAT GAAAACAAGA851 ATATCCGGTC ACACGAGTAA TACAATTTAT CACAATAGAT GAAAACAAGA

901 GGGACAGACC TGTTATCGTG AGCCCTCGGA ATGAGACGAT CGAAGCTGAC901 GGGACAGACC TGTTATCGTG AGCCCTCGGA ATGAGACGAT CGAAGCTGAC

951 CCAGGATCAA TGATACAACT GATCTGCAAC GTCACGGGCC AGTTCTCAGA951 CCAGGATCAA TGATACAACT GATCTGCAAC GTCACGGGCC AGTTCTCAGA

1001 CCTTGTCTAC TGGAAGTGGA ATGGATCAGA AATTGAATGG AATGATCCAT1001 CCTTGTCTAC TGGAAGTGGA ATGGATCAGA AATTGAATGG AATGATCCAT

1051 TTCTAGCTGA AGACTATCAA TTTGTGGAAC ATCCTTCAAC CAAAAGAAAA1051 TTCTAGCTGA AGACTATCAA TTTGTGGAAC ATCCTTCAAC CAAAAGAAAA

1101 TACACACTCA TTACAACACT TAACATTTCA GAAGTTAAAA GCCAGTTTTA1101 TACACACTCA TTACAACACT TAACATTTCA GAAGTTAAAA GCCAGTTTTA

1151 TCGCTATCCG TTTATCTGTG TTGTTAAGAA CACAAATATT TTTGAGTCGG1151 TCGCTATCCG TTTATCTGTG TTGTTAAGAA CACAAATATT TTTGAGTCGG

1201 CGCATGTGCA GTTAATATAC CCAGTCCCTG ACTTCAAGAA TTACCTCATC1201 CGCATGTGCA GTTAATATAC CCAGTCCCTG ACTTCAAGAA TTACCTCATC

1251 GGGGGCTTTA TCATCCTCAC GGCTACAATT GTATGCTGTG TGTGCATCTA1251 GGGGGCTTTA TCATCCTCAC GGCTACAATT GTATGCTGTG TGTGCATCTA

1301 TAAAGTCTTC AAGGTTGACA TAGTGCTTTG GTACAGGGAC TCCTGCTCTG1301 TAAAGTCTTC AAGGTTGACA TAGTGCTTTG GTACAGGGAC TCCTGCTCTG

1351 GTTTTCTTCC TTCAAAAGCT TCAGATGGAA AGACATACGA TGCCTATATT1351 GTTTTCTTCC TTCAAAAGCT TCAGATGGAA AGACATACGA TGCCTATATT

1401 CTTTATCCCA AGACCCTGGG AGAGCGGTCC TTCTCAGACT TAGATACTTT1401 CTTTATCCCA AGACCCTGGG AGAGCGGTCC TTCTCAGACT TAGATACTTT

1451 TGTTTTTAAA CTGTTGCCTG AGGTCTTGGA GGGACAGTTT GGATACAAGC1451 TGTTTTTAAA CTGTTGCCTG AGGTCTTGGA GGGACAGTTT GGATACAAGC

1501 TGTTCATTTA TGGAACGGAT GACTATGTTG GAGAAGATAC CATCGAGGTT1501 TGTTCATTTA TGGAACGGAT GACTATGTTG GAGAAGATAC CATCGAGGTT

1551 ACTAATGAAA ATGTAAAGAA AAGCAGGAGG CTGATTATCA TTCTAGTGAG1551 ACTAATGAAA ATGTAAAGAA AAGCAGGAGG CTGATTATCA TTCTAGTGAG

1601 AGATATGGGA GGCTTCAGCT GGCTGGGCCA CTCATCTGAA GAGCAAATAG1601 AGATATGGGA GGCTTCAGCT GGCTGGGCCA CTCATCTGAA GAGCAAATAG

1651 CCATATACAA TGCTCTCATC CAGGAAGGAA TTAAAATCGT CCTGCTTGAG1651 CCATATACAA TGCTCTCATC CAGGAAGGAA TTAAAATCGT CCTGCTTGAG

1701 TTGGAGAAAA TCCAAGACTA TGAGAAAATG CCAGATTCTA TTCAGTTCAT1701 TTGGAGAAAA TCCAAGACTA TGAGAAAATG CCAGATTCTA TTCAGTTCAT

1751 TAAGCAGAAA CACGGAGTCA TTTGCTGGTC AGGAGACTTT CAAGAAAGAC1751 TAAGCAGAAA CACGGAGTCA TTTGCTGGTC AGGAGACTTT CAAGAAAGAC

1801 CACAGTCTCC AAAGACCAGG TTCTGGAAAA ACTTAAGATA CCAGATGCCA1801 CACAGTCTCC AAAGACCAGG TTCTGGAAAA ACTTAAGATA CCAGATGCCA

1851 GCCCAACGGA GATCACCATT GTCTAAACAC CGCTTACTAA CCCTGGATCC1851 GCCCAACGGA GATCACCATT GTCTAAACAC CGCTTACTAA CCCTGGATCC

1901 TGTGCGGGAC ACTAAGGAGA AACTGCCGGC AGCAACACAC TTACCACTCG1901 TGTGCGGGAC ACTAAGGAGA AACTGCCGGC AGCAACACAC TTACCACTCG

1951 GCTAGCATGG CAAAAGTGGG CAGGCCAAGA ACTTCGGAAT ATCTCCCATC1951 GCTAGCATGG CAAAAGTGGG CAGGCCAAGA ACTTCGGAAT ATCTCCCATC

2001 ATAAGAGGCT GCAGCTGGGC TGTGCCTCCC AGTAAAACAG TCACGAACCA2001 ATAAGAGGCT GCAGCTGGGC TGTGCCTCCC AGTAAAACAG TCACGAACCA

2051 AACCTGTGCA GTCCCTTGTT CCAGATCACC TGGAACTGGA TTGGGAAGAG2051 AACCTGTGCA GTCCCTTGTT CCAGATCACC TGGAACTGGA TTGGGAAGAG

2101 AACAGGACTT GGTGGCCAGG ACCGCTCAGA GAGCCATGGT TGCTCAGGGA2101 AACAGGACTT GGTGGCCAGG ACCGCTCAGA GAGCCATGGT TGCTCAGGGA

2151 TGCTGCTCCG GGATGCTTCA CTAACAGTCG AGGCAGTGAA CTGGGTGTAG2151 TGCTGCTCCG GGATGCTTCA CTAACAGTCG AGGCAGTGAA CTGGGTGTAG

2201 AAAGCGTCAG GAAATGGCCA CATGTnrnr^A TGGTTTAATT AGATTCTGTG2201 AAAGCGTCAG GAAATGGCCA CATGTnrnr ^ A TGGTTTAATT AGATTCTGTG

2251 GAGTCTCACA GTGGGATTGT GGCTGTCTGA GGAGACTTTG GGGGGTCGCT2251 GAGTCTCACA GTGGGATTGT GGCTGTCTGA GGAGACTTTG GGGGGTCGCT

2301 GTCCAAGAAG TGGCTCCCCA AAGTATAAGT GCGGGTGAGG TTTACTGATA2301 GTCCAAGAAG TGGCTCCCCA AAGTATAAGT GCGGGTGAGG TTTACTGATA

! 2351 CCCCAC-3'! 2351 CCCCAC-3 '

I DK 175810 B1 II DK 175810 B1 I

I 36 II 36 I

I Tabel 2A: Sekvens af kodningsområde af murin IL-1 receptoraen IIn Table 2A: Sequence of coding region of murine IL-1 receptor I

I 5'-ATC GAG AAT ATG AAA GTG CTA CTC CGC CTC ATT TGT CTC ATG GTG -15 II 5'-ATC GAG AAT ATG AAA GTG CTA CTC CGC CTC ATT TGT CTC ATG GTG -15 I

I Met Clu Asn Hct Lys Tel leu Leu Gly Leu Ile Cys Leu Net Val II Met Clu Asn Hct Lys Tel leu Leu Gly Leu Ile Cys Leu Net Val I

I CCT CTG CTG TCG CTG GAG ATT GAC CTA TCT ACA CAA TAT CCA AAT 33 II CCT CTG CTG TCG CTG GAG ATT GAC CTA TCT ACA CAA TAT CCA AAT 33 I

I Pro Leu Leu Ser Leu Clu Ile Asp Val Gys Thr Clu Tyr Pro Asn 11 II Pro Leu Leu Ser Leu Clu Ile Asp Val Gys Thr Clu Tyr Pro Asn 11 I

I CAG ATC CTT TTC TTT TTA TCT CTA AAT CAA ATT CAT ATT CCC AAC 78 II CAG ATC CTT TTC TTT TTA TCT CTA AAT CAA ATT CAT ATT CCC AAC 78 I

I Gin Ile Val Leu Phe Leu Ser Val Asn Glu Ile Asp Ile Arg Lys 26 , II Gin Ile Val Leu Phe Leu Ser Val Asn Glu Ile Asp Ile Arg Lys 26, I

TGT CCT CTT AGT CCA AAT AAA ATG GAC GGC GAC ACC ATA ATT TCG 123 ITGT CCT CTT AGT CCA AAT AAA ATG GAC GGC GAC ACC ATA ATT TCG 123 I

I Cys Pro Leu Thr Fro Asn Lys Met Bis Gly Asp Thr Ile Ile Trp 41 II Cys Pro Leu Thr Fro Asn Lys Met Bis Gly Asp Thr Ile Ile Trp 41 I

I TAC AAG AAT CAC ACC AAC ACC CCC ATA TCA CCC GAC CGC GAC TCC 168 II TAC AAG AAT CAC ACC AAC ACC CCC ATA TCA CCC GAC CGC GAC TCC 168 I

I Tyr Lys Asn Asp Ser Lys Thr Pro Ile Ser Ala Asp Arg Asp Ser 36 II Tyr Lys Asn Asp Ser Lys Thr Pro Ile Ser Ala Asp Arg Asp Ser 36 I

AGG ATT CAT CAG CAG AAT GAA CAT CTT TGG ITT CTA CCT GCC AAG 213 IAGG ATT CAT CAG CAG AAT GAA CAT CTT TGG ITT CTA CCT GCC AAG 213 I

I Arg Ile Bis Gin Gin Asn Glu Bis Leu Trp Fhe Val Pro Ala Lys 71 II Arg Ile Bis Gin Gin Asn Glu Bis Leu Trp Fhe Val Pro Ala Lys 71 I

I GTG GAG GAC TCA GGA TAT TAC TAT TGT ATA GTA AGA AAC TCA ACT 258 II GTG GAG GAC TCA GGA TAT TAC TAT TGT ATA GTA AGA AAC TCA ACT 258 I

Val Glu Asp Ser Gly Tyr Tyr Tyr Cys Ile Val Arg Asn Ser Thr 86 IVal Glu Asp Ser Gly Tyr Tyr Tyr Cys Ile Val Arg Asn Ser Thr 86 I

TAC TGC CTC AAA ACT AAA CTA ACC CTA ACT CTC TTA GAG AAT GAC 303 ITAC TGC CTC AAA ACT AAA CTA ACC CTA ACT CTC TTA GAG AAT GAC 303 I

Tyr Cys Leu Lys Thr Lys Val Thr Val Thr Val Leu Glu Asn Asp 101 ITyr Cys Leu Lys Thr Lys Val Thr Val Thr Val Leu Glu Asn Asp 101 I

CCT GCC TTG TGT TAC AGC ACA CAG GCC ACC TTC CCA CAG CGG CTC 348 ICCT GCC TTG TGT TAC AGC ACA CAG GCC ACC TTC CCA CAG CGG CTC 348 I

Pro Gly Leu Cys Tyr Ser Thr Gin Ala Thr Phe Pro Gin Arg Leu 116 IPro Gly Leu Cys Tyr Ser Thr Gin Ala Thr Phe Pro Gin Arg Leu 116 I

I CAC ATT GCC GGG GAT GGA AGT CTT CTG TCC CCT TAT GTG AGT TAT 393 II CAC ATT GCC GGG GAT GGA AGT CTT CTG TCC CCT TAT GTG AGT TAT 393 I

Bis Ile Ala Gly Asp Gly Ser Leu Val Cys Pro Tyr Val Ser Tyr 131 IBis Ile Ala Gly Asp Gly Ser Leu Val Cys Pro Tyr Val Ser Tyr 131 I

I ITT AAA GAT GAA AAT AAT CAG TTA CCC GAG CTC CAG TGG TAT AAG 438 II ITT AAA GAT GAA AAT AAT CAG TTA CCC GAG CTC CAG TGG TAT AAG 438 I

Phe Lys Asp Glu Asn Asn Glu Leu Pro Glu Val Gin Trp Tyr Lys 146 IPhe Lys Asp Glu Asn Asn Glu Leu Pro Glu Val Gin Trp Tyr Lys 146 I

I AAC TCT AAA CCT CTC CTT CTT CAC AAC CTG ACC TTC TTC GGA GTA 4B3 II AAC TCT AAA CCT CTC CTT CTT CT AAC CTG ACC TTC TTC GGA GTA 4B3 I

Asn Cys Lys Pro Leu Leu Leu Asp Asn Vel Ser Phe Phe Gly Val 161 IAsn Cys Lys Pro Leu Leu Leu Asp Asn Vel Ser Phe Phe Gly Val 161 I

I AAA GAT AAA CTG TTG GTG AGG AAT GTG CCT GAA GAG CAG AGA GGG 528 II AAA GAT AAA CTG TTG GTG AGG AAT GTG CCT GAA GAG CAG AGA GGG 528 I

Lys Asp Lys Leu Leu Val Arg Asn Val Ala Glu Glu Bis Arg Gly 176 ILys Asp Lys Leu Leu Val Arg Asn Val Ala Glu Glu Bis Arg Gly 176 I

GAC TAT ATA TGC CCT ATG TCC TAT AOG TTC CGG GGG AAG CAA TAT 573 IGAC TAT ATA TGC CCT ATG TCC TAT AOG TTC CGG GGG AAG CAA TAT 573 I

Asp Tyr Ile Cys Arg Net Ser Tyr Thr Phe Arg Gly Lys Gin Tyr 191 IAsp Tyr Ile Cys Arg Net Ser Tyr Thr Phe Arg Gly Lys Gin Tyr 191 I

CCC CTC ACA CCA GTA ATA CAA TTT ATC ACA ATA GAT GAA AAC AAG 618 ICCC CTC ACA CCA GTA ATA CAA TTT ATC ACA ATA GAT GAA AAC AAG 618 I

Pro Val Thr Arg Val Ile Gin Phe Ile Thr Ile Asp Glu Asn Lys 206 IPro Val Thr Arg Val Ile Gin Phe Ile Thr Ile Asp Glu Asn Lys 206 I

I DK 175810 B1I DK 175810 B1

Tabel 2B: Sekvens af kodninosområde af murin IL-1 receotoroen ACG GAC AGA CCT GTT KTC CTC AGC OCT OGG AAT GAG ACG ATC GAA 663Table 2B: Sequence of codinino region of murine IL-1 receptor ACO GAC AGA CCT GTT KTC CTC AGC OCT OGG AAT GAG ACG ATC GAA 663

Arg Asp Arg Pro Val Ile Len Ser Pro Arg Asn Glu Thr Ile Glu 221Arg Asp Arg Pro Val Ile Len Ser Pro Arg Asn Glu Thr Ile Glu 221

CCT GAC CCA CCA TCA ATG ATA CAA CTG ATC tCC AAC CTC ACC CCC 70SCCT GAC CCA CCA TCA ATG ATA CAA CTG ATC tCC AAC CTC ACC CCC 70S

Ale Asp Pro Gly Ser Met Ile Gin leu Ile Cys Asn Tel Thr Gly 236 CAG TTC TCA GAC CTT CTC TAC TGC AAG TGC AAT GGA TCA GAA ATT 753Ale Asp Pro Gly Ser Met Ile Gin leu Ile Cys Asn Tel Thr Gly 236 CAG TTC TCA GAC CTT CTC TAC TGC AAG TGC AAT GGA TCA GAA ATT 753

Cln Phe Ser Asp Leu Tal Tyr Trp Lys Trp Asn Gly Ser Glu Ile 231 GAA TGC AAT GAT CCA TTT CTA CCT GAA GAC TAT CAA ITT CTC GAA 79ΘCln Phe Ser Asp Leu Tal Tyr Trp Lys Trp Asn Gly Ser Glu Ile 231 GAA TGC AAT GAT CCA TTT CTA CCT GAA GAC TAT CAA ITT CTC GAA 79Θ

Glu Trp Asn Asp Pro Phe Leu Ala Glu Asp lyr Gin Phe Vel Glu 266 CAT CCT TCA ACC AAA AGA AAA TAC ACA CTC ATT ACA ACA CTT AAC 843Glu Trp Asn Asp Pro Phe Leu Ala Glu Asp lyr Gin Phe Vel Glu 266 CAT CCT TCA ACC AAA AGA AAA TAC ACA CTC ATT ACA ACA CTT AAC 843

Bl« Pro Set Thr Lys Arg Lys Tyr Thr Leu Ile Thr Thr Leu Asn 281Bl «Pro Set Thr Lys Arg Lys Tyr Thr Leu Ile Thr Thr Leu Asn 281

ATT TCA GAA CTT AAA AGC CAG TTT TAT CGC TAT CCG TTT ATC TGT 88BATT TCA GAA CTT AAA AGC CAG TTT TAT CGC TAT CCG TTT ATC TGT 88B

Ile Ser Glu Val Lys Ser Gin Phe Tyr Arg Tyr Pro Phe Ile Cys 296 GTT GTT AAG AAC ACA AAT ATT TTT GAG TCC G CG CAT CTG CAG TTA 933Ile Ser Glu Val Lys Ser Gin Phe Tyr Arg Tyr Pro Phe Ile Cys 296 GTT GTT AAG AAC ACA AAT ATT TTT GAG TCC G CG CAT CTG CAG TTA 933

Val Val Lys Asn Thr Asn Ile Phe Glu Ser Ala Bis Val Gin Leu 311 ATA TAC CCA CTC CCT GAC TTC AAC AAT TAC CTC ATC GGG CGC TTT 978Val Val Lys Asn Thr Asn Ile Phe Glu Ser Ala Bis Val Gin Leu 311 ATA TAC CCA CTC CCT GAC TTC AAC AAT TAC CTC ATC GGG CGC TTT 978

Ile Tyr Pro Val Pro Asp Phe Lys Asn Tyr leu Ile Gly Gly Phe 326 ATC ATC CTC ACG CCT ACA ATT GTA TGC TGT CTG TCC ATC TAT AAA 1023Ile Tyr Pro Val Pro Asp Phe Lys Asn Tyr leu Ile Gly Gly Phe 326 ATC ATC CTC ACG CCT ACA ATT GTA TGC TGT CTG TCC ATC TAT AAA 1023

Ile Ile Leu Thr Ala Thr Ile Val Cys Cys Val Cys Ile Tyr Lys 341 CTC TTC AAG GTT GAC ATA CTG CTT TGC TAC ACG GAC TCC TGC TCT 1068Ile Ile Leu Thr Ala Thr Ile Val Cys Cys Val Cys Ile Tyr Lys 341 CTC TTC AAG GTT GAC ATA CTG CTT TGC TAC ACG GAC TCC TGC TCT 1068

Val Phe Lys Val Asp Ile Vel Leu Trp Tyr Arg Asp Ser Cys Ser 336 CCT ITT CTT CCT TCA AAA CCT TCA CAT CCA AAC ACA TAC CAT CCC 1113Val Phe Lys Val Asp Ile Vel Leu Trp Tyr Arg Asp Ser Cys Ser 336 CCT ITT CTT CCT TCA AAA CCT TCA CAT CCA AAC ACA TAC CAT CCC 1113

Gly Phe Leu Pro Ser Lys Ale Ser Asp Gly Lys Thr Tyr Asp Ala 371 TAT ATT CTT TAT CCC AAG ACC CTG GGA GAG GGG TCC TTC TCA GAC 1138Gly Phe Leu Pro Ser Lys Ale Ser Asp Asp Gly Lys Thr Tyr Asp Ala 371 TAT ATT CTT TAT CCC AAG ACC CTG GGA GAG GGG TCC TTC TCA GAC 1138

Tyr Ile Leu Tyr Pro Lys Thr Leu Gly Glu Gly Ser Phe Ser Asp 386 TTA GAT ACT TTT CTT TTT AAA CTC TTG CCT CAG CTC TTC CAG GGA 1203Tyr Ile Leu Tyr Pro Lys Thr Leu Gly Glu Gly Ser Phe Ser Asp 386 TTA GAT ACT TTT CTT TTT AAA CTC TTG CCT CAG CTC TTC CAG GGA 1203

Leu Asp Thr Phe Val Phe Lys Leu leu Pro Glu Val Leu Glu Gly 401 CAG TTT GGA TAC AAG CTG TTC ATT TAT GGA AGG GAT CAC TAT GTT 1248Leu Asp Thr Phe Val Phe Lys Leu leu Pro Glu Val Leu Glu Gly 401 CAG TTT GGA TAC AAG CTG TTC ATT TAT GGA AGG GAT CAC TAT GTT 1248

Cln Phe Gly Tyr Lys leu Phe Ile Tyr Gly Arg Asp Asp Tyr Val 416 CCA GAA GAT ACC ATC GAG GTT ACT AAT GAA AAT GTA AAG AAA AGC 1293Cln Phe Gly Tyr Lys leu Phe Ile Tyr Gly Arg Asp Asp Tyr Val 416 CCA GAA GAT ACC ATC GAG GTT ACT AAT GAA AAT GTA AAG AAA AGC 1293

Gly Glu Asp Thr Ile Glu Val Thr Asn Glu Asn Val Lys Lys Ser 431Gly Glu Asp Thr Ile Glu Val Thr Asn Glu Asn Val Lys Lys Ser 431

I DK 175810 B1 II DK 175810 B1 I

I 38 II 38 I

I Tabel 2C: Sekvens af kodninosområde af murin IL-1 receptorqen IIn Table 2C: Sequence of codinino region of murine IL-1 receptor gene I

AGG AGG CTG ATT ATC ATT CTA GTG AGA GAT ATG GGA GGC TTC AGC 1338 IAGG AGG CTG ATT ATC ATT CTA GTG AGA GAT ATG GGA GGC TTC AGC 1338 I

I Arg Arg Leu Ile Ile Ile Leu Val Arg Asp Het Gly Gly Phe Ser 446 II Arg Arg Leu Ile Ile Ile Leu Val Arg Asp Het Gly Gly Phe Ser 446 I

I TGG CTG GGC CAG TCA TCT GAA GAG CAA ATA GCC ATA TAC AAT GCT 1383 II TGG CTG GGC CAG TCA TCT GAA GAG CAA ATA GCC ATA TAC AAT GCT 1383 I

I Trp Leu Gly Gin Ser Ser Glu Glu Gin Ile Ala Ile tyr Asn Ale 461 II Trp Leu Gly Gin Ser Ser Glu Glu Gin Ile Ala Ile tyr Asn Ale 461 I

I CTC ATC CAG GAA GGA ATT AAA ATC GTC CTG CTT GAG TTG GAG AAA 1428 II CTC ATC CAG GAA GGA ATT AAA ATC GTC CTG CTT GAG TTG GAG AAA 1428 I

I Leu Ile Gin Glu Gly Ile Lys Ile Val Leu Leu Glu Leu Glu Lys 476I Leu Ile Gin Glu Gly Ile Lys Ile Val Leu Leu Glu Leu Glu Lys 476

ATC CAA GAC TAT GAG AAA ATG CCA GAT TCT ATT CAG TTC ATT AAG 1473 IATC CAA GAC TAT GAG AAA ATG CCA GAT TCT ATT CAG TTC ATT AAG 1473 I

I Ile Gin Asp Tyr Glu Lys Het Pro Asp Ser Ile Gin Phe Ile Lys 491 II Ile Gin Asp Tyr Glu Lys Het Pro Asp Ser Ile Gin Phe Ile Lys 491 I

I CAG AAA CAC GGA GTC ATT TGC TGG TCA GGA GAC TTT CAA GAA AGA 151B II CAG AAA CAC GGA GTC ATT TGC TGG TCA GGA GAC TTT CAA GAA AGA 151B I

Gin Lys Bis Gly Val Ile Cys Trp Ser Gly Asp Phe Gin Glu Arg 506 IGin Lys Bis Gly Val Ile Cys Trp Ser Gly Asp Phe Gin Glu Arg 506 I

I CCA CAG TCT GCA AAG ACC AGG TTC TGG AAA AAC TTA AGA TAC CAG 1563 II CCA CAG TCT GCA AAG ACC AGG TTC TGG AAA AAC TTA AGA TAC CAG 1563 I

Pro Gin Ser Ala Lys Thr Arg Phe Trp Lys Asn Leu Arg Tyr Gin 521 IPro Gin Ser Ala Lys Thr Arg Phe Trp Lys Asn Leu Arg Tyr Gin 521 I

H ATG CCA GCC CAA CGG AGA TCA CCA TTG TCT AAA CAC CGC TTA CTA 1608 IH ATG CCA GCC CAA CGG AGA TCA CCA TTG TCT AAA CAC CGC TTA CTA 1608 I

Net Pro Ala Gin Arg Arg Ser Pro Leu Ser Lys His Arg Leu Leu 536 INet Pro Ala Gin Arg Arg Ser Pro Leu Ser Lys His Arg Leu Leu 536 I

ACC CTG GAT CCT GTG CGG GAC ACT AAG GAG AAA CTG CCG GCA GCA 1653 IACC CTG GAT CCT GTG CGG GAC ACT AAG GAG AAA CTG CCG GCA GCA 1653 I

Thr Leu Asp Pro Val Arg Asp Thr Lys Glu Lys Leu Pro Ala Ala 551 IThr Leu Asp Pro Val Arg Asp Thr Lys Glu Lys Leu Pro Ala Ala 551 I

I ACA CAC TTA CCA CT C GGC TAG-3' 1671 II ACA CAC TTA CCA CT C GGC TAG-3 '1671 I

Thr His Leu Pro Leu Gly End 557 IThr His Leu Pro Leu Gly End 557 I

DK 175810 B1 39 1.5 * -AGACGCACCC TCTCAAOATG CTCCACTCCC TCCTCACAAC CTCGCACCCC 51 TTGCTAAAAG ACAAGGCCTT CTCCAAGAAG AATATCAAAC TCTTACTCAG 101 ACTTATTTGT TTCATAGCTC TACTGATTTC TTCTCTGGAG GCTGATAAAT 151 6GAAGGAAGG TGAAGAAAAA ATAATTTTAG TGTCATCTGC AAATGAAATT 201 GATGTTCGTC CCTCTCCTCT TAACCCAAAT GAACACAAAG GCACTATAAC 251 TTGGTATAAA GATGACAGCA AGACACCTGT ATCTACAGAA CAAGCCTCCA 301 GGATTCATCA ACACAAAGAG AAACTTTGGT TTGTTCCTCC TAAGGTGGAG 351 GATTCAGGAC ATTACTATTC CGTGGTAAGA AATTCATCTT ACTCCCTCAC A01 aattaaaata ACTGCAAAAT ttctggagaa tcagcctaac ttatgttata A51 atgcacaagc catatttaag cagaaactac ccgttgcagg agacggaggaDK B1 175 810 39 1.5 * -AGACGCACCC TCTCAAOATG CTCCACTCCC TCCTCACAAC CTCGCACCCC 51 TTGCTAAAAG ACAAGGCCTT CTCCAAGAAG AATATCAAAC TCTTACTCAG 101 ACTTATTTGT TTCATAGCTC TACTGATTTC TTCTCTGGAG GCTGATAAAT 151 6GAAGGAAGG TGAAGAAAAA ATAATTTTAG TGTCATCTGC AAATGAAATT 201 GATGTTCGTC CCTCTCCTCT TAACCCAAAT GAACACAAAG GCACTATAAC 251 TTGGTATAAA GATGACAGCA AGACACCTGT ATCTACAGAA CAAGCCTCCA 301 GGATTCATCA ACACAAAGAG AAACTTTGGT TTGTTCCTCC TAAGGTGGAG 351 GATTCAGGAC ATTACTATTC CGTGGTAAGA AATTCATCTT ACTCCCTCAC A01 aattaaaata ACTGCAAAAT ttctggagaa tcagcctaac ttatgttata A51 atgcacaagc catatttaag cagaaactac ccgttgcagg agacggagga

301 CTTGTCTCCC CTTATATGCA CTTTTTTAAA AATGAAAATA ATCAGTTACC 551 TAAATTACAG TGGTATAAGC ATTGCAAACC TCTACTTCTT CACAATATAC 601 ACTTTAGTGG ACTCAAAGAT AGCCTCATOG TGATGAATGT GGCTGAAAAG 651 CATAGAGGGA ACTATACTTG TCATGCATCC TACACATACT TGGGCAAGCA 701 ATATCCTATT ACCCGGGTAA TAGAATTTAT TACTCTAGAG GAAAACAAAC 751 CCACAAGGCC TGTGATTGTG AGCCCAGCTA ATGAGACAAT GGAAGTACAC B01 TTGGGATCCC AGATACAATT GATCTCTAAT GTCACCGGCC AGTTGAGTGA 851 CATTGCTTAC TGGAACTCGA ATGGGTCAGT AATTGATGAA GATGACCCAG 901 TGCTAGGGGA AGACTATTAC AGTGTCGAAA ATCCTGCAAA CAAAAGAAGG 951 AGTACCCTCA TCACACTGCT TAATATATCG CAAATTGAAA CTAGATTTTA 1001 TAAACATCCA TTTACCTGTT TTGCCAAGAA TACACATGGT ATAGATGCAG 1051 CATATATCCA CTTAATATAT CCAGTCACTA ATTTCCAGAA GCACATGATT 1101 GGTATATCTG TCACGTTGAC AGTCATAATT GTGTGTTCTG TTTTCATCTA 1151 TAAAATCTTC AACATTGACA TTCTCCTTTG CTACAGGGAT TCCTGCTATG 1201 ATTTTCTCCC AATAAAAGCT TCAGATGGAA AGACCTATGA CGCATATATA 1251 CTGTATCCAA AGACTCTTGG GGAAGCGTCT ACCTCTGACT GTGATATTTT 1301 TGTGTTTAAA GTCTTGCCTG AGGTCTTGGA AAAACAGTGT GGATATAAGC 1351 TCTTCATTTA TGGAACGGAT GACTACCTTG GGGAACACAT TGTTGAGGTC 1401 ATTAATGAAA ACGTAAAGAA AAGCAGAAGA CTGATTATCA TTTTAGTCAG 1451 ACAAACATCA GGCTTCAGCT CGCTGGCTGG TTCATCTCAA GAGCAAATAC 1501 CCATGIATAA TGCTCTIGTT CAGGATGGAA TTAAAGTTGT CCTGCTTGAG 1551 CTGGAGAAAA TCCAAGACTA TGAGAAAATG CCAGAATCGA TTAAATTCAT 1601 TAAGCAGAAA CATGGGGCTA TCCGCTGGTC AGGGGACTTT ACACAGGGAC 1651 CACAGTCTGC AAAGACAAGG TTCTGCAAGA ATGTCAGGTA CCACATGCCA 1701 Gtccaccgac GGTCACCTTC ATCTAAACAC CACTTACTCT CACCAGCCAC 1751 TAAGCAGAAA CTGCAAAGAG AGGCTCACGT GCCTCTCCGG TAGCATGGAG 1801 AAGTTGCCAA GAGTTCTTTA GCTGCCTCCT CTCTTATGGC GTTCCAGGCC 1851 AGGTTATGCC TCATGCTGAC TTGCAGAGTT CATGGAATGT AACTATATCA 1901 TCCTTTATCC CTGAGGTCAC CTGCAATCAG ATTATTAAGG GAATAAGCCA 1951 TGACGTCAAT AGCAGCCCAG GGCACTTCAG AGTAGAGGGC TTGGGAAGAT 2001 CTTTTAAAAA GGCAGTAGGC CCGGTGTGGT GGCTCACGCC TATAATCCCA 2051 GCACTTTGGG AGGCTGAAGT GGCTGCATCA CCAGAGGTCA GGACTTCGAG 2101 ACGACCCCAG CCAACATGGC AAAACCCCAT CTCTACTAAA AATACAAAAA 2151 TGAGCTAGGC ATGGTGGCAC ACCCCTGTAA TCCCAGCTAC ACCTGACGCT 2201 CAGGCAGGAG AATTCCTTCA ACCCGGGAGA CGGAGCTTGC AGTGAGCCGA 2301 GTTTGGGCCA CTGCACTCTA GCCTGGCAAC AGAGCAAGAC TCCCTCTCAA 2351 AAAAAGCGCA ATAAATGCCC TCTCTGAATG TTTGAACTGC CAAGAAAAGG 2401 CATGGAGACA GCGAACTAGA AGAAAGGGCA AGAAGGAAAT AGCCACCGTC 2451 TACACATGGC TTACTTAAGT CATCCACAGC CCAAGGCCGG CGGCTATGCC 2501 TTGTCIGGGG ACCCTGTACA CTCACTGACC CTGGAGCGGC TCTCCTGAGA 2551 GGTGCTGCAG CCAAAGTGAG ACTGACACCT CACTGAGGAA CGGAGACATA301 CTTGTCTCCC CTTATATGCA CTTTTTTAAA AATGAAAATA ATCAGTTACC 551 TAAATTACAG TGGTATAAGC ATTGCAAACC TCTACTTCTT CACAATATAC 601 ACTTTAGTGG ACTCAAAGAT AGCCTCATOG TGATGAATGT GGCTGAAAAG 651 CATAGAGGGA ACTATACTTG TCATGCATCC TACACATACT TGGGCAAGCA 701 ATATCCTATT ACCCGGGTAA TAGAATTTAT TACTCTAGAG GAAAACAAAC 751 CCACAAGGCC TGTGATTGTG AGCCCAGCTA ATGAGACAAT GGAAGTACAC B01 TTGGGATCCC AGATACAATT GATCTCTAAT GTCACCGGCC AGTTGAGTGA 851 CATTGCTTAC TGGAACTCGA ATGGGTCAGT AATTGATGAA GATGACCCAG 901 TGCTAGGGGA AGACTATTAC AGTGTCGAAA ATCCTGCAAA CAAAAGAAGG 951 AGTACCCTCA TCACACTGCT TAATATATCG CAAATTGAAA CTAGATTTTA 1001 TAAACATCCA TTTACCTGTT TTGCCAAGAA TACACATGGT ATAGATGCAG 1051 CATATATCCA CTTAATATAT CCAGTCACTA ATTTCCAGAA GCACATGATT 1101 GGTATATCTG TCACGTTGAC AGTCATAATT GTGTGTTCTG TTTTCATCTA 1151 TAAAATCTTC AACATTGACA TTCTCCTTTG CTACAGGGAT TCCTGCTATG 1201 ATTTTCTCCC AATAAAAGCT TCAGATGGAA AGACCTATGA CGCATATATA 1251 CTGTATCCAA AGACTCTTGG GGAAGCGTCT ACCTCTGACT GTGATATTTT 1301 TGTGTTTAAA GTCTTGCCTG AGGTCTTGGA AAAACAGTGT G GATATAAGC 1351 TCTTCATTTA TGGAACGGAT GACTACCTTG GGGAACACAT TGTTGAGGTC 1401 ATTAATGAAA ACGTAAAGAA AAGCAGAAGA CTGATTATCA TTTTAGTCAG 1451 ACAAACATCA GGCTTCAGCT CGCTGGCTGG TTCATCTCAA GAGCAAATAC 1501 CCATGIATAA TGCTCTIGTT CAGGATGGAA TTAAAGTTGT CCTGCTTGAG 1551 CTGGAGAAAA TCCAAGACTA TGAGAAAATG CCAGAATCGA TTAAATTCAT 1601 TAAGCAGAAA CATGGGGCTA TCCGCTGGTC AGGGGACTTT ACACAGGGAC 1651 CACAGTCTGC AAAGACAAGG TTCTGCAAGA ATGTCAGGTA CCACATGCCA 1701 Gtccaccgac GGTCACCTTC ATCTAAACAC CACTTACTCT CACCAGCCAC 1751 TAAGCAGAAA CTGCAAAGAG AGGCTCACGT GCCTCTCCGG TAGCATGGAG 1801 AAGTTGCCAA GAGTTCTTTA GCTGCCTCCT CTCTTATGGC GTTCCAGGCC 1851 AGGTTATGCC TCATGCTGAC TTGCAGAGTT CATGGAATGT AACTATATCA 1901 TCCTTTATCC CTGAGGTCAC CTGCAATCAG ATTATTAAGG GAATAAGCCA 1951 TGACGTCAAT AGCAGCCCAG GGCACTTCAG AGTAGAGGGC TTGGGAAGAT 2001 CTTTTAAAAA GGCAGTAGGC CCGGTGTGGT GGCTCACGCC TATAATCCCA 2051 GCACTTTGGG AGGCTGAAGT GGCTGCATCA CCAGAGGTCA GGACTTCGAG 2101 ACGACCCCAG CCAACATGGC AAAACCCCAT CTCTACTAAA AATACAAAAA 2151 TGAGCTAGGC ATGGTGGCAC ACC CCTGTAA TCCCAGCTAC ACCTGACGCT 2201 CAGGCAGGAG AATTCCTTCA ACCCGGGAGA CGGAGCTTGC AGTGAGCCGA 2301 GTTTGGGCCA CTGCACTCTA GCCTGGCAAC AGAGCAAGAC TCCCTCTCAA 2351 AAAAAGCGCA ATAAATGCCC TCTCTGAATG TTTGAACTGC CAAGAAAAGG 2401 CATGGAGACA GCGAACTAGA AGAAAGGGCA AGAAGGAAAT AGCCACCGTC 2451 TACACATGGC TTACTTAAGT CATCCACAGC CCAAGGCCGG CGGCTATGCC 2501 TTGTCIGGGG ACCCTGTACA CTCACTGACC CTGGAGCGGC TCTCCTGAGA 2551 GGTGCTGCAG CCAAAGTGAG ACTGACACCT CACTGAGGAA CGGAGACATA

2601 TTCTTGGAGA ACTTTCCATC TGCTTGTATT TTCCATACAC A7CCCCAGCC-3'2601 TTCTTGGAGA ACTTTCCATC TGCTTGTATT TTCCATACAC A7CCCCAGCC-3 '

Tabel 3: cDNA-sekvens af human IL-1R konstruktionTable 3: cDNA sequence of human IL-1R construct

40 I40 I

DK 175810 B1 IDK 175810 B1 I

Tabel 4A: Sekvens af kodninasområde af human IL-1 receptorgen ITable 4A: Sequence of codninase region of human IL-1 receptor gene I

ATG AAA GTC TTA CTC ACA CIT ATT TGT TTC ATA CCT CTA CTG ATT -9 IATG AAA GTC TTA CTC ACA CIT ATT TGT TTC ATA CCT CTA CTG ATT -9 I

Het Lys Val Leu Leu Arg Leu Ile Cys Phe Ile Ala Lev Lev Ile -3 IHet Lys Val Leu Leu Arg Leu Ile Cys Phe Ile Ala Lev Lev Ile -3 I

TCT TCT CTG GAG CCT CAT AAA TCC AAG GAA CCT CAA GAA AAA ATA 39 ITCT TCT CTG GAG CCT CAT AAA TCC AAG GAA CCT CAA GAA AAA ATA 39 I

Ser Ser bro Glu A1& Asp Lys Cys Lys Clu Arg Clu Clu Lys Ile 13 HSer Ser bro Glu A1 & Asp Lys Cys Lys Clu Arg Clu Clu Lys Ile 13 H

ATT TTA CTC TCA TCT GCA AAT CAA ATT GAT GTT CCT CCC TGT CCT 84ATT TTA CTC TCA TCT GCA AAT CAA ATT GAT GTT CCT CCC TGT CCT 84

Ile Leu Val Ser Ser Ala Asn Glu Ile Asp Val Arg Pro Cys Pro 28 ^ IIle Leu Val Ser Ser Ala Asn Glu Ile Asp Val Arg Pro Cys Pro 28 ^ I

CTT AAC CCA AAT GAA CAC AAA GGC ACT ATA ACT TGG TAT AAA GAT 129 ICTT AAC CCA AAT GAA CAC AAA GGC ACT ATA ACT TGG TAT AAA GAT 129 I

Leu Aan Pro Asn Glu His Lys Gly Thr Ile Thr Trp Tyr Lys Asp 43 ILeu Aan Pro Asn Glu His Lys Gly Thr Ile Thr Trp Tyr Lys Asp 43 I

GAC AGC AAG ACA CCT CTA TCT ACA GAA CAA GCC TCC ACG ATT CAT 174 IGAC AGC AAG ACA CCT CTA TCT ACA GAA CAA GCC TCC ACG ATT CAT 174 I

Asp Ser Lys Thr Pro Val Ser Thr Glu Gin Ala Ser Arg Ile His 58 IAsp Ser Lys Thr Pro Val Ser Thr Glu Gin Ala Ser Arg Ile His 58 I

CAA CAC AAA GAG AAA CTT TGG TTT CTT CCT GCT AAG CTG GAG GAT 219 ICAA CAC AAA GAG AAA CTT TGG TTT CTT CCT GCT AAG CTG GAG GAT 219 I

Gin His Lys Glu Lys Leu Trp Phe Val Pro Ala Lys Val Glu Asp 73Gin His Lys Glu Lys Leu Trp Phe Val Pro Ala Lys Val Glu Asp 73

TCA GGA CAT TAC TAT TCC GTG CTA AGA AAT TCA TCT TAC TGC CTC 264 ITCA GGA CAT TAC TAT TCC GTG CTA AGA AAT TCA TCT TAC TGC CTC 264 I

Ser Gly His Tyr Tyr Cys Val Val Arg Asn Ser Ser Tyr Cys Leu 88 HSer Gly His Tyr Tyr Cys Val Val Arg Asn Ser Ser Tyr Cys Leu 88 H

AGA ATT AAA ATA AGT GCA AAA TTT CTC GAC AAT GAG CCT AAC TTA 309 IAGA ATT AAA ATA AGT GCA AAA TTT CTC GAC AAT GAG CCT AAC TTA 309 I

Arg Ile Lys Ile Ser Ala Lys Phe Val Glu Asn Glu Pro Asn Leu 103 IArg Ile Lys Ile Ser Ala Lys Phe Val Glu Asn Glu Pro Asn Leu 103 I

TGT TAT AAT GCA CAA GCC ATA TTT AAG CAG AAA CTA CCC GTT GCA 354 ITGT TAT AAT GCA CAA GCC ATA TTT AAG CAG AAA CTA CCC GTT GCA 354 I

Cys Tyr Asn Ala Gin Ala Ile Phe Lys Gin Lys Leu Pro Val Ala 118 ICys Tyr Asn Ala Gin Ala Ile Phe Lys Gin Lys Leu Pro Val Ala 118 I

GGA GAC GGA GGA CTT GTG TGC CCT TAT ATG GAG TTT TTT AAA AAT 399 IGGA GAC GGA GGA GTA CTT GTG TGC CCT TAT ATG GAG TTT TTT AAA AAT 399 I

Gly Asp Gly Gly Leu Val Cys Pro Tyr Het Glu Phe Phe Lys Asn 133 IGly Asp Gly Gly Gly Leu Val Cys Pro Tyr Het Glu Phe Phe Lys Asn 133 I

CAA AAT AAT GAG TTA CCT AAA TTA CAC TGG TAT AAG GAT TCC AAA 444 ICAA AAT AAT GAG TTA CCT AAA TTA CAC TGG TAT AAG GAT TCC AAA 444 I

Clu Asn Asn Glu Leu Pro Lys Leu Gin Trp Tyr Lys Asp Cys Lys 148Clu Asn Asn Glu Leu Pro Lys Leu Gin Trp Tyr Lys Asp Cys Lys 148

CCT CTA CTT CTT CAC AAT ATA CAC ITT AGT GGA CTC AAA GAT AGG 489 ICCT CTA CTT CTT CAC AAT ATA CAC ITT AGT GGA CTC AAA GAT AGG 489 I

Pro Leu Leu Leu Asp Asn Ile His Phe Ser Gly Vel Lys Asp Arg 183 IPro Leu Leu Leu Asp Asn Ile His Phe Ser Gly Vel Lys Asp Arg 183 I

CTC ATC CTG ATG AAT GTG GCT GAA AAG CAT AGA GGG AAC TAT ACT 534 ICTC ATC CTG ATG AAT GTG GCT GAA AAG CAT AGA GGG AAC TAT ACT 534 I

Leu Ile Val Het Asn Val Ala Glu Lys Bis Arg Gly Asn Tyr Thr 178 ILeu Ile Val Het Asn Val Ala Glu Lys Bis Arg Gly Asn Tyr Thr 178 I

TGT CAT CCA TCC TAC ACA TAC TTC GGC AAG CAA TAT CCT ATT ACC 579 ITGT CAT CCA TCC TAC ACA TAC TTC GGC AAG CAA TAT CCT ATT ACC 579 I

Cys His Ala Ser Tyr Thr Tyr Leu Gly Lys Gin Tyr Pro Ile Thr 193 ICys His Ala Ser Tyr Thr Tyr Leu Gly Lys Gin Tyr Pro Ile Thr 193 I

CCC CTA ATA CAA TTT ATT ACT CTA GAG GAA AAC AAA CCC ACA AGG 624 ICCC CTA ATA CAA TTT ATT ACT CTA GAG GAA AAC AAA CCC ACA AGG 624 I

Arg Val Ile Glu Phe Ile Thr Leu Glu Glu Asn Lys Pro Thr Arg . 208 IArg Val Ile Glu Phe Ile Thr Leu Glu Glu Asn Lys Pro Thr Arg. 208 I

CCT GTG ATT GTG AGC CCA GCT AAT GAG ACA ATG GAA CTA GAC TTG 669 ICCT GTG ATT GTG AGC CCA GCT AAT GAG ACA ATG GAA CTA GAC TTG 669 I

Pro Val Ile Val Ser Pro Ala Asn Glu Thr Het Glu Val Asp Leu 223 IPro Val Ile Val Ser Pro Ala Asn Glu Thr Het Glu Val Asp Leu 223 I

DK 175810 B1 IDK 175810 B1 I

Tabel 4B: Sekvens af kodninqsområde af human IL-1 receptorgen ITable 4B: Sequence of coding region of human IL-1 receptor gene I

CCA TCC CAC ATA CAA TTG ATC TCT AAT CTC ACC CCC CAC TTG ACT 714 Gly Ser Cln Ile Gin Leu Ile Cys Asn Val Thr Cly Cln Leu Ser 238 GAC ATT GCT TAC TGG AAC TOG AAT GGG TCA GTA ATT CAT CAA CAT 739CCA TCC CAC ATA CAA TTG ATC TCT AAT CTC ACC CCC CAC TTG ACT 714 Gly Ser Cln Ile Gin Leu Ile Cys Asn Val Thr Cly Cln Leu Ser 238 GAC ATT GCT TAC TGG AAC TOG AAT GGG TCA GTA ATT CAT CAA CAT 739

Asp Ile Aln Tyr Trp Lys Trp Asn Cly Ser Val Ile Asp Glu Asp 253 CAC CCA CTC CTA GGG CAA CAC TAT TAC ACT CTC CAA AAT CCT GCA 804Asp Ile Aln Tyr Trp Lys Trp Asn Cly Ser Val Ile Asp Glu Asp 253 CAC CCA CTC CTA GGG CAA CAC TAT TAC ACT CTC CAA AAT CCT GCA 804

Asp Pro Tal Leu Gly Glu Asp Tyr Tyr Ser Val Glu Asn Pro Ala 268 AAC AAA AGA AGG AGT ACC CTC ATC ACA CTC CTT AAT ATA TCG GAA 869Asp Pro Tal Leu Gly Glu Asp Tyr Tyr Ser Val Glu Asn Pro Ala 268 AAC AAA AGA AGG AGT ACC CTC ATC ACA CTC CTT AAT ATA TCG GAA 869

Asn Lys Arg Arg Ser Thr Leu Ile Thr Val Leu Asn Ile Ser Glu 283 ATT GAA ACT AGA TTT TAT AAA CAT CCA ΤΤΓ ACC TCT TTT CCC AAG 894Asn Lys Arg Arg Ser Thr Leu Ile Thr Val Leu Asn Ile Ser Glu 283 ATT GAA ACT AGA TTT TAT AAA CAT CCA ΤΤΓ ACC TCT TTT CCC AAG 894

Ile Clu Ser Arg Phe Tyr Lys His Pro Phe Thr Cys Phe Ala Lys 298 AAT ACA CAT GCT ATA GAT CCA CCA TAT ATC CAC TTA ATA TAT CCA 939Ile Clu Ser Arg Phe Tyr Lys His Pro Phe Thr Cys Phe Ala Lys 298 AAT ACA CAT GCT ATA GAT CCA CCA TAT ATC CAC TTA ATA TAT CCA 939

Asn Thr His Gly Ile Asp Ala Ala lyr Ile Gin Leu Ile Tyr Pro 313 I CTC ACT AAT TIC CAC AAG CAC ATC ATT CCT ATA TGT CTC ACG TTG 984Asn Thr His Gly Ile Asp Ala Ala lyr Ile Gin Leu Ile Tyr Pro 313 I CTC ACT AAT TIC CAC AAG CAC ATC ATT CCT ATA TGT CTC ACG TTG 984

Val Thr Asn Phe Gin Lys Bis Met Ile Gly Ile Cys Val Thr Leu 328 ACA CTC ATA ATT GTG TGT TCT CTT TTC ATC TAT AAA ATC TTC AAC 1029Val Thr Asn Phe Gin Lys Bis Met Ile Gly Ile Cys Val Thr Leu 328 ACA CTC ATA ATT GTG TGT TCT CTT TTC ATC TAT AAA ATC TTC AAC 1029

Thr Vel Ile Ile Val Cys Ser Val Phe Ile Tyr Lys Ile Phe Lys 343 ATT GAC ATT CTC CTT TGG TAC AGG GAT TCC TCC TAT CAT TTT CTC 1074Thr Vel Ile Ile Val Cys Ser Val Phe Ile Tyr Lys Ile Phe Lys 343 ATT GAC ATT CTC CTT TGG TAC AGG GAT TCC TCC TAT CAT TTT CTC 1074

Ile Asp Ile Val Leu Trp Tyr Arg Asp Ser Cys Tyr Asp Phe Leu 358 CCA ATA AAA GCT TCA GAT CGA AAG ACC TAT GAC GCA TAT ATA CTG 1119Ile Asp Ile Val Leu Trp Tyr Arg Asp Ser Cys Tyr Asp Phe Leu 358 CCA ATA AAA GCT TCA GAT CGA AAG ACC TAT GAC GCA TAT ATA CTG 1119

Pro Ile Lys Ala Ser Asp Gly Lys Thr Tyr Asp Ala Tyr Ile Leu 373 TAT'CCA AAG ACT CTT GGG GAA GGG TCT ACC TCT GAC TCT GAT ATT 1164 Tyr Pro Lys Thr Val Gly Glu Gly Ser Thr Ser Asp Cys Asp Ile 388 TTT CTG TTT AAA CTC TTG CCT GAG CTC TTG GAA AAA CAG TGT GGA 1209Pro Ile Lys Ala Ser Asp Gly Lys Thr Tyr Asp Ala Tyr Ile Leu 373 TAT'CCA AAG ACT CTT GGG GAA GGG TCT ACC TCT GAC TCT GAT ATT 1164 Tyr Pro Lys Thr Val Gly Glu Gly Ser Thr Ser Asp Cys Asp Ile 388 TTT CTG TTT AAA CTC TTG CCT GAG CTC TTG GAA AAA CAG TGT GGA 1209

Phe Vel Pha Lys Val Leu Pro Glu Val Leu Glu Lys Gin Cys Gly 403 TAT AAG CTG TTC ATT TAT GGA AGG GAT GAC TAC GTT GGG GAA GAC 1254Phe Vel Pha Lys Val Leu Pro Glu Val Leu Glu Lys Gin Cys Gly 403 TAT AAG CTG TTC ATT TAT GGA AGG GAT GAC TAC GTT GGG GAA GAC 1254

Tyr Lys Leu Phe Ile Tyr Cly Arg Asp Asp Tyr Vel Gly Glu Asp 418 ATT CTT GAG CTC ATT AAT GAA AAC CTA AAG AAA AGC AGA AGA CTG 1299Tyr Lys Leu Phe Ile Tyr Cly Arg Asp Asp Tyr Vel Gly Glu Asp 418 ATT CTT GAG CTC ATT AAT GAA AAC CTA AAG AAA AGC AGA AGA CTG 1299

Ile Val Glu Val Ile Asn Glu Asn Val Lys Lys Ser Arg Arg Leu 433 ATT ATC ATT TTA CTC AGA GAA ACA TCA GGC TTC ACC TGG CTG CCT 1344Ile Val Glu Val Ile Asn Glu Asn Val Lys Lys Ser Arg Arg Leu 433 ATT ATC ATT TTA CTC AGA GAA ACA TCA GGC TTC ACC TGG CTG CCT 1344

Ile Ile Ile Leu Val Arg Glu Thr Ser Gly Phe Ser Trp Leu Gly 448 GCT TCA TCT CAA GAG CAA ATA GCC ATG TAT AAT GCT CTT CTT CAG 1389Ile Ile Ile Ile Leu Val Arg Glu Thr Ser Gly Phe Ser Trp Leu Gly 448 GCT TCA TCT CAA GAG CAA ATA GCC ATG TAT AAT GCT CTT CTT CAG 1389

Cly Ser Ser Glu Clu Gin Ile Ala Het Tyr Asn Ala Leu Val Gin 463 CAT CGA ATT AAA CTT CTC CTG CTT CAG CTG CAC AAA ATC CAA GAC 1434Cly Ser Ser Glu Clu Gin Ile Ala Het Tyr Asn Ala Leu Val Gin 463 CAT CGA ATT AAA CTT CTC CTG CTT CAG CTG CAC AAA ATC CAA GAC 1434

Asp Gly Ile Lys Val Val Leu Leu Glu Leu Clu Lys Ile Gin Asp 478Asp Gly Ile Lys Val Val Leu Leu Glu Leu Clu Lys Ile Gin Asp 478

DK 175810 B1 IDK 175810 B1 I

IIN

Tabel 4C: Sekvens af kodninasområd'e af human IL-1 receptoraen ITable 4C: Sequence of codinase regions of the human IL-1 receptor I

I TAT GAG AAA ATG CCA C AA TCG ATT AAA TTC ATT AAG CAG AAA CAT 1479 II TAT GAG AAA ATG CCA C AA TCG ATT AAA TTC ATT AAG CAG AAA CAT 1479 I

I Tyr Glu Lys Net Pro Glu Ser Ile Lys Phe Ile Lys Gin Lys Bis 493 II Tyr Glu Lys Net Pro Glu Ser Ile Lys Phe Ile Lys Gin Lys Bis 493 I

CGG CCT ATC CGC TGG TCA GGG GAC ΤΤΓ ACA CAG GCA CCA CAG TCT 1524 ICGG CCT ATC CGC TGG TCA GGG GAC ΤΤΓ ACA CAG GCA CCA CAG TCT 1524 I

Gly Ala Ile Arg Trp Ser Gly Asp Phe Thr Gin Gly Pro Gin Ser 508 IGly Ala Ile Arg Trp Ser Gly Asp Phe Thr Gin Gly Pro Gin Ser 508 I

I GCA AAG ACA AGG TTC TGG AAG AAT GTC AGC TAC CAC ATG CCA GTC 1569 II GCA AAG ACA AGG TTC TGG AAG AAT GTC AGC TAC CAC ATG CCA GTC 1569 I

Ala Lys Thr Arg Phe Trp Lys Asn Val Arg Tyr Bis Net Pro Val 523 IAla Lys Thr Arg Phe Trp Lys Asn Val Arg Tyr Bis Net Pro Val 523 I

I CAG CGA CGG TCA CCT TCA TCT AAA CAC CAG TTA CTG TCA CCA GCC 1614 II CAG CGA CGG TCA CCT TCA TCT AAA CAC CAG TTA CTG TCA CCA GCC 1614 I

I Gin Arg Arg Ser Pro Ser Ser Lys Bis Gin Leu Leu Ser Pro Ala 538 II Gin Arg Arg Ser Pro Ser Ser Lys Bis Gin Leu Leu Ser Pro Ala 538 I

I ACT AAG GAG AAA CTG CAA AGA GAG GCT CAC GTG CCT CTC GGG TAG 1656 II ACT AAG GAG AAA CTG CAA AGA GAG GCT CAC GTG CCT CTC GGG TAG 1656 I

Thr Lys Glu Lys Leu Gin Arg Glu Ala Bis Val Pro Leu Gly End 552 IThr Lys Glu Lys Leu Gin Arg Glu Ala Bis Val Pro Leu Gly End 552 I

I II I

Η' II 'I

Η IΗ I

43 DK 175810 B143 DK 175810 B1

Tabel 5: Sammenligning af human oo murin 1L-1 receptoraminosvresekvens i f 1=1 ΙξΙ j-1 1|-μ| Lj I-j ij fif *l=j* pa j:j 1-1 1=1 |J ||| j:| |il -|=| |:| jfj |ξ| 1 I |=| ,|=| |z^Table 5: Comparison of human oo murine 1L-1 receptor amino acid sequence in f 1 = 1 ΙξΙ j-1 1 | -μ | Lj I-j ij fif * l = j * pa j: j 1-1 1 = 1 | J ||| j: | | il - | = | |: | jfj | ξ | 1 I | = | , | = | | z ^

U Sil Sil “111· |J IIIU Sil Sil “111 · | J III

iin

Claims (7)

44 I DK 175810 B1 I44 I DK 175810 B1 I 1. Homogen biologisk aktiv opløselig human lnterleukin-1 Re- H ceptor (IL-1R) sammensætning, hvori nævnte humane IL-1R har en aminosyrese- H 5 kvens der er mere end 80% homolog med aminosyresekvensen vist i Tabel 4A-4C · H eller til den del af sekvensen, der består af aminosyreme 1-319 vist i de nævnte figurer H og, hvor den nævnte IL-1 R ikke har en cytoplasmatisk eller transmembran region. IA homogeneous biologically active soluble human interleukin-1 receptor (IL-1R) composition, wherein said human IL-1R has an amino acid sequence more than 80% homologous to the amino acid sequence shown in Table 4A-4C. H or to that portion of the sequence consisting of amino acids 1-319 shown in said Figures H and wherein said IL-1R does not have a cytoplasmic or transmembrane region. IN 2. Isoleret IL-1 receptor omfattende aminosyresekvensen be- I 10 stående af aminosyreme 1-319 i Tabel 4A-4C. IAn isolated IL-1 receptor comprising the amino acid sequence consisting of amino acids 1-319 of Table 4A-4C. IN 3. Isoleret opløselig IL-1 receptor omfattende en opløselig I form af polypeptidet ifølge Tabel 4A-4C, hvori den opløselige IL-1 receptor har IL-1 I bindende aktivitet og, hvor den nævnte IL-1R ikke har en cytoplasmatisk eller trans- I 15 membran region. IAn isolated soluble IL-1 receptor comprising a soluble I form of the polypeptide of Table 4A-4C, wherein the soluble IL-1 receptor has IL-1 I binding activity and wherein said IL-1R does not have a cytoplasmic or trans In 15 membrane region. IN 4. Opløselig human IL-1 receptor til medicinsk anvendelse, I hvor receptoren har en aminosyresekvens der er mere end 80% homolog med amino- I syresekvensen vist i Tabel 4A-4C eller til den del af sekvensen, der består af aminosy- I 20 rerne 1-319 vist i de nævnte figurer og, hvor den nævnte IL-1R ikke har en cytoplas- I matisk eller transmembran region. HA soluble human IL-1 receptor for medical use, wherein the receptor has an amino acid sequence that is more than 80% homologous to the amino acid sequence shown in Tables 4A-4C or to that portion of the amino acid sequence. 1-319 shown in said figures and wherein said IL-1R does not have a cytoplasmic or transmembrane region. H 5. Anvendelse af en opløselig human IL-1 receptor til fremstil- H ling af et medikament til regulering af immun- eller inflammatoriske responser, hvor 25 receptoren har en aminosyresekvens, der er mere end 80% homolog med aminosyre- H sekvensen vist i Tabel 4A-4C eller til den del af sekvensen, der består af aminosyreme H 1-319 vist i de nævnte figurer og, hvor den nævnte IL-1 R ikke har en cytoplasmatisk H eller transmembran region. HUse of a soluble human IL-1 receptor for the manufacture of a medicament for regulating immune or inflammatory responses, wherein the receptor has an amino acid sequence that is more than 80% homologous to the amino acid H sequence shown in Table 4A-4C or to that part of the sequence consisting of amino acids H 1-319 shown in said figures and wherein said IL-1R does not have a cytoplasmic H or transmembrane region. H 6. Farmaceutisk præparat, som er egnet til parenteral admini- I strering til en human patient til regulering af immun- eller inflammatoriske responser, H KENDETEGNET ved, at den omfatter en virksom mængde af en opløselig human IL-1 I receptor ifølge Tabel 4A-4C i blanding med en egnet diluent eller bærer. IPharmaceutical composition suitable for parenteral administration to a human patient for regulating immune or inflammatory responses, H CHARACTERIZED in that it comprises an effective amount of a soluble human IL-1 I receptor according to Table 4A- 4C in admixture with a suitable diluent or carrier. IN 7. Antistof, som er immunreaktivt med en IL-1 receptor, der H har aminosyreme 1-552 i Tabel 4A-4C. IAntibody that is immunoreactive with an IL-1 receptor having H having amino acids 1-552 in Table 4A-4C. IN
DK200200803A 1987-11-25 2002-05-24 DNA coding for mammalian interleukin-1 receptor - used for obtaining protein and antibodies for diagnosis and therapy involving immune or inflammatory activities DK175810B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DK200200803A DK175810B1 (en) 1987-11-25 2002-05-24 DNA coding for mammalian interleukin-1 receptor - used for obtaining protein and antibodies for diagnosis and therapy involving immune or inflammatory activities

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
US12562787A 1987-11-25 1987-11-25
US12562787 1987-11-25
US07/160,550 US4968607A (en) 1987-11-25 1988-02-25 Interleukin-1 receptors
US16055088 1988-02-25
US07/258,756 US5081228A (en) 1988-02-25 1988-10-13 Interleukin-1 receptors
US25875688 1988-10-13
DK198902553A DK175403B1 (en) 1987-11-25 1989-05-25 DNA encoding proteins that bind to human IL-1
DK255389 1989-05-25
DK200200803A DK175810B1 (en) 1987-11-25 2002-05-24 DNA coding for mammalian interleukin-1 receptor - used for obtaining protein and antibodies for diagnosis and therapy involving immune or inflammatory activities
DK200200803 2002-05-24

Publications (2)

Publication Number Publication Date
DK200200803A DK200200803A (en) 2002-05-24
DK175810B1 true DK175810B1 (en) 2005-03-07

Family

ID=27439571

Family Applications (1)

Application Number Title Priority Date Filing Date
DK200200803A DK175810B1 (en) 1987-11-25 2002-05-24 DNA coding for mammalian interleukin-1 receptor - used for obtaining protein and antibodies for diagnosis and therapy involving immune or inflammatory activities

Country Status (1)

Country Link
DK (1) DK175810B1 (en)

Also Published As

Publication number Publication date
DK200200803A (en) 2002-05-24

Similar Documents

Publication Publication Date Title
DK175403B1 (en) DNA encoding proteins that bind to human IL-1
EP0318296B1 (en) DNA encoding proteins which bind to human IL-1
US5081228A (en) Interleukin-1 receptors
US5319071A (en) Soluble interleukin-1 receptors
AU643427B2 (en) Interleukin-4 receptors
FI116943B (en) A method for producing tumor necrosis factor receptor fusion proteins encoding DNA and a vector
AU646695B2 (en) Isolated viral protein cytokine antagonists
AU7608898A (en) Ntn-2 member of tnf ligand family
JP2749838B2 (en) Interleukin-7
JPH0998787A (en) Modified low density lipoprotein receptor
US5296592A (en) Process for purifying interleukin-1 receptors
AU1341797A (en) Nucleic acids encoding interferon gamma inducing factor-2
DK175810B1 (en) DNA coding for mammalian interleukin-1 receptor - used for obtaining protein and antibodies for diagnosis and therapy involving immune or inflammatory activities
AU625534B2 (en) Interleukin-1 receptors
US5223605A (en) Interleukin-4 binding protein-γ
WO1998008950A1 (en) Novel monocyte activating cytokine
CA1340761C (en) Interleukin-4-receptors
EP0958365A1 (en) Granulocyte chemotactic protein 2 variant
IE911108A1 (en) Isolated Viral Protein Cytokine Antagonists
MXPA97005624A (en) Ligandos for receivers similar to the

Legal Events

Date Code Title Description
PUP Patent expired