DK175784B1 - Hitherto unknown thrombolytic proteins - Google Patents

Hitherto unknown thrombolytic proteins Download PDF

Info

Publication number
DK175784B1
DK175784B1 DK198705118A DK511887A DK175784B1 DK 175784 B1 DK175784 B1 DK 175784B1 DK 198705118 A DK198705118 A DK 198705118A DK 511887 A DK511887 A DK 511887A DK 175784 B1 DK175784 B1 DK 175784B1
Authority
DK
Denmark
Prior art keywords
trat
gfagkcceid
garsyqvicr
nggtcqqaly
hqswlrpvlr
Prior art date
Application number
DK198705118A
Other languages
Danish (da)
Other versions
DK511887D0 (en
DK511887A (en
Inventor
Glenn R Larsen
Tim J Ahern
Original Assignee
Inst Genetics Llc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=27505870&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=DK175784(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from US06/882,051 external-priority patent/US5002887A/en
Application filed by Inst Genetics Llc filed Critical Inst Genetics Llc
Publication of DK511887D0 publication Critical patent/DK511887D0/en
Publication of DK511887A publication Critical patent/DK511887A/en
Application granted granted Critical
Publication of DK175784B1 publication Critical patent/DK175784B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/48Hydrolases (3) acting on peptide bonds (3.4)
    • C12N9/50Proteinases, e.g. Endopeptidases (3.4.21-3.4.25)
    • C12N9/64Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from animal tissue
    • C12N9/6421Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from animal tissue from mammals
    • C12N9/6424Serine endopeptidases (3.4.21)
    • C12N9/6456Plasminogen activators
    • C12N9/6459Plasminogen activators t-plasminogen activator (3.4.21.68), i.e. tPA
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • A61P7/02Antithrombotic agents; Anticoagulants; Platelet aggregation inhibitors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y304/00Hydrolases acting on peptide bonds, i.e. peptidases (3.4)
    • C12Y304/21Serine endopeptidases (3.4.21)
    • C12Y304/21069Protein C activated (3.4.21.69)

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • General Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Medicinal Chemistry (AREA)
  • Biomedical Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Molecular Biology (AREA)
  • Veterinary Medicine (AREA)
  • General Chemical & Material Sciences (AREA)
  • Hematology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Diabetes (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Public Health (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Peptides Or Proteins (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)

Description

i DK 175784 B1in DK 175784 B1

Den foreliggende opfindelse angår stoffer, der har aktivitet af vævsplasminogenaktivator-typen (t-PA). Opfindelsen angår nærmere bestemt "rekombinante" j. thrombolytiske proteiner, en fremgangsmåde til fremstil- ^ 5 ling af proteinerne ud fra genetisk manipulerede celler og den terapeutiske anvendelse af stofferne som thrombo-lytiske midler.The present invention relates to substances having tissue plasminogen activator type (t-PA) activity. More particularly, the invention relates to "recombinant" j. thrombolytic proteins, a method of producing the proteins from genetically engineered cells, and the therapeutic use of the substances as thrombolytic agents.

Disse proteiner er aktive throinbolytiske midler, som forudses at have forbedrede fibrinolytiske profiler 10 i forhold til naturligt humant t-PA. Dette kan manifestere sig som en forøget affinitet til fibrin, nedsat reaktivitet med t-PA-inhibitorer, en højere thrombolysehastighed, en forøget fibrinolytisk aktivitet og/eller forlænget biologisk halveringstid. Det forudses også, at proteinerne 15 ifølge opfindelsen kan fremstilles mere bekvemt i mere homogen form end naturligt humant t-PA. Der forudses en forbedret samlet farmakokinetisk profil af disse proteiner.These proteins are active throin bolytic agents which are predicted to have improved fibrinolytic profiles 10 relative to natural human t-PA. This may manifest as an increased affinity for fibrin, decreased reactivity with t-PA inhibitors, a higher rate of thrombolysis, an increased fibrinolytic activity, and / or an extended biological half-life. It is also envisaged that the proteins 15 of the invention can be more conveniently prepared in a more homogeneous form than natural human t-PA. An improved overall pharmacokinetic profile of these proteins is predicted.

Strukturen af naturligt humant t-PA kan betragtes 20 som omfattende en aminoterminus (N-terminus) på ca. 91 amino- syrerester, to såkaldte "kringle"-regioner og et domæne af serinprotease-typen ved carboxyterminussen. Det har vist sig, at N-terminussen indeholder flere sub-domæner, der bl.a. spiller funktionelle roller ved fibrinbinding 25 og ved in vivo-clearance af proteinet. Der er fornylig beskrevet udvinding af en anden form af t-PA, som mangler den naturlige N-terminus og den første "kringle"-region, jfr. EP-offentliggørelsesskrift nr. 196.920 (offentliggjort 8. oktober 1986). Ifølge dette er den afstumpede form af 30 t-PA, der begynder med Ala-160 af naturligt humant t-PA, fibrinolytisk aktiv.The structure of natural human t-PA can be considered to comprise an amino terminus (N-terminus) of ca. 91 amino acid residues, two so-called "pretzel" regions, and a serine protease-type domain at the carboxy terminus. It has been found that the N-terminus contains several sub-domains which include plays functional roles in fibrin binding 25 and in in vivo clearance of the protein. Recovery of another form of t-PA, which lacks the natural N-terminus and the first "pretzel" region, has been recently described, cf. European Patent Publication No. 196,920 (published October 8, 1986). According to this, the blunted form of 30 t-PA, beginning with Ala-160 of natural human t-PA, is fibrinolytically active.

Som beskrevet mere detaljeret nedenfor tilvejebringes der ifølge opfindelsen hidtil ukendte proteinanaloge af humant t-PA, som stadig indeholder begge 35 kringle-regioner af naturligt humant t-PA, men indehol der modifikationer i N-terminussen. Selvom modifikationerne I DK 175784 B1As described in more detail below, according to the invention, novel protein analogs of human t-PA are provided which still contain both 35 kringle regions of natural human t-PA but contain modifications in the N-terminus. Although the modifications I DK 175784 B1

I i visse udførelsesformer involverer udeladelser i IIn certain embodiments, omissions in I

N-terminussen, efterlades den første kringle-region IThe N-terminus, leaving the first pretzel region I

I intakt, og den N-terminale udeladelse er aldrig større IIntact, and the N-terminal omission is never greater

I end 94 aminosyrer. De fleste udførelsesformer involverer IIn than 94 amino acids. Most embodiments involve I

I 5 betydeligt mindre udeladelse og/eller aminosyresubsti- · IIn 5 significantly less omission and / or amino acid substitution

I tution. Ved at bibeholde mere af strukturen af naturligt IIn tution. By retaining more of the structure of natural I

humant t-PA forudses det, at proteinerne ifølge op- Iin human t-PA, it is predicted that the proteins of op

I findelsen selektivt bevarer mere af de ønskelige IIn the finding, selectively retaining more of the desirable I

I biologiske aktiviteter af naturligt humant t-PA og IIn biological activities of natural human t-PA and I

^0 kan være mindre immunogene end mere drastisk modif i- I^ 0 may be less immunogenic than more drastically modif i- I

cerede analoge af t-PA. Det forudses derfor, at proteinerne Icere analogues of t-PA. Therefore, it is envisaged that the proteins I

ifølge opfindelsen har forbedrede fibrinolytiske og Iof the invention have improved fibrinolytic and I

farmakokinetiske profiler i forhold til både naturligt Ipharmacokinetic profiles in relation to both natural I

I humant t-PA og det afstumpede Ala-160-t-PA samt andre IIn human t-PA and the blunt Ala-160-t-PA as well as others I

15 modificerede former af t-PA. I15 modified forms of t-PA. IN

Polypeptid-skelettet af naturligt humant t-PA IThe polypeptide backbone of natural human t-PA I

omfatter også fire consensus Asn-bundne glycosylerings- Ialso includes four consensus Asn-linked glycosylation I

steder. Det er vist, at to af disse steder typisk er Iplaces. It is shown that two of these sites are typically I

glycosyleret i t-PA fra melanom-afledte pattedyrceller, Iglycosylated in t-PA from melanoma-derived mammalian cells, I

H 2 0 dvs. ved Asn^^^ og Asn^g. åsn^g^ er undertiden IH 20 at Asn ^^^ and Asn ^ g. assn ^ g ^ is sometimes I

glycosyleret, og Asn2l8 er typisk ikke glycosyleret. Iglycosylated, and Asn218 is typically not glycosylated. IN

t-PA fra melanom-afledte pattedyrceller, f.eks. It-PA from melanoma-derived mammalian cells, e.g. IN

Bowes-celler, betegnes også i den foreliggende be- IBowes cells are also referred to herein

skrivelse "nativt" eller "naturligt" humant t-PA. Iletter "native" or "natural" human t-PA. IN

25 Opfindelsen involverer som ovenfor nævnt hidtil IThe invention involves, as mentioned above, so far

ukendte proteinanaloge af humant t-PA, der er karakteriseret Iunknown protein analogues of human t-PA characterized I

i kravene. De særlige træk ved proteinerne ifølge opfindelsen Iin the requirements. The particular features of the proteins of the invention I

H er beskrevet mere detaljeret nedenfor. Uanset de forskellige IH is described in more detail below. Regardless of the different I

H modifikationer bibeholdes nummereringen af aminosyrer som IH modifications retain the numbering of amino acids as I

30 vist i sekvensen i tabel I, hvor aminosyrerne er betegnet I30 in the sequence of Table I, wherein the amino acids are designated I

H ved en etbogstavskode. IH by a one-letter code. IN

3 DK 175784 B1 A. Modifikationer ved N-terminussen.3 DK 175784 B1 A. Modifications at the N-terminus.

I en udførelsesform for opfindelsen er proteinerne karakteriseret ved udeladelse af Cys-51 til Asp-87 i forhold til naturligt humant t-PA. I en anden specifik udførelsesform 5 er Cys-6 til Ile-86 udeladt. I en yderligere udførelsesform er Cys-6 til Cys-51 udeladt. I andre udførelsesformer foreligger der mere konservative modifikationer i den N-terminale region af proteinerne. For eksempel indeholder visse proteiner ifølge opfindelsen én eller flere aminosyreudeladelser 10 eller-substitutioner i subregionerne omtalt i kravene.In one embodiment of the invention, the proteins are characterized by deletion of Cys-51 to Asp-87 relative to natural human t-PA. In another specific embodiment 5, Cys-6 to Ile-86 is omitted. In a further embodiment, Cys-6 to Cys-51 are omitted. In other embodiments, there are more conservative modifications in the N-terminal region of the proteins. For example, certain proteins of the invention contain one or more amino acid deletions 10 or substitutions in the subregions disclosed in the claims.

' Subregionerne af humant t-PA er følgende: region fra til region fra til 15 1 Gly-(-3) Gln-3 7 cys-34 Cys-43 2 Val-4 Lys-10 8 His-44 Ser-50 3 Thr-11 His-18 9 Cys-51 Cys-62 4 Gln-19 Leu-22 10 Gln-63 Val-72 5 Arg-23 Arg-27 11 Cys-73 Cys-84 6 Ser-28 Tyr-33 12 Glu-85 Thr-91The subregions of human t-PA are as follows: region from to region from to 15 1 Gly - (- 3) Gln-3 7 cys-34 Cys-43 2 Val-4 Lys-10 8 His-44 Ser-50 3 Thr -11 His-18 9 Cys-51 Cys-62 4 Gln-19 Leu-22 10 Gln-63 Val-72 5 Arg-23 Arg-27 11 Cys-73 Cys-84 6 Ser-28 Tyr-33 12 Glu- 85 Thr-91

De omhandlede modifikationer i N-terminussen er beskrevet 25 mere detaljeret nedenfor.The present modifications in the N-terminus are described in more detail below.

B. Modifikationer ved N-bundne glycosyleringssteder.B. Modifications at N-linked glycosylation sites.

proteinvarianterne ifølge opfindelsen kan desuden indeholde ingen N-bundne kulhydratgrupper eller kan være kun delvis glycosylerede i forhold til naturligt humant 30 t-PA. Med udtrykket "delvis glycosyleret" protein menes der i den foreliggende beskrivelse et protein, som indeholder færre N-bundne kulhydratgrupper end fuldstændig glycosyleret naturligt humant t-PA. Denne manglende glycosylering eller kun delvise glycosylering skyldes aminosyresubstitution eller udeladelse ved et eller flere af de consensus N-bundne glycosylerings-genkendelsessteder,In addition, the protein variants of the invention may contain no N-linked carbohydrate groups or may be only partially glycosylated relative to natural human t-PA. By the term "partially glycosylated" protein, in the present specification is meant a protein containing fewer N-linked carbohydrate groups than completely glycosylated natural human t-PA. This lack of glycosylation or only partial glycosylation is due to amino acid substitution or deletion at one or more of the consensus N-linked glycosylation recognition sites,

I DK 175784 B1 II DK 175784 B1 I

I 4 II 4 I

I der foreligger i det naturlige t-PA-molekyle. Det har IIt is present in the natural t-PA molecule. You have

I vist sig, at proteinvarianter ifølge opfindelsen, der IIt has been found that protein variants of the invention that I

I har en sådan modifikation ved et eller flere N-bundne IYou have such a modification at one or more N-linked I

glycosyleringssteder, bibeholder thrombolytisk aktivitet Iglycosylation sites, maintaining thrombolytic activity I

5 af t-PA-type med større fibrinolytisk aktivitet i visse5 of t-PA type with greater fibrinolytic activity in some

I tilfælde,.kan fremstilles lettere i en mere homogen form IIn case, it can be made more easily in a more homogeneous form

end naturligt t-PA og i mange tilfælde har længere Ithan natural t-PA and in many cases have longer I

I halveringstider in vivo end naturligt t-PA. IIn half-life in vivo than natural t-PA. IN

N-bundne glycosylerings-genkendelsessteder IN-linked glycosylation recognition sites I

I 10 antages i øjeblikket at omfatte tripeptid-sekvenser, II 10 is currently thought to comprise tripeptide sequences, I

H som genkendes specifikt af de pågældende cellulære IH which is specifically recognized by the particular cellular I

I glycosyleringsenzymer. Disse tripeptidsekvenser er enten IIn glycosylation enzymes. These tripeptide sequences are either I

I asparagin-X-threonin eller asparagin-X-serin, hvor X IIn asparagine-X-threonine or asparagine-X-serine, where X I

I sædvanligvis er enhver aminosyre. Deres placering i IUsually, any amino acid. Their location in I

I i 15 t-PA-peptidsekvensen er vist i tabel 1. Forskellige II of the 15 t-PA peptide sequence is shown in Table 1. Various I

I ! aminosyresubstitutioner eller -udeladelser ved en eller II! amino acid substitutions or deletions by one or I

I I flere af de tre positioner af et glycosylerings-genkendel- IIn several of the three positions of a glycosylation recognition I

sessted medfører ikke-glycosylering ved den modificerede Isite of non-glycosylation at the modified I

I sekvens. Eksempelvis er Asn^^y og Asn^g^ af t-PA IIn sequence. For example, Asn ^^ y and Asn ^ g ^ of t-PA are I

20 begge blevet erstattet med Thr i en udførelsesform I20 have been replaced with Thr in one embodiment I

I og med Gin i en anden udførelsesform. I det mindsteWith Gin in another embodiment. At least

når der er tale om dobbelt Gin-erstatning, skulle det Iin the case of double Gin replacement, you should

I resulterende glycoprotein (Gln^yGln^^) kun inde- IIn resultant glycoprotein (Gln ^ yGln ^^) only in-

holde én N-bundet kulhydratgruppe (ved Asn44g) i stedet Ikeep one N-linked carbohydrate group (at Asn44g) instead I

I 25 for to eller tre sådanne grupper, som når der er tale om II for two or three such groups as in the case of I

naturligt t-PA. Det vil forstås af en fagmand, at Inatural t-PA. It will be understood by one of ordinary skill in the art that you

analoge glycoproteiner, der har den samme Asn^g-mono- Ianalog glycoproteins having the same Asn ^ g mono- I

glycosylering, kan fremstilles ved udeladelse af amino- Iglycosylation, can be prepared by omitting amino-I

syrer eller substitution af andre aminosyrer ved posi- Iacids or substitution of other amino acids at position I

30 tionerne 117 og 184 og/eller ved udeladelse eller * I30 and 117 or / or by omission or * I

erstatning af en eller flere aminosyrer ved andre positioner i de respektive glycosylerings-genkendelses- steder, f.eks. ved Ser^^^ og Ser^gg som ovenfor nævnt jsubstituting one or more amino acids at other positions in the respective glycosylation recognition sites, e.g. at Ser ^^^ and Ser ^ gg as mentioned above j

og/eller ved erstatning eller mere foretrukket ved ude- ! Iand / or by replacement or more preferably by the outside! IN

35 ladelse ved en eller flere af "X"-positionerne af I35 at one or more of the "X" positions of I

tripeptidstederne. I en anden udførelsesform er Itripeptidstederne. In another embodiment, you are

I DK 175784 B1 5I DK 175784 B1 5

Asn ved positionerne 117, 184 og 448 erstattet med Gin. De resulterende varianter skulle ikke indeholde nogen N-bundne kulhydratgrupper, i modsætning til de to eller tre sådanne grupper, der er tilstede i naturligt 5 t-PA. I andre udførelsesformer er potentielle glycosy-leringssteder blevet modificeret individuelt, f.eks. ved erstatning af Asn med f.eks. Gin ved position 117 i en i øjeblikket foretrukket udførelsesform, ved position 184 i en anden udførelsesform og ved position 448 i endnu 10 en udførelsesform. Den foreliggende opfindelse omfatter sådanne ikke-glycosylerede, monoglycosylerede, diglyco-sylerede og triglycosylerede t-PA-varianter.Asn at positions 117, 184 and 448 replaced with Gin. The resulting variants should not contain any N-linked carbohydrate groups, unlike the two or three such groups present in natural 5 t-PA. In other embodiments, potential glycosylation sites have been modified individually, e.g. by replacing Asn with e.g. Gin at position 117 in a currently preferred embodiment, at position 184 in another embodiment, and at position 448 in yet another embodiment. The present invention encompasses such non-glycosylated, monoglycosylated, diglycosylated, and triglycosylated t-PA variants.

Eksempelvise modifikationer ved en eller flere af de tre consensus N-bundne glycosyleringssekvenser, 12 3 15 R , R og R , således som de findes i forskellige udførelsesformer for opfindelsen, er vist nedenfor: 20 iExemplary modifications to one or more of the three consensus N-linked glycosylation sequences, R, R, and R, as found in various embodiments of the invention, are shown below:

I DK 175784 B1 II DK 175784 B1 I

Is IIs I

I Eksempelvise modifikationer ved N-bundne glycosyleringssteder IIn Example modifications at N-linked glycosylation sites I

I R1 R2 R3 II R1 R2 R3 I

I 5 (wt) {Asn Ser Ser) (Asn Gly Ser) (Asn Arg Thr) II 5 (wt) {Asn Ser Ser) (Asn Gly Ser) (Asn Arg Thr) I

I I U Ser Ser V Gly Ser V Arg Thr II I U Ser Ser V Gly Ser V Arg Thr I

I II Asn W Ser Asn X Ser Asn Y Thr II II Asn W Ser Asn X Ser Asn Y Thr I

I III Asn Ser Z Asn Gly Z Asn Arg U II III Asn Ser Z Asn Gly Z Asn Arg U I

I IV Asn W Z Asn X Z Asn Y U II IV Asn W Z Asn X Z Asn Y U I

I v - u * - * - - * - II v - u * - * - - * - I

10 I10 I

VI . Asn * - * * - * *VI. Asn * - * * - * *

I VII U * * - - * - - * II VII U * * - - * - - * I

I VIII Asn * - * * - **- II VIII Asn * - * * - ** - I

I 15 _ II 15 _ I

I -,— og --- = en peptidbinding II -, - and --- = a peptide bond I

I * = enhver aminosyre II * = any amino acid I

I U = enhver aminosyre undtagen Asn, Thr eller Ser IIn U = any amino acid except Asn, Thr or Ser I

I 20 V = ” " " Asn eller en peptidbinding IIn 20 V = "" Asn or a peptide bond I

I W = " " " Ser eller peptidbinding IIn W = "" "Ser or peptide bond I

I X = " " " Gly eller peptidbinding IIn X = "" "Gly or peptide bond I

I Y = " " " Arg eller peptidbinding IIn Y = "Arg" or peptide bond I

I Z = " ” Thr eller Ser eller en peptid- IIn Z = "Thr or Ser or a peptide I

25 binding IBinding I

wt = vild type, dvs. før mutagenese Iwt = wild type, i.e. before mutagenesis I

C. Modifikation ved Arg-275/Ile-276-spaltningsstedet. IC. Modification at the Arg-275 / Ile-276 cleavage site. IN

I I et aspekt af den foreliggende opfindelse er IIn one aspect of the present invention, I

I 30 varianterne eventuelt modificerede ved det proteolytiske IIn the 30 variants optionally modified by the proteolytic I

22

I spaltningssted, der går fra Arg-275 til Ile-276, ved IIn cleavage site extending from Arg-275 to Ile-276, at I

I udeladelse af Arg-275 eller erstatning af Arg med en IIn omitting Arg-275 or replacing Arg with an I

33

I anden aminosyre, fortrinsvis en aminosyre, der er IIn the second amino acid, preferably an amino acid which is I

I forskellig fra Lys eller His. Thr er i øjeblikket en IIn different from Lys or His. Thr is currently an I

35 særlig foretrukken erstatnings-aminosyre for Arg-275 I35 is particularly preferred substitute amino acid for Arg-275 I

i de forskellige udførelsesformer for opfindelsen. Pro- Iin the various embodiments of the invention. Pro- I

7 DK 175784 B1 teolytisk spaltning ved Arg-275 af naturligt t-PA giver det såkaldte "tokædede" molekyle, således som r det er kendt indenfor teknikken. Proteinerne ifølge opfindelsen, der er karakteriseret ved modifikation ved 5 dette spaltningssted, kan lettere produceres i mere homogen form end det tilsvarende protein uden spaltningssted-modifikationen og kan, hvad der måske er mere vigtigt, have en forbedret fibrinolytisk profil og farma-kinetisk karakteristik.7 DK 175784 B1 theolytic cleavage by Arg-275 of natural t-PA yields the so-called "two-chain" molecule, as is known in the art. The proteins of the invention characterized by modification at this cleavage site can be more readily produced in more homogeneous form than the corresponding protein without the cleavage site modification and, perhaps more importantly, may have an improved fibrinolytic profile and pharmacokinetic characteristics.

10 Ifølge opfindelsen tilvejebringes der således en familie af hidtil ukendte thrombolytiske proteiner, der er beslægtet med humant t-PA. Denne familie omfatter flere grupper af proteiner.Thus, according to the invention, there is provided a family of novel thrombolytic proteins related to human t-PA. This family includes several groups of proteins.

I en udførelsesform er proteinerne karakteriseret 15 ved en peptidsekvens, som karakteriseret i kravene, hvorIn one embodiment, the proteins are characterized by a peptide sequence as claimed in claims wherein

Arg-275 er udeladt eller er erstattet med en anden aminosyre, der fortrinsvis er forskellig fra lysin eller histidin, og mindst ét af de consensus Asn-bundne glycosyleringssteder er udeladt eller er modificeret til noget andet end en con-20 sensus Asn-bundet glycosyleringssekvens. Eksempler på proteiner ifølge denne udførelsesform er vist i tabel 1 nedenfor. Proteinerne ifølge opfindelsen er analoge af t-PA, der er karakteriseret ved de forskellige modifikationer eller kombinationer af modifikationer som beskrevet i den foreliggende 25 beskrivelse og som også kan indeholde andre variationer, f.eks. allele variationer eller én eller flere yderligere udeladelser, erstatninger eller indføjelser af aminosyrer, der stadig bibeholder thrombolytisk aktivitet, sålænge som DNA, der koder for disse proteiner (før modifikationen ifølge 30 opfindelsen) stadig er i stand til at hybridisere til en DNA-sekvens, der koder for humant t-PA, under stringente betingelser.Arg-275 is omitted or replaced by another amino acid, preferably different from lysine or histidine, and at least one of the consensus Asn-linked glycosylation sites is omitted or modified to anything other than a consensus Asn-linked glycosylation sequence . Examples of proteins of this embodiment are shown in Table 1 below. The proteins of the invention are analogous to t-PA which are characterized by the various modifications or combinations of modifications as described in the present specification and which may also contain other variations, e.g. allele variations or one or more additional deletions, substitutions or insertions of amino acids that still retain thrombolytic activity, as long as DNA encoding these proteins (prior to the modification of the invention) is still capable of hybridizing to a DNA sequence, that encodes human t-PA, under stringent conditions.

8 I8 I

DK 175784 B1 IDK 175784 B1 I

Tabel 1: Illustrative proteiner indeholdende modifikation ITable 1: Illustrative proteins containing modification I

ved Arg-275 og mindst ét N-bundet glycosyleringssted Iat Arg-275 and at least one N-linked glycosylation site I

5 -3 GARSYQVICR DEKTQMIYQQ HQSWLRPVLR SNRVEYCWCN SGRAQCHSV? I5 -3 GARSYQVICR DEKTQMIYQQ HQSWLRPVLR SNRVEYCWCN SGRAQCHSV? IN

48 VKSCSEPRCF NGGTCQQALY FSDFVCQCPE GFAGKCCEID TRATCYEDQG I48 VKSCSEPRCF NGGTCQQALY FSDFVCQCPE GFAGKCCEID TRATCYEDQG I

98 ISYRGTWSTA ESGAECTNW- R1ALAQKPYS GRRPDAIRLG LGNHNYCRNP I98 ISYRGTWSTA ESGAECTNW- R1ALAQKPYS GRRPDAIRLG LGNHNYCRNP I

148 DRDSKPWCYV FKAGKYSSEF CSTPACSEGN SDCYFG-R2A YRGTHSLTES I148 DRDSKPWCYV FKAGKYSSEF CSTPACSEGN SDCYFG-R2A YRGTHSLTES I

10 I10 I

193 GASCLPWNSM ILIGKVYTAQ NPSAQALGLG KHNYCRNPDG DAKPWCHVLK I193 GASCLPWNSM ILIGKVYTAQ NPSAQALGLG KHNYCRNPDG DAKPWCHVLK I

248 NRTLTVJEYCD VPSCSTCGLR QYSQPQFJIK GGLFADIASH PWQAAIFAKK I248 NRTLTVJEYCD VPSCSTCGLR QYSQPQFJIK GGLFADIASH PWQAAIFAKK I

298 RRSPGERFLC GGILISSCWI LSAAHCFQER FPPHHLTVIL GRTYRWPGE I298 RRSPGERFLC GGILISSCWI LSAAHCFQER FPPHHLTVIL GRTYRWPGE I

348 EEQKFEVEKY IVHKEFDDDT YDNDIALLQL KSDSSRCAQE SSWRTVCL? I348 EEQKFEVEKY IVHKEFDDDT YDNDIALLQL KSDSSRCAQE SSWRTVCL? IN

3 98 PADLQLPDWT ECELSGYGKH EALSPFYSER LKEAHVRLYP SSRCTSQHLL I3 98 PADLQLPDWT ECELSGYGKH EALSPFYSER LKEAHVRLYP SSRCTSQHLL I

44 8 “R3VTDNMLC AGDTRSGGPQ ANLHDACQGD SGGPLVCLND GRMTLVGIIS I44 8 “R3VTDNMLC AGDTRSGGPQ ANLHDACQGD SGGPLVCLND GRMTLVGIIS I

498 WGLGCGQKDV PGVYTKVTNY LDWIRDNMRP I498 WGLGCGQKDV PGVYTKVTNY LDWIRDNMRP I

20 I20 I

Forbindelse r! * r2 r3 Forbindelse ^1 r2 r3Compound r! * r2 r3 Connection ^ 1 r2 r3

Wt NSS NGS NRT 1-12 NS A NGS NRT IWt NSS NGS NRT 1-12 NS A NGS NRT I

1-1 QSS NGS NRT 1-13 NSS NGA NRT I1-1 QSS NGS NRT 1-13 NSS NGA NRT I

1-2 NSS QGS NRT 1-14 NSS NGS NRA I1-2 NSS QGS NRT 1-14 NSS NGS NRA I

. 1-3 NSS NGS QRT 1-15 NSA NGA NRT I. 1-3 NSS NGS QRT 1-15 NSA NGA NRT I

31- 1-4 QSS QGS NRT 1-16 NSA NGS NRA I31- 1-4 QSS QGS NRT 1-16 NSA NGS NRA I

1-5 QSS NGS -RT 1-17 NSV NGS NRT I1-5 QSS NGS -RT 1-17 NSV NGS NRT I

1-6 NSS -GS QRT 1-18 NSS NGV NRV I1-6 NSS -GS QRT 1-18 NSS NGV NRV I

1-7 QSS -GS -RT 1-19 TSS NGS NRT I1-7 QSS -GS -RT 1-19 TSS NGS NRT I

1-3 --- --- --- 1-20 TSS TG S NRT I1-3 --- --- --- 1-20 TSS TG S NRT I

1-9 N-Q N-S · N-T 1-21 TSS TG S QRT I1-9 N-Q N-S · N-T 1-21 TSS TG S QRT I

1-10 N— N— N— I1-10 N— N— N— I

1-11 —q —g —t1-11 —q —g —t

30 I30 I

j er forskellig fra Arg, fortrinsvis forskellig fra Arg, His Ij is different from Arg, preferably different from Arg, His I

12 3 H12 3 H

eller Lys. R , R og R er uafhængigt valgt blandt en peptid- 35 binding, en aminosyre, et dipeptid eller tripeptid, og mindstor Lys. R, R and R are independently selected from a peptide bond, an amino acid, a dipeptide or tripeptide, and at least

én af R^·, R^ og R^ er forskellig fra consensus N-bundne glyco- Ione of R 2, R 2 and R 2 is different from consensus N-linked glyco-I

syleringssekvenser, og "---" = en peptidbinding. Icycling sequences, and "---" = a peptide bond. IN

9 DK 175784 B1 I en anden udførelsesform er proteinerne karakteriseret ved en peptidsekvens, der i det væsentlige er den samme som peptidsekvensen af humant t-PA, hvori en eller flere aminosyrer er udeladt i den N-terminale re-5 gion fra Val-4 til Val-72, og hvori (a) ét eller flere'In another embodiment, the proteins are characterized by a peptide sequence substantially the same as the peptide sequence of human t-PA, wherein one or more amino acids are omitted in the N-terminal region of Val-4 to Val-72, and wherein (a) one or more '

Asn-bundne glycosyleringssteder er udeladt eller på anden modificeret til noget andet end et consensus Asn--bundet glycosyleringssted, og (b) Arg-275 eventuelt er udeladt eller erstattet med en anden aminosyre, der 10 fortrinsvis er forskellig fra lysin eller histidin. Eksempler på proteiner ifølge denne udføreIsesform er vist nedenfor:Asn-linked glycosylation sites are omitted or otherwise modified to something other than a consensus Asn-linked glycosylation site, and (b) Arg-275 is optionally omitted or replaced by another amino acid which is preferably different from lysine or histidine. Examples of proteins of this embodiment are shown below:

Illustrative proteiner, der har N-terminale udeladelser is _;_Illustrative proteins having N-terminal deletions are _; _

De følgende proteiner har den i tabel I viste 12 3 peptidsekvens, hvori R , R og R betyder wt-tripeptidsekven-ser, men hvori N-terminusserne (Gly-(-3) til Thr-91) er erstattet med: 20 Forbindelse N-terminal, sekvens ._ D-l GARSYQVI------------------------------------------The following proteins have the 12 3 peptide sequence shown in Table I, wherein R, R and R are wt-tripeptide sequences but in which the N-terminuses (Gly - (- 3) to Thr-91) are replaced by: Compound N terminal, sequence ._ Dl GARSYQVI ------------------------------------------

---CSEPRCF NGGTCQQALY FSDFVCQCPE GFAGKCCEID TRAT--- CSEPRCF NGGTCQQALY FSDFVCQCPE GFAGKCCEID TRAT

D-2 GARSYQ--------------------------------------------D-2 GARSYQ --------------------------------------------

25 ----SEPRCF NGGTCQQALY FSDFVCQCPE GFAGKCCEID TRAT25 ---- SEPRCF NGGTCQQALY FSDFVCQCPE GFAGKCCEID TRAT

D-3 GARSYQVI------------------------------------------D-3 GARSYQVI ------------------------------------------

---------------------------------------D TRAT--------------------------------------- D TRAT

D-6D-6

30 GARSYQVICR DEKTQMIYQQ HQSWLRPVLR SNRVEYCWCN SGRAQCHSVP30 GARSYQVICR DEKTQMIYQQ HQSWLRPVLR SNRVEYCWCN SGRAQCHSVP

VK5-------------------------------------TRATVK 5 ------------------------------------- TRAT

viser stedet for en aminosyreudeladelse.shows the site of an amino acid deletion.

3535

I DK 175784 B1 II DK 175784 B1 I

I 10 II 10 I

I Denne udførelsesform omfatter en undergruppe af pro- IIn this embodiment, a subset of pro- I

I teiner, hvori l til ca. 69 aminosyrer er udeladt fra regionen IIn teens wherein 1 to approx. 69 amino acids are omitted from region I

I Val-4 til Val-72, og et eller flere af de Asn-bundne glyco- IIn Val-4 to Val-72, and one or more of the Asn-bound glyco-I

I syleringssteder er udeladt eller på anden måde modificeret IIn syllabus locations are omitted or otherwise modified

I 5 til noget andet end en consensus Asn-bundet glycosylerings- II to anything other than a consensus Asn-linked glycosylation I

sekvens som ovenfor beskrevet. Omfattet er også en under- Isequence as described above. Also covered is a sub- I

gruppe af forbindelser, hvori 1 til ca. 69 aminosyrer er Igroup of compounds wherein 1 to ca. 69 amino acids are I

I udeladt fra regionen Val-4 til Val-72, og Arg-275 er udeladt IYou omitted from the region Val-4 to Val-72, and Arg-275 is excluded

I eller erstattet med en anden aminosyre, fortrinsvis forskel- II or replaced with another amino acid, preferably difference I

I 10 lige fra lysin eller histidin. En yderligere undergruppe af IIn 10 straight from lysine or histidine. A further subgroup of I

denne udførelsesform er karakteriseret ved en udeladelse afthis embodiment is characterized by an omission of

I 1 til ca. 69 aminosyrer fra regionen Val-4 til Val-72, ude- IFor 1 to approx. 69 amino acids from the region of Val-4 to Val-72, ext

I ladelse eller modifikation af et eller flere af de Asn-bundne IIn loading or modifying one or more of the Asn-bound I

I glycosyleringssteder (se f.eks. tabellen på side 9) og IIn glycosylation sites (see, for example, the table on page 9) and I

I 15 udeladelse af Arg-275 eller erstatning af denne med en anden II omitting Arg-275 or replacing it with another I

H aminosyre. Eksempler på proteiner af disse undergrupper er IH amino acid. Examples of proteins of these subgroups are I

vist i tabel 2 og 2.5 nedenfor. Ishown in Tables 2 and 2.5 below. IN

I Denne udførelsesform omfatter også en undergruppe af IThis embodiment also includes a subset of I

I proteiner, hvori den N-terminale udeladelse omfatter en IIn proteins wherein the N-terminal deletion comprises an I

I 20 udeladelse af en eller flere aminosyrer er udeladt fra re- IIn the omission of one or more amino acids is omitted from re- I

gionen Val-4 til Ser-50. Omfattet er også en undergruppe af Igion Val-4 to Ser-50. Also included is a subset of I

I proteiner, hvori en eller flere aminosyrer fra regionen IIn proteins wherein one or more amino acids from region I

H Val-4 til Ser-50, og et eller flere glycosyleringssteder er IH Val-4 to Ser-50 and one or more glycosylation sites are I

I modificeret som ovenfor beskrevet. En yderligere undergruppe IIn modified as described above. A further subgroup I

I 25 omfatter proteiner, der har en udeladelse af aminosyrer fra II 25 comprises proteins that have a deletion of amino acids from I

I regionen Val-4 til Ser-50, hvori Arg-275 er udeladt eller IIn the region Val-4 to Ser-50, in which Arg-275 is omitted or I

I erstattet med en anden aminosyre. Omfattet er desuden en IYou replaced with another amino acid. Also covered is an I

I undergruppe, der har en udeladelse af en eller flere amino- IIn the subgroup having an omission of one or more amino- I

I syrer fra regionen Val-4 til Ser-50, og hvori både (a) et IIn acids from the region of Val-4 to Ser-50, and wherein both (a) and I

I 30 eller flere glycosyleringssteder og (b) Arg-275 eventuelt IIn 30 or more glycosylation sites and (b) Arg-275 optionally I

I er modificerede som ovenfor beskrevet. Eksempler på proteiner IYou are modified as described above. Examples of proteins I

I af disse undergrupper er vist i tabel 3 nedenfor samt i II of these subgroups are shown in Table 3 below as well as in I

I tabel 2 og 2.5. IIn Tables 2 and 2.5. IN

I 35 II 35 I

11 DK 175784 B111 DK 175784 B1

Tabel 2: Illustrative proteiner indeholdende en udeladelse af en eller flere aminosyrer ved N-terminussen og modificering ved mindst ét N-bundet glycosyleringssted og eventuelt ved Arg-275 {vedrørende den generelle sekvens, se tabel 1) 5 ---=- amino -Table 2: Illustrative proteins containing a deletion of one or more amino acids at the N-terminus and modification at at least one N-linked glycosylation site and optionally at Arg-275 (for the general sequence, see Table 1) 5 --- = - amino -

Forbindelse i E1 B3 H3 terminus (wt) R NSS NGS NRT Val-4 til Val-72 10 2-0 R NSS NGS NRT * 2-1 R QSS NGS NRT . * 2-2 R NSS QGS NRT * 2-3 R NSS NGS QRT * 2-4 R NSS QGS QRT * 2-5 R QSS NGS QRT * 2-6 R QSS QGS NRT * b 2-7 R QSS QGS QRT * 2-8 R QSS NGS -RT * 2-9 R NSS -GS QRT * 2-10 R QSS -GS -RT * 2-11 R * 2-12 - wt wt wt * 2 0 2-13 G . wt Wt wt * 2-14 A. wt Wt wt * 2-15 T wt wt wt * 2-16 # QSS NGS NRT * 2-17 # NSS QGS NRT * 2-18 # NSS NGS QRT * 25 2-19 # NSS QGS QRT * 2-20 # QSS NGS QRT * 2-21 # QSS QGS NRT * 2-22 # QSS QGS QRT * 2-23 # QSS NGS -RT * * 2-24 # NSS -GS QRT * 2-25 # QSS -GS -RT * 2-26 # * 30 ----:—> 35 I DK 175784 B1 ,Connection at E1 B3 H3 terminus (wt) R NSS NGS NRT Val-4 to Val-72 10 2-0 R NSS NGS NRT * 2-1 R QSS NGS NRT. * 2-2 R NSS QGS NRT * 2-3 R NSS NGS QRT * 2-4 R NSS QGS QRT * 2-5 R QSS NGS QRT * 2-6 R QSS QGS NRT * b 2-7 R QSS QGS QRT * 2-8 R QSS NGS -RT * 2-9 R NSS -GS QRT * 2-10 R QSS -GS -RT * 2-11 R * 2-12 - wt wt wt * 2 0 2-13 G. wt Wt wt * 2-14 A. wt Wt wt * 2-15 T wt wt wt * 2-16 # QSS NGS NRT * 2-17 # NSS QGS NRT * 2-18 # NSS NGS QRT * 25 2-19 # NSS QGS QRT * 2-20 # QSS NGS QRT * 2-21 # QSS QGS NRT * 2-22 # QSS QGS QRT * 2-23 # QSS NGS -RT * * 2-24 # NSS -GS QRT * 2-25 # QSS -GS -RT * 2-26 # * 30 ----: -> 35 I DK 175784 B1,

I 12 II 12 I

I Tabel 2 (fortsat) IIn Table 2 (continued)

I Forbindelse j r! r2 r3 I4-terminus j IIn Compound j! r2 r3 I4 terminus j I

I iI i

I 5 2-27 R . U Ser Ser wt wt * i . II 5 2-27 R. U Ser Ser wt wt * i. IN

I ilI il

2-28 § U Ser Ser wt wt * I2-28 § U Ser Ser wt wt * I

I iI i

I 2-29 R Asn W Ser wt w.t * II 2-29 R Asn W Ser wt w.t * I

I 2-30 3 Asn W Ser wt wt * II 2-30 3 Asn W Ser wt wt * I

I 10 2-31 R Asn Ser Z wt wt * II 10 2-31 R Asn Ser Z wt wt * I

2-32 # Asn Ser Z wt wt * I2-32 # Asn Ser Z wt wt * I

I 2-3 3 R Asn W Z wt wt * II 2-3 3 R Asn W Z wt wt * I

I iI i

I 2-34 # Asn W Z Wt wt * I II 2-34 # Asn W Z Wt wt * I I

I 15 2-3 5 R - U A wt wt * II 15 2-3 5 R - U A wt wt * I

I 2-3 6 # - U A Wt wt * II 2-3 6 # - U A Wt wt * I

I 2-37 R - Asn A wt wt * II 2-37 R - Asn A wt wt * I

I 2-38 # - Asn A wt wt * II 2-38 # - Asn A wt wt * I

20 I20 I

I 2-39 R · U A A wt wt * II 2-39 R · U A A wt wt * I

I 2-40 # U Λ A wt wt * II 2-40 # U Λ A wt wt * I

I 2-41 R Asn A — wt wt * II 2-41 R Asn A - wt wt * I

I 25 2-42 # Asn A - Wt wt * II 25 2-42 # Asn A - Wt wt * I

H 2-43 R - Wt wt * IH 2-43 R - Wt wt * I

I 2-44 # - Wt Wt * II 2-44 # - Wt Wt * I

I _;___; II _; ___; IN

30 * Betyder en N-terminus, som er forskellig med hensyn til I30 * Means an N-terminus which is different with respect to I

mindst én aminosyre i forhold til wt-N-terminussen, for Iat least one amino acid relative to the wt-N terminus for I

hvilken illustrative eksempler er anført nedenfor i tabel 2.5 Iwhich illustrative examples are listed below in Table 2.5 I

H og i tabel 3-5 og 6-B; "jfc ' betyder en peptidbinding eller IH and in Tables 3-5 and 6-B; "jfc" means a peptide bond or I

en aminosyre forskellig fra arginin (R) ; betyder en Ian amino acid other than arginine (R); means an I

35 peptidbinding, U betyder enhver aminosyre bortset fra Asn, I35 means peptide bond, U means any amino acid except Asn, I

Thr eller Ser; W betyder en peptidbinding eller enhver amino- IThr or Ser; W means a peptide bond or any amino I

syre bortset fra Ser; Z betyder en peptidbinding eller enhver Iacid other than Ser; Z means a peptide bond or any I

H aminosyre bortset fra Thr eller Ser? Abetyder enhver amino- IH amino acid other than Thr or Ser? Means any amino I

syre, og wt betyder vild type. Iacid, and wt means wild type. IN

13 DK 175784 B113 DK 175784 B1

Tabel 2.5: Illustrative N-terminusser indeholdende en ude ladelse af 1-94 aminosyrer N-terminus- 5 -betegnelse nr.Table 2.5: Illustrative N-terminus containing a release of 1-94 amino acids N-terminus-5 no.

1 GARSYQVICR DEKTQM-------WLRPVLR SNRVEYCWCN SGRAQCHSVP1 GARSYQVICR DEKTQM ------- WLRPVLR SNRVEYCWCN SGRAQCHSVP

VKSCSEPRCF NGGTCQQALY FSDFVCQCPE. GFAGKCCEID TRATVKSCSEPRCF NGGTCQQALY FSDFVCQCPE. GFAGKCCEID TRAT

1010

2 GARSYQVICR DEKTQMIYQQ HQSWLRPVLR SNRVEYCWCN SG-------P2 GARSYQVICR DEKTQMIYQQ HQSWLRPVLR SNRVEYCWCN SG ------- P

VKSCSEPRCF NGGTCQQALY FSDFVCQCPE GFAGKCCEID TRATVKSCSEPRCF NGGTCQQALY FSDFVCQCPE GFAGKCCEID TRAT

6 GARSYQVICR DEKTQMIYQQ HQSWLRPVLR SNRVEYCW—------HSVP6 GARSYQVICR DEKTQMIYQQ HQSWLRPVLR SNRVEYCW —------ HSVP

VKSCSEPRCF NGGTCQQALY FSDFVCQCPE GFAGKCCEID TRATVKSCSEPRCF NGGTCQQALY FSDFVCQCPE GFAGKCCEID TRAT

7 GARSYQVICR DEKTQMIYQQ HQSWLRPVLR SNRVEYCWC-------HSVP7 GARSYQVICR DEKTQMIYQQ HQSWLRPVLR SNRVEYCWC ------- HSVP

15 VKSCSEPRCF NGGTCQQALY FSDFVCQCPE GFAGKCCEID TRAT15 VKSCSEPRCF NGGTCQQALY FSDFVCQCPE GFAGKCCEID TRAT

8 GARSYQVICR DEKTQMIYQQ HQSWLRPVLR SNRVEYCWC--GRAQCHSVP8 GARSYQVICR DEKTQMIYQQ HQSWLRPVLR SNRVEYCWC - GRAQCHSVP

VKSCSEPRCF NGGTCQQALY FSDFVCQCPE GFAGKCCEID TRATVKSCSEPRCF NGGTCQQALY FSDFVCQCPE GFAGKCCEID TRAT

9 GARSYQVICR DEKTQMIYQQ HQSWLRPVLR SNRVEYCWCN —RAQCHSVP VKSCSEPRCF NGGTCQQALY FSDFVCQCPE GFAGKCCEID TRAT9 GARSYQVICR DEKTQMIYQQ HQSWLRPVLR SNRVEYCWCN —RAQCHSVP VKSCSEPRCF NGGTCQQALY FSDFVCQCPE GFAGKCCEID TRAT

2020

10 GARSYQVICR DEKTQMIYQQ HQSWLRPVLR SNRVEYCWCN SGRAQCHSVP10 GARSYQVICR DEKTQMIYQQ HQSWLRPVLR SNRVEYCWCN SGRAQCHSVP

VKS-----------CQQALY FSDFVCQCPE GFAGKCCEID TRATVKS ----------- CQQALY FSDFVCQCPE GFAGKCCEID TRAT

12 GARSYQVIC------------------------------N SGRAQCHSVP12 GARSYQVIC ------------------------------ N SGRAQCHSVP

VKSCSEPRCF NGGTCQQALY FSDFVCQCPE GFAGKCCEID TRATVKSCSEPRCF NGGTCQQALY FSDFVCQCPE GFAGKCCEID TRAT

13 GARS YQ VI-----------------------------------------13 GARS YQ VI -----------------------------------------

^ ------PRCF NGGTCQQALY FSDFVCQCPE GFAGKCCEID TRAT^ ------ PRCF NGGTCQQALY FSDFVCQCPE GFAGKCCEID TRAT

14 GARSYQVICR DEK-------------:-------VEYCWCN SGRAQCHSVP14 GARSYQVICR DECK -------------: ------- VEYCWCN SGRAQCHSVP

VKSCSEPRCF NGGTCQQALY FSDFVCQCPE GFAGKCCEID TRATVKSCSEPRCF NGGTCQQALY FSDFVCQCPE GFAGKCCEID TRAT

^f^ f

15 GARSYQVICR DEKTQMIYQQ H--------- CWCN SGRAQCHSVP15 GARSYQVICR DEKTQMIYQQ H --------- CWCN SGRAQCHSVP

VKSCSEPRCF NGGTCQQALY FSDFVCQCPE GFAGKCCEID TRATVKSCSEPRCF NGGTCQQALY FSDFVCQCPE GFAGKCCEID TRAT

30 16 GARSYQVICR DEKTQMIYQQ HQSWLRPVLR SNRVEYCWCN SGRAQ----30 16 GARSYQVICR DEKTQMIYQQ HQSWLRPVLR SNRVEYCWCN SGRAQ ----

---CSEPRCF NGGTCQQALY FSDFVCQCPE GFAGKCCEID TRAT--- CSEPRCF NGGTCQQALY FSDFVCQCPE GFAGKCCEID TRAT

19 GARSYQVICR DEKTQMIYQQ HQSWLRPVLR SNRVEYCWCN SGRAQCHSVP19 GARSYQVICR DEKTQMIYQQ HQSWLRPVLR SNRVEYCWCN SGRAQCHSVP

VKSCSEPRC----------------VCQCPE GFAGKCCEID TRATVKSCSEPRC ---------------- VCQCPE GFAGKCCEID TRAT

5c - 21 GARSYQVI------------------------------------------5c - 21 GARSYQVI ------------------------------------------

---CSEPRCF NGGTCQQALY FSDFVCQCPE GFAGKCCEID TRAT--- CSEPRCF NGGTCQQALY FSDFVCQCPE GFAGKCCEID TRAT

I DK 175784 B1 II DK 175784 B1 I

I II I

I Tabel 2.5 (fortsat) ITable 2.5 (continued)

I 424 GARSYQVICR DEKTQMIYQQ HQSWLRPVLR SNRVEYCWCN SGRAQCHSV- II 424 GARSYQVICR DEKTQMIYQQ HQSWLRPVLR SNRVEYCWCN SGRAQCHSV- I

CSEPRCF NGGTCQQALY FSDFVCQCPE GFAGKCCEID TRAT ICSEPRCF NGGTCQQALY FSDFVCQCPE GFAGKCCEID TRAT I

I 5 425 GARSYQVIGR DEKTQMIYQQ HQSWLRPV-R SNR-EYCWCN SGRAQCHSVP II 5 425 GARSYQVIGR DEKTQMIYQQ HQSWLRPV-R SNR-EYCWCN SGRAQCHSVP I

VKSCSEPRCF NGGTCQQALY FSDFVCQCPE GFAGKCCEID TRAT IVKSCSEPRCF NGGTCQQALY FSDFVCQCPE GFAGKCCEID TRAT I

I 426 GARSYQVICR DEKTQMIYQQ HQSWLRP—R SNR—YCWCN SGRAQCHSVP II 426 GARSYQVICR DEKTQMIYQQ HQSWLRP — R SNR — YCWCN SGRAQCHSVP I

VKSCSEPRCF NGGTCQQALY FSDFVCQCPE GFAGKCCEID TRAT IVKSCSEPRCF NGGTCQQALY FSDFVCQCPE GFAGKCCEID TRAT I

427 GARSYQVICR DEKTQMIYQ- HQSWLRPV-R SNR-EYCWCN SGRAQCHSVP I427 GARSYQVICR DEKTQMIYQ- HQSWLRPV-R SNR-EYCWCN SGRAQCHSVP I

I 10 VKSCSEPRCF NGGTCQQALY FSDFVCQCPE GFAGKCCEID TRAT II 10 VKSCSEPRCF NGGTCQQALY FSDFVCQCPE GFAGKCCEID TRAT I

I 428 GARSYQVICR DEKTQMI—Q HQSWLRP—R SNR—YCWCN SGRAQCHSVP II 428 GARSYQVICR DEKTQMI — Q HQSWLRP — R SNR — YCWCN SGRAQCHSVP I

VKSCSEPRCF NGGTCQQALY FSDFVCQCPE GFAGKCCEID TRAT IVKSCSEPRCF NGGTCQQALY FSDFVCQCPE GFAGKCCEID TRAT I

15 Specifikke proteiner ifølge opfindelsen kan betegnes ved en ISpecific proteins of the invention may be designated by an I

betegnelse i tre dele omfattende et forbindelsesnummer fra ! Idesignation in three parts comprising a connection number from! IN

tabel 2 efterfulgt af en betegnelse af N-terminussen og der- ITable 2 followed by a designation of the N-terminus and there- I

efter en identifikation af positon 275. F.eks. betegner for- '! Iafter an identification of positon 275. For example. denotes for- '! IN

H bindelse nr. 2-ll/N-6/Arg et protein, hvori de tre glycosy- IH compound # 2-11 / N-6 / Arg a protein in which the three glycosyl-I

I 20 leringssteder er udeladt ("2-11", se tabel 2), C-36 til IIn 20 learning sites are omitted ("2-11", see Table 2), C-36 to I

I C-43 er udeladt (N-terminus nr. N-6), og Arg-275 er bibe- IC-43 is omitted (N-terminus # N-6), and Arg-275 is retained.

I holdt. IYou kept. IN

I II I

B 30 IB 30 I

I 35 II 35 I

15 DK 175784 B115 DK 175784 B1

Tabel 3: Eksempler på proteiner, der har en udeladelse af l til 45 aminosyrer i regionen Val-4 til Ser-50 og en modifikation ved enten (a) Arg-275 eller (b) ved mindst ét N-bundet glycosyleringssted eller begge dele (vedrørende den generelle 5 sekvens, se tabel 1)Table 3: Examples of proteins having a deletion of 1 to 45 amino acids in the Val-4 to Ser-50 region and a modification at either (a) Arg-275 or (b) at least one N-linked glycosylation site or both (for the general 5 sequence, see Table 1)

Illustrative proteiner er som defineret i tabel 2, idet dog1 følgende N-terminusser erstatter, vild type-sekvensen (wt) Gly-(-3) til Thr-91: N-terminus--betegnelse nr.Illustrative proteins are as defined in Table 2, however, replacing the following N-terminus, the wild-type sequence (wt) Gly - (- 3) to Thr-91: N-terminus - designation no.

27 GARSYQ-ICR DEKTQMIYQQ HQSWLRPVLR SNRVEYCWCN SGRAQCHSVP27 GARSYQ-ICR DEKTQMIYQQ HQSWLRPVLR SNRVEYCWCN SGRAQCHSVP

VKSCSEPRCF NGGTCQQALY FSDFVCQCPE GFAGKCCEID TRATVKSCSEPRCF NGGTCQQALY FSDFVCQCPE GFAGKCCEID TRAT

1515

28 GARSYQV-CR DEKTQMIYQQ HQSWLRPVLR SNRVEYCWCN SGRAQCHSVP28 GARSYQV-CR DEKTQMIYQQ HQSWLRPVLR SNRVEYCWCN SGRAQCHSVP

VKSCSEPRCF NGGTCQQALY FSDFVCQCPE GFAGKCCEID TRATVKSCSEPRCF NGGTCQQALY FSDFVCQCPE GFAGKCCEID TRAT

29 GARSYQVI-R DEKTQMIYQQ HQSWLRPVLR SNRVEYCWCN SGRAQCHSVP29 GARSYQVI-R DEKTQMIYQQ HQSWLRPVLR SNRVEYCWCN SGRAQCHSVP

VKSCSEPRCF NGGTCQQALY FSDFVCQCPE GFAGKCCEID TRATVKSCSEPRCF NGGTCQQALY FSDFVCQCPE GFAGKCCEID TRAT

20 30 GARSYQVIC- DEKTQMIYQQ HQSWLRPVLR SNRVEYCWCN SGRAQCHSVP20 30 GARSYQVIC- DEKTQMIYQQ HQSWLRPVLR SNRVEYCWCN SGRAQCHSVP

VKSCSEPRCF NGGTCQQALY FSDFVCQCPE GFAGKCCEID TRATVKSCSEPRCF NGGTCQQALY FSDFVCQCPE GFAGKCCEID TRAT

31 GARSYQVICR -EKTQMIYQQ HQSWLRPVLR SNRVEYCWCN SGRAQCHSVP31 GARSYQVICR -EKTQMIYQQ HQSWLRPVLR SNRVEYCWCN SGRAQCHSVP

VKSCSEPRCF NGGTCQQALY FSDFVCQCPE GFAGKCCEID TRATVKSCSEPRCF NGGTCQQALY FSDFVCQCPE GFAGKCCEID TRAT

32 GARSYQVICR D-KTQMIYQQ HQSWLRPVLR SNRVEYCWCN SGRAQCHSVP32 GARSYQVICR D-KTQMIYQQ HQSWLRPVLR SNRVEYCWCN SGRAQCHSVP

25 VKSCSEPRCF NGGTCQQALY FSDFVCQCPE GFAGKCCEID TRAT25 VKSCSEPRCF NGGTCQQALY FSDFVCQCPE GFAGKCCEID TRAT

33 GARSYQVICR DE-TQMIYQQ HQSWLRPVLR SNRVEYCWCN SGRAQCHSVP33 GARSYQVICR DE-TQMIYQQ HQSWLRPVLR SNRVEYCWCN SGRAQCHSVP

VKSCSEPRCF NGGTCQQALY FSDFVCQCPE GFAGKCCEID TRATVKSCSEPRCF NGGTCQQALY FSDFVCQCPE GFAGKCCEID TRAT

34 GARSYQVICR DEK-QMIYQQ HQSWLRPVLR SNRVEYCWCN SGRAQCHSVP34 GARSYQVICR DEK-QMIYQQ HQSWLRPVLR SNRVEYCWCN SGRAQCHSVP

VKSCSEPRCF NGGTCQQALY FSDFVCQCPE GFAGKCCEID TRATVKSCSEPRCF NGGTCQQALY FSDFVCQCPE GFAGKCCEID TRAT

30 35 GARSYQVICR DEKT-MIYQQ HQSWLRPVLR SNRVEYCWCN SGRAQCHSVP30 35 GARSYQVICR DEKT-MIYQQ HQSWLRPVLR SNRVEYCWCN SGRAQCHSVP

VKSCSEPRCF NGGTCQQALY FSDFVCQCPE GFAGKCCEID TRATVKSCSEPRCF NGGTCQQALY FSDFVCQCPE GFAGKCCEID TRAT

3535

I DK 175784 B1 II DK 175784 B1 I

i Ii

I Tabel 3 (fortsat) IIn Table 3 (continued)

I 36 GARSYQVICR DEKTQ-IYQQ HQSWLRPVLR SNRVEYCWCN SGRAQCHSV? II 36 GARSYQVICR DEKTQ-IYQQ HQSWLRPVLR SNRVEYCWCN SGRAQCHSV? IN

I VKSCSEPRCF NGGTCQQALY FSDFVCQCPE GFAGKCCEID TRAT II VKSCSEPRCF NGGTCQQALY FSDFVCQCPE GFAGKCCEID TRAT I

5 37 GARSYQVICR DEKTQM-YQQ HQSWLRPVLR SNRVEYCWCN SGRAQCHSVP I5 37 GARSYQVICR DEKTQM-YQQ HQSWLRPVLR SNRVEYCWCN SGRAQCHSVP I

I VKSCSEPRCF NGGTCQQALY FSDFVCQCPE GFAGKCCEID TRAT II VKSCSEPRCF NGGTCQQALY FSDFVCQCPE GFAGKCCEID TRAT I

I 38 GARSYQVICR DEKTQMI-QQ HQSWLRPVLR SNRVEYCWCN SGRAQCHSV? II 38 GARSYQVICR DEKTQMI-QQ HQSWLRPVLR SNRVEYCWCN SGRAQCHSV? IN

VKSCSEPRCF NGGTCQQALY FSDFVCQCPE GFAGKCCEID TRAT IVKSCSEPRCF NGGTCQQALY FSDFVCQCPE GFAGKCCEID TRAT I

I 39 GARSYQVICR DEKTQMIY-Q HQSWLRPVLR SNRVEYCWCN SGRAQCHSVP II 39 GARSYQVICR DEKTQMIY-Q HQSWLRPVLR SNRVEYCWCN SGRAQCHSVP I

10 VKSCSEPRCF NGGTCQQALY FSDFVCQCPE GFAGKCCEID TRAT I10 VKSCSEPRCF NGGTCQQALY FSDFVCQCPE GFAGKCCEID TRAT I

I 40 GARSYQVICR DEKTQMIYQ- HQSWLRPVLR SNRVEYCWCN SGRAQCHSVP II 40 GARSYQVICR DEKTQMIYQ- HQSWLRPVLR SNRVEYCWCN SGRAQCHSVP I

VKSCSEPRCF NGGTCQQALY FSDFVCQCPE GFAGKCCEID TRAT IVKSCSEPRCF NGGTCQQALY FSDFVCQCPE GFAGKCCEID TRAT I

I 41 GARSYQVICR DEKTQMIYQQ -QSWLRPVLR SNRVEYCWCN SGRAQCHSVP II 41 GARSYQVICR DEKTQMIYQQ -QSWLRPVLR SNRVEYCWCN SGRAQCHSVP I

VKSCSEPRCF NGGTCQQALY FSDFVCQCPE GFAGKCCEID TRAT IVKSCSEPRCF NGGTCQQALY FSDFVCQCPE GFAGKCCEID TRAT I

I 15 42 GARSYQVICR DEKTQMIYQQ H-SWLRPVLR SNRVEYCWCN SGRAQCHSVP II 15 42 GARSYQVICR DEKTQMIYQQ H-SWLRPVLR SNRVEYCWCN SGRAQCHSVP I

VKSCSEPRCF NGGTCQQALY FSDFVCQCPE GFAGKCCEID TRAT IVKSCSEPRCF NGGTCQQALY FSDFVCQCPE GFAGKCCEID TRAT I

I 43 GARSYQVICR DEKTQMIYQQ HQ-WLRPVLR SNRVEYCWCN SGRAQCHSVP II 43 GARSYQVICR DEKTQMIYQQ HQ-WLRPVLR SNRVEYCWCN SGRAQCHSVP I

I VKSCSEPRCF NGGTCQQALY FSDFVCQCPE GFAGKCCEID TRAT II VKSCSEPRCF NGGTCQQALY FSDFVCQCPE GFAGKCCEID TRAT I

I 44 GARSYQVICR DEKTQMIYQQ HQS-LRPVLR SNRVEYCWCN SGRAQCHSVP II 44 GARSYQVICR DEKTQMIYQQ HQS-LRPVLR SNRVEYCWCN SGRAQCHSVP I

I 20 VKSCSEPRCF NGGTCQQALY FSDFVCQCPE GFAGKCCEID TRAT II 20 VKSCSEPRCF NGGTCQQALY FSDFVCQCPE GFAGKCCEID TRAT I

I 45 GARSYQVICR DEKTQMIYQQ HQSW-RPVLR SNRVEYCWCN SGRAQCHSVP II 45 GARSYQVICR DEKTQMIYQQ HQSW-RPVLR SNRVEYCWCN SGRAQCHSVP I

VKSCSEPRCF NGGTCQQALY FSDFVCQCPE GFAGKCCEID TRAT IVKSCSEPRCF NGGTCQQALY FSDFVCQCPE GFAGKCCEID TRAT I

I 46 GARSYQVICR DEKTQMIYQQ HQSWL-PVLR SNRVEYCWCN SGRAQCHSVP II 46 GARSYQVICR DEKTQMIYQQ HQSWL-PVLR SNRVEYCWCN SGRAQCHSVP I

VKSCSEPRCF NGGTCQQALY FSDFVCQCPE GFAGKCCEID TRAT IVKSCSEPRCF NGGTCQQALY FSDFVCQCPE GFAGKCCEID TRAT I

I 25 47 GARSYQVICR DEKTQMIYQQ HQSWLR-VLR SNRVEYCWCN SGRAQCHSVP II 25 47 GARSYQVICR DEKTQMIYQQ HQSWLR-VLR SNRVEYCWCN SGRAQCHSVP I

VKSCSEPRCF NGGTCQQALY FSDFVCQCPE GFAGKCCEID TRATVKSCSEPRCF NGGTCQQALY FSDFVCQCPE GFAGKCCEID TRAT

I 48 GARSYQVICR DEKTQMIYQQ HQSWLRP-LR SNRVEYCWCN SGRAQCHSVP II 48 GARSYQVICR DEKTQMIYQQ HQSWLRP-LR SNRVEYCWCN SGRAQCHSVP I

VKSCSEPRCF NGGTCQQALY FSDFVCQCPE GFAGKCCEID TRAT IVKSCSEPRCF NGGTCQQALY FSDFVCQCPE GFAGKCCEID TRAT I

49 GARSYQVICR DEKTQMIYQQ HQSWLRPV-R SNRVEYCWCN SGRAQCHSVP I49 GARSYQVICR DEKTQMIYQQ HQSWLRPV-R SNRVEYCWCN SGRAQCHSVP I

30 VKSCSEPRCF NGGTCQQALY FSDFVCQCPE GFAGKCCEID TRAT30 VKSCSEPRCF NGGTCQQALY FSDFVCQCPE GFAGKCCEID TRAT

I 50 GARSYQVICR DEKTQMIYQQ HQSWLRPVL- SNRVEYCWCN SGRAQCHSVP II 50 GARSYQVICR DEKTQMIYQQ HQSWLRPVL- SNRVEYCWCN SGRAQCHSVP I

VKSCSEPRCF NGGTCQQALY FSDFVCQCPE GFAGKCCEID TRAT I 1VKSCSEPRCF NGGTCQQALY FSDFVCQCPE GFAGKCCEID TRAT I 1

I 35 II 35 I

51 GARSYQVICR DEKTQMIYQQ HQSWLRPVLR -NRVEYCWCN SGRAQCHSVP I51 GARSYQVICR DEKTQMIYQQ HQSWLRPVLR -NRVEYCWCN SGRAQCHSVP I

I VKSCSEPRCF NGGTCQQALY FSDFVCQCPE GFAGKCCEID TRAT II VKSCSEPRCF NGGTCQQALY FSDFVCQCPE GFAGKCCEID TRAT I

17 DK 175784 B1 i17 DK 175784 B1 i

Tabel 3 (fortsat) 'Table 3 (continued)

52 GARSYQVICR DEKTQMIYQQ HQSWLRPVLR S-RVEYCWCN SGRAQCHSVP52 GARSYQVICR DEKTQMIYQQ HQSWLRPVLR S-RVEYCWCN SGRAQCHSVP

VKSCSEPRCF NGGTCQQALY FSDFVCQCPE GFAGKCCEID TRATVKSCSEPRCF NGGTCQQALY FSDFVCQCPE GFAGKCCEID TRAT

5 53 GARSYQVICR DEKTQHIYQQ HQSWLRPVLR SN-VEYCWCN SGRAQCHSVP ! VKSCSEPRCF NGGTCQQALY FSDFVCQCPE GFAGKCCEID TRAT i5 53 GARSYQVICR DEKTQHIYQQ HQSWLRPVLR SN-VEYCWCN SGRAQCHSVP! VKSCSEPRCF NGGTCQQALY FSDFVCQCPE GFAGKCCEID TRAT i

54 GARSYQVICR DEKTQHIYQQ HQSWLRPVLR SNR-EYCWCN SGRAQCHSVP I54 GARSYQVICR DEKTQHIYQQ HQSWLRPVLR SNR-EYCWCN SGRAQCHSVP I

VKSCSEPRCF NGGTCQQALY FSDFVCQCPE GFAGKCCEID TRATVKSCSEPRCF NGGTCQQALY FSDFVCQCPE GFAGKCCEID TRAT

55 GARSYQVICR DEKTQHIYQQ HQSWLRPVLR SNRVEYCWCN SGRAQCHSVP55 GARSYQVICR DEKTQHIYQQ HQSWLRPVLR SNRVEYCWCN SGRAQCHSVP

10 VKSCSEPRCF NGGTCQQALY FSDFVCQCPE GFAGKCCEID TRAT10 VKSCSEPRCF NGGTCQQALY FSDFVCQCPE GFAGKCCEID TRAT

56 GARSYQVICR DEKTQHIYQQ HQSWLRPVLR SNRVE-CWCN SGRAQCHSVP56 GARSYQVICR DEKTQHIYQQ HQSWLRPVLR SNRVE-CWCN SGRAQCHSVP

VKSCSEPRCF NGGTCQQALY FSDFVCQCPE GFAGKCCEID TRATVKSCSEPRCF NGGTCQQALY FSDFVCQCPE GFAGKCCEID TRAT

57 GARSYQVICR DEKTQHIYQQ HQSWLRPVLR SNRVEY-WCN SGRAQCHSVP57 GARSYQVICR DEKTQHIYQQ HQSWLRPVLR SNRVEY-WCN SGRAQCHSVP

VKSCSEPRCF NGGTCQQALY FSDFVCQCPE GFAGKCCEID TRATVKSCSEPRCF NGGTCQQALY FSDFVCQCPE GFAGKCCEID TRAT

15 58 GARSYQVICR DEKTQHIYQQ HQSWLRPVLR SNRVEYC-CN SGRAQCHSVP15 58 GARSYQVICR DEKTQHIYQQ HQSWLRPVLR SNRVEYC-CN SGRAQCHSVP

VKSCSEPRCF NGGTCQQALY FSDFVCQCPE GFAGKCCEID TRATVKSCSEPRCF NGGTCQQALY FSDFVCQCPE GFAGKCCEID TRAT

59 GARSYQVICR DEKTQMIYQQ HQSWLRPVLR SNRVEYCW-N SGRAQCHSVP59 GARSYQVICR DEKTQMIYQQ HQSWLRPVLR SNRVEYCW-N SGRAQCHSVP

VKSCSEPRCF NGGTCQQALY FSDFVCQCPE GFAGKCCEID TRATVKSCSEPRCF NGGTCQQALY FSDFVCQCPE GFAGKCCEID TRAT

60 GARSYQVICR DEKTQHIYQQ HQSWLRPVLR SNRVEYCWC- SGRAQCHSVP60 GARSYQVICR DEKTQHIYQQ HQSWLRPVLR SNRVEYCWC- SGRAQCHSVP

20 VKSCSEPRCF NGGTCQQALY FSDFVCQCPE GFAGKCCEID TRAT20 VKSCSEPRCF NGGTCQQALY FSDFVCQCPE GFAGKCCEID TRAT

61 GARSYQVICR DEKTQHIYQQ HQSWLRPVLR SNRVEYCWCN -GRAQCHSVP61 GARSYQVICR DEKTQHIYQQ HQSWLRPVLR SNRVEYCWCN -GRAQCHSVP

VKSCSEPRCF NGGTCQQALY FSDFVCQCPE GFAGKCCEID TRATVKSCSEPRCF NGGTCQQALY FSDFVCQCPE GFAGKCCEID TRAT

62 GARSYQVICR DEKTQHIYQQ HQSWLRPVLR SNRVEYCWCN S-RAQCHSV? VKSCSEPRCF NGGTCQQALY FSDFVCQCPE GFAGKCCEID TRAT62 GARSYQVICR DEKTQHIYQQ HQSWLRPVLR SNRVEYCWCN S-RAQCHSV? VKSCSEPRCF NGGTCQQALY FSDFVCQCPE GFAGKCCEID TRAT

25 63 GARSYQVICR DEKTQHIYQQ HQSWLRPVLR SNRVEYCWCN SG-AQCHSVP25 63 GARSYQVICR DEKTQHIYQQ HQSWLRPVLR SNRVEYCWCN SG-AQCHSVP

VKSCSEPRCF NGGTCQQALY FSDFVCQCPE GFAGKCCEID TRATVKSCSEPRCF NGGTCQQALY FSDFVCQCPE GFAGKCCEID TRAT

64 GARSYQVICR DEKTQMIYQQ HQSWLRPVLR SNRVEYCWCN SGR-QCHSVP64 GARSYQVICR DEKTQMIYQQ HQSWLRPVLR SNRVEYCWCN SGR-QCHSVP

VKSCSEPRCF NGGTCQQALY FSDFVCQCPE GFAGKCCEID TRATVKSCSEPRCF NGGTCQQALY FSDFVCQCPE GFAGKCCEID TRAT

65 GARSYQVICR DEKTQMIYQQ HQSWLRPVLR SNRVEYCWCN SGRA-CHSVP65 GARSYQVICR DEKTQMIYQQ HQSWLRPVLR SNRVEYCWCN SGRA-CHSVP

30 VKSCSEPRCF NGGTCQQALY FSDFVCQCPE GFAGKCCEID TRAT30 VKSCSEPRCF NGGTCQQALY FSDFVCQCPE GFAGKCCEID TRAT

66 GARSYQVICR DEKTQMIYQQ HQSWLRPVLR SNRVEYCWCN SGRAQ-HSV?66 GARSYQVICR DEKTQMIYQQ HQSWLRPVLR SNRVEYCWCN SGRAQ-HSV?

VKSCSEPRCF NGGTCQQALY FSDFVCQCPE GFAGKCCEID TRATVKSCSEPRCF NGGTCQQALY FSDFVCQCPE GFAGKCCEID TRAT

67 GARSYQVICR DEKTQMIYQQ HQSWLRPVLR SNRVEYCWCN SGRAQC-SVP67 GARSYQVICR DEKTQMIYQQ HQSWLRPVLR SNRVEYCWCN SGRAQC-SVP

VKSCSEPRCF NGGTCQQALY FSDFVCQCPE GFAGKCCEID TRATVKSCSEPRCF NGGTCQQALY FSDFVCQCPE GFAGKCCEID TRAT

3535

I DK 175784 B1 II DK 175784 B1 I

I II I

I Tabel 3 (fortsat) IIn Table 3 (continued)

68 GARSYQVICR DEKTQMIYQQ HQSWLRPVLR SNRVEYCWCN SGRAQCH-VP I68 GARSYQVICR DEKTQMIYQQ HQSWLRPVLR SNRVEYCWCN SGRAQCH-VP I

I VKSCSEPRCF NGGTCQQALY FSDFVCQCPE GFAGKCCEID TRAT II VKSCSEPRCF NGGTCQQALY FSDFVCQCPE GFAGKCCEID TRAT I

I 5 69 GARSYQVICR DEKTQMIYQQ HQSWLRPVLR SNRVEYCWCN SGRAQCHS-P II 5 69 GARSYQVICR DEKTQMIYQQ HQSWLRPVLR SNRVEYCWCN SGRAQCHS-P I

VKSCSEPRCF NGGTCQQALY FSDFVCQCPE GFAGKCCEID TRAT IVKSCSEPRCF NGGTCQQALY FSDFVCQCPE GFAGKCCEID TRAT I

I 70 GARSYQVICR DEKTQMIYQQ HQSWLRPVLR SNRVEYCWCN SGRAQCHSV- · II 70 GARSYQVICR DEKTQMIYQQ HQSWLRPVLR SNRVEYCWCN SGRAQCHSV- · I

VKSCSEPRCF NGGTCQQALY FSDFVCQCPE GFAGKCCEID TRAT IVKSCSEPRCF NGGTCQQALY FSDFVCQCPE GFAGKCCEID TRAT I

71 GARSYQVICR "DEKTQMIYQQ HQSWLRPVLR SNRVEYCWCN SGRAQCHSVP I71 GARSYQVICR "DEKTQMIYQQ HQSWLRPVLR SNRVEYCWCN SGRAQCHSVP I

-KSCSEPRCF NGGTCQQALY FSDFVCQCPE GFAGKCCEID TRAT I-KSCSEPRCF NGGTCQQALY FSDFVCQCPE GFAGKCCEID TRAT I

I 72 GARSYQVICR DEKTQMIYQQ HQSWLRPVLR SNRVEYCWCN SGRAQCHSVP II 72 GARSYQVICR DEKTQMIYQQ HQSWLRPVLR SNRVEYCWCN SGRAQCHSVP I

V-SCSEPRCF NGGTCQQALY FSDFVCQCPE GFAGKCCEID TRAT IV-SCSEPRCF NGGTCQQALY FSDFVCQCPE GFAGKCCEID TRAT I

I 73 GARSYQVICR DEKTQMIYQQ HQSWLRPVLR SNRVEYCWCN SGRAQCHSV? II 73 GARSYQVICR DEKTQMIYQQ HQSWLRPVLR SNRVEYCWCN SGRAQCHSV? IN

VK-CSEPRCF NGGTCQQALY FSDFVCQCPE GFAGKCCEID TRAT IVK-CSEPRCF NGGTCQQALY FSDFVCQCPE GFAGKCCEID TRAT I

I 15 II 15 I

Med hensyn til de modificerede N-terminusser, IWith respect to the modified N-terminus, I

I der er vist i tabel 3, skal det forstås, at mere end IAs shown in Table 3, it should be understood that more than I

en aminosyre kan være udeladt. Når flere aminosyrer er Ian amino acid may be omitted. When multiple amino acids are I

2Q udeladt, kan der være tale om aminosyrer, der støder op I2Q omitted, there may be amino acids adjacent to I

I til hinanden eller er adskilt af en eller flere andre ITo each other or separated by one or more others

aminosyrer. Til betegnelse af forbindelser med sådanne Iamino acids. To designate compounds with such I

N-terminusser angives størrelsen af udeladelsen ved IN-terminals indicate the magnitude of the omission at I

I "An", hvori n betyder antallet af udeladte aminosyrer. IIn "An", where n means the number of amino acids omitted. IN

I 25 F.eks. kan N-terminus nr. 27 hvori en aminosyre er udeladt IFor example, in For example, N-terminus # 27 wherein an amino acid is omitted I

M som vist i tabel 3, betegnes "Ν-27Δ1". Når to aminosyrer IM as shown in Table 3 is designated "Ν-27Δ1". When two amino acids I

er udeladt, f.eks. Y-4 og 1-5, betegnes N-terminussen Iis omitted, e.g. Y-4 and 1-5, the N-terminus I is designated

I "Ν-27Δ2" osv. Når der foreligger kombinationer af IIn "Ν-27Δ2" etc. When combinations of I are available

I udeladelser, f.eks. når Y-4, 1-5 og D-8 er udeladt, kan IIn omissions, e.g. when Y-4, 1-5 and D-8 are omitted, you can

30 N-terminussen betegnes "N-27A2", Ν-31Δ1". Som anført IThe 30 N-terminus is designated "N-27A2", Ν-31Δ1 "

i teksten efter tabel 2.5 betegnes specifikke forbindel- Iin the text after Table 2.5, specific compounds are designated I

ser ved en kode i tre dele omfattende et forbindelsesnummer Ilooks at a three-part code comprising a connection number I

fra tabel 2 efterfulgt af en angivelse af N-terminussens Ifrom Table 2 followed by an indication of the N-terminus I

nr., f.eks. fra tabel 2.5, og derefter en angivelse af INo., e.g. from Table 2.5, and then an indication of I

status af position 275. Forbindelse 2-26/Ν-Ν-27Δ2/Ν-33Δ1 Istatus of position 275. Compound 2-26 / Ν-Ν-27Δ2 / Ν-33Δ1 I

19 DK 175784 B1 betegner således proteinet, hvori alle tre glycosylerings-steder; R-275,· S-l, Y-2 og 1-5 er udeladt.Thus, the protein denotes the protein in which all three glycosylation sites; R-275, · S-1, Y-2 and 1-5 are omitted.

Denne udførelsesform omfatter endvidere en undergruppe af proteiner, hvori en eller flere aminosyrer er udeladt 5 fra regionen Val-4 til Val-72. Proteiner af denne undergruppe kan eventuelt være modificeret således, at Arg-275 er udeladt eller erstattet med en anden aminosyre, der fortrinsvis er forskellig fra lysin eller histidin. Proteiner af denne undergruppe er modificeret således, at et eller flere N-10 bundne glycosyleringssteder er ophævet som ovenfor beskrevet. Eksempler på proteiner af denne undergruppe ligner eksemplerne .vist i tabel 2 og 3, men indeholder N-terminusser, som de, der er vist i tabel 4 nedenfor.This embodiment further comprises a subset of proteins in which one or more amino acids are omitted 5 from the region Val-4 to Val-72. Optionally, proteins of this subgroup may be modified such that Arg-275 is omitted or replaced by another amino acid which is preferably different from lysine or histidine. Proteins of this subgroup are modified such that one or more N-10 bound glycosylation sites are abrogated as described above. Examples of proteins of this subgroup are similar to the examples shown in Tables 2 and 3, but contain N-terminus, such as those shown in Table 4 below.

15 Tabel 4: Eksempler på proteiner, der har en udeladelse af en eller flere aminosyrer fra regionen Val-4 til Val-72 (vedrørende den generelle sekvens, se tabel 1).Table 4: Examples of proteins having a deletion of one or more amino acids from the region Val-4 to Val-72 (for the general sequence, see Table 1).

Illustrative proteiner er som defineret i tabel 2, 20 idet dog følgende N-terminusser erstatter vild type-sekvensen (wt) af Gly-(-3) til Thr-91: N-terminus- betegnelse nr.Illustrative proteins are as defined in Table 2, 20, however, the following N-terminus replaces the wild type sequence (wt) of Gly - (- 3) to Thr-91: N-terminus designation no.

2525

10 GARSYQVICR DEKTQMIYQQ HQSWLRPVLR SNRVEYCWCN SGRAQCHSVP10 GARSYQVICR DEKTQMIYQQ HQSWLRPVLR SNRVEYCWCN SGRAQCHSVP

VKS-----------CQQALY FSDFVCQCPE GFAGKCCEID TRATVKS ----------- CQQALY FSDFVCQCPE GFAGKCCEID TRAT

GARSYQVICR DEKTQMIYQQ HQSWLRPVLR SNRVEYCWCN SGRAQCHSVPGARSYQVICR DEKTQMIYQQ HQSWLRPVLR SNRVEYCWCN SGRAQCHSVP

18 VKS C-------------------- PE GFAGKCCEID TRAT18 VKS C -------------------- PE GFAGKCCEID TRAT

30 GARSYQVICR DEKTQMIYQQ HQSWLRPVLR SNRVEYCWCN SGRAQCHSVP30 GARSYQVICR DEKTQMIYQQ HQSWLRPVLR SNRVEYCWCN SGRAQCHSVP

19 VKSCSEPRC---------------VCQCPE GFAGKCCEID TRAT19 VKSCSEPRC --------------- VCQCPE GFAGKCCEID TRAT

GARSYQVI------------—SWLRPVLR SN-------------CHSV?GARSYQVI ------------— SWLRPVLR SN ------------- CHSV?

76 VK-------------QQALY FSDFVCQCPE GFAGKCCEID TRAT76 UK ------------- QQALY FSDFVCQCPE GFAGKCCEID TRAT

-,ς GARSYQVICR DEKTQMIYQQ HQSWLRPVLR SNRVEYCWCN SGRAQCHSVP-, G GARSYQVICR DEKTQMIYQQ HQSWLRPVLR SNRVEYCWCN SGRAQCHSVP

74 VKS-SEPRCF NGGTCQQALY FSDFVCQCPE GFAGKCCEID TRAT74 VKS-SEPRCF NGGTCQQALY FSDFVCQCPE GFAGKCCEID TRAT

I DK 175784 B1 II DK 175784 B1 I

I 20 II 20 I

Tabel 4 (fortsat) ITable 4 (continued) I

I GARSYQVICR DEKTQMIYQQ HQSWLRPVLR SNRVEYCWCN SGRAQCHSV? II GARSYQVICR DEKTQMIYQQ HQSWLRPVLR SNRVEYCWCN SGRAQCHSV? IN

77 . VKSC-EPRCF NGGTCQQALY FSDFVCQCPE GFAGKCCEID TRAT I77. VKSC-EPRCF NGGTCQQALY FSDFVCQCPE GFAGKCCEID TRAT I

I 5 7o GARSYQVICR DEKTQMIYQQ HQSWLRPVLR SNRVEYCWCN SGRAQCHSV? II 5 7o GARSYQVICR DEKTQMIYQQ HQSWLRPVLR SNRVEYCWCN SGRAQCHSV? IN

78 VKSCS-PRCF NGGTCQQALY FSDFVCQCPE GFAGKCCEID TRAT I78 VKSCS-PRCF NGGTCQQALY FSDFVCQCPE GFAGKCCEID TRAT I

I GARSYQVICR DEKTQMIYQQ HQSWLRPVLR SNRVEYCWCN SGRAQCHSV? II GARSYQVICR DEKTQMIYQQ HQSWLRPVLR SNRVEYCWCN SGRAQCHSV? IN

79 VKSCSE-RCF NGGTCQQALY FSDFVCQCPE GFAGKCCEID TRAT . I79 VKSCSE-RCF NGGTCQQALY FSDFVCQCPE GFAGKCCEID TRAT. IN

I GARSYQVICR DEKTQMIYQQ HQSWLRPVLR SNRVEYCWCN SGRAQCHSVP II GARSYQVICR DEKTQMIYQQ HQSWLRPVLR SNRVEYCWCN SGRAQCHSVP I

10 80 VKSCSEP-CF NGGTCQQALY FSDFVCQCPE GFAGKCCEID TRAT I10 80 VKSCSEP-CF NGGTCQQALY FSDFVCQCPE GFAGKCCEID TRAT I

I GARSYQVICR DEKTQMIYQQ HQSWLRPVLR SNRVEYCWCN SGRAQCHSVP II GARSYQVICR DEKTQMIYQQ HQSWLRPVLR SNRVEYCWCN SGRAQCHSVP I

81 VKSCSEPR-F NGGTCQQALY FSDFVCQCPE GFAGKCCEID TRAT I81 VKSCSEPR-F NGGTCQQALY FSDFVCQCPE GFAGKCCEID TRAT I

I - . GARSYQVICR DEKTQMIYQQ HQSWLRPVLR SNRVEYCWCN SGRAQCHSVP II -. GARSYQVICR DEKTQMIYQQ HQSWLRPVLR SNRVEYCWCN SGRAQCHSVP I

82 VKSCSEPRC- NGGTCQQALY FSDFVCQCPE GFAGKCCEID TRAT I82 VKSCSEPRC- NGGTCQQALY FSDFVCQCPE GFAGKCCEID TRAT I

15 ot GARSYQVICR DEKTQMIYQQ HQSWLRPVLR SNRVEYCWCN SGRAQCHSV? I15 ot GARSYQVICR DEKTQMIYQQ HQSWLRPVLR SNRVEYCWCN SGRAQCHSV? IN

I 83 VKSCSEPRCF -GGTCQQALY FSDFVCQCPE GFAGKCCEID TRAT II 83 VKSCSEPRCF -GGTCQQALY FSDFVCQCPE GFAGKCCEID TRAT I

I GARSYQVICR DEKTQMIYQQ HQSWLRPVLR SNRVEYCWCN SGRAQCHSVP II GARSYQVICR DEKTQMIYQQ HQSWLRPVLR SNRVEYCWCN SGRAQCHSVP I

84 VKSCSEPRCF N-GTCQQALY FSDFVCQCPE GFAGKCCEID TRAT I84 VKSCSEPRCF N-GTCQQALY FSDFVCQCPE GFAGKCCEID TRAT I

GARSYQVICR DEKTQMIYQQ HQSWLRPVLR SNRVEYCWCN SGRAQCHSV? IGARSYQVICR DEKTQMIYQQ HQSWLRPVLR SNRVEYCWCN SGRAQCHSV? IN

20 85 VKSCSEPRCF NG-TCQQALY FSDFVCQCFE GFAGKCCEID TRAT I20 85 VKSCSEPRCF NG-TCQQALY FSDFVCQCFE GFAGKCCEID TRAT I

3 6 GARSYQVICR DEKTQMIYQQ HQSWLRPVLR SNRVEYCWCN SGRAQCHSV? I3 6 GARSYQVICR DEKTQMIYQQ HQSWLRPVLR SNRVEYCWCN SGRAQCHSV? IN

VKSCSEPRCF NGG-CQQALY FSDFVCQCPE GFAGKCCEID TRAT IVKSCSEPRCF NGG-CQQALY FSDFVCQCPE GFAGKCCEID TRAT I

I 87 GARSYQVICR DEKTQMIYQQ HQSWLRPVLR SNRVEYCWCN SGRAQCHSVP II 87 GARSYQVICR DEKTQMIYQQ HQSWLRPVLR SNRVEYCWCN SGRAQCHSVP I

VKSCSEPRCF NGGT-QQALY FSDFVCQCPE GFAGKCCEID TRAT IVKSCSEPRCF NGGT-QQALY FSDFVCQCPE GFAGKCCEID TRAT I

I 25 88 GARSYQVICR DEKTQMIYQQ HQSWLRPVLR SNRVEYCWCN SGRAQCHSVP II 25 88 GARSYQVICR DEKTQMIYQQ HQSWLRPVLR SNRVEYCWCN SGRAQCHSVP I

VKSCSEPRCF NGGTC-QALY FSDFVCQCPE GFAGKCCEID TRAT IVKSCSEPRCF NGGTC-QALY FSDFVCQCPE GFAGKCCEID TRAT I

I 89 GARSYQVICR DEKTQMIYQQ HQSWLRPVLR SNRVEYCWCN SGRAQCHSV? II 89 GARSYQVICR DEKTQMIYQQ HQSWLRPVLR SNRVEYCWCN SGRAQCHSV? IN

VKSCSEPRCF NGGTCQ-ALY FSDFVCQCPE GFAGKCCEID TRAT IVKSCSEPRCF NGGTCQ-ALY FSDFVCQCPE GFAGKCCEID TRAT I

I 90 GARSYQVICR DEKTQMIYQQ HQSWLRPVLR SNRVEYCWCN SGRAQCHSVP II 90 GARSYQVICR DEKTQMIYQQ HQSWLRPVLR SNRVEYCWCN SGRAQCHSVP I

30 VKSCSEPRCF NGGTCQQ-LY FSDFVCQCPE GFAGKCCEID TRAT - I30 VKSCSEPRCF NGGTCQQ-LY FSDFVCQCPE GFAGKCCEID TRAT - I

I 91 GARSYQVICR DEKTQMIYQQ HQSWLRPVLR SNRVEYCWCN SGRAQCHSVP II 91 GARSYQVICR DEKTQMIYQQ HQSWLRPVLR SNRVEYCWCN SGRAQCHSVP I

VKSCSEPRCF NGGTCQQA-Y FSDFVCQCPE GFAGKCCEID TRAT IVKSCSEPRCF NGGTCQQA-Y FSDFVCQCPE GFAGKCCEID TRAT I

I 92 GARSYQVICR DEKTQMIYQQ HQSWLRPVLR SNRVEYCWCN SGRAQCHSVP II 92 GARSYQVICR DEKTQMIYQQ HQSWLRPVLR SNRVEYCWCN SGRAQCHSVP I

VKSCSEPRCF NGGTCQQAL- FSDFVCQCPE GFAGKCCEID TRAT IVKSCSEPRCF NGGTCQQAL- FSDFVCQCPE GFAGKCCEID TRAT I

I 35 93 GARSYQVICR DEKTQMIYQQ HQSWLRPVLR SNRVEYCWCN SGRAQCHSVP II 35 93 GARSYQVICR DEKTQMIYQQ HQSWLRPVLR SNRVEYCWCN SGRAQCHSVP I

VKSCSEPRCF NGGTCQQALY -SDFVCQCPE GFAGKCCEID TRAT IVKSCSEPRCF NGGTCQQALY -SDFVCQCPE GFAGKCCEID TRAT I

21 DK 175784 B121 DK 175784 B1

Tabel 4 (fortsat)Table 4 (continued)

94 . GARSYQVICR DEKTQMIYQQ HQSWLRFVLR SNRVEYCWCN SGRAQCHSVP94. GARSYQVICR DEKTQMIYQQ HQSWLRFVLR SNRVEYCWCN SGRAQCHSVP

VKSCSEPRCF NGGTCQQALY F-DFVCQCPE GFAGKCCEID TRATVKSCSEPRCF NGGTCQQALY F-DFVCQCPE GFAGKCCEID TRAT

5 95 GARSYQVICR DEKTQMIYQQ HQSWLRPVLR SNRVEYCWCN SGRAQCKSVP5 95 GARSYQVICR DEKTQMIYQQ HQSWLRPVLR SNRVEYCWCN SGRAQCKSVP

VKSCSEPRCF NGGTCQQALY FS-FVCQCPE GFAGKCCEID TRATVKSCSEPRCF NGGTCQQALY FS-FVCQCPE GFAGKCCEID TRAT

96 GARSYQVICR DEKTQMIYQQ HQSWLRPVLR SNRVEYCWCN SGRAQCHSVP96 GARSYQVICR DEKTQMIYQQ HQSWLRPVLR SNRVEYCWCN SGRAQCHSVP

VKSCSEPRCF NGGTCQQALY FSD-VCQCPE GFAGKCCEID TRATVKSCSEPRCF NGGTCQQALY FSD-VCQCPE GFAGKCCEID TRAT

97 GARSYQVICR DEKTQMIYQQ HQSWLRPVLR SNRVEYCWCN SGRAQCHSVP97 GARSYQVICR DEKTQMIYQQ HQSWLRPVLR SNRVEYCWCN SGRAQCHSVP

10 VKSCSEPRCF NGGTCQQALY FSDF-CQCPE GFAGKCCEID TRAT10 VKSCSEPRCF NGGTCQQALY FSDF-CQCPE GFAGKCCEID TRAT

312 GARSYQVICR DEKTQMIYQQ HQSWLRPVLR SNRVEYCWCN SGRAQCHSVP312 GARSYQVICR DEKTQMIYQQ HQSWLRPVLR SNRVEYCWCN SGRAQCHSVP

VKSCSEPRCF NGGTCQQAL---DFVCQCPE GFAGKCCEID TRATVKSCSEPRCF NGGTCQQAL --- DFVCQCPE GFAGKCCEID TRAT

313 GARSYQVICR DEKTQMIYQQ HQSWLRPVLR SNRVEYCWCN SGRAQCHSVP313 GARSYQVICR DEKTQMIYQQ HQSWLRPVLR SNRVEYCWCN SGRAQCHSVP

VKSCSEPRCF NGGTCQQALY --DFVCQCPE GFAGKCCEID TRATVKSCSEPRCF NGGTCQQALY --DFVCQCPE GFAGKCCEID TRAT

15 314 GARSYQVICR DEKTQMIYQQ HQSWLRPVLR SNRVEYCWCN SGRAQCHSVP15 314 GARSYQVICR DEKTQMIYQQ HQSWLRPVLR SNRVEYCWCN SGRAQCHSVP

VKSCSEPRCF NGGTCQQAL- -SDFVCQCPE GFAGKCCEID TRATVKSCSEPRCF NGGTCQQAL- -SDFVCQCPE GFAGKCCEID TRAT

315 GARSYQVI-------------------------------------------315 GARSYQVI -------------------------------------------

---CSEPRCF NGGTCQQAL- FSDFVCQCPE GFAGKCCEID TRAT--- CSEPRCF NGGTCQQAL- FSDFVCQCPE GFAGKCCEID TRAT

316 GARSYQVI------------------------------------------316 GARSYQVI ------------------------------------------

20 ---CSEPRCF NGGTCQQALY -SDFVCQCPE GFAGKCCEID TRAT20 --- CSEPRCF NGGTCQQALY -SDFVCQCPE GFAGKCCEID TRAT

317 GARSYQVI------------------------------------------317 GARSYQVI ------------------------------------------

---CSEPRCF NGGTCQQALY F-DFVCQCPE GFAGKCCEID TRAT--- CSEPRCF NGGTCQQALY F-DFVCQCPE GFAGKCCEID TRAT

318 GARSYQVI—----------------------------------------318 GARSYQVI —----------------------------------------

---CSEPRCF NGGTCQQALY —DFVCQCPE GFAGKCCEID TRAT--- CSEPRCF NGGTCQQALY —DFVCQCPE GFAGKCCEID TRAT

25 319 GARSYQVI—----------------------------------------25 319 GARSYQVI —----------------------------------------

---CSEPRCF NGGTCQQAL---DFVCQCPE GFAGKCCEID TRAT--- CSEPRCF NGGTCQQAL --- DFVCQCPE GFAGKCCEID TRAT

30 3530 35

I DK 175784 B1 II DK 175784 B1 I

MM

I ' II 'I

I Med hensyn til tabel 4 ovenfor skal det IWith respect to Table 4 above, I

bemærkes/ at der beskrives flere underklasser af Ibe noted / that several subclasses of I are described

I proteiner. F.eks. er der vist proteiner indeholdende IIn proteins. Eg. proteins containing I are shown

I en udeladelse af 1-47 aminosyrer (enkeltvis, fortløbende IIn a deletion of 1-47 amino acids (singly, consecutively I

I 5 eller i kombination) fra Val-4 til Val-72, ligesom IIn 5 or in combination) from Val-4 to Val-72, as do I

I proteiner indeholdende en udeladelse af 1-22 aminosyrer IIn proteins containing a deletion of 1-22 amino acids I

I fra Cy5-51 til Val-72 og en udeladelse af en eller II from Cy5-51 to Val-72 and an omission of one or I

flere aminosyrer i regionen Val-4 til Cys-51 Iseveral amino acids in the Val-4 to Cys-51 I region

I (se N-76). Med hensyn til forbindelser indeholdende II (see N-76). With regard to compounds containing I

10 en N-terminus valgt blandt N-terminus seme N-76 til I10 an N-terminus selected from the N-terminus seme N-76 to I

N-97 skal det forstås, at mere end en aminosyre kan IN-97, it should be understood that more than one amino acid can I

I være udeladt. F.eks. kan N-77, hvori en aminosyre er IYou are left out. Eg. can N-77 wherein an amino acid is I

I udeladt, som vist i tabel 4, betegnes "N-77Λ1"· Når IYou omitted, as shown in Table 4, designated "N-77Λ1" · When I

I seks aminosyrer er udeladt, f.eks. S-52 til F-57, beteg- IIn six amino acids are omitted, e.g. S-52 to F-57, reference I

I 15 nes N-terminussen "N-77Δ6" osv. Specifikke proteiner IIn the N-terminus "N-77Δ6", etc. Specific proteins I

I betegnes som beskrevet efter tabel 2 og 3. Eksempler, IYou are referred to as described in Tables 2 and 3. Examples, I

I hvori de tre glycosyleringssteder og Arg-275 er IIn which the three glycosylation sites and Arg-275 are I

I udeladt, er vist nedenfor: IYou omitted are shown below:

I 20 Forbindelsesbetegnelse udeladelser I20 Connection designation omissions I

2-26/N-10/- C-51 til T-61 I2-26 / N-10 / - C-51 to T-61 I

I 2-26/Ν-74Δ6/- C-51 til C-56 II 2-26 / Ν-74Δ6 / - C-51 to C-56 I

I 2-27/Ν-74Δ1, Ν-76Δ6/- C-51, E-53 til N-58 II 2-27 / Ν-74Δ1, Ν-76Δ6 / - C-51, E-53 to N-58 I

I 25 II 25 I

Illustrative forbindelser, som er modificeret ved det første IIllustrative compounds modified by the first I

I N-bundne glycosyleringssted, her ved erstatning af Asn-117 IIn N-linked glycosylation site, here by replacing Asn-117 I

I med Gin, er anført nedenfor: II with Gin, are listed below:

I 30 2-l/N-424/Arg · II 2-l / N-424 / Arg · I

2-l/N-425/Arg I2-l / N-425 / Arg I

2-l/N-426/Arg I2-l / N-426 / Arg I

2-l/N-427/Arg I2-l / N-427 / Arg I

2-l/N-428/Arg I2-l / N-428 / Arg I

2-1/Ν-63Δ2,N-92A3/Arg 2-l/N-63Al,N-92A2/Arg 35 2-1/Ν-63Δ1,N-92A1/Arg ' 23 DK 175784 B12-1 / Ν-63Δ2, N-92A3 / Arg 2-l / N-63Al, N-92A2 / Arg 2-1 / Ν-63Δ1, N-92A1 / Arg '23 DK 175784 B1

Illustrative forbindelser med de samme udeladelser som ovenfor, men også modificeret ved alle tre glycosyleringssteder, her ved erstatning af Asn'er med Gin'er er anført nedenfor: 5 2-7/N-424/Arg 2-7/N-425/Arg 2-7/N-426/Arg 2-7/N-427/Arg 2-7/N-428/Arg 2-7/Ν-63Δ2,N-92A3/Arg 2-7/Ν-63Δ1, Ν-92Δ2/Α^ 10 2-7/Ν-63Δ1,Ν-92Δΐ/ΑΓφIllustrative compounds having the same deletions as above, but also modified at all three glycosylation sites, here by replacing Asn's with Gins are listed below: 5 2-7 / N-424 / Arg 2-7 / N-425 / Arg 2-7 / N-426 / Arg 2-7 / N-427 / Arg 2-7 / N-428 / Arg 2-7 / Ν-63Δ2, N-92A3 / Arg 2-7 / Ν-63Δ1, Ν -92Δ2 / Α ^ 10 2-7 / Ν-63Δ1, Ν-92Δΐ / ΑΓφ

Denne udførelsesform omfatter således yderligere en undergruppe af proteiner, hvori en eller flere udeladelser på mindre end ca. 20 aminosyrer er til stede i 15 området Val-4 til Val-72. Preotiner af denne undergruppe er IThus, this embodiment further comprises a subset of proteins wherein one or more deletions of less than ca. 20 amino acids are present in the range Val-4 to Val-72. Proteins of this subgroup are I

modificeret ved et eller flere af de Asn-bundne glycosyleringssteder og eventuelt ved arg-275. Eksempler på proteiner af denne undergruppe ligner eksemplerne vist i tabel 2 til 4, men indeholder i stedet for N-terminussen af vild type 20 en N-terminus, såsom de, der er vist i tabel 5 nedenfor.modified at one or more of the Asn-linked glycosylation sites and optionally at arg-275. Examples of proteins of this subgroup are similar to the examples shown in Tables 2 to 4, but instead of the wild type N terminus 20 contain an N terminus such as those shown in Table 5 below.

Yderligere eksempelvise forbindelser af denne undergruppe er anført ovenfor ved deres tredelte kodebetegnelser.Further exemplary compounds of this subgroup are listed above by their three-part code designations.

Ifølge en tredje udførelesform er proteinerne karakteriseret ved en peptidsekvens, der i det væsentlige er den 25 samme som peptidsekvensen af humant t-PA, hvorved aminosyrer i regionen Arg-23 til Val-72 er erstattet med forskellige aminosyrer. Denne udførelsesform for forbindeler er også karakteriseret ved modifikation som ovenfor beskrevet ved et eller flere af de consensus Asn-bundne glycosylerings-30 steder. En yderligere undergruppe af denne udførelsesform er karakteriseret ved erstatning af en eller flere aminosyrer i N-terminussen og modifikationer som ovenfor beskrevet ved både Arg-275 og et eller flere af de N-bundne glycosyleringssteder. I et yderligere aspekt er et til ca. elleve, for-35 trinsvis et til ca. seks aminosyrer erstattet i en eller flere af de følgende regioner:According to a third embodiment, the proteins are characterized by a peptide sequence that is substantially the same as the peptide sequence of human t-PA, whereby amino acids in the Arg-23 to Val-72 region are replaced by different amino acids. This embodiment of compounds is also characterized by modification as described above at one or more of the consensus Asn-linked glycosylation sites. A further subset of this embodiment is characterized by replacement of one or more amino acids at the N-terminus and modifications as described above at both Arg-275 and one or more of the N-linked glycosylation sites. In a further aspect, one to approx. eleven, preferably 35 to about six amino acids replaced in one or more of the following regions:

I DK 175784 B1 II DK 175784 B1 I

I 24 I region fra til I 5 Arg-23 Arg-27 I 6 Ser-28 Tyr-33 I 57 CyS-34 Cys-43 I 8 His-44 Ser-50 I 9 Cys-51 Cys-62 10 Gln-63 Val-72I 24 I region from to I 5 Arg-23 Arg-27 I 6 Ser-28 Tyr-33 I 57 CyS-34 Cys-43 I 8 His-44 Ser-50 I 9 Cys-51 Cys-62 10 Gln-63 Val-72

I 10 I et yderligere aspekt af denne udførelsesform er IIn a further aspect of this embodiment, I

I substitutionen eller substitutionerne til stede i en eller IIn the substitution or substitutions present in one or I

I flere af følgende regioner: N-3' til C-42 og H-44 til S-50. IIn several of the following regions: N-3 'to C-42 and H-44 to S-50. IN

I I et yderligere aspekt af denne udførelsesform er N-terminus- IIn a further aspect of this embodiment, the N-terminus is I

I sen modificeret, igen ved erstatning af 1 til ca. 11, for- IIn late modified, again by replacing 1 to approx. 11, for- I

15 trinsvis 1 til ca. 6 aminosyrer i en eller flere af de oven- I15 incrementally 1 to ca. 6 amino acids in one or more of the above

I for definerede regioner og er yderligere modificeret ved II for defined regions and are further modified by I

I udeladelse af 1 til 50, fortrinsvis 1 til ca. 45 og især 1 IIn the omission of 1 to 50, preferably 1 to ca. 45 and in particular 1 I

I til ca. 15 aminosyrer. II to approx. 15 amino acids. IN

Illustrative aminosyresubstitutioner er vist i IIllustrative amino acid substitutions are shown in I

20 tabel 6-A nedenfor, og eksempelvise proteiner er vist i I20 Table 6-A below, and exemplary proteins are shown in I

I tabel 6-B. Af erstatnings-aminosyrerne for R-40, A-41 IIn Table 6-B. Of the substitute amino acids for R-40, A-41 I

H og Q-42, der er vist i tabel 6-A, er S en foretrukken IH and Q-42 shown in Table 6-A, S is a preferred I

erstatning for R-40, og V og L er foretrukne erstatninger Isubstitute for R-40, and V and L are preferred substitutes I

for henholdsvis A-41 og Q-42. Det skal bemærkes, at Ifor A-41 and Q-42, respectively. It should be noted that you

I 25 proteinerne ifølge opfindelsen, som har substitutionerne IIn the proteins of the invention which have the substitutions I

I anført for R-40, A-41 og Q-42 i tabel 6A, er i kombination II listed for R-40, A-41 and Q-42 in Table 6A is in combination I

I med modifikationer ved mindst ét glycosyleringssted og even- II with modifications at at least one glycosylation site and even I

I tuelt med en eller flere andre substitutioner og/eller ude- IIn addition to one or more other substitutions and / or outside

I ladeiser i N-terminussen og/eller modifikationer ved R-275. IIn the N terminus and / or modifications at R-275. IN

H 30 Det antages, for så vidt som de her omhandlede proteiner er IH 30 It is assumed that the proteins of the present invention are I

I modificeret ved substitution snarere end ved udeladelse, II modified by substitution rather than by omission, I

bibeholder de her omhandlede proteiner mee af den naturlige Ithe proteins in question are retained by the natural I

t-PA-konformation og bibeholder selektivt mere af de ønske- It-PA conformation and selectively retains more of the desired I

lige biologiske aktiviteter af naturligt t-PA. Iequal biological activities of natural t-PA. IN

I 35 II 35 I

I il 25 DK 175784 B1I il 25 DK 175784 B1

Tabel 5: Eksempler på proteiner, der har en eller flere udeladelser på mindre end ca. 20 aminosyrer i regionen Val-4 til Val-72 (vedrørende den generelle sekvens, se tabel 1) 5 Illustrative proteiner er som defineret i tabel 2, idet dog følgende N-terminusser erstatter vild type-sekvensen (wt) af Gly-(-3) til Thr-91: N-terminus betegnelse nr.Table 5: Examples of proteins having one or more deletions of less than ca. 20 amino acids in the region Val-4 to Val-72 (for the general sequence, see Table 1) 3) to Thr-91: N-terminus designation no.

10 -10 -

112 GARSYQVICR-----------QSWLRPVLR SNRVEYCWCN SGRAQCHSVP112 GARSYQVICR ----------- QSWLRPVLR SNRVEYCWCN SGRAQCHSVP

VKSCSÉPRCF NGGTCQQALY FSDFVCQCPE GFAGKCCEID TRATVKSCSÉPRCF NGGTCQQALY FSDFVCQCPE GFAGKCCEID TRAT

113 GARSYQVICR DEKTQMIYQQ HQSWLRPVLR-----------GRAQCHSVP113 GARSYQVICR DEKTQMIYQQ HQSWLRPVLR ----------- GRAQCHSVP

VKSCSÉPRCF NGGTCQQALY FSDFVCQCPE GFAGKCCEID TRATVKSCSÉPRCF NGGTCQQALY FSDFVCQCPE GFAGKCCEID TRAT

1S 114 GARSYQVICR DEKTQMIYQQ HQSWLRPVLR SNRVEYCWCN SGRAQCHSVP VKS----:-------CQQALY FSDFVCQCPE GFAGKCCEID TRAT1S 114 GARSYQVICR DEKTQMIYQQ HQSWLRPVLR SNRVEYCWCN SGRAQCHSVP VKS ----: ------- CQQALY FSDFVCQCPE GFAGKCCEID TRAT

116 GARSYQVICR----------HQSWLRPVLR SNRVEYCWCN SGRAQCHSVP116 GARSYQVICR ---------- HQSWLRPVLR SNRVEYCWCN SGRAQCHSVP

VKS--------GGTCQQALY FSDFVCQCPE GFAGKCCEID TRATVKS -------- GGTCQQALY FSDFVCQCPE GFAGKCCEID TRAT

117 GARSYQVICR ---------- HQSWLRPVLR ---------- SGRAQCHSVP117 GARSYQVICR ---------- HQSWLRPVLR ---------- SGRAQCHSVP

VKSCSÉPRCF NGGTCQQALY FSDFVCQCPE GFAGKCCEID TRAT j 20 ! 120 GARSYQVICR DEKTQMIYQQ HQSWLRPVLR ---------- SGRAQCHSVP 'VKSCSÉPRCF NGGTCQQALY FSDFVCQCPE GFAGKCCEID TRAT j 20! 120 GARSYQVICR DEKTQMIYQQ HQSWLRPVLR ---------- SGRAQCHSVP '

VKSCS---------CQQALY FSDFVCQCPE GFAGKCCEID TRATVKSCS --------- CQQALY FSDFVCQCPE GFAGKCCEID TRAT

og, med henvisning til tabel 2.5, 3 og 4:and, with reference to Tables 2.5, 3 and 4:

25 I25 I

N-l N-2 N-6 til N-ll N-l5 til N-l7 30 Ν-24Δ1 til Δ19 Ν-27Δ1 til Δ19 Ν-44Δ1 til £χ19 Ν-73Δ1 til ^19 Ν-95Δ1 til Δ19 35 Ν111Δ1 til Δ5 ί !Nl N-2 N-6 to N-ll N-l5 to N-l7 30 Ν-24Δ1 to Δ19 Ν-27Δ1 to Δ19 Ν-44Δ1 to £ χ19 Ν-73Δ1 to ^ 19 Ν-95Δ1 to Δ19 35 Ν111Δ1 to Δ5 ί!

I DK 175784 B1 II DK 175784 B1 I

I 26 II 26 I

Tabel 6-A: Illustrative aminosyresubstitutioner ITable 6-A: Illustrative amino acid substitutions I

I -vt —> . erstatning wt,_ —> erstatning II -vt ->. indemnity wt, _ -> indemnity I

I 5 II 5 I

I R-23 S,T,Q,N,G,H,D eller K s"52 G,A,Q,L,V,I eller IIn R-23 S, T, Q, N, G, H, D or K s "52 G, A, Q, L, V, I or I

r_27 « .. Ξ-53 s,t,q,n,g,h,d o . Ir_27 «.. Ξ-53 s, t, q, n, g, h, d o. IN

R_30 ii .. P-54 A,G,Y,D eller S IR_30 ii .. P-54 A, G, Y, D or S I

v_31 . „ „ C-56 S, T, G e.ller A Iv_31. "" C-56 S, T, G or A I

E-32 S,T,Q,N,G,H,D eller K R_55 S,T,Q,N,G,H,D el^er K IE-32 S, T, Q, N, G, H, D or K R_55 S, T, Q, N, G, H, D or E are K I

Y-33 F,S,H eller L F-57 Y,I,W,H,D eller R IY-33 F, S, H or L F-57 Y, I, W, H, D or R I

I 10 C-34 S,T,G eller A N"58 G, A,Q, L, V, I e.ller T II 10 C-34 S, T, G or A N "58 G, A, Q, L, V, I or T I

W-35 T, V, I· eller Q G-59 A,S,T,D(V eller P(f IW-35 T, V, I · or Q G-59 A, S, T, D (V or P (f I

H C-36 c t> s* pi ipr a G-60 " IH C-36 c t> s * pi ipr and G-60 "I

I N-37 g;a!q,L,V,I eller T T-6I N,S,L,G ..eller A II N-37 g; a! Q, L, V, I or T T-6I N, S, L, G .. or A I

C-62 S, T, G eller A IC-62 S, T, G or A I

S_38 „ n Q-63 N;S,L,G,A eller T n IS_38 'n Q-63 N; S, L, G, A or T n I

Q-64 IQ-64 I

I G-39 A.S.T.D.V eller P A-65 G, S, T, H,N eller Q IIn G-39 A.S.T.D.V or P A-65 G, S, T, H, N or Q I

15 R-40 S.T.N.G.K eller D L-66 N,S,L,G,A 'eller T IR-40 S.T.N.G.K or D L-66 N, S, L, G, A 'or T I

I A-41 G,S,T,H,N eller Q L-67 Υ,Ι,νί,Η,Ο eller R π IIn A-41 G, S, T, H, N or Q L-67 Υ, Ι, νί, Η, Ο or R π I

q-42 n:s;l;g;a ener T ?-** * . iq-42 n: s; l; g; and one T? - ** *. in

I h-44 " " S-69 G, A, Q, L, V, I eller T IIn h-44 "" S-69 G, A, Q, L, V, I or T I

S—45 e,A,Q,t,v,I eller T D'70 S,T,Q,H,G,H,D eller. K IS — 45 e, A, Q, t, v, I, or T D'70 S, T, Q, H, G, H, D, or. K I

· V-46 N,S,L,G,A eller T I· V-46 N, S, L, G, A or T I

I 20 V-48 nIjIl.'g Allier T ^-71 ϊ,Ι,νϊ,Η,ϋ eller R IIn 20 V-48 nIjIl.'g Allier T ^ -71 ϊ, Ι, νϊ, Η, ϋ or R I

I X-49 εΙτ,'ςίΝίε,Η,Ο eller K v'72 N,S,L,G,A eller T IIn X-49 εΙτ, 'ςίΝίε, Η, Ο or K v'72 N, S, L, G, A or T I

S-50 G,A,Q,L,V,I eller T IS-50 G, A, Q, L, V, I or T I

C-51 S, T, G eller A IC-51 S, T, G or A I

I II I

I v i a DK 175784 B1 i i i | 27 !I v i a DK 175784 B1 i i i i | 27!

Tabel 6-B; Eksempler på proteiner indeholdende substitution af en eller flere aminosyrer i regionen Arg-23 til Val-72 (vedrørende den generelle sekvens, se tabel 1) 5 Illustrative proteiner er som defineret i tabel 2, idet dog følgende N-terminusser erstatter vild type-sekvensen (wt) af Gly—( — 3) til Thr-91: N-terminus-10 -betegnelse _nr._Table 6-B; Examples of Proteins Containing Substitution of One or More Amino Acids in the Arg-23 to Val-72 Region (For the General Sequence, see Table 1) (wt) of Gly— (- 3) to Thr-91: N-terminus-10 designation

144 GARSYQVICR DEKTQMIYQQ HQSWLGPVLR SNRVEYCWCN SGRAQCHSVP144 GARSYQVICR DEKTQMIYQQ HQSWLGPVLR SNRVEYCWCN SGRAQCHSVP

VKSCSEPRCF NGGTCQQALY FSDFVCQCPE GFAGKCCEID TRATVKSCSEPRCF NGGTCQQALY FSDFVCQCPE GFAGKCCEID TRAT

15 145 GARSYQVICR DEKTQMIYQQ HQSWLRTVLR SNRVEYCWCN SGRAQCHSVP15 145 GARSYQVICR DEKTQMIYQQ HQSWLRTVLR SNRVEYCWCN SGRAQCHSVP

VKSCSEPRCF NGGTCQQALY FSDFVCQCPE GFAGKCCEID TRATVKSCSEPRCF NGGTCQQALY FSDFVCQCPE GFAGKCCEID TRAT

146 GARSYQVICR DEKTQMIYQQ HQSWLRPYLR SNRVEYCWCN SGRAQCHSVP146 GARSYQVICR DEKTQMIYQQ HQSWLRPYLR SNRVEYCWCN SGRAQCHSVP

VKSCSEPRCF NGGTCQQALY FSDFVCQCPE GFAGKCCEID TRATVKSCSEPRCF NGGTCQQALY FSDFVCQCPE GFAGKCCEID TRAT

147 GARSYQVICR DEKTQMIYQQ HQSWLRPVDR SNRVEYCWCN SGRAQCHSVP147 GARSYQVICR DEKTQMIYQQ HQSWLRPVDR SNRVEYCWCN SGRAQCHSVP

VKSCSEPRCF NGGTCQQALY FSDFVCQCPE GFAGKCCEID TRATVKSCSEPRCF NGGTCQQALY FSDFVCQCPE GFAGKCCEID TRAT

2020

148 GARSYQVICR DEKTQMIYQQ HQSWLRPVLS SNRVEYCWCN SGRAQCHSVP148 GARSYQVICR DEKTQMIYQQ HQSWLRPVLS SNRVEYCWCN SGRAQCHSVP

VKSCSEPRCF NGGTCQQALY FSDFVCQCPE GFAGKCCEID TRATVKSCSEPRCF NGGTCQQALY FSDFVCQCPE GFAGKCCEID TRAT

149 GARSYQVICR DEKTQMIYQQ HQSWLRPVLR PNRVEYCWCN SGRAQCHSVP149 GARSYQVICR DEKTQMIYQQ HQSWLRPVLR PNRVEYCWCN SGRAQCHSVP

VKSCSEPRCF NGGTCQQALY FSDFVCQCPE GFAGKCCEID TRATVKSCSEPRCF NGGTCQQALY FSDFVCQCPE GFAGKCCEID TRAT

25 150 GARSYQVICR DEKTQMIYQQ HQSWLRPVLR SDRVEYCWCN SGRAQCHSVP25 150 GARSYQVICR DEKTQMIYQQ HQSWLRPVLR SDRVEYCWCN SGRAQCHSVP

VKSCSEPRCF NGGTCQQALY FSDFVCQCPE GFAGKCCEID TRATVKSCSEPRCF NGGTCQQALY FSDFVCQCPE GFAGKCCEID TRAT

30 3530 35

Η IΗ I

i Ii

I : DK 175784 B1 IIn: DK 175784 B1 I

I . 28 II. 28 I

I Tabel 6-B (fortsat) IIn Table 6-B (continued) I

I 151 GARSYQVICR DEKTQMIYQQ HQSWLRPVLR SNSVEYCWCN SGRAQCHSVP II 151 GARSYQVICR DEKTQMIYQQ HQSWLRPVLR SNSVEYCWCN SGRAQCHSVP I

VKSCSEPRCF NGGTCQQALY FSDFVCQCPE GFAGKCCEID TRAT IVKSCSEPRCF NGGTCQQALY FSDFVCQCPE GFAGKCCEID TRAT I

IIN

152 GARSYQVXCR DEKTQMIYQQ HQSWLRPVLR SNRLEYCWCN SGRAQCHSVP I152 GARSYQVXCR DEKTQMIYQQ HQSWLRPVLR SNRLEYCWCN SGRAQCHSVP I

I VKSCSEPRCF NGGTCQQALY FSDFVCQCPE GFAGKCCEID TRAT II VKSCSEPRCF NGGTCQQALY FSDFVCQCPE GFAGKCCEID TRAT I

I 153 GARSYQVICR DEKTQMIYQQ HQSWLRPVLR SNRVSYCWCN SGRAQCHSVP II 153 GARSYQVICR DEKTQMIYQQ HQSWLRPVLR SNRVSYCWCN SGRAQCHSVP I

I VKSCSEPRCF NGGTCQQALY FSDFVCQCPE GFAGKCCEID TRAT II VKSCSEPRCF NGGTCQQALY FSDFVCQCPE GFAGKCCEID TRAT I

I ' 154 GARSYQVICR DEKTQMIYQQ HQSWLRPVLR SNRVESCWCN SGRAQCHSVP II '154 GARSYQVICR DEKTQMIYQQ HQSWLRPVLR SNRVESCWCN SGRAQCHSVP I

10 VKSCSEPRCF NGGTCQQALY FSDFVCQCPE GFAGKCCEID TRAT I10 VKSCSEPRCF NGGTCQQALY FSDFVCQCPE GFAGKCCEID TRAT I

155 C-ARSYQVICR DEKTQMIYQQ HQSWLRPVLR SNRVEYSWCN SGRAQCHSVP I155 C-ARSYQVICR DEKTQMIYQQ HQSWLRPVLR SNRVEYSWCN SGRAQCHSVP I

VKSCSEPRCF NGGTCQQALY FSDFVCQCPE GFAGKCCEID TRAT IVKSCSEPRCF NGGTCQQALY FSDFVCQCPE GFAGKCCEID TRAT I

I 156 GARSYQVICR DEKTQMIYQQ HQSWLRPVLR SNRVEYCTCN SGRAQCHSVP II 156 GARSYQVICR DEKTQMIYQQ HQSWLRPVLR SNRVEYCTCN SGRAQCHSVP I

I VKSCSEPRCF NGGTCQQALY FSDFVCQCPE GFAGKCCEID TRAT II VKSCSEPRCF NGGTCQQALY FSDFVCQCPE GFAGKCCEID TRAT I

I 15 157 GARSYQVICR DEKTQMIYQQ HQSWLRPVLR SNRVEYCWTN SGRAQCHSVP II 15 157 GARSYQVICR DEKTQMIYQQ HQSWLRPVLR SNRVEYCWTN SGRAQCHSVP I

VKSCSEPRCF NGGTCQQALY FSDFVCQCPE GFAGKCCEID TRAT IVKSCSEPRCF NGGTCQQALY FSDFVCQCPE GFAGKCCEID TRAT I

I 158 GARSYQVICR DEKTQMIYQQ HQSWLRPVLR SNRVEYCWCD SGRAQCHSVP II 158 GARSYQVICR DEKTQMIYQQ HQSWLRPVLR SNRVEYCWCD SGRAQCHSVP I

. VKSCSEPRCF NGGTCQQALY FSDFVCQCPE GFAGKCCEID TRAT I. VKSCSEPRCF NGGTCQQALY FSDFVCQCPE GFAGKCCEID TRAT I

I 159- GARSYQVICR DEKTQMIYQQ HQSWLRPVLR SNRVEYCWCN PGRAQCKSVP II 159- GARSYQVICR DEKTQMIYQQ HQSWLRPVLR SNRVEYCWCN PGRAQCKSVP I

20 VKSCSEPRCF NGGTCQQALY FSDFVCQCPE GFAGKCCEID TRAT I20 VKSCSEPRCF NGGTCQQALY FSDFVCQCPE GFAGKCCEID TRAT I

I 160 GARSYQVICR DEKTQMIYQQ HQSWLRPVLR SNRVEYCWCN SARAQCHSVP II 160 GARSYQVICR DEKTQMIYQQ HQSWLRPVLR SNRVEYCWCN SARAQCHSVP I

VKSCSEPRCF NGGTCQQALY FSDFVCQCPE GFAGKCCEID TRAT IVKSCSEPRCF NGGTCQQALY FSDFVCQCPE GFAGKCCEID TRAT I

161 GARSYQVICR DEKTQMIYQQ HQSWLRPVLR SNRVEYCWCN SGSAQCHSVP I161 GARSYQVICR DEKTQMIYQQ HQSWLRPVLR SNRVEYCWCN SGSAQCHSVP I

VKSCSEPRCF NGGTCQQALY FSDFVCQCPE GFAGKCCEID TRAT IVKSCSEPRCF NGGTCQQALY FSDFVCQCPE GFAGKCCEID TRAT I

I 25 II 25 I

162 GARSYQVICR DEKTQMIYQQ HQSWLRPVLR SNRVEYCWCN SGRVQCKSVP I162 GARSYQVICR DEKTQMIYQQ HQSWLRPVLR SNRVEYCWCN SGRVQCKSVP I

s VKSCSEPRCF NGGTCQQALY FSDFVCQCPE GFAGKCCEID TRAT Is VKSCSEPRCF NGGTCQQALY FSDFVCQCPE GFAGKCCEID TRAT I

I 163 GARSYQVICR DEKTQMIYQQ HQSWLRPVLR SNRVEYCWCN SGRALCHSVP II 163 GARSYQVICR DEKTQMIYQQ HQSWLRPVLR SNRVEYCWCN SGRALCHSVP I

I VKSCSEPRCF NGGTCQQALY FSDFVCQCPE GFAGKCCEID TRAT II VKSCSEPRCF NGGTCQQALY FSDFVCQCPE GFAGKCCEID TRAT I

I 164 GARSYQVICR DEKTQMIYQQ HQSWLRPVLR SNRVEYCWCN SGRAQTHSVP II 164 GARSYQVICR DEKTQMIYQQ HQSWLRPVLR SNRVEYCWCN SGRAQTHSVP I

30 VKSCSEPRCF NGGTCQQALY FSDFVCQCPE GFAGKCCEID TRAT I30 VKSCSEPRCF NGGTCQQALY FSDFVCQCPE GFAGKCCEID TRAT I

I 165 GARSYQVICR DEKTQMIYQQ HQSWLRPVLR SNRVEYCWCN SGRAQCSSVP II 165 GARSYQVICR DEKTQMIYQQ HQSWLRPVLR SNRVEYCWCN SGRAQCSSVP I

VKSCSEPRCF NGGTCQQALY FSDFVCQCPE GFAGKCCEID TRAT IVKSCSEPRCF NGGTCQQALY FSDFVCQCPE GFAGKCCEID TRAT I

I 166 GARSYQVICR DEKTQMIYQQ HQSWLRPVLR SNRVEYCWCN SGRAQCHIVP II 166 GARSYQVICR DEKTQMIYQQ HQSWLRPVLR SNRVEYCWCN SGRAQCHIVP I

VKSCSEPRCF NGGTCQQALY FSDFVCQCPE GFAGKCCEID TRAT IVKSCSEPRCF NGGTCQQALY FSDFVCQCPE GFAGKCCEID TRAT I

I 35 II 35 I

-- 29 DK 175784 B1- 29 DK 175784 B1

Tabel 6-B (fortsat)Table 6-B (continued)

167 GARSYQVICR DEKTQMIYQQ HQSWLRPVLR SNRVEYCWCN SGRAQCHSNP167 GARSYQVICR DEKTQMIYQQ HQSWLRPVLR SNRVEYCWCN SGRAQCHSNP

VKSCSEPRCF NGGTCQQALY FSDFVCQCPE GFAGKCCEID TRATVKSCSEPRCF NGGTCQQALY FSDFVCQCPE GFAGKCCEID TRAT

5 168 GARSYQVICR DEKTQMIYQQ HQSWLRPVLR SNRVEYCWCN SGRAQCHSVD5 168 GARSYQVICR DEKTQMIYQQ HQSWLRPVLR SNRVEYCWCN SGRAQCHSVD

VKSCSEPRCF NGGTCQQALY FSDFVCQCPE GFAGKCCEID TRATVKSCSEPRCF NGGTCQQALY FSDFVCQCPE GFAGKCCEID TRAT

169 GARSYQVICR DEKTQMIYQQ HQSWLRPVLR SNRVEYCWCN SGRAQCHSVP169 GARSYQVICR DEKTQMIYQQ HQSWLRPVLR SNRVEYCWCN SGRAQCHSVP

NKSCSEPRCF NGGTCQQALY FSDFVCQCPE GFAGKCCEID TRATNKSCSEPRCF NGGTCQQALY FSDFVCQCPE GFAGKCCEID TRAT

170 GARSYQVICR DEKTQMIYQQ HQSWLRPVLR SNRVEYCWCN SGRAQCHSVP170 GARSYQVICR DEKTQMIYQQ HQSWLRPVLR SNRVEYCWCN SGRAQCHSVP

10 VDSCSEPRCF NGGTCQQALY FSDFVCQCPE GFAGKCCEID TRAT10 VDSCSEPRCF NGGTCQQALY FSDFVCQCPE GFAGKCCEID TRAT

171 GARSYQVICR DEKTQMIYQQ HQSWLRPVLR SNRVEYCWCN SGRAQCHSVP171 GARSYQVICR DEKTQMIYQQ HQSWLRPVLR SNRVEYCWCN SGRAQCHSVP

VKVCSEPRCF NGGTCQQALY FSDFVCQCPE GFAGKCCEID TRATVKVCSEPRCF NGGTCQQALY FSDFVCQCPE GFAGKCCEID TRAT

172 GARSYQVICR DEKTQMIYQQ HQSWLRPVLR SNRVEYCWCN SGRAQCHSVP172 GARSYQVICR DEKTQMIYQQ HQSWLRPVLR SNRVEYCWCN SGRAQCHSVP

VTSCSEPRCF NGGTCQQALY FSDFVCQCPE GFAGKCCEID TRATVTSCSEPRCF NGGTCQQALY FSDFVCQCPE GFAGKCCEID TRAT

15 173 GARSYQVICR DEKTQMIYQQ HQSWLRPVLR SNRVQYCWCN SGRAQCHSVP15 173 GARSYQVICR DEKTQMIYQQ HQSWLRPVLR SNRVQYCWCN SGRAQCHSVP

VKSCSEPRCF NGGTCQQALY FSDFVCQCPE GFAGKCCEID TRATVKSCSEPRCF NGGTCQQALY FSDFVCQCPE GFAGKCCEID TRAT

174 GARSYQVICR NEKTQMIYQQ HQSWLRPVLR SNRVEYCWCN SGRAQCHSVP174 GARSYQVICR NEKTQMIYQQ HQSWLRPVLR SNRVEYCWCN SGRAQCHSVP

VKSCSEPRCF NGGTCQQALY FSDFVCQCPE GFAGKCCEID TRATVKSCSEPRCF NGGTCQQALY FSDFVCQCPE GFAGKCCEID TRAT

175 GARSYQVICR DEKTQMIYQQ HQSWLRPVLR SNRVEYCWCN SGRAQCHSVP175 GARSYQVICR DEKTQMIYQQ HQSWLRPVLR SNRVEYCWCN SGRAQCHSVP

20 VKSCSEPRCF NGGTCQQAKY FSDFVCQCPE GFAGKCCEID TRAT20 VKSCSEPRCF NGGTCQQAKY FSDFVCQCPE GFAGKCCEID TRAT

176 GARSYQVICR DEKTQMIYQQ HQSWLRPVLR SNRVEYCWCN SGRAQCHSVP176 GARSYQVICR DEKTQMIYQQ HQSWLRPVLR SNRVEYCWCN SGRAQCHSVP

VKSCSEPRCF NGGTCQQALA FSDFVCQCPE GFAGKCCEID TRATVKSCSEPRCF NGGTCQQALA FSDFVCQCPE GFAGKCCEID TRAT

177 GARSYQVICR DEKTQMIYQQ HQSWLRPVLR SNRVEYCWCN SGRAQCHSVP177 GARSYQVICR DEKTQMIYQQ HQSWLRPVLR SNRVEYCWCN SGRAQCHSVP

VKSCSEPRCF NGGTCQQALG FSDFVCQCPE GFAGKCCEID TRATVKSCSEPRCF NGGTCQQALG FSDFVCQCPE GFAGKCCEID TRAT

25 178 GARSYQVICR DEKTQMIYQQ HQSWLRPVLR SNRVEYCWCN SGRAQCHSVP25 178 GARSYQVICR DEKTQMIYQQ HQSWLRPVLR SNRVEYCWCN SGRAQCHSVP

VKSCSEPRCF NGGTCQQALY GSDFVCQCPE GFAGKCCEID TRATVKSCSEPRCF NGGTCQQALY GSDFVCQCPE GFAGKCCEID TRAT

179 GARSYQVICR DEKTQMIYQQ HQSWLRPVLR SNRVEYCWCN SGRAQCHSVP179 GARSYQVICR DEKTQMIYQQ HQSWLRPVLR SNRVEYCWCN SGRAQCHSVP

VKSCSEPRCF NGGTCQQALY ASDFVCQCPE GFAGKCCEID TRATVKSCSEPRCF NGGTCQQALY ASDFVCQCPE GFAGKCCEID TRAT

180 GARSYQVICR DEKTQMIYQQ HQSWLRPVLR SNRVEYCWCN SGRAQCHSVP180 GARSYQVICR DEKTQMIYQQ HQSWLRPVLR SNRVEYCWCN SGRAQCHSVP

30 VKSCSEPRCF NGGTCQQALY FSFFVCQCPE GFAGKCCEID TRAT30 VKSCSEPRCF NGGTCQQALY FSFFVCQCPE GFAGKCCEID TRAT

181 GARSYQVICR DEKTQMIYQQ HQSWLRPVLR SNRVEYCWCN SGRAQCHSVP181 GARSYQVICR DEKTQMIYQQ HQSWLRPVLR SNRVEYCWCN SGRAQCHSVP

VKSCSEGRCF NGGTCQQALY FSDFVCQCPE GFAGKCCEID TRATVKSCSEGRCF NGGTCQQALY FSDFVCQCPE GFAGKCCEID TRAT

3535

I DK 175784 B1 II DK 175784 B1 I

I II I

I Tabel 6-B (fortsat) IIn Table 6-B (continued) I

I 187 GARSYQVICR DEKTQMIYQQ HQSWLRPVLR SNRVEYCWCN SGRAQCHSVP II 187 GARSYQVICR DEKTQMIYQQ HQSWLRPVLR SNRVEYCWCN SGRAQCHSVP I

I VKSCSEPTCF. NGGTCQQALY FSDFVCQCPÉ GFAGKCCEID TRAT IIn VKSCSEPTCF. NGGTCQQALY FSDFVCQCPÉ GFAGKCCEID TRAT I

I ! - 188 GARSYQVICR DEKTQMIYQQ HQSWLRPVLR SNRVEYCWCN SGRAQCHSVP II! - 188 GARSYQVICR DEKTQMIYQQ HQSWLRPVLR SNRVEYCWCN SGRAQCHSVP I

VKSCSEPRCF NGGTCQQALY FSSFVCQCPE GFAGKCCEID TRATVKSCSEPRCF NGGTCQQALY FSSFVCQCPE GFAGKCCEID TRAT

I 189 GARSYQVICR DEKTQMIYQQ HQSWLRPVLR SNRVEYCWCN SGRAQCHSVP - II 189 GARSYQVICR DEKTQMIYQQ HQSWLRPVLR SNRVEYCWCN SGRAQCHSVP - I

VKSCSEPHCF NGGTCQQALY FSDFVCQCPÉ GFAGKCCEID TRAT IVKSCSEPHCF NGGTCQQALY FSDFVCQCPÉ GFAGKCCEID TRAT I

I 190 GARSYQVICR DEKTQMIYQQ HQSWLRPVLR SNRVEYCWCN SGRAQCHSVP II 190 GARSYQVICR DEKTQMIYQQ HQSWLRPVLR SNRVEYCWCN SGRAQCHSVP I

VKSCSEPRCF VGGTCQQALY FSDFVCQCPÉ GFAGKCCEID TRAT IVKSCSEPRCF VGGTCQQALY FSDFVCQCPÉ GFAGKCCEID TRAT I

1010

191 GARSYQVICR DEKTQMIYQQ HQSWLRPVLR SNRVEYCWCN SGRAQCHSVP191 GARSYQVICR DEKTQMIYQQ HQSWLRPVLR SNRVEYCWCN SGRAQCHSVP

VKSCSTPRCF NGGTCQQALY FSDFVCQCPÉ GFAGKCCEID TRATVKSCSTPRCF NGGTCQQALY FSDFVCQCPÉ GFAGKCCEID TRAT

I 192 GARSYQVICR DEKTQMIYQQ HQSWLRPVLR SNRVEYCWCN SGRAQCHSVP II 192 GARSYQVICR DEKTQMIYQQ HQSWLRPVLR SNRVEYCWCN SGRAQCHSVP I

VKSCSQPRCF NGGTCQQALY FStfFVCQCPE GFAGKCCEID TRATVKSCSQPRCF NGGTCQQALY FStfFVCQCPE GFAGKCCEID TRAT

I 193 GARSYQVICR DEKTQMIYQQ HQSWLRPVLR SNRVEYCWCN SGRAQCHSVP II 193 GARSYQVICR DEKTQMIYQQ HQSWLRPVLR SNRVEYCWCN SGRAQCHSVP I

15 VKSCSEPRCF NGGTCQQALY FSDFVCQCPÉ GFAGKCCEID TRAT15 VKSCSEPRCF NGGTCQQALY FSDFVCQCPÉ GFAGKCCEID TRAT

I 194 GARSYQVICR DEKTQMIYQQ HQSWLRPVLR SNRVEYCWCN SGRAQCHSVP II 194 GARSYQVICR DEKTQMIYQQ HQSWLRPVLR SNRVEYCWCN SGRAQCHSVP I

VKSCSEPRCF NGGTCQQALY HSDFVCQCPE GFAGKCCEID TRAT IVKSCSEPRCF NGGTCQQALY HSDFVCQCPE GFAGKCCEID TRAT I

I 195 GARSYQVICR DEKTQMIYQQ HQSWLRPVLR SNRVEYCWCN SGRAQCHSVP II 195 GARSYQVICR DEKTQMIYQQ HQSWLRPVLR SNRVEYCWCN SGRAQCHSVP I

VKSCSEPRCF NGGTCQQALY ISDFVCQCPE GFAGKCCEID TRATVKSCSEPRCF NGGTCQQALY ISDFVCQCPE GFAGKCCEID TRAT

20 I20 I

196 GARSYQVICR DEKTQMIYQQ HQSWLRPVLR SNRVEYCWCN SGRAQCHSVP196 GARSYQVICR DEKTQMIYQQ HQSWLRPVLR SNRVEYCWCN SGRAQCHSVP

VKSCSEPRCF NGGTCQQALY PSDFVCQCPE GFAGKCCEID TRATVKSCSEPRCF NGGTCQQALY PSDFVCQCPE GFAGKCCEID TRAT

I 197 GARSYQVICR DEKTQMIYQQ HQSWLRPVLR SNRVEYCWCN SGRAQCHSVP II 197 GARSYQVICR DEKTQMIYQQ HQSWLRPVLR SNRVEYCWCN SGRAQCHSVP I

I VKSCSEPRCF NGGTCQQALY RSDFVCQCPE GFAGKCCEID TRAT II VKSCSEPRCF NGGTCQQALY RSDFVCQCPE GFAGKCCEID TRAT I

I ς 198 GARSYQVICR DEKTQMIYQQ HQSWLRPVLR SNRVEYCWCN SGRAQCHSVP II ς 198 GARSYQVICR DEKTQMIYQQ HQSWLRPVLR SNRVEYCWCN SGRAQCHSVP I

^ VKSCSEPRCF NGGTCQQALY FIDFVCQCPE GFAGKCCEID TRAT I^ VKSCSEPRCF NGGTCQQALY FIDFVCQCPE GFAGKCCEID TRAT I

I 199 GARSYQVICR DEKTQMIYQQ HQSWLRPVLR SNRVEYCWCN SGRALCHSVP II 199 GARSYQVICR DEKTQMIYQQ HQSWLRPVLR SNRVEYCWCN SGRALCHSVP I

I VKSCSEPRCF NGGTCQQALY FSDFVCQCPÉ GFAGKCCEID TRAT II VKSCSEPRCF NGGTCQQALY FSDFVCQCPÉ GFAGKCCEID TRAT I

I 200 GARSYQVICR DEKTQMIYQQ HQSWLRPVLR SNRVEYCWCN SGRAQCHSVP II 200 GARSYQVICR DEKTQMIYQQ HQSWLRPVLR SNRVEYCWCN SGRAQCHSVP I

I VKSCSEPRCF NGGTCQQELY FSDFVCQCPÉ GFAGKCCEID TRAT II VKSCSEPRCF NGGTCQQELY FSDFVCQCPÉ GFAGKCCEID TRAT I

I 30 II 30 I

2 01 GARSYQVICR DEKTQMIYQQ HQSWLRPVLR SNRVEYCWCN SGRAQCHSVP2 01 GARSYQVICR DEKTQMIYQQ HQSWLRPVLR SNRVEYCWCN SGRAQCHSVP

VKSCSEPRCF NGGTCQQANY FSDFVCQCPÉ GFAGKCCEID TRAT IVKSCSEPRCF NGGTCQQANY FSDFVCQCPÉ GFAGKCCEID TRAT I

I 201 GARSYQVICR DEKTQMIYQQ HQSWLRPVLR SNRVEYCWCN SGRAQCHSVP II 201 GARSYQVICR DEKTQMIYQQ HQSWLRPVLR SNRVEYCWCN SGRAQCHSVP I

VKSCSEPSCF NGGTCQQALY FSDFVCQCPÉ GFAGKCCEID TRAT IVKSCSEPSCF NGGTCQQALY FSDFVCQCPÉ GFAGKCCEID TRAT I

I 35 II 35 I

HH

31 DK 175784 B131 DK 175784 B1

Proteiner ifølge opfindelsen, der har en eller flere aminosyresubstitutioner, kan betegnes ved en tredelt kode som ovenfor beskrevet. Det vil naturligvis forstås, at mere end en wt-aminosyre kan være erstattet. Ved 5 betegnelse af forbindelser med sådanne N-terminusser angives antallet af substitutioner ved "sn", hvor "n" er antallet af aminosyrer, der er erstattet, f.eks. med erstatnings-aminosyrer som de, der er vist i tabel 6-A.Proteins of the invention having one or more amino acid substitutions may be designated by a three-part code as described above. Of course, it will be understood that more than one wt amino acid may be replaced. By designating compounds with such N-terminuses, the number of substitutions is indicated by "sn", where "n" is the number of amino acids replaced, e.g. with substitute amino acids such as those shown in Table 6-A.

F.eks. betegner N-terminus nr. N24451 N-terminus 144 som 10 vist i tabel 6-B, medens N-terminus' nr. N14454 betegner N-terminussen, hvori R-23 er erstattet med G, og de følgende tre wt-aminosyrer er erstattet med andre aminosyrer.Eg. denotes N-terminus # N24451 N-terminus 144 as shown in Table 6-B, whereas N-terminus # N14454 denotes the N-terminus wherein R-23 is replaced by G and the following three wt amino acids are replaced with other amino acids.

Proteiner ifølge denne udførelsesform indeholdende flere aminosyresubstitutioner kan betegnes ved en række 15 af N-terminusbetegnelser, der viser specifikke erstatninger, på følgende måde:Proteins of this embodiment containing multiple amino acid substitutions may be designated by a series of 15 N-terminus designations showing specific substitutions as follows:

Illustrative forbindelser med flere N-terminale substitutioner, hvor Asn-117 er erstattet med Gin, og Arg-275 er erstattet med Thr: 20 Substitutioner:Illustrative compounds with multiple N-terminal substitutions, where Asn-117 is replaced by Gin and Arg-275 is replaced by Thr: 20 Substitutions:

Forbindelse nr. wt erstatningConnection No. wt replacement

2-16/N-161,N-165/Thr R-40 S2-16 / N-161, N-165 / Thr R-40 S

H-44 SH-44 S.

2-16/N-159,N-161/Thr S-38 P2-16 / N-159, N-161 / Thr S-38 P

25 R-40 S25 R-40 S

2-16/N-161,N-163/Thr R-40 S2-16 / N-161, N-163 / Thr R-40 S

Q-42 LQ-42 L

2-16/N-161,N-172/Thr R-40 S2-16 / N-161, N-172 / Thr R-40 S

K-49 -TK-49 -T

3 03 0

2-16/N-165,N-170/Thr H-44 S2-16 / N-165, N-170 / Thr H-44 S

K-49 DK-49 D

2-16/N-173,N^165/Thr E-32 Q2-16 / N-173, N ^ 165 / Thr E-32 Q

H-44 SH-44 S.

35 2-16/N-165,N-172/Thr H-44 S2-16 / N-165, N-172 / Thr H-44 S

K-49 TK-49 T

2-16/N-148,N-151/Thr R-27 S2-16 / N-148, N-151 / Thr R-27 S

R-30 SR-30 S

I DK 175784 B1 II DK 175784 B1 I

I 32 II 32 I

I 2-16/N-161,N-170/Thr R-40 S II 2-16 / N-161, N-170 / Thr R-40 S I

I i K-49 D II in K-49 D I

I : 2-16/N-153,Ν-161/Thr E-32 S II: 2-16 / N-153, Ν-161 / Thr E-32 S I

I : R-40 S II: R-40 S I

I : 5 2-16/N-175,N-176/Thr L-66 K II: 5 2-16 / N-175, N-176 / Thr L-66 K I

Y-67 A IY-67 A I

I 2-16/N-176,N-17S/Thr Y-67 A II 2-16 / N-176, N-17S / Thr Y-67 A I

I F-68 G II F-68 G I

I 2-16/N-188,N-201/Thr L-66 N II 2-16 / N-188, N-201 / Thr L-66 N I

I 10 D-70 S II 10 D-70 S I

I 2-16/N-189,Ν-190/Thr R-55 Η II 2-16 / N-189, Ν-190 / Thr R-55 Η I

Η N-58 V IΗ N-58 V I

HH

I 2-16/N-191,N-189/Thr E-53 T II 2-16 / N-191, N-189 / Thr E-53 T I

R-55 Η IR-55 Η I

I 15 2-16/N-193,Ν-192/Thr K-49 Η II 15 2-16 / N-193, Ν-192 / Thr K-49 Η I

E-53 Q IE-53 Q I

I . 2-16/N-161,N-175/Thr R-40 S II. 2-16 / N-161, N-175 / Thr R-40 S I

L-66 K IL-66 K I

I 2-16/N-148,Ν-194/Thr R-27 S II 2-16 / N-148, Ν-194 / Thr R-27 S I

20 F-68 Η I20 F-68 Η I

I 2-16/N-144,Ν-195/Thr R-23 G II 2-16 / N-144, Ν-195 / Thr R-23 G I

F-68 IF-68 I

I 2-16/N-151,Ν-196/Thr R-30 S II 2-16 / N-151, Ν-196 / Thr R-30 S I

F-68 P IF-68 P I

I 25 II 25 I

2-16/N-161,N-198/Thr R-40 S2-16 / N-161, N-198 / Thr R-40 S

S-69 I IS-69 I I

I 2-15/N-199,Ν-200/Thr Q-42 L II 2-15 / N-199, Ν-200 / Thr Q-42 L I

A-65 E IA-65 E I

I 2-16/N-161,N-197/Thr R-40 S II 2-16 / N-161, N-197 / Thr R-40 S I

30 F-68 R I30 F-68 R I

I 35 II 35 I

33 a DK 175784 B133 and DK 175784 B1

En undergruppe af særlig interesse er karakteriseret ved erstatning af en eller flere af Y-67 til S-69, med eventuel udeladelse af og/eller erstatning af en eller flere aminosyrer fra Arg-23 til 5 L-66, med modifikation som ovenfor beskrevet ved et eller flere glycosyleringssteder og eventuelt ved Arg 275.A subgroup of particular interest is characterized by replacement of one or more of Y-67 to S-69, with possible deletion and / or replacement of one or more amino acids from Arg-23 to 5 L-66, with modification as described above. at one or more glycosylation sites and optionally at Arg 275.

I et aspekt af opfindelsen indeholder proteinerne mindst én såkaldt "kompleks kulhydrat"-sukkerdel, som 10 er karakteristisk for pattedyr-glycoproteiner. Som eksemplificeret mere detaljeret nedenfor kan sådanne "komplekst kulhydrat"-glycoproteiner fremstilles ved ekspression af et DNA-molekyle, der koder for den Ønskede polypeptidsekvens i pattedyr-værtsceller. Egnede patte- i I15 dyr-værtsceller og fremgangsmåder til transformation, j dyrkning, forstærkning, screening og produktproduktion og -rensning er kendte. Se f.eks. Gething og Sambrook,In one aspect of the invention, the proteins contain at least one so-called "complex carbohydrate" sugar moiety which is characteristic of mammalian glycoproteins. As exemplified in more detail below, such "complex carbohydrate" glycoproteins can be produced by expression of a DNA molecule encoding the desired polypeptide sequence in mammalian host cells. Suitable mammalian animal host cells and methods for transformation, culture, amplification, screening and product production and purification are known. See, e.g. Gething and Sambrook,

Nature 293, 620-625 (1981), eller alternativt Kaufman et al., Molecular and Cellular Biology 5^ (7) , 1750-1759 (1985) 20 eller Howley et al., US-patentskrift nr. 4.419.446.Nature 293, 620-625 (1981), or alternatively Kaufman et al., Molecular and Cellular Biology 5 (7), 1750-1759 (1985) or Howley et al., U.S. Patent No. 4,419,446.

Et yderligere aspekt af opfindelsen involverer t-PA varianter soro defineret ovenfor, hvori hver kulhydratdel er en forarbejdet form af det oprindelige dolicol--bundne oligosaccharid, som er karakteristisk for insekt-25 celle-producerede glycoproteiner, i modsætning til en "komplekst kulhydraf-substituent, som er karakteristisk for pattedyr-glycoproteiner, herunder pattedyr-afledt t-PA. Sådan glycosylering af insektcelle-type betegnes i den foreliggende beskrivelse "høj-mannose"-kulhydrat 33 for enkeltheds skyld. I den foreliggende beskrivelse er komplekse kulhydrater og høj-mannose-kulhydrater defineret som i Kornfeld et al., Ann. Rev. Biochem. 54, 631-64 (1985). "Høj-mannose"-varianter ifølge opfindelsen er karakteriseret ved et variant-polypeptidskelet som 35 ovenfor beskrevet, der indeholder mindst ét optaget N-bundet glycosyleringssted. Sådanne varianter kanA further aspect of the invention involves t-PA variants soro defined above wherein each carbohydrate moiety is a processed form of the original dolicol-bound oligosaccharide characteristic of insect cell-produced glycoproteins, as opposed to a "complex carbohydrate. Substitute characteristic of mammalian glycoproteins, including mammalian-derived t-PA. Such insect cell type glycosylation is referred to herein as "high-mannose" carbohydrate 33. For simplicity, this specification is complex carbohydrates and high -mannose carbohydrates as defined in Kornfeld et al., Ann. Rev. Biochem. 54, 631-64 (1985) "High mannose" variants of the invention are characterized by a variant polypeptide backbone as described above containing at least one occupied N-linked glycosylation site

I DK 175784 B1 II DK 175784 B1 I

I 34 II 34 I

produceres ved ekspression af en DNA-sekvens, der Iis produced by expression of a DNA sequence which I

koder for varianten i insekt-værtsceller. Egnede Iencodes the variant in insect host cells. Suitable I

insekt-værtsceller samt metoder og materialer til Iinsect host cells as well as methods and materials for I

transformation/transfektion, insektcellekultur, scree- Itransformation / transfection, insect cell culture, scree I

5 ning og produktproduktion og -rensning, som er anvende- I5 and product production and purification, which are used I

lige ved praktisering af dette aspekt af opfindelsen, Ijust by practicing this aspect of the invention, I

er kendte. Glycoproteiner, der er produceret på denne Iare known. Glycoproteins produced on this I

måde, adskiller sig også fra naturligt t-PA og fra Iway, also differs from natural t-PA and from I

t-PA, som er fremstillet hidtil ved rekombinante metoder i It-PA prepared so far by recombinant methods in I

10 pattedyrceller, ved, at varianterne ifølge dette aspekt I10 mammalian cells, in that the variants of this aspect I

I af opfindelsen ikke indeholder terminale sialinsyre- II of the invention does not contain terminal sialic acid

eller galactosesubstituenter på kulhydratdelene eller Ior galactose substituents on the carbohydrate moieties or I

H andre proteinmodifikationer, som er karakteristiske for IH other protein modifications characteristic of I

H pattedyr-afledte glycoproteiner. IH mammal-derived glycoproteins. IN

15 Proteinerne ifølge opfindelsen, som ikke inde- IThe proteins of the invention, which do not contain I

I holder nogen N-bundne kulhydratdele, kan også fremstil- IYou hold some N-bonded carbohydrate moieties, can also produce

les ved ekspression af et DNA-molekyle, der koder for Iis expressed by expression of a DNA molecule encoding I

den ønskede variant, f.eks. forbindelserne 1-6 tilthe desired variant, e.g. compounds 1-6 through

1-11 i tabel 1, i pattedyr-, insekt-, gær- eller I1-11 in Table 1, in mammalian, insect, yeast or I

I 20 bakterie-værtsceller, idet eukaryotiske værtsceller IIn 20 bacterial host cells, with eukaryotic host cells I

I i øjeblikket foretrækkes. Som ovenfor anført er egnede IYou are currently preferred. As noted above, suitable I

pattedyr- og insekt-værtsceller og derudover egnede Imammalian and insect host cells and additionally suitable I

I gær- og bakterie-værtsceller samt metoder og materialer IIn yeast and bacterial host cells as well as methods and materials I

I til transformation/transfektion, celledyrkning, screening II for transformation / transfection, cell culture, screening I

25 og produktproduktion og -rensning, som er anvendelige ved I25 and product production and purification applicable to I

praktisering af dette aspekt af opfindelsen, også kendte. Ipracticing this aspect of the invention, also known. IN

I Desuden, som det vil være klart for en fagmand, IIn addition, as will be apparent to one skilled in the art,

I omfatter opfindelsen også andre t-PA-varianter, der, IThe invention also includes other t-PA variants which, I

I i stedet for aminosyreudeladelse i regionen Val-4 IInstead of amino acid exclusion in the Val-4 I region

I 30 II 30 I

til Val-72, er karakteriseret ved en eller flereto Val-72, is characterized by one or more

aminosyresubstitutioner i denne region, især regionen Iamino acid substitutions in this region, especially region I

I Val-4 til Val-72, eller ved en kombination af udeladelse IIn Val-4 to Val-72, or by a combination of omission I

I og substitution. cDNA, der koder for disse forbindelser, II and substitution. cDNA encoding these compounds, I

I kan let fremstilles, f.eks. ved metoder, der er snævert HYou can easily be prepared, e.g. by methods that are narrow H

35 analoge med mutageneseprocedurerne, som er beskrevet i I35 analogous to the mutagenesis procedures described in I

I den foreliggende beskrivelse, under anvendelse af passende IIn the present specification, using appropriate I

35 DK 175784 B1 mutagenese-oligonucleotider. cDNA er mutageniseret ved et eller flere af kodonerne for R1» R2 og R2 og/eller Arg-275 og kan indføjes i ekspressionsvektorer og eksprimeres i værtsceller ved metoder beskrevet i den foreliggende be-5 skrivelse. Det antages, at disse proteiner vil have de samme i fordelagtige farmakokinetiske egenskaber som de andre forbindelser ifølge opfindelsen og måske ikke have uheldig anti-genitet ved indgivelse i farmaceutiske præparater, der er analoge med de i den foreligende beskrivelse beskrevne.DK 175784 B1 mutagenesis oligonucleotides. cDNA is mutagenized by one or more of the codons for R1, R2 and R2 and / or Arg-275 and can be inserted into expression vectors and expressed in host cells by methods described in the present specification. It is believed that these proteins will have the same in beneficial pharmacokinetic properties as the other compounds of the invention and may not have adverse antigenicity when administered in pharmaceutical compositions analogous to those described herein.

10 Som det fremgår af det ovenfor anførte, fremstilles alle varianter af opfindelsen ved rekorobinante metoder under anvendelse af DNA-sekvenser, der koder analogene, der også kan indeholde færre eller ingen potentielle glycosyleringssteder i forhold til naturligt humant 15 t-PA og/eller udeladelse eller erstatning af Arg-275.As can be seen from the foregoing, all variants of the invention are prepared by recorobinant methods using DNA sequences encoding the analogs which may also contain fewer or no potential glycosylation sites relative to natural human t-PA and / or omission. or replacement of Arg-275.

Sådanne DNA-sekvenser kan produceres ved konventionel sted-rettet mutagenese af DNA-sekvenser, der koder for t-PA.Such DNA sequences can be produced by conventional site-directed mutagenesis of DNA sequences encoding t-PA.

DNA-sekvenser, der koder for t-PA, er blevet 20 klonet og karakteriseret, se f.eks. D. Pennica et al..DNA sequences encoding t-PA have been cloned and characterized, see e.g. D. Pennica et al.

Nature (London) 301, 214 (1983) og R. Kaufman et al..Nature (London) 301, 214 (1983) and R. Kaufman et al.

Mol. Cell. Bol. 5 (7), 1750 (1985). En klon, ATCC 39891, som koder for en thrombolytisk aktiv t-PA-analog, er enestående ved, at den indeholder en Met-rest ved posi-25 tion 245 i stedet for Val. Typisk koder DNA-sekvensen for en ledende sekvens, som forarbejdes, dvs. genkendes og fjernes af værtscelle, efterfulgt af aminosyreresterne af proteinet med fuld længde, begyndende med Gly-Ala-Arg-Ser-Tyr-Gln. Afhængigt af mediet og 3 0 værtscellen, hvori DNA-sekvensen eksprimeres, kan det således producerede protein begynde med Gly-Ala-Arg--aminoterminussen eller være forarbejdet yderligere, således at de første tre aminosyrerester er fjernet pro-teolytisk. I sidstnævnte tilfælde har det modne protein 35 en aminoterminus omfattende Ser-Tyr-Gln-Leu. t-PA-varian-Moth. Cell. Bol. 5 (7), 1750 (1985). A clone, ATCC 39891, which encodes a thrombolytically active t-PA analog, is unique in that it contains a Met residue at position 245 instead of Val. Typically, the DNA sequence encodes a conductive sequence which is processed, i.e. is recognized and removed by the host cell, followed by the amino acid residues of the full-length protein, starting with Gly-Ala-Arg-Ser-Tyr-Gln. Depending on the medium and the host cell in which the DNA sequence is expressed, the protein thus produced may begin with the Gly-Ala-Arg amino terminus or be further processed such that the first three amino acid residues are proteolytically removed. In the latter case, the mature protein 35 has an amino terminus comprising Ser-Tyr-Gln-Leu. t-PA variants

I DK 175784 B1 II DK 175784 B1 I

I 36 II 36 I

I ter, som har en af disse aminoterxninusser, er thrombo- IIteres having one of these amino acids are thrombo-I

I lytisk aktive og er omfattet af opfindelsen. Varianter IIn lytically active and encompassed by the invention. Variants I

I ifølge den foreliggende opfindelse omfatter også pro- II according to the present invention also comprises pro-I

I teiner, der enten har Met2^g eller Va^^g samt andre IIn teens that have either Met2 ^ g or Va ^^ g as well as others I

5 varianter, f.eks. allele variationer eller andre I5 variants, e.g. allele variations or other I

I aminosyresubstitutioner eller -udeladelser, der stadig IIn amino acid substitutions or deletions that still I

I bibeholder thrombolytisk aktivitet. IYou maintain thrombolytic activity. IN

I Som ovenfor nævnt kan DNA-sekvenser, der koder for J II As mentioned above, DNA sequences encoding J I

I de enkelte varianter ifølge opfindelsen, fremstilles ved | IIn the individual variants according to the invention, is produced by | IN

I 10 konventionel sted-rettet mutagenese af en DNA-sekvens, IIn 10 conventional site-directed mutagenesis of a DNA sequence, I

der koder for humant t-PA eller analoge eller varianter Iencoding human t-PA or analogs or variants I

I deraf. Sådanne mutagenese-metoder omfatter M-13 systemet IIn that. Such mutagenesis methods include the M-13 system I

I ifølge Zoller og Smith, Nucleic Acids Res. 10^, IAccording to Zoller and Smith, Nucleic Acids Res. 10 ^, i

I 6487-6500 (1982); Methods Enzymol. 100, 468-500 II 6487-6500 (1982); Methods Enzymol. 100, 468-500 I

I 15 (1983); og DNA 3, 479-488 (1984), hvor der anvendes II 15 (1983); and DNA 3, 479-488 (1984) using I

I enkeltstrenget DNA, og metoden ifølge Morinaga et al., IIn single-stranded DNA, and the method of Morinaga et al., I

I Bio/technology, 636-639 (juli 1984), hvor der anvendes IIn Bio / technology, 636-639 (July 1984), where I

I heteroduplex-DNA. Flere eksempler på oligonucleotider, IIn heteroduplex DNA. Several examples of oligonucleotides, I

I der anvendes ved sådanne metoder til at bevirke ude- IIt is used in such methods to effect outside

I 20 ladeiser i N-terminussen eller til f.eks. at omdanne IIn 20 charging terminals at the N-terminus or for e.g. to transform you

I en asparaginrest til threonin eller glutamin, er vist IIn an asparagine residue for threonine or glutamine, I

I i tabel 7. Det vil naturligvis forstås, at DNA, der IIn Table 7. Of course, it will be understood that the DNA that I

I koder for hvert af glycoproteinerne ifølge opfindelsen, j II encode each of the glycoproteins of the invention, j I

kan produceres på analog måde, således som det vil Ican be produced in an analogous manner, as you will

25 være kendt af fagmanden, ved sted-rettet mutagenese I25 is known to those skilled in the art, by site-directed mutagenesis I

H under anvendelse af et eller flere passende udvalgte IH using one or more suitably selected I

H oligonucleotider. Ekspression af DNA på konventionel IH oligonucleotides. Expression of DNA on Conventional I

måde i pattedyr-, gær-, bakterie- eller insekt-værts- Imanner in mammalian, yeast, bacterial or insect host I

I cellesystemer giver den ønskede variant. Pattedyr- IIn cell systems, give the desired variant. Mammal I

I 30 -ekspressionssystemer og de derved opnåede varianter IIn 30 expression systems and the variants thus obtained I

I foretrækkes i øjeblikket. IYou are currently preferred. IN

I Pattedyrcelle-ekspressionsvektorerne, der er be- IIn the mammalian cell expression vectors that are involved

I skrevet i den foreliggende beskrivelse, kan syntetiseres IAs written in the present specification, I can be synthesized

H ved metoder, der er velkendte af fagmanden. Komponenterne IH by methods well known to those skilled in the art. The components I

I 35 af vektorerne, såsom bakterie-replikoner, selektions- IIn 35 of the vectors, such as bacterial replicons, selection I

IIN

gener7 enhancere, promotorer og lignende kan fås fra j Igener7 enhancers, promoters and the like are available from j I

I II I

I i II i I

37 DK 175784 B1 naturlige kilder eller syntetiseres ved kendte procedurer, jfr. Kaufman et al., J. Mol. Biol. 159, 51-521 (1982);37 DK 175784 B1 natural sources or synthesized by known procedures, cf. Kaufman et al., J. Mol. Biol. 159, 51-521 (1982);

Kaufmann, Proc. Natl. Acad. Sci. J32, 689-693 (1985) .Kaufmann, Proc. Natl. Acad. Sci. J32, 689-693 (1985).

Etablerede cellelinier, herunder transformerede 5 cellelinier, er egnede som værtsceller. Normale diploide celler, cellestammer fremkommet ved in vitro-dyrkning af primært væv samt primære eksplantater (herunder relativt udifferentierede celler, såsom hematopoetiske stamceller) er også egnede- Celler, som påtænkes anvendt, behøver ikke at være 10 genotypisk defekte i selektionsgenet, sålænge selektionsgenet fungerer dominant.Established cell lines, including transformed 5 cell lines, are suitable as host cells. Normal diploid cells, cell strains produced by in vitro culture of primary tissue as well as primary explants (including relatively undifferentiated cells, such as hematopoietic stem cells) are also suitable. Cells envisaged need not be genotypically defective in the selection gene as long as the selection gene functions. dominant.

Værtscellerne vil fortrinsvis være etablerede pattedyr-cellelinier. Til stabil integrering af vektor--DNA i chromosom-DNA og til efterfølgende forstærkning af 15 det integrerede vektor-DNA, begge dele ved konventionelle metoder, foretrækkes i øjeblikket CHO-celler (ovarieceller af kinesisk hamster). Alternativt kan vektor--DNA omfatte det hele eller en del af kvæg-papillomvirus--genomet (Lusky et al., Cell, 36, 391-401 (1984) og 20 bæres i cellelinier, såsom C127-museceller, som stabilt episomalt element. Andre anvendelige pattedyr-cellelinier er f.eks. HeLa, COS-l-abeceller, muse-L-929-celler, 3T3--linier afledt af Swiss-, Balb-c- eller NIH-mus, BHK- eller HaK-hamstercellelinier og lignende.The host cells will preferably be established mammalian cell lines. For stable integration of vector DNA into chromosome DNA and for subsequent amplification of the integrated vector DNA, both by conventional methods, CHO cells (Chinese hamster ovary cells) are currently preferred. Alternatively, vector DNA may comprise all or part of the bovine papilloma virus genome (Lusky et al., Cell, 36, 391-401 (1984) and 20 carried in cell lines such as C127 mouse cells as stable episomal element Other useful mammalian cell lines are, for example, HeLa, COS-1 monkey cells, mouse L-929 cells, 3T3 lines derived from Swiss, Balb-c or NIH mice, BHK or HaK- hamster cell lines and the like.

25 Stabile transformanter screenes derefter for ekspression af produktet ved immunologiske eller enzymatiske standardbestemmelser. Tilstedeværelsen af DNA, der koder variant-proteinerne, kan påvises ved standardprocedurer, såsom Southern blotting. Transient 30 ekspression af DNA, der koder varianterne, i dagene efter indføringen af ekspressionsvektor-DNA i egnede værtsceller, såsom COS-l-abeceller, måles uden selektion via aktivitet eller immunologisk bestemmelse af proteinerne i kulturmediet.Stable transformants are then screened for expression of the product by standard immunological or enzymatic assays. The presence of DNA encoding the variant proteins can be detected by standard procedures such as Southern blotting. Transient expression of DNA encoding the variants in the days following the introduction of expression vector DNA into suitable host cells, such as COS-1 monkey cells, is measured without selection via activity or immunological determination of the proteins in the culture medium.

3535

I DK 175784 B1 II DK 175784 B1 I

IIN

I Når der er tale om bakteriel ekspression, kan IIn the case of bacterial expression, you can

DNA, der koder for varianten, modificeres yderligere til IDNA encoding the variant is further modified to I

at indeholde anderledes kodoner til bakteriel ekspression, Ito contain different codons for bacterial expression, I

således som det er kendt, og forbindes fortrinsvis Ias is known and preferably connected I

5 operativt i ramme til en nucleotidsekvens, der koder I5 operatively in the framework of a nucleotide sequence encoding I

for et sekretorisk leder-polypeptid, der muliggør Ifor a secretory leader polypeptide enabling I

bakteriel ekspression, sekretion og forarbejdning af Ibacterial expression, secretion and processing of I

det modne variant-protein, ligeledes som kendt. Forbin- Ithe mature variant protein, also known. Connect I

I delserne, der eksprimeres i pattedyr-, insekt-, gær- eller IIn the expressions expressed in mammalian, insect, yeast or I

10 bakterie-værtsceller, kan derefter udvindes, renses og/- I10 bacterial host cells can then be recovered, purified and / - I

eller karakteriseres med hensyn til fysisk-kemiske, Ior characterized in terms of physicochemical, I

I biokemiske og/eller kliniske parametre, alt ifølge IIn biochemical and / or clinical parameters, all according to I

kendte metoder. Iknown methods. IN

I Disse forbindelser har vist sig at binde til IThese compounds have been shown to bind to I

I 15 monoklonale antistoffer rettet mod humant t-PA og IIn 15 monoclonal antibodies directed against human t-PA and I

kan således udvindes og/eller renses ved immunoaffi- Ican thus be recovered and / or purified by immunoaffinity

I nitetschromatografi under anvendelse af sådanne anti- IIn chromatography using such anti-I

stoffer. Endvidere har disse forbindelser enzymatisk Isubstances. Furthermore, these compounds have enzymatic I

I aktivitet af t-PA-type, dvs. forbindelserne ifølge IIn t-PA type activity, i.e. the compounds of I

I 20 opfindelsen aktiverer effektivt plasminogen i nærværelse IIn the invention efficiently activates plasminogen in presence I

I af fibrin til fremkaldelse af fibrinolyse, som målt ved II of fibrin to induce fibrinolysis, as measured by I

I en indirekte bestemmelse under anvendelse af det plasmin- IIn an indirect assay using the plasmin I

I -chromogene substrat S-2251, således som det er kendt. IIn chromogenic substrate S-2251, as is known. IN

I Opfindelsen omfatter også præparater til IThe invention also includes compositions for I

25 thrombolytisk behandling, der omfatter en terapeutisk I25 thrombolytic treatment comprising a therapeutic I

I effektiv mængde af en variant som beskrevet ovenfor i IIn effective amount of a variant as described above in I

I blanding med en farmaceutisk acceptabel, parenteral IIn admixture with a pharmaceutically acceptable parenteral I

I bærer. Sådanne præparater kan anvendes på samme måde IYou carry. Such compositions may be used in the same manner

som beskrevet for humant t-PA og vil være anvendelige Ias described for human t-PA and will be useful I

I 30 hos mennesker og dyr, såsom hunde, katte og andre IIn humans and animals, such as dogs, cats and others

pattedyr, der vides at være udsat for thrombotiske Imammals known to be thrombotic

I hjerte-karproblemer. Det forudses, at præparaterne IIn cardiovascular problems. It is envisaged that the compositions I

vil blive anvendt til både behandling og - ønskeligt - Iwill be used for both treatment and - desirably - I

I til forebyggelse af thrombotiske tilstande. Den nøjagtige II for the prevention of thrombotic conditions. The exact I

I 35 dosering og metoden til indgivelse vil blive fastlagt II dosage and the method of administration will be determined

I af lægen afhængigt af styrken og den farmakokinetiske II by the doctor depending on the strength and pharmacokinetic I

profil af den anvendte forbindelse samt af forskellige Iprofile of the compound used as well as of various I

39 DK 175784 B1 faktorer, der modificerer virkningerne af lægemidlerne, f.eks. legemsvægt, køn, diæt, indgivelsestidspunkt, lægemiddelkombination, reaktionsfølsomheder og tilstandens sværhedsgrad.B1 factors that modify the effects of the drugs, e.g. body weight, gender, diet, time of administration, drug combination, response sensitivities, and severity of the condition.

5 I de følgende eksempler illustreres udførelses former for opfindelsen. Det vil forstås, at disse eksempler er illustrerende, og opfindelsen er ikke begrænset til disse udover, hvad der er anført i kravene.5 The following examples illustrate embodiments of the invention. It will be understood that these examples are illustrative and the invention is not limited to these except as set forth in the claims.

I hvert af eksemplerne med insektcelle-ekspres-10 sion er det anvendte kernepolyedervirus · L-l-varianten af Autographa californica, og den anvendte insektcellelinie er Spodoptera frugiperda IPLB-SF21-cellelinien (J.L. Vaughn et al., In Vitro (1977) 13, 213-217).In each of the examples of insect cell expression, the core polyhedral virus used is the L1 variant of Autographa californica, and the insect cell line used is the Spodoptera frugiperda IPLB-SF21 cell line (JL Vaughn et al., In Vitro (1977) 13, 213 -217).

Celle- og virusmanipulationerne sker som beskrevet i 15 litteraturen (G.D. Pennock et al., (se ovenfor), D.W. Miller, P. Safer og L.K. Miller, Genetic Engineering, s. 277-298, J.K. Setlow og A. Hollaender, eds. Plenum Press, 1986). RF-ml3-vektorerne, mpl8 og mp 11, er kommercielt tilgængelige fra 20 New England Biolabs. Imidlertid vil en fagmand forstå, at andre viruser, stammer, værtsceller, promotorer og vektorer indeholdende det relevante cDNA som ovenfor omtalt også kan anvendes ved praktiseringen af enhver udførelsesform for opfindelsen. De anvendte 25 DNA-manipulationer sker, medmindre der udtrykkelig er anført andet, ifølge Maniatis et al., Molecular Cloning: A Laboratory Manual (Cold Spring Harbor, NY 1982).The cell and virus manipulations occur as described in the literature (GD Pennock et al., (See above), DW Miller, P. Safer and LK Miller, Genetic Engineering, pp. 277-298, JK Setlow and A. Hollaender, eds. Plenum Press, 1986). The RF-ml3 vectors, mpl8 and mp11, are commercially available from 20 New England Biolabs. However, one skilled in the art will appreciate that other viruses, strains, host cells, promoters and vectors containing the relevant cDNA as discussed above can also be used in the practice of any embodiment of the invention. The 25 DNA manipulations used unless explicitly stated otherwise, according to Maniatis et al., Molecular Cloning: A Laboratory Manual (Cold Spring Harbor, NY 1982).

30 3530 35

I DK 175784 B1 II DK 175784 B1 I

I 40 II 40 I

I 7: Eksempler på oligonucleotider til mutagenese IExamples of oligonucleotides for mutagenesis I

nr. sekvens .mutation INo. sequence .mutation I

I 5 1. ACC AAC TGG ACC AGC AGC GCG Asn117-»Thr II 5 1. ACC AAC TGG ACC AGC AGC GCG Asn117- »Thr I

2. CTAC TTT GGG ACT GGG TCA GC Asn184-*Thr I2. CTAC TTT GGG ACT GGG TCA GC Asn184- * Thr I

I 3. GTGCACCAACTGGCAGAGCAGCGCGTTGGC Asn117->Gln II 3. GTGCACCAACTGGCAGAGCAGCGCGTTGGC Asn117-> Gln I

I 4. CAACTGGCAGAGCAGCG (#3)* II 4. CAACTGGCAGAGCAGCG (# 3) * I

5. ACTGCTACTTTGGGCAGGGGTCAGCCTACC Asn134-►Gin I5. ACTGCTACTTTGGGCAGGGGTCAGCCTACC Asn134-►Gin I

I 10 6. CTTTGGGCAGGGGTCAG (#5)* II 10 6. CTTTGGGCAGGGGTCAG (# 5) * I

I 7. CATTTACTTCAGAGAACAGTC Asn4 48->Gln II 7. CATTTACTTCAGAGAACAGTC Asn4 48-> Gln I

I 8. GGA GCC AGA TCT TAC CAA GTG ATC TGC.AGC (Δ FBR) II 8. GGA GCC AGA TCT TAC CAA GTG ATC TGC.AGC (Δ FBR) I

GAG CCA AGG TGT TTC AAC GGG GGC IGAG CCA AGG TGT TTC AAC GGG GGC I

I 9. TGATC TGCAAGC GAG CC (#8)* II 9. TGATC TGCAAGC GAG CC (# 8) * I

I 15 10. A AGA GGA GCC AGA TCT TAC CAA GTG II 15 10. A AGA GGA GCC AGA TCT TAC CAA GTG I

ATCaGAT ACC AGG GCC ACG TGC TAC GAG (&FBR/EGF) IATCaGAT ACC AGG GCC ACG TGC TAC GAG (& FBR / EGF) I

I .11. CAA GTG ATCAGAT ACC AG (#10)* II .11. CAA GTG ATCAGAT ACC AG (# 10) * I

I 12. TCA GTG CCT GTC AAA AGTaACC AGG GCC II 12. TCA GTG CCT GTC AAA AGTaACC AGG GCC I

ACG TGC TAC (Δ EGF) IACG TGC TAC (Δ EGF) I

2° I2 ° I

13. GTC AAA AGT*ACC AGG G (#12)* I13. GTC AAA AGT * ACC AGG G (# 12) * I

I 14. GC CAG CCT CAG TTT ^ ATC AAA GGA GGG C (R-275 del.) II 14. GC CAG CCT CAG TTT ^ ATC AAA GGA GGG C (R-275 Part.) I

15_s_CT CAG TTT ACC ATC AAA G_(—» Τ-275Λ I15_s_CT CAG TTT ACC ATC AAA G _ (- »Τ-275Λ I

I II I

I * Anvendt til screening er mutationen anført i parentes II * Used for screening, the mutation is listed in parentheses I

I (når et screening-oligonucleotid ikke er anført, anvendes II (when a screening oligonucleotide is not listed) I is used

I det samme oligonucleotid til mutagenese og screening). IIn the same oligonucleotide for mutagenesis and screening). IN

I Kodoner for erstatnings-aminosyrer er understregede, og * II Replacement amino acid codons are underlined, and * I

I 30 viser udeladelsesstedet. Som det vil forstås af en fagmand, IIn 30 shows the place of omission. As will be understood by one skilled in the art, I

I kan oligonucleotider let konstrueres til anvendelse ved HYou can easily construct oligonucleotides for use at H

I udeladelse af en eller flere aminosyrer eller indføjelse af IIn the deletion of one or more amino acids or the insertion of I

I en anden aminosyre (dvs. erstatningsaminosyre) på et ønsket IIn another amino acid (i.e., substitute amino acid) of a desired I

I sted ved udeladelse af kodonet eller kodonerne eller IInstead of omitting the codon or codons or I

I 35 erstatning med kodonet for den ønskede erstatnings-amino- IIn replacement with the codon for the desired replacement amino I

I syre i oligonucleotidet. Der kan udformes andre mutagenese- IIn acid in the oligonucleotide. Other mutagenesis may be designed

41 DK 175784 B1 -oligonucleotider baseret på en ca. 20-50 nucleotider stor sekvens, der spænder over det ønskede sted, med erstatning eller udeladelse af det eller de oprindelige kodoner som man Ønsker at ændre.41 DK 175784 B1 oligonucleotides based on a ca. 20-50 nucleotides large sequence spanning the desired site, with replacement or omission of the original codon (s) that one wishes to change.

55

Plasmidderivaterplasmid derivatives

Mutagenese af cDNA ved kodoner for de forskellige aminosyrer gennemføres under anvendelse af et passende restriktionsfragment af cDNA i Ml3-plasmider ved metoden 10 ifølge Zollér og Smith..Udeladelser i cDNA gennemføres ved loopout-mutagenese under anvendelse af et passende restriktionsfragment, f.eks. Sacl-fragmentet, af cDNA, enten i M13-vektorer eller ved heteroduplex-loopout i plasmid pSVPA4.Mutagenesis of cDNA by codons for the various amino acids is carried out using an appropriate restriction fragment of cDNA in M13 plasmids by the method of 10 according to Zollér and Smith. Deletions in cDNA are performed by loopout mutagenesis using an appropriate restriction fragment, e.g. The SacI fragment, of cDNA, either in M13 vectors or by heteroduplex loopout in plasmid pSVPA4.

15 Plasmidet pSVPA4 konstrueres for at muliggøre ekspression af t-PA-glycoprotein i pattedyrceller. Dette plasmid fremstilles ved først at fjerne DNA, der koder for SV40 stort T-polypeptid fra plasmidet pspLTS (Z. Zhu et al., J. Virology 5^, 170-180 (1984). Dette 20 gennemføres ved at udføre en total Xho 1-nedbrydning efterfulgt af en delvis Bam-Hl-restriktionsendonuclease--nedbrydning. Regionen, der koder for SV40 stort T i pspLT5, erstattes med human t-PA-kodende sekvens ved at ligere et cohæsivt Sal1/BamHl-t-PA-kodende restrik-25 tionsfragment, isoleret ved nedbrydning af plasmid J205 (ATCC nr. 39568) med Sal I og BamHl, til det oprindelige Xhol/BamHl-spaltede vektor-pspLT5, der fremstilles som ovenfor beskrevet. Som følge heraf vil t-PA blive transkriberet i denne vektor under kontrol af SV40 sen 30 promotor ved indføring i pattedyrceller. Den færdige konstruktion betegnes pSVPA4.15 The plasmid pSVPA4 is engineered to allow expression of t-PA glycoprotein in mammalian cells. This plasmid is prepared by first removing DNA encoding SV40 large T polypeptide from the plasmid pspLTS (Z. Zhu et al., J. Virology 5 ^, 170-180 (1984). This is accomplished by performing a total Xho 1 degradation followed by a partial Bam-HI restriction endonuclease degradation The region encoding SV40 large T in pspLT5 is replaced by human t-PA coding sequence by ligating a cohesive Sal1 / BamH1 t-PA coding restriction fragment isolated by degradation of plasmid J205 (ATCC # 39568) with Sal I and BamH1 to the original XhoI / BamH1 cleaved vector pspLT5 prepared as described above. As a result, t-PA will be transcribed in this vector under the control of SV40 late 30 promoter upon introduction into mammalian cells The final construct is designated pSVPA4.

Plasmid pLDSG er en forstærkelig vektor til ekspression af t-PA i pattedyrceller, såsom CHO-celler. pLDSG indeholder en muse-DHFR-cDNA-transkriptionsenhed, 35 som anvender adenovirus type 2 større sen promotor (MLP), abevirus 40-enhancer (SV40-enhancer) og replikationsstart,Plasmid pLDSG is an amplifiable vector for expression of t-PA in mammalian cells, such as CHO cells. pLDSG contains a mouse DHFR cDNA transcription unit using adenovirus type 2 major late promoter (MLP), monkey virus 40 enhancer (SV40 enhancer), and replication initiation,

I DK 175784 B1 II DK 175784 B1 I

I II I

SV40 sen promotor (med samme orientering som adenovirus- ISV40 late promoter (with the same orientation as adenovirus I

I -MLP), et gen, der koder for tetracyclinresistens, og II -MLP), a gene encoding tetracycline resistance, and I

I et cDNA, der koder for humant t-PA (Val-245) i den rette IIn a cDNA encoding human t-PA (Val-245) in the appropriate I

I orientering i forhold til adenovirus type 2-MLP. Frem- IIn orientation relative to adenovirus type 2 MLP. Forward

I 5 stillingen af pLDSG ud fra pCVSVL2 (ATCC nr. 39813) og IIn the 5 position of pLDSG from pCVSVL2 (ATCC No. 39813) and I

I et t-PA-kodende cDNA er beskrevet detaljeret ligesom IA t-PA coding cDNA is described in detail just as I

I cotransformation med og forstærkning af pLDSG i CHO-celler, IIn cotransformation with and amplification of pLDSG in CHO cells, I

I jfr. Kaufman et al., Mol. and Cell. Bio. 5(7), 1750-1759 II cf. Kaufman et al., Mol. and Cell. Bio. 5 (7), 1750-1759 I

I (1985) . II (1985). IN

I 10 Plasmid pWGSM er identisk med pLDSG, bortset II 10 Plasmid pWGSM is identical to pLDSG except I

I fra at cDNA-indsatsen koder for Val-245-humant t-PA. IIn that the cDNA insert encodes Val-245 human t-PA. IN

I pWSGM kan konstrueres under anvendelse af cDNA fra plas- IIn pWSGM can be constructed using plasmid cDNA

I mid J205 (ATCC nr. 39568) eller pIVPA/1 (ATCC nr. 39891). IIn mid J205 (ATCC No. 39568) or pIVPA / 1 (ATCC No. 39891). IN

I I den foreliggende beskrivelse kan pWGSM og pLDSG anvendes IIn the present specification, pWGSM and pLDSG can be used

I 15 ensbetydende, selvom den førstnævnte vektor som ovenfor IIn 15, even though the former vector as above I

I anført vil give Val-245-proteiner, og den sidstnævnte vil II will give Val-245 proteins and the latter will I

I give Met-245-proteiner. IYou give Met-245 proteins. IN

I pIVPA/1 (ATCC nr. 39891) er en baculovirus- IIn pIVPA / 1 (ATCC No. 39891) is a baculovirus I

I -overføringsvektor indeholdende et t-PA-kodende cDNA. II transfer vector containing a t-PA coding cDNA. IN

I 20 pIVPA/1 og mutageniserede derivater deraf anvendes til IIn 20 pIVPA / 1 and mutagenized derivatives thereof are used for I

I at indføje et ønsket cDNA i et baculovirus-genom, således IIn inserting a desired cDNA into a baculovirus genome, thus I

I at cDNA vil være under transkriptions-kontrol af IIn that the cDNA will be under the transcriptional control of I

I baculovirus-polyhedrin-promotoren. IIn the baculovirus polyhedrin promoter. IN

I 25 Heteroduplex-mutagenese IIn Heteroduplex Mutagenesis I

I Mutagenese via heteroduplex-DNA af specifikke IIn Mutagenesis via heteroduplex DNA of specific I

I områder i t-PA-ekspressionsplasmidet pSVPA4 involverer IIn regions of the t-PA expression plasmid pSVPA4, I

følgende trin: Ithe following steps:

Fremstilling af ampicillinfølsomt pSVPA4-DNA. IPreparation of ampicillin-sensitive pSVPA4 DNA. IN

I 30 1. Plasmid pSVPA4 (15 Mg) lineariseres fuld- IIn 1. Plasmid pSVPA4 (15 Mg) is fully linearized

I stændig med Pvul. Denne blanding ekstraheres med phenol/- IIn constant contact with Pvul. This mixture is extracted with phenol / - I

I chloroform, og DNA udfældes ved anvendelse af to volumener IIn chloroform, and DNA is precipitated using two volumes I

I ethanol indeholdende 0,1 M natriumchlorid. IIn ethanol containing 0.1 M sodium chloride. IN

I 2. DNA resuspenderes i 21 μΐ vand, 1 μΐ dNTB- IIn the 2nd DNA, resuspended in 21 μΐ water, 1 μΐ dNTB-I

I 35 -opløsning (indeholdende 2mM dATP, dGTP, dTTP, dCTP), II solution (containing 2mM dATP, dGTP, dTTP, dCTP), I

I 2,5 pi 10X nick-translationspuffer (0,5 M tris-Cl, IIn 2.5 µl of 10X nick translation buffer (0.5 M tris-Cl, I

43 DK 175784 B1 pH-værdi 7,5, 0,1 M magnesiumsulfat, 10 MM DTT, 500 Mg/ml) og 0,5 μΐ (to enheder) DNA-polymerase j 1-stort fragment (New England Biolabs). Denne blanding inkuberes ved stuetemperatur i 30 minutter og 5 ekstraheres derefter med phenol/chloroform, hvorefter der udfældes med ethanol som ovenfor beskrevet.43 DK 175784 B1 pH 7.5, 0.1 M magnesium sulfate, 10 MM DTT, 500 Mg / ml) and 0.5 μase (two units) DNA polymerase 1 large fragment (New England Biolabs). This mixture is incubated at room temperature for 30 minutes and then extracted with phenol / chloroform, then precipitated with ethanol as described above.

3. Det udfældede DNA resuspenderes til 0,2 fjg/μΐ ved tilsætning af 75 μΐ vand.3. The precipitated DNA is resuspended to 0.2 µg / μΐ by the addition of 75 μΐ of water.

Fremstilling af ampicillinresistent pSVPA4-DNA.Preparation of ampicillin-resistant pSVPA4 DNA.

10 1. Plasmid pSVPA4 (15 Mg) nedbrydes med Sac I, som spalter dette plasmid to gange i den t-PA-kodende sekvens til dannelse af to restriktionsfragmenter, et 1,4 kbp t-PA-kodende restriktionsfragment plus den oprindelige vektor. Efter restriktionsnedbrydning tilsættes der .1. Plasmid pSVPA4 (15 Mg) is digested with Sac I, which cleaves this plasmid twice in the t-PA coding sequence to form two restriction fragments, a 1.4 kbp t-PA coding restriction fragment plus the original vector. After restriction degradation is added.

15 1 μΐ (28 enheder) alkalisk phosphatase fra kalvetarm (Boehringer Mannheim), og derefter inkuberes der ved 37°C i 5 minutter. De to bånd adskilles ved anbringelse af denne blanding på en 0,7%'s agarosegel. Udgangsvektor--restriktionsfragmentet udskæres fra gelen og ekstraheres 20 ved adsorption ved siliciumdioxid ved 4°C efterfulgt af eluering i 50 mM tris/1 mM EDTA ved 37°c i 30 minutter.15 1 μΐ (28 units) of calf intestinal alkaline phosphatase (Boehringer Mannheim), and then incubate at 37 ° C for 5 minutes. The two bands are separated by applying this mixture to a 0.7% agarose gel. The starting vector - restriction fragment is excised from the gel and extracted by adsorption on silica at 4 ° C, followed by elution in 50 mM Tris / 1 mM EDTA at 37 ° C for 30 minutes.

Det eluerede DNA indstilles til en slutkoncentration på 0,2 Mg/Ml.The eluted DNA is adjusted to a final concentration of 0.2 Mg / Ml.

Heteroduplex-annealing.Heteroduplex annealing.

25 1. 6 μΐ (1,2 Mg) ampicillin-følsomt pSVPA4-DNA25 1. 6 μΐ (1.2 Mg) of ampicillin-sensitive pSVPA4 DNA

blandes med 6 Ml (1,2 Mg) ampicillin-resistent pSVPA4-DNA.mixed with 6 Ml (1.2 Mg) of ampicillin-resistant pSVPA4 DNA.

2. Der tilsættes et lige så stort volumen (12 μ1) 0,4 M natriumhydroxidopløsning. Der inkuberes ved stuetemperatur i 10 minutter.2. An equal volume (12 μ1) of 0.4 M sodium hydroxide solution is added. Incubate at room temperature for 10 minutes.

30 3. Der tilsættes langsomt 4,5 volumener (108 μΐ) 0,1 M tris-Cl pH-værdi 7,5/20 mM HC1.3. 4.5 volumes (108 μΐ) of 0.1 M tris-Cl pH 7.5 / 20 mM HCl are slowly added.

4. 50 picomol (5 μΐ) phosphoryleret mutagent oligonucleotid sættes til 45 μΐ af heteroduplex-blan-dingen.4. 50 picomoles (5 μΐ) of phosphorylated mutagenic oligonucleotide are added to 45 μΐ of the heteroduplex mixture.

35 5. Denne blanding inkuberes ved 68°C i 2 timer, hvorefter den langsomt afkøles til stuetemperatur.5. This mixture is incubated at 68 ° C for 2 hours, then slowly cooled to room temperature.

______

I DK 175784 B1 II DK 175784 B1 I

I 44 II 44 I

Mutagenese. IMutagenesis. IN

1. Hver mutagenese-reaktionsblanding indstilles I1. Each mutagenesis reaction mixture is adjusted I

til følgende koncentrationer ved tilsætning af 7 μΐ Ito the following concentrations by adding 7 μΐ I

til heteroduplexblandingerne, 2 mM MgCl/0,2 mM ATP/- Ito the heteroduplex mixtures, 2 mM MgCl / 0.2 mM ATP / - I

I 5 60 μΜ dATP, dTTP, dGTP, dCTP/4 mM DTT/40 enheder/ml II 5 60 μΜ dATP, dTTP, dGTP, dCTP / 4 mM DTT / 40 units / ml I

Klenow-fragment af E. coli-DNA-polymerase X (B.R.L.), IKlenow fragment of E. coli DNA polymerase X (B.R.L.), I

2000 enheder/ml T4 DNA-ligase (N.E.B.). Denne blanding I2000 Units / ml of T4 DNA Ligase (N.E.B.). This mixture I

inkuberes ved stuetemperatur i 2 timer. Iincubate at room temperature for 2 hours. IN

I 2. Reaktionsblandingen ekstraheres derefter med II The reaction mixture is then extracted with I

10 phenol/chloroform og udfældes derefter med ethanol. I10 phenol / chloroform and then precipitated with ethanol. IN

Det udfældede DNA resuspenderes i 12 μΐ 50 mM tris-Cl/- IThe precipitated DNA is resuspended in 12 μΐ 50 mM tris-Cl / - I

1 mM EDTA. 4 μΐ af dette anvendes til transformation af I1 mM EDTA. 4 μΐ of this is used to transform I

I kompetente HBlOl-bakterier. IIn competent HB101 bacteria. IN

I 3. Ampicillin-resistente kolonier screenes med IIn 3. Ampicillin-resistant colonies are screened with I

H £ *5 ^H £ * 5 ^

15 1x10° cpm/ml af et P-mærket screening-oligonucleotid I15 x 10 ° cpm / ml of a P-labeled screening oligonucleotide I

I i 5X SSC, 0,1% SDS, 5X Denhardt’s reagens og 100 μg/ml II in 5X SSC, 0.1% SDS, 5X Denhardt's reagent and 100 µg / ml I

denatureret laksemælk-DNA. Idenatured salmon milk DNA. IN

4. Filtrene vaskes med 5X SSC, 0,1% SDS ved en I4. The filters are washed with 5X SSC, 0.1% SDS at an I

I temperatur 5°C under den beregnede smeltetemperatur af IAt a temperature of 5 ° C below the calculated melting temperature of I

Η ΛΛ oligonucleotidsonden.ΛΛ ΛΛ oligonucleotide probes.

5. DNA fremstilles ud fra positivt hybridise- I5. DNA is prepared from positive hybridisation I

rende kloner og analyseres først ved nedbrydning med Icontaining clones and first analyzed by degradation with I

forskellige restriktionsenzymer og agarosegelelektroforese. Ivarious restriction enzymes and agarose gel electrophoresis. IN

DNA overføres til nitrocellulose, og filtere fremstilles IDNA is transferred to nitrocellulose and filters are prepared

I 25 og hybridiseres til screenings-sonderne for at sikre, IAnd hybridized to the screening probes to ensure, I

at det mutagene oligonucleotid er indført i det korrekte Ithat the mutagenic oligonucleotide is inserted into the correct I

I fragment. IIn fragments. IN

I 6. DNA retransformeres derefter i E. coli, og II 6. DNA is then retransformed into E. coli and I

I ampcillin-resistente kolonier screenes for hybridisering IIn ampcillin-resistant colonies are screened for hybridization I

30 til screening-oligonucleotidet.30 for the screening oligonucleotide.

I 7. De sluttelige mutationer bekræftes ved DNA- II 7. The final mutations are confirmed by DNA-I

-sekvensbestemmelse (Sanger). Isequencing (Singer). IN

I 35 II 35 I

45 DK 175784 B145 DK 175784 B1

Fremstilling af mutageniserede cDNA: M13-metodePreparation of Mutagenized cDNA: M13 Method

Det følgende skematiske restriktionskort viser et cDNA, der koder for humant cPA (ovenfor) med spaltningssteder vist for specifikke endonucleaser (anført 5 nedenfor): 1 ATG i ' i R R Ί i t-R Ί iThe following schematic restriction map shows a cDNA encoding human cPA (above) with cleavage sites shown for specific endonucleases (listed below): 1 ATG i 'i R R Ί i t-R Ί i

Sac Bgl Nar Eco Eco Sac Apa XmaSac Bgl Nar Eco Eco Sac Apa Xma

I II I RI RI I I II II I RI RI I I I

(Sr-al) 10(Sr-al) 10

Startkodonnet ATG og cDNA-regionerne der koder i 1 2 '3The start codon ATG and the cDNA regions encoding in 1 2 '3

for (a), R , R og R er vist. Således kan mutagenese Ifor (a), R, R and R are shown. Thus, mutagenesis I

ved N-terminussen gennemføres under anvendelse af f.eks.at the N-terminus is carried out using e.g.

Sacl-fragmentet eller Bglll/Narl-fragmentet. Mutagenese 1 2 15 ved Arg-275 og/eller ved R og/eller R kan f.eks.The SacI fragment or the BglII / NarI fragment. Mutagenesis 1 2 15 at Arg-275 and / or at R and / or R can e.g.

gennemføres under anvendelse af Sacl-fragmentet eller 3 !is carried out using the Sacl fragment or 3!

Bglll/SacI-fragmentet. Mutagenese ved R kan gennemføres ved anvendelse af et EcoRI/Xmal- eller EcoRI/Apal-fragment.BglII / SacI fragment. Mutagenesis at R can be carried out using an EcoRI / Xmal or EcoRI / Apal fragment.

Valget af restriktionsfragment kan fastlægges på basis 20 af det bekvemme i at anvende særlige vektorer til mutagenese og/eller til ekspressionsvektorkonstruktion.The choice of restriction fragment can be determined on the basis of the convenience of using particular vectors for mutagenesis and / or for expression vector construction.

Generelt kan cDNA-restriktionsfragmentet, der skal mutageniseres, udskæres fra det tilstedeværende cDNA med fuld længde i f.eks. pWGSM, pIVPA/1 eller 25 pSVPA4 under anvendelse af de anførte endonuclease- 1 -enzymer og derefter mutageniseres, f.eks. med oligo-nucleotiderne vist i tabel 7 eller andre oligonucleo-tider, der er udformet til den ønskede mutagenese.In general, the cDNA restriction fragment to be mutagenized can be excised from the full-length cDNA present in e.g. pWGSM, pIVPA / 1 or 25 pSVPA4 using the indicated endonuclease 1 enzymes and then mutagenized, e.g. with the oligo-nucleotides shown in Table 7 or other oligonucleotides designed for the desired mutagenesis.

Eksempler på mutageniserede cDNA-fragmenter, 30 der fcan fremstilles på denne måde, er vist i tabel 8 nedenfor.Examples of mutagenized cDNA fragments prepared in this way are shown in Table 8 below.

3535

I DK 175784 B1 II DK 175784 B1 I

I 46 II 46 I

Tabel 8: Eksempler på mutageniserede cDNA-fragmenter ITable 8: Examples of mutagenized cDNA fragments I

(I) I(I) I

Η IΗ I

I ~ATG “1 i R R Ί i Γ II ~ ATG “1 i R R Ί i Γ I

Sac Bgl Nar Eco Eco Sac ISac Bgl Nar Eco Eco Sac I

5 I II I RI RI I · I5 I II I RI RI I · I

I UD II UD I

I _ATG_- I R R — i Γ II _ATG_- I R R - i Γ I

H 10 Sac Bgl Nar Eco Eco Sac IH 10 Sac Bgl Nar Eco Eco Sac I

I II I RI RI I II II I RI RI I I

I (III) II (III) I

I II I

I 15 r~ATG i i R R1 i Γ II 15 r ~ ATG i i R R1 i Γ I

Sac Bgl Nar Eco Eco SacSac Bgl Nar Eco Eco Sac

I II I RI RI II II I RI RI I

I UV) IIn UV) I

Η IΗ I

I —ATG---f-R1--=-r II —ATG --- f-R1 - = - r I

20 III III20 III III

Sac Bgl Nar Eco Eco Sac ISac Bgl Nar Eco Eco Sac I

I II I RI RI I II II I RI RI I I

I (v) II (v) I

I 25 1 i R1 ί II 25 1 i R1 ί I

Eco Sac Apa Xma(Smal)Eco Sac Apa Xma (Narrow)

RI I I IRI I I I

H * Viser stedet for mutagenese. cDNA-fragmenterne I til IV IH * Displays the site of mutagenesis. cDNA fragments I to IV I

I fremstilles ved at nedbryde pWGSM eller pSVPA4 med Sad,You are prepared by degrading pWGSM or pSVPA4 with Sad,

I 30 indføjelse af Sacl-fragmentet i M13-vektor, mutagenisering IIn inserting the Sacl fragment into M13 vector, mutagenization I

med det eller de ønskede oligonucleotider og nedbrydning Iwith the desired oligonucleotide (s) and degradation (I)

I af mutageniseret Ml3/t-PA-DNA med Sacl. Alternativt kan II of mutagenized M13 / t-PA DNA with Sacl. Alternatively, you can

I I-IV udskæres fra mutageniseret M13/t-PA med Bglll og IIn I-IV, cut from mutagenized M13 / t-PA with BglII and I

I Sacl, og og Bglll/SacI-fragmentet, som koder for peptid- IIn SacI, and and the BglII / SacI fragment encoding peptide I

12 I12 I

35 området, der spænder over N-terminussen, R , R og Arg-275,35, the area spanning the N-terminus, R, R and Arg-275,

kan indføjes i Bglll/SacI-nedbrudt pIVPA. cDNA-fragmentet V Ican be inserted into Bglll / SacI digested pIVPA. cDNA fragment V I

fremstilles som beskrevet i eksempel 2 nedenfor. Iare prepared as described in Example 2 below. IN

47 DK 175784 B147 DK 175784 B1

Efter mutagenese kan fragmentet, med eller uden yderligere mutagenese, derpå udskæres fra Ml3-vektoren og ligeres tilbage i en ekspressionsvektor indeholdende fuldstændigt eller partielt cDNA, som i forvejen er 5 spaltet med det eller de samme enzymer, som er anvendt til udskæring af det mutageniserede fragment fra M13--vektoren. Ved denne metode kan det fuldstændige cDNA, der er mutageniseret som ønsket, samles igen under anvendelse af et eller flere mutageniserede fragmenter 10 som restriktionsfragment-kassetter.Following mutagenesis, the fragment, with or without further mutagenesis, can then be excised from the M13 vector and ligated back into an expression vector containing complete or partial cDNA that is already cleaved with the same enzyme (s) used for excision of the mutagenized fragment from the M13 vector. By this method, the complete cDNA mutagenized as desired can be reassembled using one or more mutagenized fragments 10 as restriction fragment cassettes.

cDNA, der koder for de følgende illustrative forbindelser (se tabellen side 1 og tabel 2.0, 2.5 og 3) kan fremstilles ud fra de mutageniserede fragmenter i tabel 8 på følgende måde: 15cDNA encoding the following illustrative compounds (see Table 1 and Tables 2.0, 2.5 and 3) can be prepared from the mutagenized fragments of Table 8 as follows:

Forbindelse VejConnection Road

D-6, (a) mutageniseret cDNA-fragment ID-6, (a) Mutagenized cDNA fragment I

D-l (fremstillet under anvendelse af D-3 oligonucleotid nr. 8, 10 eller 12) 20 ligeres i Sacl-nedbrudt pSVPA4, eller fragment I udskæres fra mutageniseret M13/t-PA som Bglll/-Sacl-fragmentet, og dette indføjes i Bglll/SacI-nedbrudt pIVPA/1.D1 (prepared using D-3 oligonucleotide # 8, 10 or 12) 20 is ligated into Sacl digested pSVPA4, or fragment I is excised from mutagenized M13 / t-PA as the BglII / SacL fragment and inserted into BglII / SacI-degraded pIVPA / 1.

2525

2-l/N-2l/Arg (b) mutageniseret cDNA-fragment II2-l / N-2l / Arg (b) mutagenized cDNA fragment II

(fremstillet under anvendelse af oligonucleotid nr. 8, 10 eller 12 og derefter oligonucleotid nr. 3) 30 ligeres i Sacl-nedbrudt pSVPA4, eller fragment II udskæres fra mutageniseret Ml3/t-PA som Bglll/SacI-fragmentet, og dette indføjes i Bglll/SacI-nedbrudt 35 pIVPA/1.(prepared using oligonucleotide # 8, 10 or 12 and then oligonucleotide # 3) is ligated into Sacl degraded pSVPA4, or fragment II is excised from mutagenized M13 / t-PA as the BglII / SacI fragment and inserted into the BglII / SacI digested 35 pIVPA / 1.

I DK 175784 B1 II DK 175784 B1 I

I 48 II 48 I

Forbindelse Vej IConnection Road I

I 2-l/N-2l/Arg (c) mutageniseret cDNA-fragment III IIn 2-l / N-2l / Arg (c) mutagenized cDNA fragment III I

I (fremstillet under anvendelse af II (made using I

I oligonucleotid nr. 8, 10 eller 12 IIn oligonucleotide Nos. 8, 10 or 12 I

I 5 og oligonucleotid nr. 5) ligeres i II 5 and oligonucleotide # 5) are ligated in I

I Sacl-nedbrudt pSVPA4, eller frag- IIn Sacl-degraded pSVPA4, or frag- I

ment III udskæres fra mutageniseret Iment III is excised from mutagenized I

I M13/t-PA som Bglll/SacI-fragmentet, IIn M13 / t-PA as the BglII / SacI fragment, I

I og dette indføjes i Bglll/SacI- II and this are inserted into BglII / SacI-I

I 10 -nedbrudt pIVPA/1. IIn 10-digested pIVPA / 1. IN

I 2-3/N-2l/Arg (d) mutageniseret pIVPA/1 eller pSVPA4, IIn 2-3 / N-2l / Arg (d) mutagenized pIVPA / 1 or pSVPA4, I

der er fremstillet via (a), nedbrydes Iproduced via (a), I degrade

med EcoRI 2-3/N- (delvis nedbrydning) Iwith EcoRI 2-3 / N- (partial decomposition) I

15 og Xmal (Smal) eller Apal (fuldstændig I15 and Xmal (Narrow) or Apal (complete I

I nedbrydning) til fjernelse af vild IIn decomposition) to remove wild I

I 3 II 3 I

type-R -kodende region, og dertil Itype-R coding region, and in addition I

I ligeres mutageniseret cDNA-fragment II ligated mutagenized cDNA fragment I

Η V (fremstillet ved anvendelse af IΗ V (made using I

20 oligonucleotid nr. 7) som EcoRI/- I20) as EcoRI / - I

I Apal- eller EcoRI/Xmal- (Smal)- IIn Apal or EcoRI / Xmal- (Narrow) - I

-fragmentet. I-fragment. IN

H 2-4/N-2l/Arg (e) mutageniseret pivPA eller pSVPA IH 2-4 / N-2l / Arg (e) mutagenized pivPA or pSVPA I

25 fremstillet via (c) nedbrydes.med I25 produced via (c) is degraded with I

EcoRI (delvis nedbrydning), og IEcoRI (partial degradation), and I

Xmal (Smal) eller Apal (fuldstændig IXmal (Narrow) or Apal (complete I

nedbrydning) til fjernelse af vild Idecomposition) to remove wild I

I type-R^-kodende region, og dertil IIn type R 2 coding region, and thereto I

H 30 ligeres cDNA-fragment V (fremstillet IH 30 is ligated cDNA fragment V (prepared I

under anvendelse af oligonucleotid Iusing oligonucleotide I

I nr. 7) som EcoRI/Apal- eller IIn # 7) as EcoRI / Apal- or I

I EcoRI/Xmal (Smal)-fragmentet. IIn the Eco RI / Xmal (SmaI) fragment. IN

35 2-5/N-2l/Arg (f) mutageniseret pIVPA eller pSVPA4 I2-5 / N-2l / Arg (f) mutagenized pIVPA or pSVPA4 I

fremstillet via (b) nedbrydes med Iproduced by (b) is decomposed by I

EcoRI (delvis nedbrydning) og IEcoRI (partial degradation) and I

49 DK 175784 B149 DK 175784 B1

Xmal (Smal) eller Apal (fuldstændig nedbrydning) og dertil ligeres muta-geniseret cDNA-fragment V (fremstillet under anvendelse af oligonucleo-5 tid nr. 7) som EcoRI/Apal- ellerXmal (Smal) or Apal (complete degradation), and mutagenized cDNA fragment V (prepared using oligonucleotide # 7) is ligated as EcoRI / Apal or

EcORI/Xmal-(Smal)-fragmentet.EcoRI / XmaI (SmaI) fragment.

2-6/N-21/Arg (g) mutageniseret cDNA-fragment IV2-6 / N-21 / Arg (g) mutagenized cDNA fragment IV

(fremstillet under anvendelse af 10 oligonucleotid nr. 8, 10 eller 12 og oligonucleotid nr. 3 og 5) ligeres i Sacl-nedbrudt pSVPA4, eller fragment IV udskæres fra mutageniseret Ml3/t-PA som Bglll/SacI-fragmentet, 15 og dette ligeres i Bglll/SacI-ned- brudt pIVPA/1.(prepared using 10 oligonucleotide # 8, 10 or 12 and oligonucleotide # 3 and 5) are ligated into Sac1 digested pSVPA4, or fragment IV is excised from mutagenized M13 / t-PA as the BglII / SacI fragment, 15 and this is ligated into BglII / SacI digested pIVPA / 1.

2-7/N-21/Arg (h) mutageniseret cDNA-fragment IV2-7 / N-21 / Arg (h) mutagenized cDNA fragment IV

(fremstillet under anvendelse af 20 oligonucleotid nr. 8, 10 eller 12, og oligonucleotid nr. 3 og 5) ligeres i Sacl-nedbrudt pSVPA4 fremstillet via (d), (e) eller (f), i eller det således producerede frag- 25 ment IV ligeres som Bglll/Sacl- -fragmentet i Bglll/SacI-nedbrudt pIVPA fremstillet via (d) , (e) eller (f).(prepared using 20 oligonucleotide # 8, 10 or 12, and oligonucleotide # 3 and 5) are ligated into Sac1-degraded pSVPA4 prepared via (d), (e) or (f), or the fragment thus produced. 25 IV is ligated as the BglII / SacI fragment of BglII / SacI digested pIVPA prepared via (d), (e) or (f).

30 Plasmiderne pIVPA eller pSVPA4 kan foruden at være anvendelige som ekspressionsvektorer også anvendes som et "depot" ved konstruktion af cDNA, der har enhver ønsket permutation af mutageniserede steder. Således kan "pIVPA/Δ" eller "pSVPA4/£", mutageniserede (via M13 35 eller heteroduplexering) plasmider indeholdende en ønsketIn addition to being useful as expression vectors, the plasmids pIVPA or pSVPA4 can also be used as a "repository" in constructing cDNA having any desired permutation of mutagenized sites. Thus, "pIVPA / Δ" or "pSVPA4 / £", mutagenized (via M13 or heteroduplexing) plasmids containing a desired

I DK 175784 B1 II DK 175784 B1 I

I II I

I modifikation i cDNA-regionen, der koder den N-terminale IIn modification in the cDNA region encoding the N-terminal I

region, nedbrydes med Narl (delvist) og Xmal (Smal) Iregion, degrades with Narl (partially) and Xmal (Narrow) I

(totalt) til fjernelse af cDNA-regionen, der koder I(total) to remove the cDNA region encoding I

H 12 3 IH 12 3 I

for proteinområdet, der spænder over R , R og R .for the protein region spanning R, R and R.

5 Et andet pIVPA- eller pSVPA4-plasmid, der om ønsket' IAnother pIVPA or pSVPA4 plasmid which, if desired, I '

I er mutageniseret (via M13 eller heteroduplexering) IYou are mutagenized (via M13 or heteroduplexing)

I 1 2 3 II 1 2 3 I

ved enhver kombination af Arg-275-, R -, R - og R -by any combination of Arg-275, R -, R - and R -

I -kodende regioner, kan derefter nedbrydes med Narl II-coding regions can then be degraded by Narl I

I (totalt) og Xmal (Smal) (totalt), og Narl/Xmal (Smal)- II (total) and Xmal (Narrow) (total), and Narl / Xmal (Narrow) - I

10 -fragmentet kan derefter identificeres, isoleres og IThe 10 fragment can then be identified, isolated and I

ligeres i Narl/Xmal-(Smal)-nedbrudt pIVPA/^ eller Iis ligated into Narl / Xmal (Smal) -degraded pIVPA / ^ or I

pSVPA4/^ . Sådan anvendelse af Narl/Xmal-(Smal)- IpSVPA4 / ^. How to Use Narl / Xmal- (Narrow) - I

-restriktionsfragmentkassetten muliggør f.eks. kon- IThe restriction fragment cassette enables e.g. con- I

struktion af ønskede mutageniserede cDNA i pIVPA eller Iconstruction of desired mutagenized cDNA in pIVPA or I

15 pSVPA4. Det mutageniserede cDNA kan derefter overføres, IPSVPA4. The mutagenized cDNA can then be transferred, I

f.eks." som en Bglll/Xmal-restriktionsfragmentkassette, Ifor example, "as a BglII / Xmal restriction fragment cassette, I

i Bglll/Xmal-nedbrudt pWGSM til pattedyr-ekspression, Iin BglII / Xmal degraded pWGSM for mammalian expression, I

såfremt det ønskes. Iif desired. IN

I II I

I 25 II 25 I

I 30 II 30 I

i Ii

DK 175784 B1 51DK 175784 B1 51

Eksemplerexamples

Eksempel 1.Example 1

Fremstilling af Gln^j^-udeladelsesvarianter A. Fremstilling af Gln-117-afstumpet cDNA.Preparation of Gln-11 deletion variants A. Preparation of Gln-117 blunt cDNA.

5 cDNA-molekyler, der koder for polypeptidsekvensen af forbindelsen 2-l/N-2l/Arg fremstilles under anvendelse af den oligonucleotid-rettede mutagenesemetode ifølge Zoller og Smith. Nærmere bestemt konstrueres mutagenesevektoren RF 10 M13/t-PA indeholdende t-PA-genet ud fra pattedyr-t-PA-eks-pressionsplasmidet pSVPA4. RF M13/t-PA konstrueres ved først at nedbryde pSVPA4 fuldstændig med restriktionsendonucleasen Sacl. Det ca. 1436 basepar (bp) Sacl-fragment koder for en stor del af polypeptidsekvensen af t-PA og indeholder nucleo-15 tidsevenserne, der koder for de consensus N-bundne glycosyle-ringssteder, der omfatter asparagin i stilling 117, 184 og 218. Dette 1435 bp (i det følgende 1,4 kbp) fragment renses ved præparativ agarosegelelektroforese. ·5 cDNA molecules encoding the polypeptide sequence of the compound 2-1 / N-2l / Arg are prepared using the oligonucleotide-directed mutagenesis method of Zoller and Smith. Specifically, the mutagenesis vector RF 10 M13 / t-PA containing the t-PA gene is constructed from the mammalian t-PA expression plasmid pSVPA4. RF M13 / t-PA is constructed by first degrading pSVPA4 completely with the restriction endonuclease Sac1. It approx. 1436 base pairs (bp) Sac1 fragment encodes a large portion of the polypeptide sequence of t-PA and contains the nucleotide evens encoding the consensus N-linked glycosylation sites comprising asparagine at positions 117, 184 and 218. The 1435 bp (hereafter 1.4 kbp) fragment is purified by preparative agarose gel electrophoresis. ·

Sac I-fragmentet af t-PA-cDNA, der er fremkommet j ! 20 som et Sacl-fragment ovenfor, ligeres til en lineariseret j dobbeltstrenget RF Ml3mpl8-DNA-vektor, der i forvejen er blevet nedbrudt med Sacl. Ligeringsblandingen anvendes til at transformere transformationskompetente JMlOl-bak-terieceller. Ml3-plaques indeholdende t-PA-afledt-DNA 25 produceret af transformerede celler identificeres og isoleres ved analytisk DNA-restriktionsanalyse og/eller plaque-hybridisering. Radiomærkede oligonucleotider (indeholdende ca. 17 enheder, positiv polaritet) afledt fra området mellem Sacl-restriktionsstederne af den t-PA-30 -kodende nucleotidsekvens vist i tabel 1 anvendes som sonder, når filter-hybridisering anvendes til påvisning af virale plaques indeholdende t-PA-DNA. Alle oligonucleotider fremstilles ved automatisk syntese ved hjælp af et Applied Biosystems DNA-synteseapparat ifølge pro-35 ducentens anvisninger.The Sac I fragment of t-PA cDNA obtained j! 20 as a Sacl fragment above, is ligated to a linearized J double stranded RF M13mp18 DNA vector that has been degraded by Sacl previously. The ligation mixture is used to transform transformation-competent JM101 bacterial cells. Ml3 plaques containing t-PA derived DNA produced by transformed cells are identified and isolated by analytical DNA restriction analysis and / or plaque hybridization. Radiolabeled oligonucleotides (containing about 17 units, positive polarity) derived from the region between the SacI restriction sites of the t-PA-30 coding nucleotide sequence shown in Table 1 are used as probes when filter hybridization is used to detect viral plaques containing t PA DNA. All oligonucleotides are prepared by automatic synthesis using an Applied Biosystems DNA synthesizer according to the manufacturer's instructions.

I DK 175784 B1 II DK 175784 B1 I

I 52 II 52 I

Flere af de positive plaques, der påvises ved ISeveral of the positive plaques detected by I

restriktion eller hybridiseringsanalyse, klones yder- Irestriction or hybridization analysis, cloned outer I

I ligere ved konventionel plaque-rensning. Renset M13/t- IIn conventional plaque purification. Purified M13 / t- I

-PA-bakteriofag, der fås ved plaque-rensningsproceduren, I-PA bacteriophage obtained by the plaque purification procedure, I

I 5 anvendes til at inficere JMlOl-celler. Disse inficerede II 5 is used to infect JM10 cells. These infected I

I celler producerer cytoplasmisk dobbeltstrenget "RF" M13/- IIn cells, cytoplasmic double-stranded "RF" produces M13 / - I

I -t-PA-plasmid-DNA. De inficerede celler producerer og- II-t-PA plasmid DNA. The infected cells also produce I

I så bakteriofager i dyrkningsmediet, som indeholder en- IYou saw bacteriophages in the culture medium containing one- I

I keltstrenget DNA, som er komplementært med 1,4 kbp Sad- IIn the cell-stranded DNA, which is complementary to 1.4 kbp Sad-I

I 10 -fragmentet af t-PA og med M13-DNA. Enkeltstrenget DNA IIn the 10 fragment of t-PA and with M13 DNA. Single-stranded DNA I

I renses ud fra de Ml3/t-PA-holdige fager, der isoleres IYou are purified from the M13 / t-PA containing phages that are isolated

fra dyrkningsmediet. Dette enkeltstrengede M13/t-PA-DNA Ifrom the culture medium. This single-stranded M13 / t-PA DNA I

anvendes som en template ved en mutagenesereaktion ved Iused as a template for a mutagenesis reaction at I

I metoden ifølge Zoller and Smith under anvendelse af oli- IIn the method of Zoller and Smith using oil-I

I 15 gonucleotid nr. 3 i tabel VII. Denne mutagenesebegivenhed IIn 15 gonucleotide # 3 of Table VII. This mutagenesis event I

ændrer Asn-kodonnet til et Gln-kodon ved position 117 af Ichanges the Asn codon to a Gln codon at position 117 of I

den derefter opnåede kodende streng af DNA ved ændring af Ithe then obtained coding strand of DNA by changing I

DNA-sekvensen fra "AAC" til "CAG". Efter mutagenesereak- IThe DNA sequence from "AAC" to "CAG". After mutagenesis reaction I

tionen transformeres DNA i bakteriestammen JM101. Til Ition, DNA is transformed into the bacterial strain JM101. To you

20 I20 I

identifikation af mutageniseret cDNA screenes transfor-identification of mutagenized cDNA is screened for transformation.

H mant-plaques ved DNA-hybridisering under anvendelse af j IHuman coat plaques by DNA hybridization using j I

HH

radiomærket oligonucleotid nr. 4 i tabel 7. Alle de ek- i Iradiolabelled oligonucleotide No. 4 in Table 7. All of the I-

sempelvise oligonucleotider i tabel 7 har positiv pola- Iexemplary oligonucleotides in Table 7 have positive pola I

ritet, dvs. udgør dele af en kodende snarere end en ikke- Irity, i.e. constitute parts of a coding rather than a non-I

25 I25 I

-kodende streng af DNA. Alle hybndisermgspositive-coding strand of DNA. All Hybridization Positive

plaques renses yderligere ved efterfølgende sekundære Iplaques are further purified by subsequent secondary I

infektioner af JMlOl-celler med Ml3-fag indeholdende Iinfections of JM10 cells with M13 phage containing I

mutageniseret DNA. Imutagenized DNA. IN

I RF Ml3/t-PA-plasmid-DNA renses ud fra JMlOl-cel- IIn RF M13 / t-PA plasmid DNA is purified from JM101 cell I

30 I30 I

ler inficeret med renset Ml3-fag indeholdende mutageni-clays infected with purified M13 phage containing mutagenic

seret t-PA-cDNA. Det således fremkomne RF Ml3/t-PA-plas- j Iserous t-PA cDNA. The RF M13 / t-PA plasmid thus obtained

I mid indeholder det Gln^7-mutageniserede Sacl-restriktions- 1 IIn mid, it contains Gln ^ 7 mutagenized Sacl restriction 1 I

fragment af t-PA-DNA. Dette mutageniserede restriktions- Ifragment of t-PA DNA. This mutagenized restriction I

fragment kan derefter mutageniseres yderligere, igen ved Ifragment can then be further mutagenized, again by 1

35 I35 I

metoden ifølge Zoller og Smith, men under anvendelse afthe method of Zoller and Smith, but using

oligonucleotiderne, der er beskrevet nedenfor. Oligonu- Ithe oligonucleotides described below. Oligonu- I

53 DK 175784 B1 .53 DK 175784 B1.

i cleotiderne, der er beskrevet nedenfor, er udformet til at fremkalde en udeladelse ("loop out") i cDNA-regionen, der koder for det N-terminale område.in the cleotides described below are designed to induce a loop out in the cDNA region encoding the N-terminal region.

Udeladelsesmutaqense 1; Oligonucleotid nr. 8 i 5 tabel 7 fremkalder en cDNA-udeladeIse, der koder Cys-6 til Ser-50 inklusive. Efter denne anden mutagenesereak-tion transformeres DNA i JMlOl-celler. Til identifikation af mutageniserede cDNA'er screenes transformant-plaques som ovenfor beskrevet, men under anvendelse af radiomær-10 ket oligonucleotid nr. 9 i tabel 7. Hybridiseringsposi-tive plaques kan renses yderligere ved efterfølgende sekundær infektion af JMlOl-celler med M13-fag indeholdende det to gange mutageniserede t-PA-cDNA. cDNA fremstillet som beskrevet nedenfor, der indeholder dette 15 mutageniserede restriktionsfragment, koder for forbindelsen 2-l/N-21/Arg, hvori Ile-5 er kovalent bundet til Cys-51 via en peptidbinding.Omission Mutation 1; Oligonucleotide # 8 in Table 7 elicits a cDNA deletion encoding Cys-6 to Ser-50 inclusive. After this second mutagenesis reaction, DNA is transformed into JM101 cells. For identification of mutagenized cDNAs, transformant plaques are screened as described above, but using radiolabeled oligonucleotide # 9 in Table 7. Hybridization positive plaques can be further purified by subsequent secondary infection of JM101 cells with M13 phage containing the twice-mutagenized t-PA cDNA. The cDNA prepared as described below, containing this mutagenized restriction fragment, encodes the compound 2-1 / N-21 / Arg, wherein Ile-5 is covalently linked to Cys-51 via a peptide bond.

Dette mutageniserede restriktionsfragment kan derefter ligeres tilbage i pattedyr-ekspressionsvektoren pSVPA4 som 20 en Sacl-kassette ved metoder, som er analoge med de i eksempel 3B beskrevne, eller præpareres til indføjelse i insektcelle -ekspressionsvektoren pIVPA/1 (ATCC nr. 39891) som en Bgl II/SacI-kassette afledt af modificeret RF Ml3/t-PA DNA.This mutagenized restriction fragment can then be ligated back into the mammalian expression vector pSVPA4 as a Sacl cassette by methods analogous to those described in Example 3B, or prepared for insertion into the insect cell expression vector pIVPA / 1 (ATCC No. 39891). Bgl II / SacI cassette derived from modified RF M13 / t-PA DNA.

B. Fremstilling af vektorer anvendt til ekspres-25 sion af hø j-mannose-Gln^^-udeladelsesvarianter.B. Preparation of Vectors Used for Expression of High J-Mannose-Gln ^^ Deletion Variants.

Det rensede RF Ml3/t-PA indeholdende det modificerede og afstumpede t-PA-cDNA, fremstillet som ovenfor beskrevet, kan nedbrydes med restriktionsendonuclea-serne Bglll og Sacl. Bglll/SacI-restriktionsfragmentet 30 på ca. 1,2 kbp renses ved konventionel præparativ gel-elektroforese. Det således fremkomne Bglll/SacI-fragment udgør en mutageniseret kassette, som mangler en 5'- og 3'-del af DNA'et, som koder for amino- og carboxytermi-nusserne af det translaterede protein.The purified RF M13 / t-PA containing the modified and blunted t-PA cDNA prepared as described above can be digested with the restriction endonucleases BglII and SacI. The BglII / SacI restriction fragment 30 of ca. 1.2 kbp is purified by conventional preparative gel electrophoresis. The BglII / SacI fragment thus obtained is a mutagenized cassette which lacks a 5 'and 3' portion of the DNA encoding the amino and carboxy termini of the translated protein.

35 Insekt-ekspressionsvektoren pIVPA/1 (ATCC nr. : 39891) indeholder en vild type-t-PA-cDNA-indsats, somThe insect expression vector pIVPA / 1 (ATCC no .: 39891) contains a wild type t-PA cDNA insert which

DK 175784 B1 IDK 175784 B1 I

5454

er operativ bundet til en polyhedrin-promotor sammen Iis operatively linked to a polyhedrin promoter together I

med baculovirus-flankerende DNA-sekvenser. pIVPA/1 ned- Iwith baculovirus flanking DNA sequences. pIVPA / 1 down- I

brydes med Bglll og SacI, hvorved der udskæres en t-PA- Iis broken with BglII and SacI, thereby excising a t-PA-I

-kodende region, der spænder over N-terminussen og R1 I-coding region spanning the N-terminus and R1 I

2 I2 I

5 og R . Bglll/SacI-kassetterne indeholdende de mutageni-5 and R. The BglII / SacI cassettes containing the mutagenic

serede, N-terminalt modificerede t-PA-cDNA-fragmenter IN-terminally modified t-PA cDNA fragments I

kan hver især ligeres til pIVPA/l-ekspressionsvektor-DNA, Ican each be ligated to pIVPA / l expression vector DNA, I

som i forvejen er blevet renset efter nedbrydning med Bglll Iwhich has already been purified after degradation with Bglll I

og SacI. Det resulterende plasmid, PIVPA/iFBR; Gln117 bør Iand SacI. The resulting plasmid, PIVPA / iFBR; Gln117 you should

10 indeholde de mutageniserede cDNA'er, der koder for forbindel- I10 contain the mutagenized cDNAs encoding compound I

sen 2-l/N-21/Arg, der nu er operativt bundet til polyhedrin- Ilate 2-1 / N-21 / Arg, now operatively linked to polyhedrin-I

promotoren. Nucleotidsekvensen af denne mutagenisérede cDNA- Ipromoter. The nucleotide sequence of this mutagenized cDNA-I

indsats kan bekræftes ved supercoil-sekvensbestemmelse med Ieffort can be confirmed by supercoil sequencing with I

plasmid som substrat, se f.eks. E.Y. Chen et al., DNA 4 Iplasmid as substrate, see e.g. E.Y. Chen et al., DNA 4 I

15 (2), 165-170 (1985). I15 (2), 165-170 (1985). IN

B. Indføring af mutageniseret cDNA i insektvirus. IB. Introduction of mutagenized cDNA into insect viruses. IN

pIVPA-plasmidet indeholdende det mutageniserede cDNA Ithe pIVPA plasmid containing the mutagenized cDNA I

kan indføres i insektvirus ved co-transfektion med vild Ican be introduced into insect virus by wild I co-transfection

type-AcNPV i Spodoptera-celler. 1 μg renset Autographa cali- Itype AcNPV in Spodoptera cells. 1 μg of purified Autographa cali- I

20 fornica-NPV-DNA og 10 //g af det ønskede pIVPA-DNA indføres I20 fornica NPV DNA and 10 µg of the desired pIVPA DNA are introduced

i Spodoptera-celler, der vokser på vævskulturplader, ved en Iin Spodoptera cells growing on tissue culture plates at an I

calciumphosphat-transfektionsprocedure (K.N. Potter, og Icalcium phosphate transfection procedure (K.N. Potter, and I.

L.K. Miller, J. Invertebr. Path. 36, 431-432 (1980)). Den IL. K. Miller, J. Invertebr. Path. 36, 431-432 (1980)). The I

fælles indføring af disse DNA'er i cellerne resulterer i en Icommon insertion of these DNAs into the cells results in an I

25 dobbelt rekombination mellem pIVPA-plasmidet (indeholdende IDouble recombination between the pIVPA plasmid (containing I

de mutageniserede cDNA'er) og virus-DNA'et i regionerne for Hthe mutagenized cDNAs) and the virus DNA in the regions of H

homologi mellem disse to, dvs. polyhedrin-genregionen af Ihomology between these two, viz. the polyhedrin gene region of I

viruset fra rekombinationen indeholdende den mutageniserede Hthe virus from the recombination containing the mutagenized H

cDNA-indsats fra pIVPA-plasmidet. IcDNA insert from the pIVPA plasmid. IN

30 Isolering af virus indeholdende nucleotidsekven- sen, der koder for proteinerne ifølge opfindelsen.Isolation of viruses containing the nucleotide sequence encoding the proteins of the invention.

Det omdannede virus, som er tilstede i mediet, IThe transformed virus present in the medium, I

over de transficerede celler, udplades på et frisk mo- Iover the transfected cells, plated on a fresh cell

no lag af celler i flere forskellige fortyndinger. Der Ino layers of cells in several different dilutions. There you

35 foretages en bestemmelse af fremkomne plaques, og re- I35, the plaques obtained are determined and re- I

kombinanterne udtages på basis af PIB-minus-fænotypen Ithe combiners are selected on the basis of the PIB-minus phenotype I

som følger: Et virus, som har tabt sit polyhedrin-gen, Ias follows: A virus which has lost its polyhedrin gene, I

som et virus indeholdende et mutageniseret cDNA, vilas a virus containing a mutagenized cDNA, will

ikke producere PIB'er. Plaques, som viser sig at være Inot produce PIBs. Plaques which prove to be I

PIB-defekte, udvælges, udskæres og forstærkes på friske IPIB defective, selected, cut and reinforced on fresh I

55 DK 175784 B1 celler. Den ovenstående væske over disse celler undersøges derefter for enzymatisk aktivitet af t-PA-typen.55 DK 175784 B1 cells. The supernatant above these cells is then assayed for enzymatic activity of the t-PA type.

Positive bestemmelsesresultater viser, at glycoproteinet faktisk produceres.Positive assay results show that the glycoprotein is actually produced.

5 En alternativ metode til virusrensning via plaque- -fjernelsesmetoden adskiller sig lidt fra de ovenfor beskrevne trin og beskrives nedenfor. Viruset fra trans-fektionen udplades i en passende fortynding på cellekulturplader. Der fremstilles en nitrocellulose-replika af 10 celle-monolaget og de foreliggende virus-plaques. Agarose- -overlaget for pladen beholdes som viruskilden efter at resultaterne af de følgende trin er opnået.5 An alternative method of virus cleaning via the plaque removal method differs slightly from the steps described above and is described below. The virus from the transfection is plated at an appropriate dilution on cell culture plates. A nitrocellulose replica of the 10 cell monolayer and the present virus plaques are prepared. The agarose overlay for the plate is retained as the virus source after the results of the following steps are obtained.

Nitrocellulosefilteret sonderes med radioaktive DNA-fragmenter, som er repræsentative for genet, der pla-15 ceres i virus-chromosomet. Som positive betragtes de, der indeholder det fremmede gen. Den hybridiserede sonde fjernes. Filteret sonderes igen med radioaktivt DNA, som er repræsentativt for en del af viruschromosomet, der fjernes ved substitution med fremmed-DNA. Som positive betragtes de, der stadig har et polyhedrm-gen.The nitrocellulose filter is probed with radioactive DNA fragments representative of the gene placed in the virus chromosome. As positive, those that contain the foreign gene are considered. The hybridized probe is removed. The filter is probed again with radioactive DNA, which is representative of a portion of the viral chromosome that is removed by substitution with foreign DNA. As positive, those who still have a polyhedral gene are considered.

Den hybridiserede sonde fjernes. Filteret sonderes igen med et radioaktivt DNA-fragment, som vil i-dentificere virus-plaques uafhængigt af tilstanden af polyhedrin-genet. Et egnet fragment kan være EcoRI-l-25 -fragmentet. Disse betegnes omdannet virus. Der udvælges sådanne plaques, som er positive for den fremmede gen--DNA-sonde, negative for polyhedrin-gen-sonden og positive for virus-DNA-sonden. Det er stærkt sandsynligt, at disse har den ønskede genotype.The hybridized probe is removed. The filter is probed again with a radioactive DNA fragment which will identify virus plaques independently of the state of the polyhedrin gene. A suitable fragment may be the Eco RI-25 fragment. These are referred to as transformed viruses. Such plaques are selected which are positive for the foreign gene - DNA probe, negative for the polyhedrin gene probe, and positive for the viral DNA probe. These are highly likely to have the desired genotype.

30 { * C. Fremstilling og karakterisering af høj-mannose- -glycoprotein.Preparation and characterization of high mannose glycoprotein.

Antistoffer er blevet anvendt til at påvise tilstedeværelse af variant-proteinerne i det ekstracellulæ- re medium af inficerede celler. Rekombinant virus, frem-35 stillet som ovenfor beskrevet, anvendes til at inficere .Antibodies have been used to detect the presence of the variant proteins in the extracellular medium of infected cells. Recombinant virus, prepared as described above, is used to infect.

celler, der dyrkes i den sædvanlige "TC-100"-næringssalt- j li I I DK 175784 B1cells grown in the usual "TC-100" nutritional salt I I I I DK 175784 B1

i Ii

H i IH i I

I 56 II 56 I

opløsning (Gibco), men i stedet for standard-mediesupple- Isolution (Gibco), but instead of standard media supplement I

I i mentet af 10% kalvefosterserum anvendes en 50%’s ægge- IIn the 10% calf fetus serum, a 50% egg yolk is used

j blomme-berigelse (til 1% totalt volumen) (Scott Biologi- Iplum enrichment (to 1% total volume) (Scott Biologi- I

I I cals). Tidligere forsøg har demonstreret et mere intakt II I cals). Previous experiments have demonstrated a more intact I

5 protein under disse betingelser. Den ovenstående væske I5 protein under these conditions. The above liquid I

fra de inficerede celler fraktioneres på en affinitets- Ifrom the infected cells is fractionated on an affinity I

søjle, som bærer et bundet monoklonalt antistof mod na- Icolumn carrying a bound monoclonal antibody to Na-I

H ; turligt humant t-PA. Protein, som tilbageholdes specifikt IH; turbulent human t-PA. Protein specifically retained I

H : af søjlen, elueres og undersøges for t-PA-enzymatisk ak- IH: of the column, eluted and assayed for t-PA enzymatic ac-I

I 10 tivitet. En fast mængde aktivitetsenheder af dette og IIn tivity. A fixed amount of activity units of this and I

kontrol-t-PA-præparater adskilles på en acrylamidgel. Icontrol t-PA preparations are separated on an acrylamide gel. IN

Denne gel farves derefter roed et sølvbaseret reagens, IThis gel is then stained red with a silver-based reagent, I

således at proteinmønsteret kan ses. Dette viser, at vi- Iso that the protein pattern can be seen. This shows that we- I

ruset, ved infektion af insektceller, fører til ekstra- Ithe intoxication, by infection of insect cells, leads to extra- I

I 15 cellulær produktion af et protein, der har aktivitet af IIn 15 cellular production of a protein having activity of I

t-PA-type. It-PA-type. IN

I Radiomærket protein produceres til yderligere II Radiolabeled protein is produced for additional I

karakterisering ved først at inkubere Spodoptera frugiper- Icharacterization by first incubating Spodoptera frugiper- I

da-celler, der er inficeret med virus (m.o.i=l) i 48 ti- Ithen cells infected with virus (m.o.i = 1) for 48 hours

I 20 II 20 I

mer. Kulturpladerne skylles derefter med medium, som Imer. The culture plates are then rinsed with medium, as I

I mangler methionin. Medium, som mangler methionin og er IYou lack methionine. Medium lacking methionine and is I

I 35 II 35 I

suppleret med S-methiomn, sættes derefter til kultur- Isupplemented with S-methiomn, is then added to culture I

I pladerne. Cellekulturerne inkuberes i 4 timer. Den oven- IIn the plates. The cell cultures are incubated for 4 hours. The above- I

stående væske indeholdende det radiomærkede glycoprotein Istanding liquid containing the radiolabelled glycoprotein I

25 I25 I

kan analyseres ved SDS-PAGE (7,5%) mod t-PA af vild typecan be analyzed by SDS-PAGE (7.5%) against wild-type t-PA

I ! (dvs. med fuld længde og fuldstændig glycosyleret), der II! (i.e., full-length and fully glycosylated) which I

er produceret i insektceller, og mod pattedyr-t-PA, der Iare produced in insect cells, and against mammalian t-PA, which I

f.eks. er produceret ved metoden ifølge R. Kaufman et al., Ieg. is produced by the method of R. Kaufman et al., i

I Mol. Cell. Biol. j>(7), 1750 (1985), men i nærværelse af IIn Mol. Cell. Biol. (7), 1750 (1985), but in the presence of I

^1 30 I^ 1 30 I

tunicamycin (ikke-glycosyleret). De delvis glycosylerede Itunicamycin (non-glycosylated). The partially glycosylated I

afstumpede proteiner, der fremstilles ifølge eksempel 1, Iblunt proteins prepared according to Example 1, I

skulle have en forøget gelmobilitet i forhold til den Ishould have increased gel mobility compared to the I

fuldt glycosylerede analog og i forhold til den ikke-gly- Ifully glycosylated analogue and relative to the non-glycosyl

cosylerede analog med fuld længde. Ifull length cosylated analogue. IN

IIN

DK 175784 B1 57DK 175784 B1 57

Eksempel 2.Example 2.

Fremstilling af andre proteiner ifølge opfindelsen.Preparation of other proteins according to the invention.

A. Fremstilling af andre cDNA'er.A. Preparation of other cDNAs.

5 Mutagenesemetoden ifølge eksempel 1 kan anvendes med andre konventionelt fremstillede, syntetiske oligo-nucleotider, som modificerer den oprindelige t-PA-DNA--sekvens til at producere proteiner, der er modificeret ved den N-terminale region og/eller eventuelt er modi-10 ficeret ved N-bundne glycosyleringssteder og/eller vedThe mutagenesis method of Example 1 can be used with other conventionally produced synthetic oligo nucleotides that modify the original t-PA DNA sequence to produce proteins that are modified at the N-terminal region and / or are optionally modified. 10 fused at N-linked glycosylation sites and / or at

Arg-275, idet den eller de pågældende kodon-ændririger er beskrevet ovenfor, se f.eks. "fremstilling af muta-geniseret cDNA, Ml3-metode" og metode (a)-(h) ovenfor.Arg-275, with the codon modifier (s) described above, see e.g. "preparation of mutagenized cDNA, M13 method" and method (a) - (h) above.

F.eks. kan cDNA, der koder for forbindelserne 15 D-6, D-l og D-3, fremstilles under anvendelse af Sacl-re- striktionsfragmentet i Ml3/t-PA og mutagenisering med oligonucleotid nr. 8, 10 hhv. 12, men ikke med oligo-nucleotid nr. 3. Arg-275 kan udelades eller erstattes, f.eks. med Thr, under anvendelse af oligonucleotid nr.Eg. For example, cDNA encoding compounds D-6, D-1, and D-3 can be prepared using the Sac I restriction fragment in M13 / t-PA and mutagenization with oligonucleotide # 8, 10, respectively. 12, but not with oligo nucleotide # 3. Arg-275 can be omitted or replaced, e.g. with Thr, using oligonucleotide no.

20 14 hhv. 15. Vektorkonstruktionen, transfektionen og ekspressionen kan gennemføres som i eksempel 1 for insektceller eller som beskrevet nedenfor i eksempel 3 for pattedyrceller.20 14 respectively. 15. The vector construction, transfection and expression can be carried out as in Example 1 for insect cells or as described below in Example 3 for mammalian cells.

Enkeltstrenget DNA dannet ud fra Ml3-mutagenese- 25 vektoren (RF M13/t-PA), fremstillet som i eksempel 1, kan også anvendes som en template til mutagenisering på stedspecifik måde ved Arg-275 og/eller det ene eller 1 2 begge glycosyleringssteder R og R . Regionen, som koder for consensus-tripeptidet, der omfatter Asn2^g, kan muta-30 geniseres lignende måde. Til tilvejebringelse af flere modifikationer af proteinet på disse steder kan der anvendes en iterativ proces. F.eks. kan man efter identifikation og rensning af Ml3-fag indeholdende et modificeret R^-sted rense enkeltstrenget DNA indeholdende det- 35 te modificerede sted fra fagen og anvende det som templa- 2 te til at starte en anden runde af mutagenese i R -stedetSingle-stranded DNA formed from the M13 mutagenesis vector (RF M13 / t-PA) prepared as in Example 1 can also be used as a template for site-specific mutagenization by Arg-275 and / or either or both. glycosylation sites R and R. The region encoding the consensus tripeptide comprising Asn 2 µg can be mutagenized similarly. To provide more modifications to the protein at these sites, an iterative process can be used. Eg. For example, after identifying and purifying M13 phage containing a modified R enkelt site, single-stranded DNA containing this modified site can be purified from the phage and used as template 2 to initiate a second round of mutagenesis in the R site.

I DK 175784 B1 II DK 175784 B1 I

I 58 II 58 I

I og/eller ved Arg-275. Denne proces kan gentages, indtil II and / or at Arg-275. This process can be repeated until you

alle ønskede modifikationer er opnået. Således kan cDNA, Iall modifications desired have been obtained. Thus, cDNA, I

I som koder for forbindelsen 2-2/N-21/Arg, fremstilles ved II, which encodes the compound 2-2 / N-21 / Arg, is prepared at I

I metoden ifølge eksempel l,idet oligonucleotid nr. 3 erstattet IIn the method of Example 1, replacing oligonucleotide # 3

I 5 med mutagenese-oligonucleotid nr. 5, og oligonucleotid nr. II 5 with mutagenesis oligonucleotide # 5, and oligonucleotide # 1

I 4 erstattes med screening-oligonucleotid nr. 6. cDNA, som II 4 is replaced by screening oligonucleotide # 6 cDNA, which I

I koder for forbindelsen 2-6/N-21/Arg, kan fremstilles ved to IIn the codes for the compound 2-6 / N-21 / Arg, can be prepared at two I

I ganges mutagenisering af SacI-fragmentet som beskrevet i IMutagenization of the SacI fragment is underway as described in I

I eksempel 1 og desuden mutagenisering og screening med oligo- IIn Example 1 and in addition, mutagenization and screening with oligo-I

I 10 nucleotid nr. 5 og nr. 6. Vektorkonstruktionen, transfek- IIn nucleotide # 5 and # 6, the vector construct, transfection I

I tionen og ekspressionen gennemføres som beskrevet i eksempel IThe ionization and expression are carried out as described in Example I

I 1 for insektceller eller som beskrevet nedenfor for pattedyr- II for insect cells or as described below for mammals- I

I celler, se metode (a) - (h) ovenfor. IIn cells, see method (a) - (h) above. IN

RF Ml3/t-PA-mutagenesevektoren indeholder ikke IThe RF M13 / t-PA mutagenesis vector does not contain I

I 15 DNA-sekvensen, der koder for R^, det N-bundne glycosy- IIn the DNA sequence encoding R 1, the N-linked glycosyl-I

leringssted af t-PA, der ligger nærmest carboxyterminus- Isite of t-PA closest to the carboxy terminus-I

sne af proteinet. Til tilvejebringelse af DNA-modifika- Isnow of the protein. To provide DNA modification I

tioner på dette sted fremstilles der derfor en ny M13/t- Itherefore, a new M13 / t-I is produced

-PA-mutagenese-RF-vektor betegnet M13/t-PA:Rl-Xam I. I-PA mutagenesis RF vector designated M13 / t-PA: R1-Xam I. I

20 Denne vektor konstrueres ved at nedbryde Ml3-vektor M13- IThis vector is constructed by breaking down M13 vector M13-1

mpll fuldstændigt med EcoRI og Xma I. Den Rl/Xmal ned- Impll completely with EcoRI and Xma I. The Rl / Xmal down- I

I brudte M13-vektor ligeres til et renset EcoRI/Xmal-t-PA- IIn broken M13 vector, a purified Eco RI / Xmal-t-PA-I is ligated

-restriktionsfragment (ca. 439bp, i det følgende 0,4 kbp), Irestriction fragment (about 439bp, hereinafter 0.4 kbp), I

der koder for en polypeptidregion, der omfatter glycosy- Iencoding a polypeptide region comprising glycosyl I

I 25 leringsstedet R^. Dette 0,4kbp restriktionsfragment ren- IAt the site of learning R This 0.4 kbp restriction fragment was purified

I ses efter nedbrydning af plasmidet pWGSM med EcoRI og IYou see after degradation of the plasmid pWGSM with EcoRI and I

I Xma I. Pattedyr-ekspressionsplasmidet pWGSM, som koder IIn Xma I. The mammalian expression plasmid pWGSM, which encodes I

I t-PA-genet, er identisk i 439bp EcoRI/Xmal-fragmentet med IIn the t-PA gene, is identical in the 439bp EcoRI / Xmal fragment with I

plasmidet pLDSG beskrevet af Kaufman et al., Mol. Cell. Ithe plasmid pLDSG described by Kaufman et al., Mol. Cell. IN

I 20 Biol. 5, 1750-1759 (1985). IIn 20 Biol. 5, 1750-1759 (1985). IN

I Ligeringsblandingen anvendes til at transformere II The ligation mixture is used to transform I

I kompetente JMlOl-bakterieceller. Flere plaques udtages og IIn competent JM101 bacterial cells. Several plaques are removed and I

I analyseres for tilstedeværelse af 0,4kbp t-PA-EcoRI/Xmal- II is analyzed for the presence of 0.4kbp t-PA-EcoRI / Xmal-I

I -fragmentet ved standard-DNA-restriktionsfragmentanalyse. IThe I fragment by standard DNA restriction fragment analysis. IN

1 35 I1 35 I

59 DK 175784 B159 DK 175784 B1

Dobbeltstrenget RF-M13-DNA renses fra celler indeholdende 0,4kbp t-PA-fragmentet. Dette DNA betegnes RF-Ml3/t--PA:RI-Xma I-mutagenesevektor. Som ovenfor anført i eksempel 1A kan denne vektor, når den transformeres i kom-5 petente JMlOl-celler, anvendes til fremstilling af M13/t- -PA:RI-XmaI-fag, fra hvilken enkeltstrenget M13/t-PA:RI--Xmal-DNA kan renses. Dette enkeltstrengede DNA kan anvendes som template ved stedrettet mutagenesereaktion til modificering af t-PA-DNA ved det N-bundne glycosyle-10 ringssted R3.Double-stranded RF-M13 DNA is purified from cells containing the 0.4 kbp t-PA fragment. This DNA is designated RF-M13 / t - PA: RI-Xma I mutagenesis vector. As indicated above in Example 1A, this vector, when transformed into competent JM101 cells, can be used to prepare M13 / t -PA: RI-XmaI phage from which single-stranded M13 / t-PA: RI- -Xmal DNA can be purified. This single-stranded DNA can be used as a template for site-directed mutagenesis reaction to modify t-PA DNA at the N-linked glycosylation site R3.

Modificerede R3-kodende sekvenser.kan anvendes 3 · til at erstatte R -sekvenserne af vild type, der er til stede i enten modificeret pIVPA/1 som fremstillet i eksempel 1 (afstumpet og/eller modificeret ved og/eller Λ 15 R ) eller vild-type-pIVPA/l-plasmid DNA. Dette kan opnås ved først at gennemføre en fuldstændig Sacl/Apa I-ned- 3 brydning af den R -modificerede Ml3/t-PA:RI/XmaI-muta- genese-plasmidvektor og isolere det således fremstillede 3 165bp store R -modflficerede t-PA-restriktionsfragment.Modified R3 coding sequences can be used to replace the wild-type R sequences present in either modified pIVPA / 1 as prepared in Example 1 (blunt and / or modified by and / or Λ 15 R) or wild-type pIVPA / 1 plasmid DNA. This can be accomplished by first performing a complete Sacl / Apa I degradation of the R-modified M13 / t-PA: RI / XmaI mutagenesis plasmid vector and isolating the thus produced 3,165bp R-modified -PA restriction fragment.

20 Insekt-ekspressionsvektoren pIVPA/1 eller pIVPA/l-plas- mid-DNA, der f.eks. er modificeret som i eksempel l,kan på lignende måde nedbrydes fuldstændig med SacI og Apal til udskæring af det 165 bp store vild-type t-PA-restrik- tionsfragment, der koder det ikke-modificerede R3-sted.The insect expression vector pIVPA / 1 or pIVPA / 1 plasmid DNA, e.g. similarly modified as in Example 1, can similarly be completely degraded with SacI and Apal to excise the 165 bp wild-type t-PA restriction fragment encoding the unmodified R3 site.

25 Ligering af den rensede insekt-ekspressionsvektor, som . 3 mangler 165 bp-fragmentet, til det modificerede R -165 bp--fragment giver en ny insekt-ekspressionsvektor. Ekspression af vektoren giver et afstumpet protein, der modificeret ved R3-stedet samt ved ethvert eller alle 30 , de andre consensus N-bundne glycosyleringssteder, der er til stede i naturligt t-PA, og/eller ved Arg-275.Ligation of the purified insect expression vector, which. 3 lacks the 165 bp fragment, to the modified R-165 bp fragment gives a new insect expression vector. Expression of the vector yields a blunted protein modified at the R3 site as well as at any or all of the other consensus N-linked glycosylation sites present in natural t-PA and / or Arg-275.

pIVPA-plasmidet indeholdende det modificerede cDNA kan også anvendes til dannelse af Bglll/Apal-frag- mentet af det modificerede t-PA-cDNA, der spænder over 35 udeladelsesregionen i det N-terminale område samt regi- 1 3 onen, der koder for R , R og R , eller Narl/Xmal-fragmen-The pIVPA plasmid containing the modified cDNA may also be used to generate the BglII / Apal fragment of the modified t-PA cDNA spanning the deletion region of the N-terminal region as well as the region encoding the R, R and R, or the Narl / Xmal fragment.

I DK 175784 B1 II DK 175784 B1 I

12 3 I12 3 I

tet, der spænder over R , R og R . Ethvert af dissethat span R, R, and R. Any of these

fragmenter kan indføjes i pattedyr-ekspressionsvek- Ifragments can be inserted into mammalian expression growth

torer, såsom pSVPA4 eller pWGSM, som beskrevet i ek- Iinducers such as pSVPA4 or pWGSM, as described in Eq

sempel 3. ISample 3. I

Eksempel 3. IExample 3. I

Fremstilling af forbindelserne D-6, D-l og D-3 i patte- IPreparation of compounds D-6, D-1 and D-3 in teat-I

dyrceller. Ianimal cells. IN

A. Fremstilling af cDNA. IA. Preparation of cDNA. IN

cDNA-molekyler, der koder for pplypeptidsekven- IcDNA molecules encoding polypeptide sequence I

serne af forbindelserne D-6, D-l og D-3, fremstilles un- IThe compounds of compounds D-6, D-1 and D-3 are prepared un-I

der anvendelse af mutagenese-oligonucleotiderne nr. 8, Iusing the mutagenesis oligonucleotides # 8, I

10 hhv. 12 og Sacl-fragmentet af t-PA-cDNA som template I10 and 10 respectively. 12 and the Sac1 fragment of t-PA cDNA as template I

15 ved Ml3-metoden ifølge eksempel 1 eller heteroduplex-mu- I15 by the M13 method of Example 1 or heteroduplex mu-I

tagenese (Moranaga-heteroduplex-mutageneseproceduren, Itagenesis (Moranaga heteroduplex mutagenesis procedure, I

se ovenfor for begges vedkommende). Mutanter udvalgtsee above for both). Mutants selected

ved DNA-hybridisering under anvendelse af screening-oli- Iby DNA hybridization using screening oil

gonucleotiderne 9, 11 hhv. 13 bekræftes ved DNA-sekvens- Igonucleotides 9, 11 and 11, respectively. 13 is confirmed by DNA sequence I

20 analyse at være korrekte i den modificerede DNA-sekvens. I20 analysis to be correct in the modified DNA sequence. IN

B. Modificeret t-PA-vektor-fremstilling. IB. Modified t-PA vector preparation. IN

Hvert modificeret cDNA-fremstillet i eksempel ΙΑ IEach modified cDNA prepared in Example ΙΑ I

(Δ , Gln^j^) eller 3A (Δ) fjernes først fra Ml3-muta- I(Δ, Gln ^ j ^) or 3A (Δ) is first removed from M13 muta- I

genesevektoren RF M13/t^PA ved fuldstændig nedbrydningthe gene vector RF M13 / t ^ PA upon complete degradation

25 af vektoren med Sacl. Det ca. l,4kbp store restriktions- I25 of the vector with Sacl. It approx. 1.4kbp restriction I

fragment af hvert mutageniseret cDNA renses ved gelelek- Ifragment of each mutagenized cDNA is purified by gel-I

troforese og ligeres derefter i pSVPA4 på følgende måde. Itrophoresis and then ligated into pSVPA4 as follows. IN

Først nedbrydes pSVPA4 med Sacl til fjernelse af vild- IFirst, pSVPA4 is degraded with Sacl to remove wild-I

-type-t-PA-restriktionsfragmentet på l,4kbp. Den reste- Itype t-PA restriction fragment of 1.4kbp. The remaining I

ΟΛ HΟΛ H

rende del af det Sacl-nedbrudte pSVPA4 ligeres derefterThe remaining portion of the Sacl degraded pSVPA4 is then ligated

til restriktionsfragmentet på l,4kbp af det mutagenise- Ito the restriction fragment of 1.4kbp of the mutagenesis I

rede cDNA. Denne ligering kan give to orienteringer af Ireason cDNA. This ligation can provide two orientations of I

det indføjede fragment. Den rette orientering i hvert Ithe inserted fragment. The right orientation in each I

tilfælde kan konstateres ved anvendelse af EcoRI og PvuII Icases can be detected using EcoRI and PvuII I

35 som enzymer ved en konventionel analytisk restriktionsen-35 as enzymes by a conventional analytical restriction unit.

zymanalyse. Denne erstatning gør det muligt for Sacl-frag- Ienzyme analysis. This replacement allows for Sacl frag- I

61 DK 175784 B1 j mentet at blive anvendt som et kassettefragment mellem RF Ml3/t-PA-mutagenesevektoren og pSVPA4-pattedyr-eks-pressionsvektoren. Modificerede M13-SacI-fragmenter (afstumpede og eventuelt modificerede ved R^ og/eller ! 2 · 5 R ) kan indføjes i Sacl-nedbrudt pSVPA4-DNA, som i forvejen eller bagefter er modificeret ved R^ om ønsket.61 GB 175784 B1 is used as a cassette fragment between the RF M13 / t-PA mutagenesis vector and the pSVPA4 mammalian expression vector. Modified M13-SacI fragments (blunt and optionally modified at R 1 and / or 2 · 5 R) can be inserted into Sac1 digested pSVPA4 DNA, which is previously or subsequently modified by R 1 if desired.

Alternativt kan DNA, som i forvejen er modificeret ved i R·*·, R^ og/eller R^, udskæres fra vektorer, såsom pIVPA j eller pSVPA4, som et Narl/ApaX- eller Narl/Xmal-frag- ' 10 ment. Det således fremkomne fragment kan derefter ind føjes i vektorer, såsom pSVPA4 eller pWGSM, som i forvejen er nedbrudt med Narl (delvis) og Apal eller Xmal (fuldstændig). Ved denne metode kan der opnås enhver kombination af N-terminal udeladelse og/eller substi-15 tution og/eller glycosyleringssted-mutagenese og/ellerAlternatively, DNA previously modified by R ved, R ^ and / or R ^ can be excised from vectors such as pIVPA j or pSVPA4 as a Narl / ApaX or Narl / Xmal fragment. . The fragment thus obtained can then be inserted into vectors, such as pSVPA4 or pWGSM, which are already digested with Narl (partially) and Apal or Xmal (complete). By this method, any combination of N-terminal deletion and / or substitution and / or glycosylation site mutagenesis and / or

Arg-275-mutagenese.Arg-275 mutagenesis.

C. Transfektion af COS-celler (SV40-tranformerede nyreceller af afrikansk grøn abe).C. Transfection of COS cells (SV40 transformed kidney cells of African green monkey).

COS-l-celler (ATCC CRL 1650) transficeres ved 20 metoden ifølge M.A. Lopata et al., Nucl. Acids Res.COS-1 cells (ATCC CRL 1650) are transfected by the method of M.A. Lopata et al., Nucl. Acids Res.

12, 5707-5717 (1984) med vektorerne fremstillet i eksempel 3B, dvs. modificeret pSVPA4. Serumholdigt medium erstattes med serumfrit medium 24 timer efter transfektionen, og konditioneret medium undersøges for 25 både tilstedeværelse af plasminogenaktiverende aktivitet, under anvendelse af det chromogene substrat S-2251, eller tilstedeværelsen af t-PA-antigen ved en ELISA-bestemmel-se, 48 og 72 timer efter transfektion.12, 5707-5717 (1984) with the vectors prepared in Example 3B, i.e. modified pSVPA4. Serum-containing medium is replaced with serum-free medium 24 hours after transfection, and conditioned medium is assayed for both the presence of plasminogen activating activity, using the chromogenic substrate S-2251, or the presence of t-PA antigen by an ELISA assay, 48 and 72 hours after transfection.

D. Virusformering i CVl-celler (nyreceller af 30 afrikansk grøn abe).D. Virus propagation in CV1 cells (renal cells of 30 African green monkey).

Modificeret komplekst kulhydrat-protein kan produceres ved at inficere CVl-celler (ATCC CCL 70) med SV40-virusforråd, der er formeret som beskrevet af Gething og Sambrook, Nature 293, 620-625 (1981). Dette er gennem-35 ført ved først at nedbryde modificeret pSVPA4 fuldstændig med restriktionsendonucleasen BamHI til fjernelse af bakterie-shuttle-vektoren pXf3 fra SV40-virus-DNA. Før I DK 175784 B1 I transfektion af dette DNA i CVl-celler, sammen med hjælpervirus SV40-rINS-pBR322-DNA (beskrevet neden- I for), cirkulariseres det BamHI-lineariserede SV40/t-PA- I -DNA ved ligering ved fortyndede DNA-koncentrationer H 5 (1 pg/ml). Denne proces gentages med den insulinholdige I SV40-vektor SV40-rINS-pBR322 (M. Horowitz, et al., 1982,Modified complex carbohydrate protein can be produced by infecting CV1 cells (ATCC CCL 70) with SV40 virus stock propagated as described by Gething and Sambrook, Nature 293, 620-625 (1981). This has been accomplished by first degrading modified pSVPA4 completely with the restriction endonuclease BamHI to remove the bacterial shuttle vector pXf3 from SV40 virus DNA. Prior to transfection of this DNA into CV1 cells, together with helper virus SV40-rINS-pBR322 DNA (described below), the BamHI linearized SV40 / t-PA-I DNA is circulated by ligation at diluted DNA concentrations H 5 (1 µg / ml). This process is repeated with the insulin-containing SV40 vector SV40-rINS-pBR322 (M. Horowitz, et al., 1982,

Eukaryotic Viral Vectors, s. 47-53, Cold Spring HarborEukaryotic Viral Vectors, pp. 47-53, Cold Spring Harbor

I Laboratory). Bakterie-shuttle-vektoren pBR322 i SV40-rINS- IIn Laboratory). The bacterial shuttle vector pBR322 in SV40 rins-I

I -pBR322 fjernes ved en fuldstændig EcoRI-nedbrydning. Det II -pBR322 is removed by complete EcoRI degradation. The ten

H 10 lineariserede insulin/SV40-virus-DNA cirkulariseres der- IH 10 linearized insulin / SV40 virus DNA is then circulated

I efter ved ligering ved en DNA-koncentration på 1 μg/ml. IAfter ligation at a DNA concentration of 1 μg / ml. IN

I Det er nødvendigt at transficere CV-l-celler med cirku- II It is necessary to transfect CV-1 cells with circus I

I lært ligeret pSVPA4 og SV40-rINS-DNA ved ækvimolære mæng- IIn learned ligated pSVPA4 and SV40 rINS DNA at equimolar amount I

I der for at danne virus-forråd. SV40-rINS anvendes til at IIn there to form virus storage. SV40 rINS is used to I

15 tilvejebringes "sene" SV4O-proteiner, medens pSVPA4 gi- I15, "late" SV4O proteins are provided, while pSVPA4 gi- I

ver de "tidlige" SV4O-proteiner, der er nødvendige for Iver the "early" SV4O proteins required for I

I virus-DNA-produktion, samtidig med at de også koder for IIn virus DNA production, while also encoding I

I proteinerne ifølge opfindelsen. Når celler transficeres IIn the proteins of the invention. When cells are transfected I

med begge disse DNA som beskrevet af Gethin og Sambrook, Iwith both of these DNAs as described by Gethin and Sambrook, I

I 20 produceres der følgelig SV40-virus, som indeholder DNA IAccordingly, SV40 viruses containing DNA I are produced in 20

fra begge virus-vektorer. Efterfølgende infektion af Ifrom both virus vectors. Subsequent infection of I

CVl-celler med forstærket virus har produceret protein IEnhanced virus CV1 cells have produced protein I

I med aktivitet af t-PA-type, der kan bestemmes 72 timer II with t-PA type activity that can be determined 72 hours I

efter infektion som beskrevet i eksempel 3C. Iafter infection as described in Example 3C. IN

25 I25 I

Eksempel 4. IExample 4. I

Fremstilling af andre proteiner. IPreparation of other proteins. IN

cDNA'er, der koder for forskellige proteiner i- IcDNAs encoding various proteins i- I

følge opfindelsen, er fremstillet ved metoderne ifølge Iaccording to the invention, are prepared by the methods of I

30 eksempel 1, 2 og 3. Bglll/Xmal-restriktionsfragmentkas- IExamples 1, 2 and 3. BglII / Xmal restriction fragment case I

I setten kan derefter udskæres fra enten plVPA- eller pSVPA4- IThe kit can then be excised from either pLVPA or pSVPA4-I

-vektoren indeholdende cDNA, der koder for det afstumpede IThe vector containing cDNA encoding the blunt I

protein med eller uden modificering ved ét eller flere Iprotein with or without modification by one or more I

I glycosyleringssteder. Det udskårne BglII/XmaI-fragment IIn glycosylation sites. The excised BglII / XmaI fragment I

I 33 kan derefter ligeres i Bglll/Xmal-spaltet pSVPA4 eller II 33 can then be ligated into BglII / Xmal digested pSVPA4 or I

pWGSM til indføring i pattedyrceller. Ekspression af så- IpWGSM for introduction into mammalian cells. Expression of so- I

63 DK 175784 B1 danne cDNA'er i pattedyr-værtceller, f.eks. ved metoden ifølge eksempel 3 eller ved metoden ifølge Kaufman et al., se ovenfor (CHO-værtceller) eller ved metoden ifølge US-patentskrift nr. 4.419.446 (BVP-ekspressionssystemer) giver 5 de tilsvarende pattedyr-afledte afstumpede proteiner. Således bliver cDNA, der koder for forbindelsen 2-l/N-21/Arg (AFBR, Gln117), fremstillet og indføjet i pSVPA4 som ovenfor beskrevet . På lignende måde fremstilles cDNA'er der koder for forbindelserne D-l (AFBR) og D-3 (AEGF/FBR) ved M13-mutage-10 nese som ovenfor beskrevet og indføjes som Sacl-fragment i Sacl-nedbrudt pSVPA4. cDNA, der koder for forbindelsen D-6 (Δ EGF) fremstilles ved den ovenfor beskrevne heteroduplex-metode, idet der anvendes pSVPA4 som template og mutagenese-oligonucleotid nr. 12 og 15 screening med oligonucleotid nr. 13.Form cDNAs in mammalian host cells, e.g. by the method of Example 3 or by the method of Kaufman et al., see above (CHO host cells) or by the method of U.S. Patent No. 4,419,446 (BVP expression systems) to give the corresponding mammalian-derived blunt proteins. Thus, cDNA encoding the compound 2-1 / N-21 / Arg (AFBR, Gln117) is prepared and inserted into pSVPA4 as described above. Similarly, cDNAs encoding compounds D-1 (AFBR) and D-3 (AEGF / FBR) are prepared by M13 mutagenesis as described above and inserted as Sac1 fragment into Sac1 digested pSVPA4. cDNA encoding compound D-6 (Δ EGF) is prepared by the heteroduplex method described above, using pSVPA4 as template and mutagenesis oligonucleotide # 12 and screening with oligonucleotide # 13.

Til fremstilling af cDNA’er, der koder proteinerne til forstærkning og ekspression i pattedyrceller udskæres cDNA indeholdt i pSVPA4 eller pIVPA som Bglll/Xaml--fragment og ligeres i renset, Bglll/Xmal-nedbrudt pWGSM.To produce cDNAs encoding the proteins for amplification and expression in mammalian cells, the cDNA contained in pSVPA4 or pIVPA is excised as Bglll / Xaml fragment and ligated into purified, Bglll / Xmal digested pWGSM.

20 I begge tilfælde indføres den fremkomne pWGSM-vektor i CHO-celler og forstærkes ved metoden ifølge Kaufman, se ovenfor. De transformerede og forstærkede CHO-celler producerer forbindelserne D-6, D-l, D-3 og 2-l/N-2l/Arg, der påvises i kulturmediet med humane t-PA-specifikke anti-25 stoffer. Forbindelserne kan derefter udvindes og renses ved immunoaffinitetschromatografi.In both cases, the resulting pWGSM vector is introduced into CHO cells and amplified by the method of Kaufman, see above. The transformed and amplified CHO cells produce compounds D-6, D-1, D-3 and 2-1 / N-2l / Arg that are detected in the culture medium with human t-PA specific antibodies. The compounds can then be recovered and purified by immunoaffinity chromatography.

j 30 35j 30 35

I DK 175784 B1 II DK 175784 B1 I

I' II 'I

I Eksempel 5, IIn Example 5, I

Eksempel 4 kan gentages under anvendelse af IExample 4 can be repeated using I

cDNA, der koder proteiner, som er modificeret i N-termi- IcDNA encoding proteins modified in N-termi- I

I nussen og/eller ved R-275 med eller uden modifikation IIn the socket and / or at R-275 with or without modification I

1 2 3 I1 2 3 I

5 ved R , R og/eller R til produktion af det ønskede5 at R, R and / or R to produce the desired

protein i CHO-celler. Mutageniserede cDNA'er kan frem- Iprotein in CHO cells. Mutagenized cDNAs can produce

stilles som ovenfor beskrevet. Således fremstilles cDNA, Iis positioned as described above. Thus, cDNA, I

I der koder for forbindelsen 2-7/N-21/Arg, i pIVPA som be- IIn coding for compound 2-7 / N-21 / Arg, in pIVPA as be I

I skrevet i eksempel 2. cDNA'erne kan derefter udskæres som IWritten in Example 2. The cDNAs can then be excised as I

I 10 Bglll/Xmal-fragment og ligeres i renset, BglII/Vmal-nedbrudt IIn 10 BglII / Xmal fragment and ligated in purified, BglII / Vmal degraded I

I pWGSM, og den resulterende vektor transformeres og forstærkes IIn pWGSM, and the resulting vector is transformed and amplified

I i CHO-celler som i eksempel 4 til produktion af forbindelsen II in CHO cells as in Example 4 for the production of compound I

I 2-7/N-21/Arg. IIn 2-7 / N-21 / Arg. IN

I 15 II 15 I

1 20 I1 20 I

1 25 I1 25 I

30 I30 I

1 35 I1 35 I

Claims (15)

1. Thrombolytisk protein med aktivitet af vaevsplas-minogenaktivator-type og med forbedret fibrinolytisk profil 5 i forhold til naturligt humant t-PA, kendetegnet ved en peptidsekvens af humant t-PA, som bibeholder begge kringle-regioner, hvorved mindst ét af de consensus N-bundne glycosyleringssteder er modificeret til andet end et consensus N-bundet glycosyleringssted, og hvor 10 (a) en eller flere aminosyrer er udeladt i regionen Val-4 til Val-72, eller (b) en eller flere aminosyrer er erstattet i regionen Arg- 15 23 til Val-72, eller (c) trækkene (a) og (b) er kombineret, eller (d) aminosyrerne Cys-6 til Cys-51 er udeladt, eller 20 (e) aminosyrerne Cys-51 til Asp-87 er udeladt, eller (f) aminosyrerne Cys-6 til Ile-86 er udeladt.A thrombolytic protein with tissue plasminogen activator type activity and with improved fibrinolytic profile 5 relative to natural human t-PA, characterized by a peptide sequence of human t-PA which maintains both kringle regions, thereby maintaining at least one of the consensus N-linked glycosylation sites are modified to other than a consensus N-linked glycosylation site, where 10 (a) one or more amino acids are omitted in the region Val-4 to Val-72, or (b) one or more amino acids are replaced in the region Arg-23 to Val-72, or (c) features (a) and (b) are combined, or (d) amino acids Cys-6 to Cys-51 are omitted, or 20 (e) amino acids Cys-51 to Asp -87 is omitted or (f) amino acids Cys-6 to Ile-86 are omitted. 2. Thrombolytisk protein ifølge krav 1(f), hvor pep tidsekvensen Asn-Ser-Ser, som spænder over position 117-119 i peptidsekvensen af humant t-PA, er modificeret til andet end et consensus N-bundet glycosyleringssted.The thrombolytic protein of claim 1 (f), wherein the pep time sequence Asn-Ser-Ser, spanning position 117-119 in the peptide sequence of human t-PA, is modified to other than a consensus N-linked glycosylation site. 3. Thrombolytisk protein ifølge krav 2, hvor Asn-117 er erstattet med en anden aminosyre.The thrombolytic protein of claim 2, wherein Asn-117 is replaced by another amino acid. 4. Thrombolytisk protein ifølge krav 3, hvor det N-bundne glycosyleringssted i position 117-119 er modificeret 35 således, at Asn-117 er erstattet med Gin, idet det thrombo-lytiske protein er glycosyleret ved mindst ét ikke-modifi- DK 175784 B1 I I 66 H ceret N-bundet glycosyleringssted. IThe thrombolytic protein of claim 3, wherein the N-linked glycosylation site at position 117-119 is modified such that Asn-117 is replaced by Gin, said thrombolytic protein being glycosylated by at least one non-modified DK 175784 B1 II 66 H cated N-linked glycosylation site. IN 5. Thrombolytisk protein ifølge ethvert af kravene I 1-4, hvor aminosyren i position 245 af peptidsekvensen er IThe thrombolytic protein of any one of claims 1 to 4, wherein the amino acid at position 245 of the peptide sequence is I 5 Met eller Val. I5 Met or Val. IN 6. Thrombolytisk protein ifølge krav 5, hvor Arg-275 I er udeladt eller er erstattet med en anden aminosyre. HThe thrombolytic protein of claim 5, wherein Arg-275 I is omitted or replaced by another amino acid. H 7. Thrombolytisk protein ifølge krav 1(f), hvor alle I tre N-bundne glycosyleringssteder, som er glycosylerede i I humant t-PA, er modificerede til andet end et consensus N- I bundet glycosyleringssted. IThe thrombolytic protein of claim 1 (f), wherein all I three N-linked glycosylation sites glycosylated in human t-PA are modified to other than a consensus N-I bound glycosylation site. IN 8. Thrombolytisk protein ifølge krav 7, hvor hvert I af Asn'erne i position 117, 184 og 448 er erstattet med I uafhængigt valgte erstatningsaminosyrer. IThe thrombolytic protein of claim 7, wherein each I of the Asns at positions 117, 184 and 448 is replaced by I independently selected replacement amino acids. IN 9. Thrombolytisk protein ifølge krav 8, hvor de N- I 20 bundne glycosyleringssteder i position 117-119, 184-186 og I 448-450 er modificeret således, at Asn-117, Asn-184 og Asn- I 448 er erstattet med Gin. IThe thrombolytic protein of claim 8, wherein the N-I-linked glycosylation sites at positions 117-119, 184-186 and I-448-450 are modified such that Asn-117, Asn-184 and Asn-I 448 are replaced by gin. IN 10. Thrombolytisk protein ifølge ethvert af kravene I 25 7-9, hvor aminosyren i position 245 af peptidsekvensen er I Met eller Val. IThe thrombolytic protein of any one of claims I to 7-9, wherein the amino acid at position 245 of the peptide sequence is I Met or Val. IN 11. Thrombolytisk protein ifølge krav 10, hvor Arg- H 275 er udeladt eller er erstattet med en anden aminosyre. HThe thrombolytic protein of claim 10, wherein Arg-H 275 is omitted or replaced by another amino acid. H 30 I30 I 12. DNA-molekyle, som koder for et protein ifølge H ethvert af kravene 1-11. I 1 Thrombolytisk protein med aktivitet af vævsplas- I 35 minogenaktivator-type produceret ved ekspression af et DNA- I molekyle ifølge krav 12 i en værtscelle valgt blandt patte- , I I I DK 175784 B1 dyr-, gær-, insekt-, svampe- og bakterieceller.A DNA molecule encoding a protein according to H any of claims 1-11. In 1 Thrombolytic protein with tissue plasmin I activator type activity produced by expression of a DNA I molecule according to claim 12 in a host cell selected from mammalian, yeast, insect, fungal and bacterial cells. 14. Terapeutisk præparat til behandling af thrombo-tiske tilstande, omfattende en effektiv mængde af et pro-5 tein ifølge ethvert af kravene 1-11 i blanding med en farmaceutisk acceptabel bærer. 10 15 ! 20 25 30 35A therapeutic composition for the treatment of thrombotic conditions comprising an effective amount of a protein according to any one of claims 1-11 in admixture with a pharmaceutically acceptable carrier. 10 15! 20 25 30 35
DK198705118A 1986-01-31 1987-09-29 Hitherto unknown thrombolytic proteins DK175784B1 (en)

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
US82510486A 1986-01-31 1986-01-31
US82510486 1986-01-31
US85378186A 1986-04-18 1986-04-18
US85378186 1986-04-18
US86169986A 1986-05-09 1986-05-09
US86169986 1986-05-09
US06/882,051 US5002887A (en) 1986-01-31 1986-07-03 Truncated thrombolytic proteins
US88205186 1986-07-03
PCT/US1987/000257 WO1987004722A1 (en) 1986-01-31 1987-01-30 Novel thrombolytic proteins
US8700257 1987-01-30

Publications (3)

Publication Number Publication Date
DK511887D0 DK511887D0 (en) 1987-09-29
DK511887A DK511887A (en) 1987-09-29
DK175784B1 true DK175784B1 (en) 2005-02-21

Family

ID=27505870

Family Applications (1)

Application Number Title Priority Date Filing Date
DK198705118A DK175784B1 (en) 1986-01-31 1987-09-29 Hitherto unknown thrombolytic proteins

Country Status (6)

Country Link
EP (1) EP0293394B2 (en)
JP (4) JP2527454B2 (en)
AU (1) AU612974B2 (en)
DE (1) DE3789664T3 (en)
DK (1) DK175784B1 (en)
WO (1) WO1987004722A1 (en)

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5108909A (en) * 1985-03-22 1992-04-28 Chiron Corporation Expression of TPA in mammalian cells
DE3682104D1 (en) * 1985-04-22 1991-11-28 Genentech Inc PLASMINOGENACTIVATOR MUTANT OF HUMAN TISSUE, METHODS AND INTERMEDIATE PRODUCTS THEREFOR AND COMPOSITIONS USING THIS MUTANT.
US5073494A (en) * 1985-04-22 1991-12-17 Genentech, Inc. Human tissue plasminogen activator substituted at position 275 or at positions 275 and 277
EP0234051B1 (en) * 1986-02-17 1991-12-11 Stichting Centraal Laboratorium van de Bloedtransfusiedienst van het Nederlandse Rode Kruis Tissue-type plasminogen activator mutants; recombinant genetic information coding therefor and process for preparing said mutants; their use and pharmaceutical compositions
IE81073B1 (en) * 1986-03-18 2000-01-12 Genentech Inc Modified human tissue-type plasminogen activator and its preparation
US5589361A (en) * 1986-03-18 1996-12-31 Genentech, Inc. Human tissue-type plasminogen activator variant
US5550036A (en) * 1986-04-09 1996-08-27 Eli Lilly And Company Method for co-amplification of human protein C genes in human cells
US5242819A (en) * 1986-12-05 1993-09-07 Ciba-Geigy Corporation DNA molecules encoding hybrid proteins of tissue plasminogen activator and urokinase
FI100106B (en) * 1986-12-05 1997-09-30 Novartis Ag A process for the preparation of a plasminogen single-stranded recombinant activator
US5580559A (en) * 1986-12-05 1996-12-03 Ciba-Geigy Corporation Hybrid plasminogen activator
GB8701811D0 (en) * 1987-01-28 1987-03-04 Beecham Group Plc Compounds
FI882407A (en) * 1987-05-22 1988-11-23 Zymogenetics Inc FIBRINOLYTIC PROTEINER.
ATE118815T1 (en) * 1987-06-04 1995-03-15 Zymogenetics Inc TISSUE PLASMINOGEN ACTIVATOR ANALOGUES WITH MODIFIED GROWTH FACTOR DOMAINS.
US5149533A (en) * 1987-06-04 1992-09-22 Zymogenetics, Inc. Modified t-PA with kringle-/replaced by another kringle
SE8702562L (en) * 1987-06-18 1988-12-19 Kabigen Ab NEW FIBRINOLYTIC ENZYMES
WO1989000197A1 (en) * 1987-06-30 1989-01-12 Genentech, Inc. Improved processes for the treatment of vascular disease
US4935237A (en) * 1988-03-21 1990-06-19 Genentech, Inc. Processes for the preparation of t-PA mutants
AU613942B2 (en) * 1987-06-30 1991-08-15 Genentech Inc. Improved processes for the treatment of vascular disease
US5302390A (en) * 1987-07-01 1994-04-12 Beecham Group Plc Hybrid proteins of human plasminogen and human t-PA, pharmaceutical compositions and methods of treatment
AU2081788A (en) * 1987-07-06 1989-01-30 Genetics Institute Inc. Novel thrombolytic proteins
IL88247A0 (en) * 1987-11-06 1989-06-30 Genentech Inc Novel human tissue-type plasminogen activator variant
US5094953A (en) * 1988-03-21 1992-03-10 Genentech, Inc. Human tissue plasminogen activator variants
US5037646A (en) * 1988-04-29 1991-08-06 Genentech, Inc. Processes for the treatment of vascular disease
US5270198A (en) * 1988-05-20 1993-12-14 Genentech, Inc. DNA molecules encoding variants of tissue plasminogen activators, vectors, and host cells
US5346824A (en) * 1988-05-20 1994-09-13 Genentech, Inc. DNA encoding variants of tissue plasminogen activators and expression vectors and hosts thereof
GB8815135D0 (en) * 1988-06-24 1988-08-03 British Bio Technology Proteins & nucleic acids
US5108901A (en) * 1988-09-02 1992-04-28 Genentech, Inc. Tissue plasminogen activator having zymogenic or fibrin specific properties
US5258180A (en) * 1988-09-02 1993-11-02 Genetech, Inc. Tissue plasminogen activator having fibrin specific properties and deletion of amino acids 466-970, compositions and methods of treatment
US5714145A (en) * 1988-09-02 1998-02-03 Genentech, Inc. Tissue plasminogen activator having zymogenic or fibrin specific properties
US5262170A (en) * 1988-09-02 1993-11-16 Genentech, Inc. Tissue plasminogen activator having zymogenic or fibrin specific properties and substituted at amino acid positions 296-299, DNA molecules encoding them, vectors, and host cells
DE3831714A1 (en) * 1988-09-17 1990-03-22 Basf Ag TPA-SIMILAR POLYPEPTIDES, THEIR PREPARATION AND USE
SE462829B (en) * 1989-01-10 1990-09-10 Kabigen Ab THROMBOLYTIC ACTIVE COMPOSITIONS CONTAINING A MODIFIED PLASMINOGEN ACTIVATOR OF A WEAVE TYPE AND A NORMAL HUMAN T-PA, STREPTOKINAS OR HUMANT UROKINAS
CA2025743A1 (en) * 1989-09-20 1991-03-21 Hitoshi Yahara Plasminogen activator derivative and a method for its manufacture
IL97311A0 (en) * 1990-02-23 1992-05-25 Lilly Co Eli Vectors and compounds for expression of glycosylation mutants of human protein c
EP0445464A3 (en) * 1990-03-01 1992-03-04 Kanegafuchi Kagaku Kogyo Kabushiki Kaisha A new plasminogen activator derivative and a method for its manufacture
JP3559559B2 (en) * 1992-06-03 2004-09-02 ジェネンテク,インコーポレイテッド Tissue plasminogen activator glycosylation variants with enhanced therapeutic properties
DK0827751T3 (en) * 1996-09-06 2003-03-31 Chemo Sero Therapeut Res Inst Medical preparation containing tissue plasminogen activator and nicotinamide
US6706504B1 (en) 1996-11-12 2004-03-16 The Scripps Research Institute Tissue type plasminogen activator (t-PA) variants: compositions and methods of use

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0042246B1 (en) * 1980-06-12 1987-03-18 The Cancer Institute Of Japanese Foundation For Cancer Research Plasmid
WO1984001786A1 (en) * 1982-10-28 1984-05-10 Beecham Group Plc Enzyme derivatives and their use in the treatment of thrombosis
US4753879A (en) * 1984-08-27 1988-06-28 Biogen N.V. Modified tissue plasminogen activators
ES8702945A1 (en) * 1984-10-01 1987-01-16 Integrated Genetics Inc Recombinant DNA techniques and the products thereof.
DE3537176C2 (en) * 1984-10-18 1994-06-09 Zymogenetics Inc Tissue plasminogen activator and process for its manufacture
JPS61247384A (en) * 1984-10-18 1986-11-04 チモ−ジエネテイツクス インコ−ポレ−テツド Development of plasminogen activating factor in yeast
DE3682104D1 (en) * 1985-04-22 1991-11-28 Genentech Inc PLASMINOGENACTIVATOR MUTANT OF HUMAN TISSUE, METHODS AND INTERMEDIATE PRODUCTS THEREFOR AND COMPOSITIONS USING THIS MUTANT.
ATE74379T1 (en) * 1985-12-23 1992-04-15 Chiron Corp PEPTIDE PLASMINOGEN ACTIVATORS.
DK43387A (en) * 1986-01-29 1987-07-30 Beecham Group Plc FIBRINOLYTIC ENZYM
IE81073B1 (en) * 1986-03-18 2000-01-12 Genentech Inc Modified human tissue-type plasminogen activator and its preparation
JPH0644175B2 (en) * 1986-04-18 1994-06-08 キヤノン株式会社 Image forming device

Also Published As

Publication number Publication date
DK511887D0 (en) 1987-09-29
EP0293394B1 (en) 1994-04-20
AU7239587A (en) 1987-08-25
WO1987004722A1 (en) 1987-08-13
DE3789664T3 (en) 2004-09-16
JPH05268959A (en) 1993-10-19
EP0293394A4 (en) 1989-11-14
JPH104960A (en) 1998-01-13
JPS63501335A (en) 1988-05-26
EP0293394B2 (en) 2003-10-29
AU612974B2 (en) 1991-07-25
JPH0746989A (en) 1995-02-21
JP2568382B2 (en) 1997-01-08
JP2527454B2 (en) 1996-08-21
DK511887A (en) 1987-09-29
DE3789664D1 (en) 1994-05-26
JP2679915B2 (en) 1997-11-19
EP0293394A1 (en) 1988-12-07
DE3789664T2 (en) 1994-09-15

Similar Documents

Publication Publication Date Title
DK175784B1 (en) Hitherto unknown thrombolytic proteins
US5071972A (en) DNA sequences encoding novel thrombolytic proteins
CA1339938C (en) Vectors and compounds for direct expression of activated human protein c
US5501853A (en) Peptide plasminogen activators
US5225537A (en) Methods for producing hybrid phospholipid-binding proteins
HU200615B (en) Methods of preparing tissue plasiminogen activator derivative composition
KR960015610B1 (en) Preparation process of novel thrombolytic protein
WO1988005081A2 (en) Novel plasminogen activator
US5002887A (en) Truncated thrombolytic proteins
US5258298A (en) Deletion and glycosylation mutant of human tissue plasminogen activator
EP0394261A1 (en) Novel thrombolytic proteins
US5837518A (en) Thrombolytic proteins
EP0485504B1 (en) Cell culture methods for producing activated protein c
IE60017B1 (en) Processes for the preparation of a thrombolytic protein having tissue plasminogen activator-type activity
JPH02501106A (en) Novel plasminogen activator
PT85226B (en) PROCESS FOR THE PREPARATION OF NEW THROMBOLITIC PROTEINS
NO175317B (en) DNA molecule encoding a thrombolytic protein
JPH022338A (en) Simultaneous development in eucaryotic cell

Legal Events

Date Code Title Description
PBP Patent lapsed

Country of ref document: DK