DK175634B1 - Transformed host cell and method for producing a lipolytic enzyme - Google Patents
Transformed host cell and method for producing a lipolytic enzyme Download PDFInfo
- Publication number
- DK175634B1 DK175634B1 DK198905919A DK591989A DK175634B1 DK 175634 B1 DK175634 B1 DK 175634B1 DK 198905919 A DK198905919 A DK 198905919A DK 591989 A DK591989 A DK 591989A DK 175634 B1 DK175634 B1 DK 175634B1
- Authority
- DK
- Denmark
- Prior art keywords
- lipase
- gene
- dna
- host cell
- sequence
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/14—Hydrolases (3)
- C12N9/16—Hydrolases (3) acting on ester bonds (3.1)
- C12N9/18—Carboxylic ester hydrolases (3.1.1)
- C12N9/20—Triglyceride splitting, e.g. by means of lipase
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Organic Chemistry (AREA)
- Zoology (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Wood Science & Technology (AREA)
- Microbiology (AREA)
- Biotechnology (AREA)
- Biomedical Technology (AREA)
- Molecular Biology (AREA)
- Biochemistry (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Enzymes And Modification Thereof (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Detergent Compositions (AREA)
- Immobilizing And Processing Of Enzymes And Microorganisms (AREA)
- Bakery Products And Manufacturing Methods Therefor (AREA)
Abstract
Description
i DK 175634 B1in DK 175634 B1
Opfindelsen angår fremstilling ved rekombinant DNA teknologi af lipolytiske enzymer med karakteristika, der gør dem egnede til anvendelse som detergentadditiver. Mere detaljeret angår opfindelsen en transformeret Pseudomonas pseudalcallqenes værtscelle samt en 5 fremgangsmåde til fremstilling af et lipolytisk enzym, der er karakteriseret ved at: (a) have et pH-otium i intervallet fra 8 til 10,5 målt i en pH-stat under betingelser for TLU bestemmelse, og 10 (b) opvise lipaseaktivitet i en vandig opløsning indeholdende en detergent ved en koncentration på op til 10 g/1 opløsning under vaskebetingelser ved en temperatur på ca. 60 C eller lavere og ved en værdi for pH mellem 7 og 11.The invention relates to the preparation of recombinant DNA technology of lipolytic enzymes with characteristics which make them suitable for use as detergent additives. More specifically, the invention relates to a transformed host cell of Pseudomonas pseudalcells, and to a process for producing a lipolytic enzyme characterized by: (a) having a pH otium in the range of 8 to 10.5 measured in a pH state under conditions for TLU determination, and 10 (b) exhibit lipase activity in an aqueous solution containing a detergent at a concentration of up to 10 g / l solution under washing conditions at a temperature of ca. 60 C or lower and at a pH value between 7 and 11.
15 Et særligt problem i forbindelse med vask er fjernelse af fedtagtige pletter. I øjeblikket emulgerer man fedtholdigt snavs og fjerner det under anvendelse af en kombination af forhøjet temperatur og høj alkalinitet. I den senere tid har der imidlertid været 20 en kraftig tendens til at benytte temmelig lave vaske- 0 temperaturer, nemlig ca. 40 C eller mindre, og disse betingelser er især uegnede for fjernelse af fedtagtige pletter. Der er defor et behov for detergentadditiver, der er effektive ved disse lavere vasketemperaturer, 25 stabile i stærkt alkaliske detergentopløsninger, og stabile under lagerbetingelser både i faste og væskeformige detergentblandinger. En gruppe enzymer, der hydrolyserer triglycerider, er lipaser (E.C. 3.1.1.3).A particular problem associated with washing is the removal of greasy stains. Currently, greasy dirt is emulsified and removed using a combination of elevated temperature and high alkalinity. In recent times, however, there has been a strong tendency to use rather low washing temperatures, viz. 40 C or less, and these conditions are particularly unsuitable for removing greasy stains. There is therefore a need for detergent additives effective at these lower washing temperatures, stable in highly alkaline detergent solutions, and stable under storage conditions in both solid and liquid detergent mixtures. One group of enzymes that hydrolyze triglycerides are lipases (E.C. 3.1.1.3).
Lipaser findes bredt fordelt, idet de forekommer i man- 30 ge forskellige prokaryotiske organismer samt i eukaryo-tiske celler. Afhængig af kilden for enzymet vil både substratspecificitet og andre karakteristika, deri-Lipases are widely distributed as they occur in many different prokaryotic organisms as well as in eukaryotic cells. Depending on the source of the enzyme, both substrate specificity and other characteristics that
I DK 175634 B1 II DK 175634 B1 I
I 2 II 2 I
I blandt stabilitet under forskellige betingelser, være IAmongst stability under various conditions, be
I meget forskellige. Man har benyttet lipaser i deter- IIn very different. Lipases have been used in detergent
I gentblandinger, men de herved anvendte lipaser udviste IIn gene mixtures, however, the lipases used herein showed I
I lav vaskeeffektivitet under vaskebetingelser og havde IIn low washing efficiency under washing conditions and had
I 5 derudover ikke den stabilitet, der kræves til detergen- IIn addition, the stability required for detergen- I
I ter. II ter. IN
I Lipolytiske enzymer, der kan opvise lipaseakti- IIn lipolytic enzymes that can exhibit lipase activity
I vitet under moderne vaskebetingelser, dvs. sådanne der IIn white under modern washing conditions, ie. such that I
I er stabile og effektive ved bøje detergentkoncentra- IYou are stable and efficient at bending detergent concentrations
I 10 tioner, høje pH-værdier og lave vasketemperaturer, pro- IIn 10 tions, high pH values and low washing temperatures, pro- I
I duceres af visse stammer der tilhører specierne Pseudo- IYou are duced by certain strains belonging to the species Pseudo-I
I monas pseudoalcallqenes, Pseudomonas stutzerl og Acine-In monas pseudoalcallqenes, Pseudomonas stutzerl and acine-
I tobacter calcoacetlcus (se EPO patentansøgning IIn tobacter calcoacetlcus (see EPO patent application I
I EP-A-0218272). Imidlertid er disse specier potentielt IIn EP-A-0218272). However, these species are potentially I
I 15 sygdomsfrembringende for planter og dyr, og der findes IIn 15 disease-causing plants and animals, and there are
I kun få data for de nødvendige fermenteringsbetingelserIn only a few data for the necessary fermentation conditions
I til en effektiv produktion af lipaser under anvendelse II for efficient production of lipases using I
I af disse mikroorganismer. IIn of these microorganisms. IN
I Det er derfor ønskværdigt at udvikle en effektiv IIt is therefore desirable to develop an effective I
I 20 0g sikker måde til fremstilling af lipolytiske enzymer IIn a 20g safe manner for the preparation of lipolytic enzymes I
I med de ønskede karakteristika for detergentadditiver. IIn with the desired characteristics of detergent additives. IN
I Det er ydermere ønskværdigt, at lipaserne skal udskil- IIt is further desirable that the lipases be separated
I les af værtsorganismen, så man kan udvinde enzymet di- IYou read by the host organism to extract the enzyme di-I
I rekte fra den ekstracellulære væske fra fermentations- IYou extracted from the extracellular fluid from the fermentation I
I 25 blandingen. IIn the mixture. IN
I Man ved for lipaser produceret af Pseudomonas IYou know about lipases produced by Pseudomonas I
I specier, at dyrkningsbetingelserne kraftigt påvirker ISpecies that the cultivation conditions strongly influence
I den endelige lokalisering af disse enzymer (Sugiura, IIn the final localization of these enzymes (Sugiura, I
I I: "Lipases”, udgivere B. Borgstrom og H. L. Brockman I 30 (1984) side 505-523, Elsevier, Amsterdam). Man møderIn I: "Lipases", editors B. Borgstrom and H. L. Brockman I 30 (1984) pages 505-523, Elsevier, Amsterdam).
I ofte problemer ved opnåelse af effektiv ekspression af IYou often have trouble obtaining effective expression of I
I heterologe gener i mikroorganismer, deriblandt ukorrektIn heterologous genes in microorganisms, including incorrect ones
I foldning af proteinerne, der dannes, proteinnedbrydning IIn folding the proteins that are formed, protein degradation I
3 DK 175634 B1 og forkert lokalisering af produkterne. Harris, i: "Genetic Engineering", bind 4 (1983), Academic Press,3 DK 175634 B1 and incorrect location of the products. Harris, in: "Genetic Engineering", Volume 4 (1983), Academic Press,
New York. I EL_ coli tillader anvendelse af sekretion-kloningsvektoret almindeligvis transport af heterolo-5 ge genprodukter ud i periplasmaet, og man finder kun produkterne lejlighedsvis i dyrkningsmediet; Lunn et al,, Current Topics in Microbiol, and Immunol. 125 (1986) 59-74. Når man benytter EL coli som værtscelle, udskilles klonede mikrobielle lipaser kun dårligt i 10 dyrkningsmediet. Se Gotz et al., Nucleic Acids Res. 13 (1985) 5895-5906, Kugimiya et al., Biochem. Biophys.New York. In EL coli, use of the secretion cloning vector generally permits transport of heterologous gene products into the periplasm and only the products are occasionally found in the culture medium; Lunn et al., Current Topics in Microbiol, and Immunol. 125 (1986) 59-74. When using EL coli as a host cell, cloned microbial lipases are only poorly secreted in the culture medium. See Gotz et al., Nucleic Acids Res. 13 (1985) 5895-5906, Kugimiya et al., Biochem. Biophys.
Res. Commun. 141 (1986) 185-190 og Odera et al., J. Ferment. Technol. 64 (1986) 363-371.Res. Commun. 141 (1986) 185-190 and Odera et al., J. Ferment. Technol. 64 (1986) 363-371.
Wohlfarth og Winkler, J. Gen. Microbiol. 134 15 (1988) 433-440, meddeler fysiologiske karakteristika for nyligt isolerede lipasedefekte mutanter fra Pseudomonas aeruginosa stamme PAO 2302 og kromosomkortlægningen og kloningen af det tilsvarende gen.Wohlfarth and Winkler, J. Gen. Microbiol. 134 15 (1988) 433-440, discloses physiological characteristics of newly isolated lipase-defective mutants from Pseudomonas aeruginosa strain PAO 2302 and the chromosome mapping and cloning of the corresponding gene.
Man har benyttet Bacillus specier, især Bacillus 20 subtilis stammer, med forskelligt held som værtsstammer til eksprimering af både fremmede og endogene gener og til udskillelse af de kodede proteinprodukter. En oversigt herover ses f.eks. i Sarvas, Current Topics in Microbiology and Immunology 125 (1986) 103-125, H. C. Wu 25 og P. C. Tai, udgivere Springer Verlag; se endvidere Himeno et al., F.E.M.S. Microbiol. Letters 35 (1986) 17-21.Bacillus species, especially Bacillus 20 subtilis strains, have been used with varying degrees of success as host strains to express both foreign and endogenous genes and to secrete the encoded protein products. An overview of this can be seen e.g. in Sarvas, Current Topics in Microbiology and Immunology 125 (1986) 103-125, H. C. Wu 25 and P. C. Tai, publishers Springer Verlag; see also Himeno et al., F.E.M.S. Microbiol. Letters 35 (1986) 17-21.
US patentskrift nr. 3,950,277 og GB patentskrift nr. 1,442,418 beskriver lipaseenzymer kombineret med en 30 aktivator og henholdsvis calcium- og/eller magnesiumioner, der benyttes til iblødsætning af snavsede tekstiler og til at fjerne triglyceridpletter og snavs fra polyester eller polyester/bomuldsstof. Egnede mikrobe-U.S. Patent No. 3,950,277 and GB Patent No. 1,442,418 disclose lipase enzymes combined with an activator and calcium and / or magnesium ions, respectively, which are used to soak up soiled fabrics and to remove triglyceride stains and dirt from polyester or polyester / cotton fabric. Suitable microbial
I DK 175634 B1 II DK 175634 B1 I
I II I
I lipaser, der beskrives heri, inkluderer sådanne afledt IIn lipases described herein, such derivatives include
I fra Pseudomonas, Aspergillus, Pneumococcus, Staphylo- II from Pseudomonas, Aspergillus, Pneumococcus, Staphylo- I
I coccus, Mycobacterium tuberculosis, Mycotorula llpoly- IIn coccus, Mycobacterium tuberculosis, Mycotorula llpoly- I
I tica og Sclerotlnia. IIn tica and Sclerotlnia. IN
I 5 gb patentskrift nr. 1,372,034 beskriver en de- IIn 5 GB Patent No. 1,372,034, a part I
I tergentblanding, der omfatter en bakteriel lipase pro- IIn tergent mixture comprising a bacterial lipase pro- I
I duceret af Pseudomonas stutzerl stamme ATCC 19154. Pa- IIn duced by Pseudomonas stutzerl strain ATCC 19154. Pa- I
I tentskriftet beskriver yderligere, at de foretrukne li- IIn the tent script further describes that the preferred li I
I polytiske enzymer bør have et pH optimum mellem 6-10 og IIn polytic enzymes should have a pH optimum between 6-10 and 1
I 10 bør være aktive i dette område, især mellem 7-9. (Denne II 10 should be active in this area, especially between 7-9. (This one
I formodede Pseudomonas stutzerl stamme er blevet omklas- IIn putative Pseudomonas stutzerl strain have been reclassified
I sificeret til Pseudomonas aeruginosa). IIn sifted to Pseudomonas aeruginosa). IN
I EPO patentansøgning EP-A-0130064 beskriver et en- IIn EPO patent application EP-A-0130064 discloses a single I
I zymatisk detergentadditiv, der omfatter en lipase iso- IIn zymatic detergent additive comprising a lipase iso- I
I 15 leret fra Fusarlum oxysporum med en større lipolytisk IIn the clay from Fusarlum oxysporum with a larger lipolytic I
I vaskeeffektivitet end konventionelle lipaser. Lipolyti- IIn washing efficiency than conventional lipases. Lipolytic I
I ske detergentadditiver findes også beskrevet, f.eks. i IDetergent additives are also disclosed, e.g. i
GB patentskrift nr. 1,293,613 og canadisk patent nr. IGB Patent No. 1,293,613 and Canadian Patent No. I
I 835.343. II 835,343. IN
I 20 EPO patentansøgninger EP-A-0205208 og IIn 20 EPO patent applications EP-A-0205208 and I
I EP-A-0206396 beskriver anvendelse af Pseudomonas og IEP-A-0206396 discloses the use of Pseudomonas and I
I Chromobacter lipaser i detergenter. Angående en grundig IIn Chromobacter lipases in detergents. Regarding a thorough I
I oversigt over lipaser som detergentadditiver, se Andree IFor an overview of lipases as detergent additives, see Andree I
I et al., J. Appl. Biochem. 2 (1980) 218-229. IIn et al., J. Appl. Biochem. 2 (1980) 218-229. IN
I 25 Den transformerede Pseudomonas pseudoalcallgenes II 25 The transformed Pseudomonas pseudoalcall genes I
I værtscelle ifølge opfindelsen er ejendommelig ved det i IIn the host cell of the invention is peculiar to that of I
I krav l's kendetegnende del anførte. Endvidere er den IThe characteristic part of claim 1 stated. Furthermore, it is you
I særlige fremgangsmåde til fremstilling af ét lipolytisk IIn particular processes for preparing one lipolytic I
I enzym ejendommelig ved det i krav 3's kendetegnende del ^0 anførte. Udtrykt på anden måde er den opfinderiske fremgangsmåde til fremstilling af et lipolytisk enzym I ejendommelig ved at omfatte i et næringsmedium at dyrke I en transformeret værtscelle ifølge opfindelsen til op- 5 DK 175634 B1 nåelse af en næringsrig urt, og at isolere det lipoly-tiske enzym fra denne urt.In enzyme peculiar to the characterizing part of claim 3. Put another way, the inventive method of producing a lipolytic enzyme I is characterized by comprising in a nutrient medium culturing in a transformed host cell of the invention to achieve a nutritious herb and isolating the lipolytic enzyme from this herb.
På tegningen viser:In the drawing:
Figur l: Strategi for kloning af det lipolytiske 5 enzymgen; hvad angår symboler henvises til teksten på figur 2;Figure 1: Strategy for cloning the lipolytic enzyme gene; for symbols, see the text of Figure 2;
Figur 2: Et restriktionskort over pATl; idet man har bestemt en række restriktionsenzymgenkendelsessteder i plasmidet pATl; 10 [ I : pUN121 vektor DNA, mm : Thai IV 17-1 DNA indsættelsesstykke; 15 De anvendte symboler er: - - Ori E. coli: coli replikationsorigin; - Apr: pUN121 genet, der koder for ampicillin-resistens; - Tcr: pUN121 genet, der koder for tetracyclin- 20 resistens; - cl: bakteriofag lambda genet, der koder for cl repressoren;Figure 2: A restriction map of pAT1; having determined a number of restriction enzyme recognition sites in the plasmid pAT1; 10 [I: pUN121 vector DNA, mm: Thai IV 17-1 DNA insert; The symbols used are: - - Ori E. coli: origin of replication; Apr: the pUN121 gene encoding ampicillin resistance; - Tcr: the pUN121 gene encoding tetracycline resistance; - cl: the bacteriophage lambda gene encoding the cl repressor;
Den position, hvor delvis Sau3A fordøjede kromosomalt DNA fra Pseudomonas stutzeri Thai IV 17-1 (CBSThe position where partially Sau3A digested chromosomal DNA from Pseudomonas stutzeri Thai IV 17-1 (CBS
25 461.85) blev ligeret til pUN121, er betegnet ved BclI/Sau3A. Positionen for genet, der koder for lipoly-tisk aktivitet er angivet med en punkteret linie;25 461.85) was ligated to pUN121, is designated by BclI / Sau3A. The position of the gene encoding lipolytic activity is indicated by a dashed line;
Figur 3: Et restriktionskort over pAT3, idet symbolerne er som i figur 2; 30 Figur 4: Et restriktionskort over pETl, idet symbolerne er som i figur 2;Figure 3: A restriction map of pAT3, the symbols being as in Figure 2; Figure 4: A restriction map of pET1, the symbols being as in Figure 2;
Figur 5: Et restriktionskort over pET3, idet symbolerne er som i figur 2;Figure 5: A restriction map of pET3, the symbols being as in Figure 2;
I DK 175634 B1 II DK 175634 B1 I
I 6 II 6 I
I Figur 6: Et restriktionskort over pAMl, idet IFigure 6: A restriction map of pAM1, with I
I symbolerne er som i figur 2; IIn the symbols are as in Figure 2; IN
I Figur 7: Et restriktionskort over pM6-5, idet IFigure 7: A restriction map of pM6-5, with I
I symbolerne er som i figur 2; IIn the symbols are as in Figure 2; IN
I 5 Figur 8: Et restriktionskort over pP5-4, idet * IFigure 8: A restriction map of pP5-4, with * I
I symbolerne er som i figur 2; den stilling, hvori delvis IIn the symbols are as in Figure 2; the position in which I partly
I EcoRI* fordøjet kromosomal DNA fra Aclnetobacter cal- IIn EcoRI *, chromosomal DNA from Aclnetobacter cal digested
I coacetlcus GR V-39 (CBS 460.85) blev ligeret til pUN121 IIn coacetlcus GR V-39 (CBS 460.85) was ligated to pUN121 I
I er betegnet med EcoRI/EcoRI*; II is designated EcoRI / EcoRI *; IN
I 10 Figur 9: En SDS 10-15% gradient Phastgel II 10 Figure 9: An SDS 10-15% gradient Phastgel I
I (Pharmacia); II (Pharmacia); IN
I Figur 9A: efter farvning med Coomassie Brilliant IIn Figure 9A: after staining with Coomassie Brilliant I
I Blue; II Blue; IN
I Figur 9B: efter farvning med 8-naphthylacetat/ IIn Figure 9B: after staining with 8-naphthyl acetate / I
I 15 Fast Blue BB; II 15 Fast Blue BB; IN
I Bane 1: lysat fra E. coli JM101 hsdS recA stamme med IIn Lane 1: lysate from E. coli JM101 hsdS recA strain with I
I indhold af pUNl2l opvarmet med SDS i 10 minutter til IContained with pUN122 heated with SDS for 10 minutes to 1
I 95°C; IAt 95 ° C; IN
I Bane 2: lysat fra E^ coli JM101 hsdS recA stamme med IIn Lane 2: lysate from E ^ coli JM101 hsdS recA strain with I
I 20 indhold af pET3 opvarmet med SDS i 10 minutter til IIn 20 contents of pET3 heated with SDS for 10 minutes to 1
I 95°C; IAt 95 ° C; IN
I Bane 3: kultursupernatant fra P. stutzerl Thai IV 17-1 IIn Lane 3: culture supernatant from P. stutzerl Thai IV 17-1 I
I stamme opvarmet med SDS i 10 minutter til 95°C; IIn strain heated with SDS for 10 min to 95 ° C; IN
I Bane 4: samme prøve som i bane 2, men opvarmet med SDS IIn Lane 4: same sample as in Lane 2, but heated with SDS I
I 251 5 minutter til 95°C; IFor 251 5 minutes to 95 ° C; IN
I Bane 5: samme prøve som i bane 3, men opvarmet med SDS IIn Lane 5: same sample as in Lane 3, but heated with SDS I
I i 5 minutter til 95°C; IFor 5 minutes to 95 ° C; IN
I Bane 6: samme prøve som i bane 2, men inkuberet med SDS IIn Lane 6: the same sample as in Lane 2, but incubated with SDS I
I i 10 minutter ved stuetemperatur; II for 10 minutes at room temperature; IN
I 30Bane 7: samme prøve som i bane 3, men inkuberet med SDS IIn Lane 7: the same sample as in Lane 3, but incubated with SDS I
I i 10 minutter ved stuetemperatur; II for 10 minutes at room temperature; IN
I Bane 8: lavmolekulære proteinmarkører fra Pharmacia; IIn Lane 8: low molecular weight protein markers from Pharmacia; IN
I Figur 10: SDS 13% polyacrylamidgel efter farv- IIn Figure 10: SDS 13% polyacrylamide gel by color I
I ning med Coomassie Brilliant Blue; IIn co-op with Coomassie Brilliant Blue; IN
7 DK 175634 B17 DK 175634 B1
Bane 1: renset M-l lipase;Lane 1: purified M-1 lipase;
Bane 2: lavmolekylære proteinmarkører (Pharmacia).Lane 2: low molecular weight protein markers (Pharmacia).
Figur 11: restriktionskort over pTMPvl8A.Figure 11: restriction map of pTMPv18A.
5 [· - -----j : pTZ18R vektor DNA[? - ----- j: pTZ18R vector DNA
: M-l DNA indsætningsstykke de anvendte symboler er: 10 - Ori E. coli: E. coll replikationsorigin afledt af pBR322 vektor; - fl ori: replikationsorigin fra den filamentøse bakteriofag fl; - p<£7: promotor for bakteriofagen T7 ved frem-15 stilling af in vitro transkriptioner; - Apr: gen der koder for ampicillinresistens; og - Lip: gen der koder for M-l lipasen;: M-1 DNA insert the symbols used are: 10 - Ori E. coli: E. coll origin of origin derived from pBR322 vector; - fl ori: origin of replication from the filamentous bacteriophage fl; p <7: promoter of the bacteriophage T7 in the preparation of in vitro transcripts; - Apr: gene encoding ampicillin resistance; and - Lip: gene encoding the M-1 lipase;
Figur 12: nucleotidsekvensen (dvs. de første 942 nucleotider) for M-l lipasegenet og den afledte amino-20 syresekvens for M-l lipasen; idet terminationskodonet TGA er betegnet med en stjerne og A firkanten repræsenterer det aktive center for lipaseproteinet, derudover betegner pilen det antagne signalpeptidasespaltnings-sted og den aminoterminale sekvens for det modne lipa-25 seprotein er understreget;Figure 12: The nucleotide sequence (i.e., the first 942 nucleotides) of the M-1 lipase gene and the deduced amino acid sequence of the M-1 lipase; the termination codon TGA is denoted by an asterisk and the A square represents the active center of the lipase protein, in addition the arrow denotes the assumed signal peptidase cleavage site and the amino-terminal sequence of the mature lipase protein is underlined;
Figur 13: et restriktionskort over pSW103,Figure 13: a restriction map of pSW103,
I 1 : pUC19 vektor DNAIn 1: pUC19 vector DNA
30 flHH : PA0 1 DNA indsætningsstykke, de anvendte symboler er: - Ori E. coli: E. coli replikationsorigin afledt af pBR322 vektor; I DK 175634 B130 flHH: PA0 1 DNA insert, the symbols used are: - Ori E. coli: E. coli origin of replication derived from pBR322 vector; In DK 175634 B1
I 8 II 8 I
I ” plac: promotor for E. coll lac operon; IIn ”plac: promoter for E. coll lac operon; IN
I - Apr: gen der koder for ampicillinresistens; og II - Apr: gene encoding ampicillin resistance; and in
I - Lip: gen der koder for PAO 1 lipase; II - Lip: gene encoding PAO 1 lipase; IN
Figur 14: en delvis nucleotidsekvens for PAO li- IFigure 14: A partial nucleotide sequence of PAO li-I
I 5 pasegenet (dvs. fra det interne Sall sted) og den af- IIn the 5 pass gene (i.e. from the internal SalI site) and the off-I
I ledte aminosyresekvens for PAO lipasen; termineringsko- IIn directed amino acid sequence of the PAO lipase; termination co
I donet TAG er betegnet med en stjerne, og A firkanten IIn the donation TAG is denoted by a star, and A square I
repræsenterer det aktive center for lipaseprotelnet; Irepresents the active center of the lipase protein network; IN
Figur 15: en konstruktion af plasmiderne pBHAMl IFigure 15: Construction of plasmids pBHAM1 I
I 10 og pBHCMl, idet de anvendte symboler er: II 10 and pBHCM1, the symbols used being: I
I - Bacillus ori: Bacillus replikationsorigin; II - Bacillus ori: Bacillus origin of replication; IN
I - Kmr: pUBHO genet der koder for neomycinresi- II - Kmr: the pUBHO gene encoding neomycin resi- I
stens; Iresistance; IN
I - Qn: Tn9 transposongenet der koder for chlor- II - Qn: Tn9 transposon network encoding chlorine-I
I 15 amphenicolresistens; og II amphenicol resistance; and in
I “ pHpaII: Hpall promotoren fra plasmid pUBHO; IIn “pHpaII: Hpall promoter from plasmid pUBHO; IN
I øvrige symboler er som i figur 11; IIn other symbols, as in Figure 11; IN
I Figur 16 konstruktionen af plasmidet pBHAMINl, IIn Figure 16, the construction of the plasmid pBHAMIN1, I
I idet symbolerne er som i figur 15; IIn that the symbols are as in Figure 15; IN
I 20 Figur 17 konstruktionen af plasmidet ρτζΝίΜΙ, IIn Figure 17 the construction of the plasmid ρτζΝίΜΙ, I
I idet de anvendte symboler er: IIn that the symbols used are:
- lac Za: den N-terminale del af LacZ genet, der I- lac Za: the N-terminal part of the LacZ gene that I
koder for α-domænet fra β-galactosidase; og Iencodes the α domain of β-galactosidase; and in
I - Plac: promotoren fra E. coli lac operon; II - Plac: the promoter of E. coli lac operon; IN
25 de andre symboler er som i figur 11; IThe other symbols are as in Figure 11; IN
I Figur 18 konstruktionen af plasmidet pMCTMl, IIn Figure 18, the construction of the plasmid pMCTM1, I
I idet de anvendte symboler er: IIn that the symbols used are:
I - Cmr: genet der koder for chloramphenicolresl- II - Cmr: the gene encoding chloramphenicolresl- I
I stens; og II stens; and in
I 30 ptac: hybrid trp-lac E. coli promotor; IIn 30 ptac: hybrid trp-lac E. coli promoter; IN
de andre symboler er som i figurerne 11 og 15; Ithe other symbols are as in Figures 11 and 15; IN
Figur 19: En immunblotpåvisning af M-l lipase- IFigure 19: Immune blot detection of M-1 lipase-I
I protein frembragt af transformerede coli celler, IIn protein produced by transformed coli cells, I
9 DK 175634 B1 idet banerne A-D indeholder periplasmiske fraktioner af E. coli celler, der indeholder følgende konstruktioner:9 DK 175634 B1, wherein lanes A-D contain periplasmic fractions of E. coli cells containing the following constructs:
Bane A: pTZ18RN; 5 Bane B: pTZNIMl;Lane A: pTZ18RN; Lane B: pTZNIM1;
Bane C: pMCTMl;Lane C: pMCTM1;
Bane D: renset M-l lipase fra Pseudomonas pseudoalcali-.genes stamme M-l; molekylvægte af markørproteinerne (Rainbow, Amersham) vises udtrykt i kDa til højre;Lane D: purified M-1 lipase from Pseudomonas pseudoalcali gene strain M-1; the molecular weights of the marker proteins (Rainbow, Amersham) are expressed in kDa on the right;
Figur 20: Konstruktionen af plasmidet pBHMlNl, idet symbolerne er som i figur 15;Figure 20: Construction of the plasmid pBHM1N1, the symbols being as in Figure 15;
Figur 21: en autoradiografi af 35S mærkede proteiner syntetiserede in vitro, idetFigure 21: An autoradiography of 35S labeled proteins synthesized in vitro as
Bane A-D: viser immunudfældelse af de in vitro transla-^ terede prøver ved hjælp af monoklonale antistoffer mod M-l lipase;Lanes A-D: show immunoprecipitation of the in vitro translated samples by monoclonal antibodies against M-1 lipase;
Bane E-H: in vitro transkriptions/translationsprodukter af følgende plasmider:Lanes E-H: in vitro transcription / translation products of the following plasmids:
Bane A og E: pTZ18RN; 20 Bane B og F: ρΤΜΡνίβΑ;Lanes A and E: pTZ18RN; Lanes B and F: ρΤΜΡνίβΑ;
Bane C og G: pMCTMl; og Bane D og H: pMCTbliMl;Lanes C and G: pMCTM1; and lanes D and H: pMCTbliMl;
Figur 22A og 22B: påvisning af lipasekodende sekvenser i bakterielt DNA, idet man fordøjede mængder på 25 '5 ng af plasmid DNA, og 5 yg af kromosomalt DNA med restriktionsenzymer som vist, skilte på 0,8% agarose-gel, blottede på nitrocellulosefiltre og hybridiserede med det hak-translaterede indsætningsstykke fra henholdsvis pET3 og ρΤΜΡνίβΑ; 30 Figur 22A: autoradiografien efter hybridisering med pET3 EcoRI indsætningsstykket;Figures 22A and 22B: detection of lipase-coding sequences in bacterial DNA, digesting 25 '5 ng of plasmid DNA, and 5 µg of chromosomal DNA with restriction enzymes as depicted on 0.8% agarose gel, exposed to nitrocellulose filters and hybridized with the notch-translated insert of pET3 and ρΤΜΡνίβΑ, respectively; Figure 22A: The autoradiography after hybridization with the pET3 EcoRI insert;
Figur 22B: autoradiografien efter hybridisering med ρΤΜΡνίβΑ xhol-EcoRV indsætningsstykke;Figure 22B: autoradiography after hybridization with ρΤΜΡνίβΑ xhol-EcoRV insert;
I DK 175634 B1 II DK 175634 B1 I
I 10 II 10 I
I Bane A: Hindlll/SStI fordøjelse af plasmidet pTMPvlSA; IIn lane A: HindIII / SStI digestion of the plasmid pTMPv1SA; IN
I Bane B: EcoRi fordøjning af plasmid pET3; IIn Lane B: EcoR1 digestion of plasmid pET3; IN
I BRL DNA gel markør med molekylvægte på 0,5, IIn BRL DNA gel marker with molecular weights of 0.5, I
I 1,0, 1,6, 2,0, 3,0, 4,0, 5,0, 6,0, 7, 8, 9, 10, II 1.0, 1.6, 2.0, 3.0, 4.0, 5.0, 6.0, 7, 8, 9, 10, I
I 5 11 og 12 kb; IIn 5 11 and 12 kb; IN
I Bane C: Sall fordøjelse af P. pseudoalcallqenes M-l IIn Lane C: Saline digestion of P. pseudoalcallqenes M-l I
I (CBS 473.85); II (CBS 473.85); IN
I Bane D: Sall fordøjelse af P. pseudoalcallqenes IN II-5 IIn Lane D: Sall digestion of P. pseudoalcallqenes IN II-5 I
I (CBS 468.85); II (CBS 468.85); IN
I 1° Bane E: Sall fordøjelse af p. alcaliqenes DSM 50342; IIn 1 ° Lane E: Saline digestion of p. Alkaliqenes DSM 50342; IN
I Bane F: Sall fordøjelse af P. aeruginosa PAC IR (CBS IIn Lane F: Saline digestion of P. aeruginosa PAC IR (CBS I
I 136.89); II 136.89); IN
I Bane G: Sall fordøjelse af P. aeruginosa PA02302 (6-1); IIn Lane G: Saline digestion of P. aeruginosa PA02302 (6-1); IN
I Bane H: Sall fordøjelse af P. stutzerl Thai IV 17-1 IIn Lane H: Sall digestion of P. stutzerl Thai IV 17-1 I
I 15 (CBS 461.85); II 15 (CBS 461.85); IN
I Bane I: Sall fordøjelse af P. stutzerl PG-I-3 (CBS IIn Lane I: Sall digestion of P. stutzerl PG-I-3 (CBS I
I 137.89); II, 137.89); IN
I Bane J: Sall fordøjelse af p. stutzerl PG-I-4 (CBS IIn Lane J: Saline digestion of p. Stutzerl PG-I-4 (CBS I
I 138.89); II, 138.89); IN
I 20 Bane K: Sall fordøjelse af P. stutzeri PG-II-11.1 (CBS IIn 20 Lane K: Sall digestion of P. stutzeri PG-II-11.1 (CBS I
I 139.89); II 139.89); IN
I Bane L: Sall fordøjelse af P. stutzerl PG-II-11.2 (CBS IIn Lane L: Sall digestion of P. stutzerl PG-II-11.2 (CBS I
I 140.89); II 140.89); IN
I Bane M: Sall fordøjelse af P. fraql serm. DB1051 (= IIn Lane M: Sall digestion of P. fraql serm. DB1051 (= I
I 25 Ferm BP 1051); II 25 Ferm BP 1051); IN
I Bane N; Sall fordøjelse af p. gladioli (CBS 176.86); IIn Lane N; Saline digestion of p. Gladioli (CBS 176.86); IN
I Bane 0: Sall fordøjelse af A. calcoacetlcus Gr-V-39 . IIn Lane 0: Sall digestion of A. calcoacetlcus Gr-V-39. IN
I (CBS 460.85); og II (CBS 460.85); and in
I Bane P: Sall fordøjelse af S. aureus (ATCC 27661). IIn Lane P: Sall digestion of S. aureus (ATCC 27661). IN
I 30 II 30 I
I Ifølge opfindelsen tilvejebringes DNA konstruk- 1In accordance with the invention, DNA construct 1 is provided
I tioner og værtsceller omfattende DNA kodende for enzy- IIn tions and host cells comprising DNA encoding enzyme I
I mer. IIn more. IN
11 DK 175634 B111 DK 175634 B1
Llpaserne af interesse i forbindelse med opfindelsen har et pH optimum mellem ca. 8-10,5, udviser en effektiv lipaseaktivitet i en vandig opløsning, der indeholder en vaskeblanding med koncentrationer op til 5 ca. 10 g pr. 1 under vaskebetingelser og en temperatur O 0 på 60 C eller lavere, foretrukket 30-40 C, og en pH-værdi mellem ca. 7-11, foretrukket ca. 9-10,5. Man benytter plasmidkonstruktioner, der omfatter en DNA sekvens, der koder for et lipasegen med de ønskede karak-10 teristika, til at transformere en værtscelle, der enten kan være en eukaryotisk eller prokaryotisk celle. Derefter dyrker man den transformerede værtscelle for at eksprimere genet.The lapas of interest in connection with the invention have a pH optimum between about 8-10.5, exhibits an effective lipase activity in an aqueous solution containing a wash mixture with concentrations up to about 5%. 10 g per 1 under washing conditions and a temperature 0 0 of 60 C or lower, preferably 30-40 C, and a pH between about 7-11, preferably ca. 9-10.5. Plasmid constructs comprising a DNA sequence encoding a lipase gene with the desired characteristics are used to transform a host cell which may be either a eukaryotic or prokaryotic cell. Then, the transformed host cell is grown to express the gene.
Fremgangsmåden til isolering af lipasegenet hø-15 rer til kendt teknik inkluderende syntese, isolering fra genomisk DNA, udpræparering fra cDNA eller kombinationer deraf. De forskellige metoder til manipulering af genet er velkendte og inkluderer restriktionsfordøjelse, resektion, ligering, in vitro mutagenese, pri-20 merreparation og anvendelse af sammenbindere og adapto-rer og lignende. Se Maniatis et al., "Molecular Cloning”, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, 1982.The method for isolating the lipase gene belongs to the prior art including synthesis, genomic DNA isolation, cDNA preparation or combinations thereof. The various methods of manipulating the gene are well known and include restriction digestion, resection, ligation, in vitro mutagenesis, primer repair and the use of linkers and adapters and the like. See Maniatis et al., "Molecular Cloning", Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, 1982.
Alment omfatter metoden, at man præparerer et 25 genomisk bibliotek fra en organisme, der eksprimerer lipase med de ønskede karakteristika. Eksempler på sådanne lipaser er sådanne, der kan opnås fra Pseudomonas og Aclnetobacter og især fra stammer, der tilhører specierne Pseudomonas alcaligenes. Pseudomonas pseudoalca-30 ligenes, Pseudomonas aeruginosa, Pseudomonas stutzerl og Aclnetobacter calcoacetlcus. En række af disse lipaser og stammer beskrives mere grundigt i EP-A-0218272.In general, the method comprises preparing a genomic library from an organism expressing lipase with the desired characteristics. Examples of such lipases are those obtainable from Pseudomonas and Aclnetobacter and especially from strains belonging to the species Pseudomonas alcaligenes. Pseudomonas pseudoalca ligigenes, Pseudomonas aeruginosa, Pseudomonas stutzerl and Aclnetobacter calcoacetlcus. A number of these lipases and strains are described in more detail in EP-A-0218272.
Man isolerer genomet fra donormikroorganismen og spal-The genome is isolated from the donor microorganism and
I DK 175634 B1 II DK 175634 B1 I
I 12 II 12 I
I ter det ved hjælp af et passende restriktionsenzym så- IIterate it using an appropriate restriction enzyme
I som Sau3A. Man forener de opnåede fragmenter med et IYou as Sau3A. The obtained fragments are combined with an I
I vektormolekyle, der tidligere er blevet spaltet af et IIn a vector molecule previously cleaved by an I
I dermed forligeligt restriktionsenzym. Et eksempel på en IIn this, compatible restriction enzyme. An example of an I
I 5 passende vektor er plasmid pUNl2l, der kan spaltes af IIn suitable vector, plasmid is pUN121 that can be cleaved by I
I restriktionsendonuclease Bell. Derudover kan man benyt- IIn restriction endonuclease Bell. In addition, you can use- I
I te aminosyresekvensen til at konstruere en sonde til IIn the amino acid sequence to construct a probe for I
I gennemsøgning af et cDNA eller et genomisk bibliotek IIn scanning a cDNA or genomic library I
I fremstillet af mRNA eller DNA fra cellerne af interesse II made from mRNA or DNA from the cells of interest I
I 10 som donorceller for et lipasegen. IIn 10 as donor cells for a lipase gene. IN
I Ydermere kan man let klone strukturbeslægtede IIn addition, it is easy to clone structurally related I
I gener fundet i andre mikroorganismer ved at anvende li- IIn genes found in other microorganisms using li- I
I påse DNA eller et fragment deraf som hybridiserings- IYou bag DNA or a fragment thereof as hybridization I
I sonde. Der tænkes her især på isolering af gener fra IIn probe. In particular, we think of isolating genes from I
I 15 organismer, der eksprimerer lipolytisk aktivitet under IIn 15 organisms expressing lipolytic activity during I
I anvendelse af oligonucleotidsonder baseret på nueleo- IUsing oligonucleotide probes based on nueleo- I
I tidsekvensen for lipasegener, der kan opnås fra orga- IIn the time sequence of lipase genes obtainable from organ I
I nismerne beskrevet i EP-A-02118272. Alternativt kan man IIn the niches described in EP-A-02118272. Alternatively, you can
I aflede disse oligonucleotider fra aminosyresekvenserne IYou derive these oligonucleotides from the amino acid sequences I
20 fra Upaser af interesse. Sådanne sonder kan være bety- I20 from Upaser of interest. Such probes may be significant
I delig kortere end hele sekvensen, men bør have en læng- IIn part shorter than the whole sequence, but should have a long I
I de på i det mindste lo, foretrukket i det mindste 14 IIn those of at least lye, preferably at least 14 l
I nucleotider. Længere oligonucleotider er også anvende- IIn nucleotides. Longer oligonucleotides are also used
lige op til genets fulde længde, men foretrukket ikke Iright up to the full length of the gene, but preferably not
I 25 me(3 en Xængde på mere end 500, især ikke mere end 300 IIn 25 me (3 an X length of more than 500, especially not more than 300 I)
I nucleotider. Der kan både anvendes RNA og DNA sonder. IIn nucleotides. Both RNA and DNA probes can be used. IN
I ved anvendelse mærker man typisk sonderne på en IIn use, the probes are typically labeled on an I
I påviselig måde (f.eks. med 32P, 35S, 3H, biotin eller IIn a detectable manner (eg with 32P, 35S, 3H, biotin or I
avidin) og inkuberer dem med enkeltstrenget DNA og RNA Iavidin) and incubate them with single-stranded DNA and RNA I
I 30 fra den organisme, hvori man leder efter et gen. Man IIn 30 from the organism in which one is looking for a gene. Man I
påviser hybridisering ved hjælp af mærkningen, efter at Idemonstrates hybridization by labeling after I
man har adskilt enkeltstrenget og dobbeltstrenget Isingle-stranded and double-stranded I have been separated
I (hybridiseret) DNA {DNA/RNA) (typisk under anvendelse af II (hybridized) DNA (DNA / RNA) (typically using I
13 DK 175634 B1 nitrocellulosepapir). Hybridiseringsfremgangsmåder til anvendelse ved oligonucleotider er kendt af fagmanden.13 DK 175634 B1 nitrocellulose paper). Hybridization methods for use in oligonucleotides are known to those skilled in the art.
Selv om man normalt anvender sonder med en påviselig markør til let identifikation, kan man også be-5 nytte umærkede oligonucleotider både som forstadier for mærkede sonder og til anvendelse i metoder, der giver direkte påvisning af dobbeltstrenget DNA {eller DNA/RNA). Således skal betegnelsen "oligonucleotidsonde” refererer til både mærkede og umærkede former.Although probes are usually employed with a detectable marker for easy identification, unlabeled oligonucleotides can also be used both as precursors for labeled probes and for use in methods that provide direct detection of double-stranded DNA (or DNA / RNA). Thus, the term "oligonucleotide probe" must refer to both labeled and unlabeled forms.
10 Ved en foretrukket udførelsesform af opfindelsen kloner man sekvensen fra Pseudomonas pseudoalcaligenes lipase fra stammen CBS 473.85 (M-l). Overraskende viste den klonede lipase fra Pseudomonas aeruginosa PAO (ATCC 15692) efter sekvensopdeling en høj grad af sekvens-15 homologi med lipasegensekvensen fra M-l. Endnu mere overraskende var det at finde en tilsvarende høj grad af sekvenshomologi mellem lipasegensekvensen fra M-l stammen og kromosomalt DNA fra en række Pseudomonas stutzerl isolater [nemlig PG-I-3 (CBS 137.89), PG-I-4 20 (CBS 138.89), PG-II-11.1 (CBS 139.89), PG-II-11.2 (CBS 140.89)] og Pseudomonas alcallgenes DSM 50342. En "høj grad af hybridisering" vil i denne forbindelse blive defineret som en kontinuert sekvens af DNA med en længde på i det mindste 300 bp, hvori man finder i det 25 mindste 67% homologi.In a preferred embodiment of the invention, the sequence of Pseudomonas pseudoalcaligen's lipase from the strain CBS 473.85 (M-1) is cloned. Surprisingly, the cloned lipase from Pseudomonas aeruginosa PAO (ATCC 15692) after sequence splitting showed a high degree of sequence homology with the lipase gene sequence from M-1. Even more surprising was finding a similarly high degree of sequence homology between the lipase gene sequence of the M1 strain and chromosomal DNA from a number of Pseudomonas stutzerl isolates [namely PG-I-3 (CBS 137.89), PG-I-4 20 (CBS 138.89), PG-II-11.1 (CBS 139.89), PG-II-11.2 (CBS 140.89)] and Pseudomonas alcallgenes DSM 50342. A "high degree of hybridization" will in this connection be defined as a continuous sequence of DNA having a length of at least 300 bp in which at least 25% homology is found.
Man fremstillede lipaseenzymer fra P. aeruginosa og P. stutzeri og afprøvede dem for deres vaskeevne ved 'SLM-testen. Man fandt overraskende, at alle de enzymer, der havde en høj grad af homologi med M-l lipasegenet, 30 også havde en overlegen stabilitet, effektivitet og ydelse ved betingelser, der minder om en moderne vaskeproces. Ifølge Ausubel et al.. Current Protocols in Molecular Biology, 1987-1988, kan man ved Southern hybri-Lipase enzymes from P. aeruginosa and P. stutzeri were prepared and tested for their washability by the 'SLM test. Surprisingly, all the enzymes which had a high degree of homology to the M-1 lipase gene were found to also have superior stability, efficiency and performance under conditions reminiscent of a modern washing process. According to Ausubel et al., Current Protocols in Molecular Biology, 1987-1988, the Southern hybrid
I DK 175634 B1 II DK 175634 B1 I
I 14 II 14 I
I disering påvise homolog! op til dette niveau. Denne IIn dissection, prove homologous! up to this level. This one
I fundne homologi kunne ikke observeres med P. gladioli, IIn found homology could not be observed with P. gladioli, I
I beskrevet i EP-A-0205208 og EP-A-0206390 eller Humicola IAs described in EP-A-0205208 and EP-A-0206390 or Humicola I
I lanqulnosa lipasen, beskrevet i EP-A-0305216. IIn the lanqulnosa lipase, described in EP-A-0305216. IN
I 5 Man kan identificere kloner med indhold af det II 5 You can identify clones with the contents of it
I indsatte DNA-fragment ved anvendelse af en direkte el- II inserted DNA fragment using a direct el-I
I ler positiv udvælgelsesfremgangsmåde, såsom hvad der er IYou laugh positive selection method, such as what you are
I udviklet for E. coli (Kuhn et al.. Gene 44 (1986) IIn E. coli (Kuhn et al. Gene 44 (1986) I)
I 253-263) og for B. subtilis (Gryczan og Dubnau, Gene 20 II 253-263) and for B. subtilis (Gryczan and Dubnau, Gene 20 I
I 10 (1982) 459-469). Et eksempel på en sådan positiv selek- II 10 (1982) 459-469). An example of such a positive selection
I tionsvektor for E. coli er pUN12l (Nilsson et al., Nu- IIn tions vector for E. coli, pUN121 (Nilsson et al., Nu- I
I cleic Acids Res. 11 (1983) 8019-8030). IIn cleic Acids Res. 11 (1983) 8019-8030). IN
I Derudover kan man f.eks. identificere kloner, IIn addition, one can, for example. identify clones, I
I der eksprimerer de lipolytiske enzymer, ved at anvende IIn which they express the lipolytic enzymes, using I
I 15 et passende indikatorpladeassay, såsom agarmedium med IIn a suitable indicator plate assay, such as agar medium with I
I indhold af tributyrin eller olivenolie kombineret med IContaining tributyrin or olive oil combined with I
rhodamin B (Kouker og Jaeger, Appl. Env. Microbiol. 53 Irhodamine B (Kouker and Jaeger, Appl. Env. Microbiol. 53 I
I (1987) 211). Man kan derudover gennemsøge replikakolo- IIn (1987) 211). In addition, replica cocolo I can be searched
I nier under anvendelse af en tilpasset teknik med blød IIn kidneys using a custom soft I technique
I 20 agar baseret på fremgangsmåden beskrevet for påvisning IIn 20 agar based on the procedure described for detection I
af esteraseaktivitet (Hilgerd og Spizizen, J. Iof esterase activity (Hilgerd and Spizizen, J. I
I Bacteriol. 114 (1978) 1184). Derudover kan man identi- IIn Bacteriol. 114 (1978) 1184). In addition, one can identify
I ficere kloner, der eksprimerer lipolytiske enzymer, ved at anvende genetisk komplementering i en passende lipa- I 25 senegativ modtagerstamme, såsom en sådan beskrevet af I Wohlfarth og Winkler, J. Gen. Microbiol. 134 (1988) I 433-440.In ficier clones expressing lipolytic enzymes, by using genetic complementation in an appropriate lipase-senegative recipient strain, such as that described by I. Wohlfarth and Winkler, J. Gen. Microbiol. 134 (1988) I 433-440.
I Når et komplet gen først er blevet identificeret enten som cDNA eller kromosom DNA, kan det derefter ma- I 30 hipuleres på en række måder til opnåelse af eksprime- ring. Man kan benytte mikrobeværter, der f.eks. kan in- I kludere bakterier, gærarter og fungi såsom E. coli, I Kluvveromyces, Aspergillus, Bacillus og Pseudomonas 15 DK 175634 B1 specier. I forbindelse med denne opfindelse anvendes Pseudomonas pseudoalcaliqenes. Når genet således skal eksprimeres i en vært, der genkender vild type tran-skriptionelle og translationelle regulerende regioner 5 af lipasen, kan man indføre hele genet med dets vild type 5'- og 3·-regulerende regioner i en passende ekspressionsvektor. Der eksisterer diverse ekspressionsvektorer, der benytter replikationssystemer fra proka-ryotiske celler. Se for eksempel Pouwels et al., 10 "Cloning Vector, A Laboratory Manual", Elsevier, 1985.Once a complete gene has been identified either as cDNA or chromosome DNA, it can then be hypothesized in a variety of ways to obtain expression. You can use micro hosts that, for example. may include bacteria, yeasts and fungi such as E. coli, I. Kluvveromyces, Aspergillus, Bacillus and Pseudomonas. For the purposes of this invention, Pseudomonas pseudoalcaligenes are used. Thus, when the gene is to be expressed in a host that recognizes wild type transcriptional and translational regulatory regions 5 of the lipase, the whole gene with its wild type 5 'and 3' regulatory regions can be introduced into an appropriate expression vector. Various expression vectors exist that utilize prokaryotic cells replication systems. See, for example, Pouwels et al., "Cloning Vector, A Laboratory Manual," Elsevier, 1985.
Man har udviklet sådanne replikationssystemer for at tilvejebringe markører, der tillader at man kan udvælge transformanter samt tilvejebringe bekvemme gennemskæringssteder, hvor man kan indsætte genet.Such replication systems have been developed to provide markers that allow one to select transformants as well as provide convenient intersection sites where the gene can be inserted.
15 Når genet skal eksprimeres i en vært, der ikke genkender de naturligt forekommende vild type tran-skriptionelle og translationelle regulerende regioner, er det nødvendigt med yderligere manipulation. Dertil kender man en række 31-transkriptionelle regulerende 20 regioner, og de skal indsættes nedstrøms fra stopko-donerne. Man kan fjerne den ikke-kodende 5'-region opstrøms fra det strukturelle gen ved endonucleasegennem-skæring, Bal31 resektion eller lignende. Når der alternativt findes et passende restriktionssted tæt ved 25 5'-terminus for det strukturelle gen, kan man gennemskære det strukturelle gen og benytte en adaptor til at binde det strukturelle gen til en promotor region, idet adaptoren giver de tabte nucleotider fra det strukturelle gen.15 When the gene is to be expressed in a host that does not recognize the naturally occurring wild-type transcriptional and translational regulatory regions, further manipulation is needed. In addition, a number of 31 transcriptional regulatory 20 regions are known and must be inserted downstream of the stop codons. The non-coding 5 'region upstream of the structural gene can be removed by endonuclease intersection, Bal31 resection or the like. Alternatively, when an appropriate restriction site is found near the 25 'terminus of the structural gene, the structural gene can be intersected and an adapter used to bind the structural gene to a promoter region, the adapter yielding the lost nucleotides of the structural gene. .
30 Man kan benytte diverse strategier for at tilve jebringe en ekspressionskassette, der i 5’-*3' tran-skriptionretningen har en transkriptionel regulerende region og en translationel initieringsregion, der ogsåVarious strategies can be used to provide an expression cassette having in the 5 '- * 3' transcriptional direction a transcriptional regulatory region and a translational initiation region which also
I DK 175634 B1 II DK 175634 B1 I
I 16 II 16 I
I kan Inkludere regulerende sekvenser, der tillader In- IYou can Include regulatory sequences that allow In-
I duktion af reguleringen; en åben læseramme der koder IIn duction of the regulation; an open reading frame encoding I
I for det lipolytlske enzym, der helst skal inkludere en II for the lipolytic enzyme, which should preferably include an I
I leadersekvens til udskillelse, der genkendes af den øn- IIn a sequence of excretion recognized by the desired I
I 5 skede værtscelle; og translationelle og transkriptio- IIn 5 sheath host cell; and translational and transcription I
I nelle termineringsregioner. Ekspressionskassetten kan IIn nell termination regions. The expression cassette can i
I derudover inkludere i det mindste ét markørgen. Initie- IIn addition, include at least one marker gene. Initial I
I rings- og temineringsregionerne skal virke i værtscel·- IIn the ring and taming regions must work in the host cell · - I
I len og kan enten være homologe (afledt fra den oprinde- IIn the county and may be either homologous (derived from the original I
I 10 lige vært) eller heterologe (afledt af den oprindelige IIn 10 equal hosts) or heterologous (derived from the original I
I vært) eller heterologe (afledt fra en fremmed kilde el- IHost) or heterologous (derived from a foreign source or I)
I ler fra syntetiske DNA sekvenser). Ekspressionskasset- IIn clay from synthetic DNA sequences). The expression box- I
I ten kan således være helt eller delvis afledt fra na- IThus, the substance may be wholly or partially derived from the substance
I turlige kilder og enten helt eller delvis afledt fra IIn turbulent sources and either wholly or partly derived from I
I 15 kilder, der er homologe til værtscellen eller er hete- IIn 15 sources that are homologous to the host cell or are hot
I rologe til værtscellen. De forskellige DNA konstruktio- IIn rologue to the host cell. The various DNA constructs
I ner (DNA sekvenser, vektorer, plasmider, ekspressions- II sequences (DNA sequences, vectors, plasmids, expression I)
I kassetter) ifølge opfindelsen er isolerede og/eller IIn cassettes) according to the invention are insulated and / or I
I rensede eller er syntetiserede og er således ikke IYou are purified or synthesized and thus are not
I 20 "naturligt forekommende". IIn 20 "naturally occurring". IN
I Ved valget af passende regulerede sekvenser bør IIn selecting suitable regulated sequences, you should
I man tage følgende faktorer, der påvirker ekspressionen, IIn considering the following factors that influence expression, I
I i betragtning. Hvad angår regulering af transkriptio- IIn consideration. Regarding the regulation of transcription I
I nen, er mængden og stabiliteten af messenger RNA vigti- IIn this, the amount and stability of messenger RNA is important
I 25 ge faktorer, der påvirker eksprimering af genprodukter- IIn 25 ge factors affecting expression of gene products- I
I ne. Mængden af mRNA bestemmes af kopitallet af det re- II ne. The amount of mRNA is determined by the copy number of the re- I
I levante, gen, den relative effektivitet af dets promotor IIn levante, gene, the relative efficacy of its promoter I
I og de faktorer., der regulerer promotoren, såsom for- II and the factors that regulate the promoter, such as
I stærkere eller repressorer. Stabiliteten af mRNA styres IIn stronger or repressors. The stability of mRNA is controlled I
I 30 af modtageligheden for dette mRNA for ribonucleaseenzy- IIn 30 of the susceptibility of this mRNA to ribonuclease enzyme I
I mer. Almindeligvis inhiberes exonucleasefordøjelse ved IIn more. Generally, exonuclease digestion is inhibited by I
I tilstedeværelse af strukturelle forløb ved enderne af IIn the presence of structural processes at the ends of I
I mRNA; palindromstrukturer, ændrede nucleotider eller IIn mRNA; palindrome structures, altered nucleotides or I
17 DK 175634 B1 specifikke nucleotidsekvenser. Man mener, at endonu-cleasefordøjelse foregår ved specielle genkendelsessteder inden i mRNA, og stabilt mRNA mangler disse steder.17 DK 175634 B1 specific nucleotide sequences. It is believed that endonuclease digestion occurs at special recognition sites within mRNA, and stable mRNA is lacking at these sites.
Der er også en vis sandsynlighed for, at mRNA, der i 5 høj grad kan undergå translation, er beskyttet mod nedbrydning ved tilstedeværelse af ribosomer på mRNA.There is also a certain likelihood that mRNA, which can greatly undergo translation, is protected from degradation by the presence of ribosomes on mRNA.
Hvad angår regulering af translation kan man, når mRNA er til stede, regulere eksprimering ved at påvirke initieringshastigheden (binding af ribosomer til 10· mRNA), forlængelseshastigheden (translokation af ribo-somet hen over mRNA), hastigheden for eftert ranst ranslat ionelle modifikationer og stabiliteten af genproduktet. Forlængelseshastigheden påvirkes sandsynligvis af kodonanvendelsen, idet anvendelse af kodoner for et 15 sjældent tRNA kan reducere translationshastigheden. Man mener, at initieringen foregår i den region, der findes netop opstrøms for begyndelsen af den kodende sekvens.Regarding translation regulation, when mRNA is present, expression can be regulated by affecting the rate of initiation (binding of ribosomes to 10 · mRNA), the rate of extension (translocation of the ribosome across mRNA), the rate of post-ruptured ionic modifications, and the stability of the gene product. The rate of elongation is likely to be affected by codon usage, as using codons for a rare tRNA can reduce the rate of translation. It is believed that the initiation takes place in the region located just upstream of the beginning of the coding sequence.
Denne region vil hos prokaryoter i de fleste tilfælde indeholde en konsensus nucleotidsekvens AGGA, der 20 betegnes Shine-Dalgarno sekvensen. Idet denne sekvens er karakteristisk for ribosombindingsstedet, er det tydeligt, at sekvenser både opstrøms og nedstrøms herfor kan påvirke en succesrig initiering.This prokaryote will in most cases contain a consensus nucleotide sequence AGGA, designated the Shine-Dalgarno sequence. As this sequence is characteristic of the ribosome binding site, it is evident that sequences both upstream and downstream thereof may influence successful initiation.
Der er også tegn på, at der inden i den kodende 25 region findes nucelotidsekvenser, der kan påvirke binding af ribosomer, muligvis ved dannelsen af visse strukturer, hvorved ribosomet kan genkende initieringsstedet. Placeringen af AGGA sekvensen i forhold til det initierende ATG kodon kan også påvirke ekspres-30 sionen. Det er således en vekselvirkning mellem alle disse faktorer, der bestemmer en bestemt eksprime-ringshastighed. Imidlertid har generne til ekspression udviklet en kombination af alle disse faktorer til op-There is also evidence that within the coding region there are nucleotide sequences that may affect the binding of ribosomes, possibly through the formation of certain structures whereby the ribosome can recognize the initiation site. The location of the AGGA sequence relative to the initiating ATG codon may also affect expression. Thus, it is an interaction of all these factors that determines a particular rate of expression. However, the genes for expression have developed a combination of all these factors to
I DK 175634 B1 II DK 175634 B1 I
I II I
I 16 II 16 I
I nåelse af en bestemt eksprimeringshastighed. Hvis man IIn reaching a certain rate of expression. If you
I konstruerer et ekspressionssystem til opnåelse af et IYou construct an expression system to obtain an I
I højt niveau for genproduktet, må man ikke blot betragte IAt the high level of the gene product, one must not merely consider you
I de særlige regioner, der er bestemt til påvirkning af IIn the particular regions intended to influence I
I 5 ekspressionen, men også hvordan disse regioner (og så- IIn the 5 expression, but also how these regions (and so- I
I ledes sekvenserne deri) påvirker hinanden. IIn which the sequences therein) affect each other. IN
I Illustrerende transskriptionelle regulerende re- II Illustrative transcriptional regulatory re- I
I gioner eller promotorer Inkluderer f.eks. sådanne se- IIn gions or promoters Includes e.g. such se- I
I kvenser, der afledes af gener, der overeksprimeres i IIn sequences derived from genes overexpressed in I
I 10 industrielle produktionsstammer. IIn 10 industrial production strains. IN
I Den transkriptionelle regulerende region kan IIn the transcriptional regulatory region, you can
I derudover inkludere regulerende sekvenser, der tilla- IIn addition, include regulatory sequences that allow- I
I der, at man kan modulere ekspressionen af det struktu- IIn that one can modulate the expression of the structural I
I relle gen, f.eks. ved tilstedeværelse eller fravær af IIn real genes, e.g. in the presence or absence of I
I 15 næringsstoffer eller ekspressionsprodukter i vækstmedi- IIn 15 nutrients or expression products in growth media I
I et, temperaturer etc. F.eks. kan i prokaryotiske celler IIn one, temperatures etc. For example. can in prokaryotic cells I
I ekspressionen af det strukturelle gen reguleres ved IIn the expression of the structural gene is regulated by I
I hjælp af temperaturen, idet man benytter en regulerende IUsing the temperature, using a regulating I
I sekvens, der omfatter bakteriofag λ PL promotoren sam- IIn sequence comprising the bacteriophage λ PL promoter co-I
I 20 men med bakteriofag λ 0L operatoren og en temperatur- II 20 but with the bacteriophage λ 0L operator and a temperature I
I følsom repressor. Man opnår regulering af promotoren IIn sensitive repressor. Regulation of the promoter I is achieved
I ved vekselvirkning mellem repressoren og operatoren. Af II by interaction between the repressor and the operator. By I
I særlig interesse er ekspressionskassetter, der kan eks- IOf particular interest are expression cassettes that can be exported
I primere et lipolytisk enzym, der benytter de reguleren- IIn primers a lipolytic enzyme using the regulator I
I 25 de sekvenser fra Bacillus amylase og proteasegener. Det IIn the sequences of Bacillus amylase and protease genes. The ten
I aktuelle strukturelle gen indføres nedstrøms fra ribo- IIn the current structural gene, downstream of the ribo-I is introduced
I sombindingsstedet, så det er under regulerende kontrol IIn the binding site so that it is under regulatory control
I af den transkriptionelle regulerende region og den II of the transcriptional regulatory region and the I
I translationelle initieringsregion. IIn translational initiation region. IN
I 30 Man kan derudover fremstille et sammensmeltet IIn addition, a fused I can be prepared
I gen ved at tilvejebringe en 5'-sekvens til det struktu- IIn gene by providing a 5 'sequence to the structural I
I relle gen, der koder for en leadersekvens for udskil- IIn real genes that encode a leader sequence for secretion I
I lelse og et bearbejdningssignal. Hvis signalsekvensen IIn relief and a processing signal. If the signal sequence I
! 19 DK 175634 B1 fra selve lipasegenet virker i den udvalgte værtscelle, kan man benytte dette. Illustrerende heterologe sekre-toriske leadersekvenser inkluderer de sekretoriske lea-dersekvenser fra penicillinase, amylase, protease og 5 gær α-faktor. Hvis man i korrekt læserramme sammensmelter et sekretorisk leadersekvens og det pågældende strukturelle gen, kan man opnå at det færdige lipolyti-ske enzym bliver udskilt i dyrkningsmediet.! 19 DK 175634 B1 from the lipase gene itself acts in the selected host cell, this can be used. Illustrative heterologous secretory leader sequences include the secretory leader sequences from penicillinase, amylase, protease and yeast α factor. If in the correct reading frame a secretory leader sequence and the structural gene in question are fused, the final lipolytic enzyme can be excreted in the culture medium.
Ekspressionskassetten kan inkluderes i et re-10 plikationssystem for episomal opretholdelse i en passende værtsmikroorganisme eller kan tilvejebringes uden et replikationssystem, hvor det i dette tilfælde kan integreres i værtens genom. Den måde værtsmikroorganisme bliver transformeret på med de forskellige DNA kon-15 struktioner er ikke kritisk for opfindelsen. Man kan indføre DNA i værten ifølge kendt teknik, såsom ved transformation under anvendelse af calciumphosphat, ud-.fældet DNA, konjugation, elektroporering, transficering ved kontakt af cellerne med en virus, mikroinjektion af 20 DNA i cellerne eller lignende. Værtscellerne kan være hele celler eller protoplaster.The expression cassette may be included in a replication system for episomal maintenance in a suitable host microorganism or may be provided without a replication system where in this case it can be integrated into the host genome. The way the host microorganism is transformed with the various DNA constructs is not critical to the invention. DNA may be introduced into the host of the prior art, such as by transformation using calcium phosphate, precipitated DNA, conjugation, electroporation, transfection by contact of the cells with a virus, microinjection of 20 DNA into the cells or the like. The host cells may be whole cells or protoplasts.
Man kan som værtsorganisme benytte en hvilken som helst mikroorganisme, der er egnet til produktion og ekstraktion af et lipolytisk enzym; værtsorganismen 25 er foretrukket også i stand til at udskille det producerede enzym, hvorfor man kan udvinde enzymet fra cellefri fermentationsvæske. Værtsmikroorganismen er endvidere foretrukket en ikke patogen organisme. Eksempler på værtsorganismer, der opfylder ovenstående krav in-30 kluderer E. coli, Pseudomonas putida og Bacillus stammer, især B. subtilis og B. licheniformls, Strepto-myces stammer og fungi og gærstammer såsom Aspergillus og Kluyveromyces. Ved opfindelsen benyttes Pseudomonas pseudoalcaniqenes.As a host organism, any microorganism suitable for the production and extraction of a lipolytic enzyme may be used; The host organism 25 is preferably also capable of secreting the enzyme produced, which is why the enzyme can be recovered from cell-free fermentation liquid. Furthermore, the host microorganism is preferably a non-pathogenic organism. Examples of host organisms that meet the above requirements include E. coli, Pseudomonas putida and Bacillus strains, particularly B. subtilis and B. licheniformls, Streptomyces strains and fungi and yeast strains such as Aspergillus and Kluyveromyces. In the invention, Pseudomonas pseudoalcanes are used.
DK 175634 B1 IDK 175634 B1 I
20 I20 I
Værtsstammerne kan være laboratoriestammer ellerThe host strains may be laboratory strains or
kan inkludere industrielle stammer af mikroorganismer. Imay include industrial strains of microorganisms. IN
Det særlige ved industrielle stammer er, at de er mod-The special thing about industrial strains is that they are counter-
standsdygtige mod genetisk udveksling såsom faginfek- Iresistant to genetic exchange such as phage infection
5 tion eller transformation. Sådanne stammer er stabile5 tion or transformation. Such strains are stable
og kan eller kan ikke danne sporer. De er prototrofe og Iand may or may not form spores. They are prototrophic and I
modificerede, så de giver høje udbytter af endogene Imodified to give high yields of endogenous I
proteinprodukter såsom enzymerne a-amylase og diverse Iprotein products such as the enzymes α-amylase and miscellaneous I
proteaser. Udbyttet af et endogent proteinprodukt opnå- Iproteases. The yield of an endogenous protein product is obtained
10 et i en industriel produktionsproces kan gå op til i I10 in an industrial production process can go up to I
det mindste 5 g/1 (0,5% w/v). industrielle stammer ud- Iat least 5 g / l (0.5% w / v). industrial strains out- I
skiller også DNAser, hvilket fører til en nedbrydning Ialso separates DNAs, leading to a breakdown I
af DNA i mediet og giver en beskyttelse mod genetisk Iof DNA in the medium and provides protection against genetic I
udveksling. Iexchange. IN
15 Når det strukturelle gen først er indført i en IOnce the structural gene is introduced into an I
passende vært, kan man dyrke værtscellen til opnåelse Iappropriate host, the host cell can be cultured to obtain I
af eksprimering af det strukturelle gen. Produktions- Iof expression of the structural gene. Production I
niveauet for lipolytisk aktivitet kan være sammenligne- Ithe level of lipolytic activity may be comparable- I
lig med eller være højere end ved de oprindelige stam- Iequal to or higher than the original strain I
20 mer, fra hvilket generne er afledt. Man kan dyrke20 mer, from which the genes are derived. One can cultivate
værtscellerne til høj densitet i et passende medium til Ithe high density host cells in a suitable medium for I
dannelse af en næringsrig urt. I tilfælde af, at promo- Iformation of a nutritious herb. In the event that the promo- I
toren er inducerbar, skal man benytte permissive betin- IIf the tor is inducible, permissive conditions must be used
gelser, f.eks. ændringer i temperatur, fuld udnyttelse Ieg. changes in temperature, full utilization
25 eller overskud af et metabolisk produkt eller et næ- I25 or excess of a metabolic product or nutrient
ringsmiddel eller lignende. Iring agent or the like. IN
Når der er tilvejebragt udskillelse, kan man IWhen excretion is provided, you can
isolere ekspressionsproduktet fra dyrkningsmediet ved Iisolating the expression product from the culture medium at I
kendt teknik. Man kan forstærke frigivelsen af det pro- Iprior art. One can increase the release of the pro- I
30 ducerede lipolytiske enzym ved hjælp af fortyndede I30 induced lipolytic enzyme by diluted I
overfladeaktive opløsninger. Når der ikke er tilveje- Isurfactant solutions. When there is no- I
bragt udskillelse, kan man indhøste værtscellerne og Ibrought secretion, one can harvest the host cells and I
lysere dem ved kendt teknik. Derefter isolerer og ren- Ibrighten them by prior art. Then isolate and purify
21 DK 175634 B1 ser man det ønskede produkt ved kendt teknik såsom ved chromatografi, elektroforese, solventekstraktion, faseadskillelse eller lignende.The desired product is known in the prior art, such as by chromatography, electrophoresis, solvent extraction, phase separation or the like.
De omhandlede sammensætninger kan benyttes på en 5 lang række måder. De transformerede værtsmikroorganismer kan benyttes til forstærket produktion af lipase med karakteristika, der gør den nyttig i detergentblandinger. De klonede lipasegener kan også benyttes ved gennemsøgning efter lipasegener, deriblandt identifice-10 ring af et lipolytisk gen som en lipase, snarere end som en esterase.The present compositions can be used in a variety of ways. The transformed host microorganisms can be used for enhanced lipase production with characteristics that make it useful in detergent mixtures. The cloned lipase genes may also be used in the search for lipase genes, including identification of a lipolytic gene as a lipase, rather than as an esterase.
De kan også benyttes til enzymkonstruktion ved kendt teknik i forbindelse med tilfældig eller positionsrettet mutagenese til opnåelse af lipaser med de 15 ønskede ændrede karakteristika.They can also be used for enzyme construction of the prior art in conjunction with random or location-directed mutagenesis to obtain lipases with the desired altered characteristics.
De lipolytiske enzymsammensætninger kan benyttes i vaskemidler sammen med en detergent og eventuelt andre ingredienser, der almindelig benyttes i vaskemidler. Disse ingredienser kan inkludere i det mindste én 20 ud af følgende: overfladeaktive midler, vandblødgø- ringsmidler såsom komplekse phosphater, alkalimetal-silicater og bicarbonater; fyldstoffer såsom alkall-metalsulfat; andre enzymer såsom proteaser, amylaser, blegemidler samt forskellige komponenter såsom duft-25 stoffer, optisk hvidt, etc.The lipolytic enzyme compositions can be used in detergents together with a detergent and optionally other ingredients commonly used in detergents. These ingredients may include at least one of the following: surfactants, water softeners such as complex phosphates, alkali metal silicates and bicarbonates; fillers such as alkali metal sulfate; other enzymes such as proteases, amylases, bleaches, and various components such as fragrances, optical white, etc.
I sådanne enzymatiske vaskemidler er lipaseakti-viteten foretrukket i området på 1-20.000 TLU/g middel, idet aktiviteten af proteolytisk enzym foretrukket ligger i området 50-10.000 Delft enheder/g vaskemiddel. En 30 TLU (virkelig lipaseenhed) er defineret som en titrer-bare fed syreækvivalent til mængden af 1 ymol NaOH/min frigivet fra olivenolie (gummiarabicumemulsion ved pH 8,0, 25°C. Delftenheden ses defineret i J. Amer. Oil Chem. Soc. 60 (1983) 1672.In such enzymatic detergents, lipase activity is preferably in the range of 1-20,000 TLU / g of agent, with the activity of proteolytic enzyme preferably in the range of 50-10,000 Delft units / g of detergent. A 30 TLU (real lipase unit) is defined as a titre-only fatty acid equivalent to the amount of 1 µmol NaOH / min released from olive oil (gum arabic emulsion at pH 8.0, 25 ° C. The delphine unit is defined in J. Amer. Oil Chem. Soc 60 (1983) 1672.
I DK 175634 B1 II DK 175634 B1 I
I 22 II 22 I
I Man kan fremstille sådanne vaskemidler ifølge ISuch detergents can be prepared according to I
I kendt teknik, f.eks. ved at sammenblande komponenterne IIn the prior art, e.g. by mixing the components I
I eller ved at fremstille en præblanding, der derefter IIn or by preparing a premixture which then I
I gøres færdig ved at tilblande de andre ingredienser. IYou are done by mixing the other ingredients. IN
I 5 Ved én mulig fremstillingsvej blander man ét eller fle- II 5 In one possible manufacturing route, mix one or more I
I re lipasepræparater med én eller flere af de andre kom- IIn re lipase preparations with one or more of the other compounds
I ponenter til fremstilling af et koncentrat med en for- IIn ponents for preparing a concentrate having a formula I
I udbestemt enzymatisk aktivitet, og dette koncentrat kan IIn definite enzymatic activity and this concentrate, you can
I derefter blandes med de andre ønskede komponenter. IYou then mix with the other desired components. IN
I 10 De lipolytiske enzymer ifølge opfindelsen fore- IThe lipolytic enzymes of the invention provide I
I ligger foretrukket på form af et enzymatisk detergent- II is preferably in the form of an enzymatic detergent I
I additiv. Dette additiv kan også indeholde ét eller fle- IIn additives. This additive may also contain one or more
I re andre enzymer, f.eks. eh protease og/eller en amylia- IIn other enzymes, e.g. eh protease and / or an amylia I
I se, der kan benyttes i moderne vaskemidler og én eller IYou see that can be used in modern detergents and one or I
I 15 flere andre komponenter, der sædvanligvis benyttes her, IIn 15 other other components commonly used herein, I
I f.eks. et ikke-ionisk, salt, stabiliserende middel IIn e.g. a non-ionic, salt, stabilizing agent I
I og/eller overtrækkende middel. Det enzymatiske deter- IIn and / or coating agent. The enzymatic detergent I
I gentadditiv kan udover en lipase omfatte en protease og IIn gene additive, in addition to a lipase, it may include a protease and I
I eventuelt en a-amylase. De proteolytiske enzymer er IOptionally an α-amylase. The proteolytic enzymes are I
I 20 forligelige med de lipolytiske enzymer i dette ICompatible with the lipolytic enzymes in this I
I præparat. Man blander sædvanligvis de enzymatiske de- I tergentadditiver med én eller flere detergenter og an-In preparation. The enzymatic detergent additives are usually mixed with one or more detergents and
I dre komponenter ifølge kendt teknik til opnåelse af IIn the prior art components for obtaining I
I vaskemidler. Det enzymatiske detergentadditiv benyttes IIn detergents. The enzymatic detergent additive is used
I 25 sædvanligvis inden for området 102-107 TLU/g additiv og II usually in the range of 102-107 TLU / g additive and I
I den eventuelle tilstedeværende protolytiske aktivitet IIn any protolytic activity present
I ligger i området 5 x 104-106 Delft enheder/g. IYou are in the range 5 x 104-106 Delft units / g. IN
I Disse enzymatiske detergentadditiver kan f.eks. IIn these enzymatic detergent additives, e.g. IN
I foreligge som granulater eller prills fremstillet ved IAvailable as granules or prills prepared by I
I 30 kendt teknik. Se i denne forbindelse f.eks. GB patenterIn 30 prior art. See in this connection e.g. GB patents
I nr. 1,324,116 og 1,362,365 samt US patenter nr. IIn Nos. 1,324,116 and 1,362,365 as well as U.S. Patents Nos. I
I 3,519,570, 4,106,991 og 4,242,219. IIn 3,519,570, 4,106,991 and 4,242,219. IN
I Det enzymatiske detergentadditiv kan foreliggeIn the enzymatic detergent additive may be present
I på flydende form sammen med en enzymstabilisator, IIn liquid form together with an enzyme stabilizer,
23 DK 175634 B1 f.eks. propylenglycol. De kan også være på form af organiske eller uorganiske opslæmninger, emulsioner eller være på indkapslet form immobiliseret på en opløselig eller uopløselig bærer eller i en vandig eller vandfri 5 opløsning under tilstedeværelse af én eller flere stabilisatorer. Sådanne additiver anvendes foretrukket i væskeformige detergentblandinger.23 DK 175634 B1 e.g. propylene glycol. They may also be in the form of organic or inorganic slurries, emulsions or be in encapsulated form immobilized on a soluble or insoluble carrier or in an aqueous or anhydrous solution in the presence of one or more stabilizers. Such additives are preferably used in liquid detergent mixtures.
De følgende eksempler er blot illustrerende.The following examples are merely illustrative.
•Man benyttede almindelig kloningsteknik som beskrevet 10 af Maniatis et al., "Molecular Cloning: A Laboratory Manual", Cold Spring Harbor Laboratory, 1982, CSH, New York. Alle DNA-modificerende enzymer blev tilvejebragt fra kommercielle leverandører og de blev benyttet ifølge leverandørers instruktioner. Materialer og apparater 15 til DNA rensning og adskillelse blev benyttet ifølge leverandørens instruktioner.Ordinary cloning technique as described in Maniatis et al., "Molecular Cloning: A Laboratory Manual", Cold Spring Harbor Laboratory, 1982, CSH, New York, was used. All DNA modifying enzymes were obtained from commercial suppliers and used according to suppliers' instructions. Materials and apparatus for DNA purification and separation were used according to the supplier's instructions.
Eksempel 1 20 Molekylær kloning af trlacylqlycerolacylhydrolaser A. Kilde for DNA og udvælgelsesvektor.Example 1 Molecular cloning of trlacylglycerol acyl hydrolases A. Source of DNA and selection vector.
EP-A-0218272 beskriver adskillige bakteriestammer, der producerer lipaser der er egnet til brug i 25 detergenter. Blandt disse udvalgte man Acinetobacter calcoaceticus Gr V-39 (CBS 460.85), Pseudomonas stut-zeri Thai IV 17-1 (CBS 461.85), Pseudomonas pseudoalca-ligenes IN II-5 (CBS 468.85) og Pseudomonas pseudoalca-liqenes M-l (CBS 473.85) som kilder for lipolytiske ge-30 ner.EP-A-0218272 discloses several bacterial strains producing lipases suitable for use in 25 detergents. Among these selected were Acinetobacter calcoaceticus Gr V-39 (CBS 460.85), Pseudomonas stutzeri Thai IV 17-1 (CBS 461.85), Pseudomonas pseudoalca ligigenes IN II-5 (CBS 468.85) and Pseudomonas pseudoalca ligene 47 Ml ) as sources of lipolytic genes.
Man tilvejebragte plasmidvektor pUN121 (Nilsson et al., Nucleic Acids Research 11 (1983) 8019), der bærer et gen for ampicillinresistens, et gen for tetracy-Plasmid vector pUN121 (Nilsson et al., Nucleic Acids Research 11 (1983) 8019) bearing a ampicillin resistance gene, a tetracycline gene, was obtained.
I DK 175634 B1 II DK 175634 B1 I
I 24 II 24 I
I clinresistens og cl repressorgenet fra bakteriofag λ, IIn the clin resistance and the cl repressor gene from bacteriophage λ, I
I fra Dr. M. Uhlén, Royal Institute of Technology, De- II from Dr. M. Uhlén, Royal Institute of Technology, De- I
I partment of Biochemistry, Teknikringen 10, S-10044 IIn Partment of Biochemistry, Teknikringen 10, S-10044 I
I Stockholm, Sverige. Transkription af tetracyclingenet IIn Stockholm, Sweden. Transcription of the tetracycline network I
I 5 forhindres af cl repressoren. Indsættelse af fremmed II 5 is prevented by the cl repressor. Insertion of foreign
I DNA i de unikke restriktionssteder (Bell, Smal, Hindlll IIn DNA at the unique restriction sites (Bell, Smal, Hindlll I
I og EcoRl) fører til aktivering af tetracyclingenet. II and EcoRl) lead to activation of the tetracycline network. IN
I Dette tillader direkte (positiv) udvælgelse af rekombi- II This allows direct (positive) selection of recombi- I
I nante transformanter på Luria-urt agarplader med ind- IIn nante transformants on Luria-herb agar plates with ind. I
I 10 hold af 8 yg/ml tetracyclin og 50 pg/ml ampicillin. IIn 10 teams of 8 µg / ml tetracycline and 50 µg / ml ampicillin. IN
I B. Fremstilling af génblbllotek (se figur 1) IB. Manufacture of gene labs (see Figure 1)
I Man isolerede plasmid og kromosomal DNA som be- IPlasmid and chromosomal DNA were isolated as I
I skrevet af Andreoli, Mol. Gen. Genet. 199 (1985) IWritten by Andreoli, Mol. Gen. Genet. 199 (1985) I
I 15 372-380. Man fordøjede delvis kromosomal DNA, isoleret II 15 372-380. Partially chromosomal DNA was digested, isolated I
I fra henholdsvis Thai IV 17-1 og M-l, ved hjælp af II from Thai IV 17-1 and M-1, respectively, using I
I Sau3A. Dette DNA blev derefter ved hjælp af T4 DNA li- IIn Sau3A. This DNA was then ligated using T4 DNA
I gase ligeret til Bell fordøjet pUN121 DNA som beskrevet IIn gases ligated to Bell digested pUN121 DNA as described in I
I af Maniatis et al. (se ovenfor) og transformeret i kom- IIn Maniatis et al. (see above) and transformed into com
I 20 petente celler af E. coll stamme JM101 hsdS recA IIn 20 petent cells of E. coll strain JM101 hsdS recA I
I (Dagert og Ehrlich, Gene 6 (1979) 23-28). Man tilveje- IIn (Dagert and Ehrlich, Gene 6 (1979) 23-28). You provide- I
I bragte E. coli JM101 recA fra Phabagen Collection IYou brought E. coli JM101 recA from Phabagen Collection I
I (deponeringsnummer PC2495), Utrecht, Holland. Man ud- II (deposit number PC2495), Utrecht, Netherlands. You go out
I valgte transformanter, der var resistente mod tetracy- IIn selected transformants resistant to tetracycline I
I 25 clin på et niveau på 8 yg/ml, på Luria-urt agarplader. IIn 25 clin at a level of 8 µg / ml, on Luria-herb agar plates. IN
I C. Udvælgelse af transformanter IIn C. Selection of Transformants I
I Det som ovenfor beskrevet opnåede genbibliotek IIn the gene library I obtained as described above
I blev replikaplattet og gennemsøgt for lipolytisk akti- II was replicated and searched for lipolytic activity
I 30 vitet ved følgende to fremgangsmåder. Ved den første II know by the following two methods. By the first I
I fremgangsmåde gennemsøgte man replikakolonierne for li- IIn the process, the replica colonies of Li-I were searched
I polytisk aktivitet på pepton agarmedium med indhold af IIn polytic activity on peptone agar medium containing I
I tributyrin. Man påviste en lipolytisk aktivitet som en IIn the tributary. Lipolytic activity as an I was detected
25 DK 175634 B1 klar zone (glorie) rundt om en koloni på grund af nedbrydning af den uklare lipidemulsion. Ved den anden fremgangsmåde gennemsøgte man replikakolonier for este-raseaktivitet under anvendelse af en overlægningsteknik 5 med blød agar. Fremgangsmåden var baseret på fremgangsmåden ifølge Hilgerd og Spizlzen, J. Bacteriol. 11425 DK 175634 B1 clear zone (glory) around a colony due to degradation of the obscure lipid emulsion. In the second method, replica colonies for esterase activity were searched using a soft agar overlay technique 5. The method was based on the method of Hilgerd and Spizlzen, J. Bacteriol. 114
(1987) 1184. I det væsentlige udhældte man en blanding af 0,4% lavtsmeltende agarose, 0,5 M kaliumphosphat (pH(1987) 1184. Essentially, a mixture of 0.4% low melting agarose, 0.5 M potassium phosphate (pH
7,5), 0,5 mg/1 β-naphthylacetat opløst i acetone og 0,5 10 mg/1 Fast Blue BB (se eksempel 2) ud over transforman-. terne. I løbet af få minutter blev kolonier med estera-seaktivitet eller lipaseaktivitet farvet purpur.7.5), 0.5 mg / L β-naphthyl acetate dissolved in acetone and 0.5 10 mg / L Fast Blue BB (see Example 2) in addition to transforman. States. Within minutes, colonies with esterase or lipase activity were stained purple.
Af de 1200 tetracyclinresistente transformanter opnået fra Thai IV 17-l/pUN121 genbanken, producerede 15 tre kloner glorier på tributyrin agarplader. Af de 12.000 rekombinante transformenter afprøvet fra M-l/pUN121 genbanken viste kun én klon svag lipolytisk aktivitet.Of the 1,200 tetracycline-resistant transformants obtained from the Thai IV 17-l / pUN121 gene bank, 15 produced three clones of glory on tributyrin agar plates. Of the 12,000 recombinant transformants tested from the M-1 / pUN121 gene bank, only one clone showed weak lipolytic activity.
Man dyrkede de tributyrinpositive kloner natten 20 over i 2TY medium (16 g/1 Bacto-trypton, 10 g/1 Bacto-gærekstrakt, 5 g/1 natriumchlorid, pH 7,0) og analyserede både for plasmidindhold (se under ID) og evnen til at omdanne diverse β-naphthylsubstrater, et tegn på lipolytisk aktivitet (se eksempel 2A).The tributyrin positive clones were grown overnight in 2TY medium (16 g / l Bacto tryptone, 10 g / l Bacto yeast extract, 5 g / l sodium chloride, pH 7.0) and analyzed for both plasmid content (see below ID) and the ability to convert various β-naphthyl substrates, a sign of lipolytic activity (see Example 2A).
25 D. Plasmidisolerlnq D.l Indhold af Thai IV 17-1 lipaseqen25 D. Plasmid Insulation D.l Content of Thai IV 17-1 lipase gene
De plasmider, der blev isoleret fra Thai IV 30 17-l/pUN121 transformanterne, blev betegnet pATl og pAT3. Deres struktur vises i henholdsvis figur 2 og figur 3. En tredje klon betegnet pAT2 indeholdt et plasmid, der var identisk med pATl konstruktionen. GenetThe plasmids isolated from the Thai IV 30 17-l / pUN121 transformants were designated pAT1 and pAT3. Their structure is shown in Figure 2 and Figure 3. A third clone designated pAT2, respectively, contained a plasmid identical to the pAT1 construct. Genet
I DK 175634 B1 II DK 175634 B1 I
I 26 II 26 I
I der kodede for den lipolytiske aktivitet var anbragt I I inden i et 2,7 kb EcoRl fragment af pATl (figur 2, I I punkteret linie) og indenfor et 3,2 kb EcoRl fragment I I af pAT3 (figur 3, punkteret linie). De to EcoRl frag- I I 5 menter blev underklonet i passende vektorer både med I I henblik på DNA sekvensopdeling og til opnåelse af høje- I I re udbytter af lipolytisk aktivitet. I I Kloning af 2,7 kb EcoRl fragmentet fra pATl i I I vektoren pUN121 skabte det rekombinante plasmid pETl I I 10 (figur 4). En prøve af E. coli JM101 hsdS recA med ind- I I hold af pETl blev deponeret hos CBS den 5. februar 1987 I I .med deponeringsnummer CBS 157.87. I I Kloning af 3,2 kb EcoRl fragmentet fra pAT3 i IIn coding for the lipolytic activity, I I was located within a 2.7 kb EcoRl fragment of pAT1 (Figure 2, I I dotted line) and within a 3.2 kb EcoRl fragment I I of pAT3 (Figure 3, dotted line). The two EcoRl fragments were subcloned into appropriate vectors both for DNA sequencing and to obtain high yields of lipolytic activity. In cloning the 2.7 kb EcoRl fragment from pAT1 into the I I vector pUN121, the recombinant plasmid generated pET1 I I 10 (Figure 4). A sample of E. coli JM101 hsdS recA containing pET1 was deposited with CBS on February 5, 1987 with deposit number CBS 157.87. I I Cloning of the 3.2 kb EcoRl fragment from pAT3 into I
vektoren pUNl2l dannede det rekombinante plasmid pET3 I I 15 (figur 5). En prøve af E. coli JM101 recA med indhold I I af plasmid pET3 blev deponeret hos CBS den 5. februar I I 1987 med deponeringsnummer CBS 155.87. Ithe vector pUN122 generated the recombinant plasmid pET3 I I 15 (Figure 5). A sample of E. coli JM101 recA containing content I I of plasmid pET3 was deposited with CBS on February 5, I, 1987 with accession number CBS 155.87. IN
D.2 Indhold af M-l lipaseqen I I 20 Man isolerede det rekombinante plasmid fra I I M-l/pUN121 transformanten ved navn pAMl og karakteri- ID.2 Content of the M-1 lipase gene I I The recombinant plasmid was isolated from the I I M-1 / pUN121 transformant named pAM1 and characterized by
serede det (figur 6). Biokemisk karakterisering af den I I lipolytiske aktivitet af pAMl viste imidlertid, at det- I I te plasmid ikke kodede for en lipase efter ønske (se I I 25 også eksemplerne 2 og 3). Derfor måtte man udvikle an- I I dré strategier, hvilket illustreres senere. Isaw it (Figure 6). However, biochemical characterization of the I I lipolytic activity of pAM1 showed that this I plasmid did not encode a desired lipase (see I I 25 also Examples 2 and 3). Therefore, strategies had to be developed, which will be illustrated later. IN
Plasmidet pAMl i E. coli JM101 hsdS recA blev I I deponeret hos CBS den 5. februar 1987 med deponerings- I I nummer 154.87.The plasmid pAM1 in E. coli JM101 hsdS recA was deposited with CBS on February 5, 1987 with deposit I-number 154.87.
I DK 175634 B1 I 27 I D.3 Indhold af IN II-5 lipasegen I Man klonede delvis Sau3A fordøjet Pseudomonas I pseudoalcallqenes IN II-5 DNA fragmenter i E. coll K12 I DHl stammen (ATCC 33849) under anvendelse af plasmid- I 5 vektoren pUN121. Efter ligering og transformering i I kompetente DHl celler præpareret som beskrevet af Hana- I han, J. Mol. Biol. 166 (1983) 557-580, opnåede man ca.I DK 175634 B1 I 27 I D.3 Content of IN II-5 lipase gene I Partially cloned Sau3A digested Pseudomonas I pseudoalcalligenes IN II-5 DNA fragments in E.coll K12 I DH1 strain (ATCC 33849) using plasmid I 5 vector pUN121. After ligation and transformation into 1 competent DH1 cells prepared as described by Hana-Han, J. Mol. Biol. 166 (1983) 557-580, approx.
I 1500 transformanter der var resistente mod 50 yg/ml am- I picillin og 8 yg/ml tetracyclin. Man udvalgte transfor- I 10 manter, der kunne hydrolysere tributyrin og β-naphthyl- I acetat som beskrevet under 1C. Pra en positiv koloni I isolerede man plasmid DNA og karakteriserede den ved at I bestemme adskillige restriktionsenzymgenkendelsesste- I der. Afbildningen af dette plasmid ved navn pM6-5 ses i I 15 figur 7.In 1500 transformants resistant to 50 µg / ml am-I picillin and 8 µg / ml tetracycline. Transformants were selected which could hydrolyze tributyrin and β-naphthyl-I acetate as described under 1C. From a positive colony I, plasmid DNA was isolated and characterized by determining several restriction enzyme recognition sites. The mapping of this plasmid named pM6-5 is shown in Figure 15.
I Man bestemte aktiviteten af E. coli DHl (pM6-5) I mod β-naphthylestere (tabel 1). En prøve af E. coli DHl I med indhold af plasmid pM6-5 blev deponeret hos CBS den I 5. februar 1987 med deponeringsnummer 153.87.The activity of E. coli DH1 (pM6-5) I against β-naphthyl esters was determined (Table 1). A sample of E. coli DH1 I containing plasmid pM6-5 was deposited with CBS on February 5, 1987, with deposit number 153.87.
I 20 I D.4 Indhold af Gr v-39 lipasegen I Man blandede delvis EcoRI* fordøjet (betingelser I ifølge Gardner et al., DNA 1 (1982) 109-114) Acineto- I bacter calcoaceticus Gr V-39 DNA med EcoRI linearise- I 25 ret pUN121 DNA. Efter ny ringslutning ved hjælp af T4 I polynucleotidligase introducerede man DNA blandingen i I E. coli DHl (ATCC 33849) ved transformationsfremgangs- I måden beskrevet tidligere i dette eksempel. Alle de I opnåede 1800 tetracyclinresistente transformanter blev I 30 gennemsøgt for lipolytisk aktivitet som beskrevet under 1C.I 20 I D.4 Content of Gr v-39 Lipase Gene I Partially mixed EcoRI * digested (conditions I according to Gardner et al., DNA 1 (1982) 109-114) Acineto-I bacter calcoaceticus Gr V-39 DNA with EcoRI linearized pUN121 DNA. Following new cyclization by T4 I polynucleotide ligase, the DNA mixture was introduced into I E. coli DH1 (ATCC 33849) by the transformation procedure described earlier in this example. All of the I obtained 1800 tetracycline resistant transformants were searched for lipolytic activity as described under 1C.
Tre kloner i dette Gr v-39/pUN121 genbibliotek producerede et lipolytisk enzym. Man isolerede plasmid · I DK 175634 B1 I 28 DNA fra en af disse kloner ved navn pP5-4, og karakte- I riserede ved hjælp af restriktionsendonucleaser. Af- I bildning af dette plasmid pP5~4 ses i figur 8. Derefter I bestemte man hydrolysen af β-naphthylestere ved hjælp 5 af rå en2ympræparater fra E. coli DH1 (pP5-4) (tabel I 1). Plasmidet pP5-4 i E. coli DH1 blev deponeret hos CBS den 5. februar 1987 med deponeringsnummer 151.87.Three clones in this Gr v-39 / pUN121 gene library produced a lipolytic enzyme. Plasmid DNA was isolated from one of these clones named pP5-4 and characterized by restriction endonucleases. The formation of this plasmid pP5 ~ 4 can be seen in Figure 8. Then, the hydrolysis of β-naphthyl esters was determined using 5 E. coli DH1 (pP5-4) crude enzyme preparations (Table I1). The plasmid pP5-4 in E. coli DH1 was deposited with CBS on February 5, 1987 with deposit number 151.87.
I Eksempel 2 I 10In Example 2 I 10
Karakterisering af præparater med klonede lipolytlske I fenzymer.Characterization of cloned lipolytic I enzyme preparations.
A. Bestemmelse af lipolytlsk aktivitet 15 Man inokulerede tributyrinpositive E. coli kolo- nier i 100 ml 2TY medium med indhold af ampicillin og tetracyclin i en 500 ml konisk kolbe. E. coli kulturer blev rystet i 40 timer ved 30 C i en roterende omrysterA. Determination of Lipolytic Activity 15 Tributyrin positive E. coli colonies were inoculated into 100 ml of 2TY medium containing ampicillin and tetracycline in a 500 ml conical flask. E. coli cultures were shaken for 40 hours at 30 ° C in a rotary shaker
med 250 o/m. Stammerne af Pseudomonas og Acinetobacter Hat 250 rpm. The strains of Pseudomonas and Acinetobacter H
20 blev dyrket ved 30 C. Efter 40 timers forløb målte man den optiske densitet ved 575 nm og centrifugerede urten i en Sorvall RC5B centrifuge i en GSA rotor ved 6.000 o/m i 10 minutter, hvorefter man lagrede supernatanten ved 4 C indtil udførelse af enzymassay.20 was grown at 30 C. After 40 hours, optical density was measured at 575 nm and centrifuged in a Sorvall RC5B centrifuge in a GSA rotor at 6,000 rpm for 10 minutes, then supernatant stored at 4 ° C until enzyme assay was performed. .
25 Man udsuspenderede igen cellerne i 4 ml lyse- ringspuffer (25% sucrose, 50 mM Tris-HCl pH 7,5). Man tilsatte lysozym og tilsatte efter 30 minutters inkube- ring ved 21°C 20 pg/ml DNase og fortsatte inkuberingen i 30 minutter ved 37°C. Nu tilsatte man 0,1 v/v 30 triton-X100 og lydbehandlede cellesuspensionerne på is ved hjælp af et Labsonic 1510 sonifier set (5 stød å 30 sekunders varighed, 100 watt, 1 minuts intervaller).The cells were resuspended in 4 ml of lysis buffer (25% sucrose, 50 mM Tris-HCl pH 7.5). Lysozyme was added and, after 30 minutes incubation at 21 ° C, 20 µg / ml DNase was added and incubation was continued for 30 minutes at 37 ° C. Now 0.1 v / v 30 triton-X100 was added and sonicated cell suspensions on ice using a Labsonic 1510 sonifier set (5 shocks of 30 seconds duration, 100 watts, 1 minute intervals).
Man fjernede derefter celleaffald ved centrifugering i 29 DK 175634 B1Cell debris was then removed by centrifugation in B1
I 15 minutter ved 12.000 o/m i en Hettich Mikro Rapid/KFor 15 minutes at 12,000 rpm in a Hettich Micro Rapid / K
I centrifuge. Den opnåede supernatant blev derefter ana- I lyseret for lipolytisk aktivitet. Analysen er baseret I på hydrolyse af β-naphthylestere af lipolytiske I · 5 enzymer. Frigivet β-naphthyl reagerer med diazoniumsal- I tet Fast Blue BB til opnåelse af et azofarvestof, der I absorberer ved 540 nm. Fremgangsmåden er i det væsent- I lige ifølge McKellar, J. Dairy Res. 53 (1986) 117-127, I og blev udført på følgende måde.In the centrifuge. The supernatant obtained was then analyzed for lipolytic activity. The assay is based on hydrolysis of β-naphthyl esters by lipolytic I · 5 enzymes. Released β-naphthyl reacts with the diazonium salt Fast Blue BB to give an azo dye that you absorb at 540 nm. The process is essentially the same according to McKellar, J. Dairy Res. 53 (1986) 117-127, I and was carried out as follows.
I 10 Reagensglasset indeholdt et slutvolumen på 2,0 I ml: 1,8 ml 55 mM TES (N-tris(hydroxymethyl)methyl-2- I aminoethansulfonsyre, Sigma); 0,02 ml 100 ml β- I naphthylester opløst i dimethylsulfoxid (DMSO, Merck)In the tube contained a final volume of 2.0 L ml: 1.8 ml 55 mM TES (N-tris (hydroxymethyl) methyl-2- L aminoethanesulfonic acid, Sigma); 0.02 ml 100 ml of β-I naphthyl ester dissolved in dimethyl sulfoxide (DMSO, Merck)
I eller methylcellusolvacetat (Merck), 0,1 ml 120 mM NaTC II or methylcellusolvacetate (Merck), 0.1 ml 120 mM NaTC I
I 15 (Na-taurocholat, Sigma), og 0,1 ml af et enzympræparat. IIn 15 (Na taurocholate, Sigma), and 0.1 ml of an enzyme preparation. IN
Man benyttede også kontrol uden enzym og β-naphthyl- IControls without enzyme and β-naphthyl-I were also used
standarder (Sigma) uden enzym og substrat. Istandards (Sigma) without enzyme and substrate. IN
Man inkuberede Corning centrifugerør (15 ml), ICorning centrifuge tubes (15 ml) were incubated
O IO I
der indeholdt reaktionsblandingen, ved 37 C eller ved Icontaining the reaction mixture at 37 ° C or at 1 ° C
20 nærmere bestemte temperaturer i 30 minutter. Nu tilsat- I20 specific temperatures for 30 minutes. Now added- I
te man 0,02 ml 100 mM FB opløsning (Fast Blue BB salt Itea to 0.02 ml of 100 mM FB solution (Fast Blue BB salt I
(Sigma), opløst i DMSO) og fortsatte inkuberingen i 10 I(Sigma), dissolved in DMSO) and continued incubation for 10 L
minutter, hvorefter man afsluttede reaktionen ved til- Iminutes, after which the reaction was terminated by addition
sætning af 0,2 ml 0,72 N TCA (trichloreddikesyre, Iaddition of 0.2 ml of 0.72 N TCA (trichloroacetic acid, I
25 Riedel-De Haen) og ekstraherede det farvede kompleks I25 Riedel-De Haen) and extracted the colored complex I
ved kraftig blanding med 2,5 ml 1-butanol (Merck). Man Iby vigorously mixing with 2.5 ml of 1-butanol (Merck). Man I
adskilte lagene ved centrifugering ved 5.000 o/m i 5 Iseparated layers by centrifugation at 5,000 rpm for 5 L
minutter i en Heraeus Christ minifuge RF, og målte ab- Iminutes in a Heraeus Christ minifuge RF, and measured ab- I
sorbansen af det øverste lag ved 540 nm under anvendel- Ithe sorbance of the upper layer at 540 nm during application I
30 se af et LKB ultraspek II spectrofotometer. Efter fratrækning af kontrolværdier omdannede man aflæsningerne til TLU (True Lipase Units) under anvendelse af Candida cyllndracea lipase (L1754, Sigma) som standard. En TLU30 view of an LKB ultrasound II spectrophotometer. After subtracting control values, readings were converted to TLU (True Lipase Units) using Candida cyllndracea lipase (L1754, Sigma) as standard. A TAU
-----—------------
I DK 175634 B1 II DK 175634 B1 I
I 30 II 30 I
I er defineret som titrerbare fede syrer, der ækvivalerer IYou are defined as titratable fatty acids which equals I
I mængden af 1 ymol NaOH/min (se også EP-A-0218272). Re- IIn the amount of 1 µmol NaOH / min (see also EP-A-0218272). Re- I
I sultaterne vises i nedenstående tabel 1. IThe results are shown in Table 1 below
I Sammenligning af hydrolysedata for β-naphthyl- II Comparison of hydrolysis data for β-naphthyl-I
I 5 estrene med varierende længde af acylkæden fra C^C^g IIn the 5 esters of varying length of the acyl chain from C ^ C ^ g I
I tyder på, at: l. klonerne der indeholder pAT3 og pET3 IYou suggest that: 1. The clones containing pAT3 and pET3 I
I plasmiderne producerer virkelige lipaser; og 2. kloner- IIn the plasmids, real lipases produce; and 2nd clones- I
I ne, der indeholder pATl, pETl, pAMl, pP5-4 og pM6-5 IIn ne containing pAT1, pET1, pAM1, pP5-4 and pM6-5 I
I plasmiderne producerer enzymer med i det væsentlige IIn the plasmids, enzymes with essentially I produce
I 10 esteraseaktivitet. De fleste af de lipolytiske enzymer, IIn 10 esterase activity. Most of the lipolytic enzymes, I
I der syntetiseres af E. coli, der bærer rekombinante II synthesized by E. coli carrying recombinant I
I plasmider, blev fundet i cellelysaterne. IIn plasmids, were found in the cell lysates. IN
DK 175634 B1 31DK 175634 B1 31
Tabel 1Table 1
Kolorlmetrlsk bestemmelse af llpolytlsk aktivitet (1 TLU.l-1) 1 prøver fra donormlkroorqanlsmer og E. coll 5 transformanter.Colormetric Determination of II Polytic Activity (1 TLU. 1-1) 1 Samples from Donor Milk Chemisms and E.coll 5 Transformants.
Værtsstamme Plasmid Ø-naphthyisubstrat 0-NB(4) 0-NC(8) 0-NL(12) 0-NO(18) E. coli K12 -------- sup ly- sup ly- sup ly- sup lysat sat sat sat JM101 hsdS recA pATl 22 80 4 66 1 20 1 10 JM101 hsdS recA pETl 2 66 4 88 1 25 1 8 JM101 hsdS recA pAT3 24 80 4 132 4 42 2 60 JM101 hsdS rSSA pET3 5 90 4 22 1 12 1 54 15 JM101 hsdS recA pAMl 1448141 1 JM101 hsdS rs£A pUN121 11241211 (kontrol) (vektor) DH1 pP5-4 124 6 1 4 16 DH1 pM6-5 124 7 1 15 17 DH1 (kontrol) pUN121 11241211 (vektor) pseudomonas M-l N-D. 5 8 23 40 14 34 11 20 20 IN II-5 N.D. 50 52 58 66 17 37 7 22 \ THAI IV 17-1 N.D. 23 28 10 60 9 40 31 25Host strain Plasmid β-naphthyis substrate 0-NB (4) 0-NC (8) 0-NL (12) 0-NO (18) E. coli K12 -------- sup ly- sup ly- sup ly- sup lysat sat sat sat JM101 hsdS recA pATl 22 80 4 66 1 20 1 10 JM101 hsdS recA pETl 2 66 4 88 1 25 1 8 JM101 hsdS recA pAT3 24 80 4 132 4 42 2 60 JM101 hsdS rSSA pET3 5 90 4 22 1 12 1 54 15 JM101 hsdS recA pAMl 1448141 1 JM101 hsdS rs £ A pUN121 11241211 (control) (vector) DH1 pP5-4 124 6 1 4 16 DH1 pM6-5 124 7 1 15 17 DH1 (control) pUN121 11241211 (vector) pseudomonas Ml ND. 5 8 23 40 14 34 11 20 20 IN II-5 N.D. 50 52 58 66 17 37 7 22 \ THAI IV 17-1 N.D. 23 28 10 60 9 40 31 25
Acinetobacter GR V-39 N.D. 6 10 17 21 15 20 5 12 25 N.D. = ikke bestemt.Acinetobacter GR V-39 N.D. 6 10 17 21 15 20 5 12 25 N.D. = not determined.
30 I DK 175634 B1 I 32 B. Yderligere karakterisering af klonede llpolytiske I præparater I Man karakteriserede de klonede lipolytiske en- I zympræparater under anvendelse af SDS gelelektroforese 5 på et Phastgel system (Pharmacia) under en Phastgel I gradient 10-15% ifølge fabrikantens instruktioner. Man I sammenlignede cellefrie ekstrakter fra E. coll klonerne I pET3 og DHl stammen med pUN121 vektoren med delvis ren- I set enzym fra donorstammen Thai IV 17-1 (Stuer et al., I 10 J. Bacteriol. 168 (1986) 1070-1079).30 I DK 175634 B1 I 32 B. Further characterization of cloned II polytic I preparations The cloned lipolytic enzyme I preparations were characterized using SDS gel electrophoresis 5 on a Phastgel system (Pharmacia) under a Phastgel I gradient 10-15% according to the manufacturer's instructions. Cell-free extracts from the E. coll clones of pET3 and DH1 strain were compared with the pUN121 vector with partially purified enzyme from the donor strain Thai IV 17-1 (Stuer et al., I 10 J. Bacteriol. 168 (1986) 1070). 1079).
Udpræparerinq IPreparation I
I Man blandede fire rumfang af en passende for- IIn Man, four volumes of a suitable formula were mixed
I tynding af enzympræparaterne med én del prøvepuffer med IIn thinning the enzyme preparations with one sample buffer with I
I 15 indhold af 10% SDS, 10% β-mercaptoethanol i 0,5 M Tris- IIn 15 contents of 10% SDS, 10% β-mercaptoethanol in 0.5 M Tris-I
I HCl, pH 6,8. Denne opløsning blev opdelt i tre lige IIn HCl, pH 6.8. This solution was divided into three equal I
I store dele. En del fik ingen yderligere behandling, men IIn large parts. Some received no further treatment, but you
I blev opbevaret ved stuetemperatur indtil gelelektrofo- II was stored at room temperature until gel electrophoresis
I resen.In travel.
I 20 Den anden og tredje portion blev opvarmet tilIn 20 The second and third portions were heated to
IIN
henholdsvis 95 C i henholdsvis 5 og 10 minutter, hvore- I95 C for 5 and 10 minutes respectively, respectively
I fer de blev afkølet i is og opbevaret ved stuetempera- IIn ferries they were cooled in ice and stored at room temperature
tur indtil gelelektroforese. Itrip until gel electrophoresis. IN
I 25 Elektroforese II Electrophoresis I
I De behandlede prøver blev i dobbeltforsøg under- IIn the treated samples, in duplicate experiments were sub-I
I kastet elektroforese på fastgelsysternet ved 65 v/time. II threw electrophoresis on the gelling system at 65 rpm. IN
I En gel blev farvet for protein med Coomassie Brillant II A gel was stained for protein with Coomassie Brillant I
I Blue ifølge Pharmacia Development technique file no IIn Blue according to Pharmacia Development technique file no I
I 30200. Figur 9A viser polypeptidmønstrene efter farvning IIn 30200. Figure 9A shows the polypeptide patterns after staining I
I med Coomassie Brillant Blue. En anden gel blev vasket IIn with Coomassie Brillant Blue. Another gel was washed
I med 50 mM Tris-HCl, pH 7,5, 0,1% Triton X-100 til fjer-I with 50 mM Tris-HCl, pH 7.5, 0.1% Triton X-100 for distillation.
I nelse af SDS og for at reaktivere enzymaktiviteten. IIn response to SDS and to reactivate enzyme activity. IN
I DK 175634 B1 I 33 I Tilstedeværelsen af lipolytisk aktivitet i den vaskede I gel blev gjort synlig ved blød agar overlægningsteknik I baseret på β-naphthylacetat/Fast Blue BB saltfremgangs- I måden beskrevet i eksempel 1C. Efter inkubering i 30 I 5 minutter ved 30 C kunne man se purpurfarvede bånd mod I en klar baggrund. Som vist i figur 9B havde lipasen fra I E. coli pET3 klonen og nativ P. stutzerl Thai IV 17-1 I lipase (molekylvægt 40 kDa) identiske mobiliteter ved I SDS gelelektroforese. Begge enzymer viser en såkaldt I 10 varmemodificerbarhed. En lignende varmemodificerbarhedI The presence of lipolytic activity in the washed I gel was made apparent by soft agar overlay technique I based on the β-naphthyl acetate / Fast Blue BB salt process as described in Example 1C. After incubation for 30 minutes for 5 minutes at 30 ° C, purple bands could be seen against a clear background. As shown in Figure 9B, the lipase from the E. coli pET3 clone and native P. stutzerl Thai IV 17-1 I lipase (molecular weight 40 kDa) had identical mobilities by I SDS gel electrophoresis. Both enzymes show a so-called I10 heat modifiable. A similar heat modifiable
I findes beskrevet for protein fra den ydre membran (OmpAI is described for protein from the outer membrane (OmpA
I genprodukt) fra E. coll K12, Freudl et al., J. Biol.In gene product) from E.coll K12, Freudl et al., J. Biol.
I Chem. 261 (1986) 11355-11361.In Chem. 261 (1986) 11355-11361.
I 15 Eksempel 3 I Konstruktion af et Pseudomonas pseudoalcallgenes genbl- I bllotek i vektorer med bred anvendelighed i værter I 20 Som en alternativ strategi for kloningen af li- I pasegenet fra P. pseudoalcallgenes M-l stammen benytte- I de man en binært kloningssystem anvendeligt i en bred I række værter, der tillod at man kunne gennemsøge gen- I banken direkte ved komplementering mod forskellige mu- I 25 tante stammer af Pseudomonaceae. To vektorer med bred I anvendelighed i værter pLAFRl (Friedman et al., Gene 1_8 I (1982) 289-296) og pKT248 (Bagdasarian et al., Gene 1_6 (1981) 237-247) blev benyttet. Plasmid pLAFRl er et RK2-afledt cosmid med bred anvendelighed i værter, der 30 overfører tetracyclinresistens og kan mobiliseres, men ikke transmittere selv. Plasmid pKT248 er et mobiliser-bart R300B-afledt plasmid med bred anvendelighed i værter, der giver streptomycinresistens og chlorampheni- I DK 175634 B1 I 34Example 15 I Construction of a Pseudomonas pseudoalcallgenes gene gene I-Blotec in vectors with broad utility in hosts I 20 As an alternative strategy for the cloning of the li-I gene from the P. pseudoalcallgenes M1 strain, a binary cloning system used in a wide variety of hosts that allowed one to search the gene directly by complementing against various human strains of Pseudomonaceae. Two broadly applicable vectors in hosts pLAFR1 (Friedman et al., Gene 1_8 I (1982) 289-296) and pKT248 (Bagdasarian et al., Gene 1_6 (1981) 237-247) were used. Plasmid pLAFR1 is an RK2-derived cosmid with broad utility in hosts that transmit tetracycline resistance and can be mobilized but not transmitted themselves. Plasmid pKT248 is a mobilizable R300B-derived plasmid with broad utility in hosts that confer streptomycin resistance and chloramphenic acid. I DK 175634 B1 I 34
I colresistens. Mobilisering af disse vektorer fra E. IIn colresistance. Mobilization of these vectors from E. I
coli til Pseudomonas blev udført ved hjælp af plasmidet Icoli for Pseudomonas was performed using plasmid I
I pRK2013, der indeholder RK2 overføringsfunktionerIn pRK2013 which contains RK2 transfer functions
I (Ditta et al., Proc. Natl. Acad. Sci. U.S.A. 77 (1980) I(Ditta et al., Proc. Natl. Acad. Sci. U.S.A. 77 (1980))
I 5 7347-7351) ved den triparenterale koblingsprocedure II 5 7347-7351) by the triparenteral coupling procedure I
I ifølge Friedman et al., (Gene lj) (1982) 289-296). Man IIn, according to Friedman et al. ((Gene lj) (1982) 289-296). Man I
I benyttede, en lipasenegativ mutant 6-1 fra P. aeruginosa I stammen PAO 2302 (fra S. Wohlfarth og U.K. Winkler, I Ruhr Universitat, Bochum, DE) som Pseudomonas recipient I 10 (J. Gen. Microbiol. 134 (1988) 433-440).I used a lipase negative mutant 6-1 of P. aeruginosa in strain PAO 2302 (from S. Wohlfarth and UK Winkler, in Ruhr University, Bochum, DE) as Pseudomonas recipient I 10 (J. Gen. Microbiol. 134 (1988) 433-440).
I Fremstillingen af in vitro λ fag pakningsek- I strakter og pakningen af pLAFRl DNA blev udført i det I væsentlige som beskrevet af Ish-Horowicz og Burke I (Nucleic Acids Res. 9 (1981) 2989-2998). Kort fortalt 15 gennemskår man total P. pseudoalcaliqenes M-l DNA del-In the preparation of in vitro λ phage packing extracts and the packing of pLAFR1 DNA was performed essentially as described by Ish-Horowicz and Burke I (Nucleic Acids Res. 9 (1981) 2989-2998). Briefly, total P. pseudoalkalcene M-1 DNA sections are cut through.
I vis med EcoRI eller Sall og ligerede til enten EcoRIEither with EcoRI or SalI and ligated to either EcoRI
I gennemskåret pLAFRl DNA eller Sall gennemskåret pKT248 I DNA. Forholdet mellem indsætningsstykker og vektor var I 5:1 for at reducere muligheden for vektor-vektorlige- 20 ring. Det ligerede M-1/pLAFRl DNA blev pakket in vitro H i λ faghoveder og indsprøjtet i E. coli DH1 (Maniatis H et al., se ovenfor, 1982).In cut pLAFR1 DNA or SalI cut pKT248 I DNA. The ratio of inserts to vector was I 5: 1 to reduce the possibility of vector-vector alignment. The ligated M-1 / pLAFR1 DNA was packed in vitro H into λ phage heads and injected into E. coli DH1 (Maniatis H et al., Supra, 1982).
Man opnåede omtrent 2.500 tetracyclinresistente I transduktanter pr. pg P. pseudoalcaliqenes M-l. Idet 25 man antager, at P. pseudoalcaliqenes har en størrelse af genomet på 5.000 kb, og at i det mindste 50% af de H tetracyclinresistente transduktanter har et indsæt- H ningsstykke på 20 kb, ville 2.300 uafhængige kloner væ- I re nødvendige for at få en 99% sandsynlighed for at I 30 finde en bestemt DNA sekvens (Clark og Carbon, Cell 9_ ' I (1976) 91). Da genbiblioteket indeholdt mere end 8.000 I forskellige rekombinante kolonier, var det sandsynligt at det ville indeholde hele P. pseudoalcaliqenes geno- H met.Approximately 2,500 tetracycline resistant I transducers were obtained. pg P. pseudoalcaliqenes M-l. Assuming that P. pseudoalcaligenes have a genome size of 5,000 kb and that at least 50% of the H tetracycline resistant transducers have a 20 kb insert, 2,300 independent clones would be required for to obtain a 99% probability of finding a particular DNA sequence (Clark and Carbon, Cell 9 (1976) 91). Since the gene library contained more than 8,000 In various recombinant colonies, it was likely to contain the entire P. pseudoalcaligen genome.
35 DK 175634 B135 DK 175634 B1
Man transformerede det ligerede M-l/pKT248 DNA i kompetente E. coll celler som beskrevet i eksempel 1.The ligated M-1 / pKT248 DNA was transformed into competent E.coll cells as described in Example 1.
Transformanter af E. coll JM101 hsdS reeA blev udvalgt for streptomycinresistens (SmP) og modudvalgt for 5 chloramphenicolsentitivitet (Cms). Man opnåede herved 5.000 SmR Cms kloner. De to M-l genbiblioteker opnået i E. coli vært blev replikaplattet og gennemsøgt for li-polytisk aktivitet som beskrevet i eksempel 1. Ingen af de undersøgte 13.000 rekombinante transformanter viste 10 lipaseaktivitet.Transformants of E.coll JM101 hsdS reeA were selected for streptomycin resistance (SmP) and counter-selected for chloramphenicol sensitivity (Cms). There were obtained 5,000 SmR Cms clones. The two M-1 gene libraries obtained in E. coli host were replica-plated and scanned for lipolytic activity as described in Example 1. None of the 13,000 recombinant transformants studied showed 10 lipase activity.
Man udførte derfor en mobilisering af klonen fra E. coll til P. aeruginosa PAO 2302 (6-1) på følgende måde. Man overførte rekombinante plasmider til Pseudomonas recipienter ved replikaplatning af donorstammer 15 til en udsåning af recipientstammen (PA02302/6-1) og hjælperstammen (E. coli MC1061 eller DHl med indhold af PRK2013 plasmidet). Efter vækst natten over af donorre-cipient og hjælperstamme på en hjerteinfusionsagarplade udvalgte man ekskonjuganter ved replikaplatning på ml-20 nimalt agarmedium med indhold af 0,2% citrat, 10 yg/ml methionin og streptomycin eller tetracyclin.Therefore, a mobilization of the clone from E.coll to P. aeruginosa PAO 2302 (6-1) was performed as follows. Recombinant plasmids were transferred to Pseudomonas recipients by replication plating of donor strains 15 to seed of the recipient strain (PA02302 / 6-1) and the helper strain (E. coli MC1061 or DH1 containing the PRK2013 plasmid). After overnight growth of donor recipient and helper strain on a cardiac infusion agar plate, exconjugants were selected by replica plating on ml-20 agar medium containing 0.2% citrate, 10 µg / ml methionine and streptomycin or tetracycline.
Citrat metaboliseres ikke af E. coli. Man afprøvede genopretning af lip fænotypen af den lipasedefekte mutant 6-1 med rekombinante plasmider ved replikaplat-25 ning af P. aeruginosa ekskonjuganterne på næringsurt agarplader med indhold af trioleoylglycerol og det fluorescente farvestof rhodamin B som beskrevet af Kou-ker og Jaeger, Appl. Env. Microbiol. 53 (1987) 211-213.Citrate is not metabolized by E. coli. Recovery of the lip phenotype of the lipase-defective mutant 6-1 with recombinant plasmids was tested by replication plating of P. aeruginosa exconjugants on nutrient-rich agar plates containing trioleoylglycerol and the fluorescent dye rhodamine B as described by Kouker and Jaeger. A V. Microbiol. 53 (1987) 211-213.
Fire af de 13.000 gennemsøgte ekskonjuganter vi-30 ste lipaseaktivitet ifølge udvikling af orange fluorescensglorier, synlige ved 360 nm, rundt om bakterieko- 0 lonierne efter 40 timers inkubering ved 37 C. Man ud valgte én af disse positive kloner, pALM5, til yderli gere karakterisering.Four of the 13,000 probed exconjugants showed 30 lipase activity according to the development of orange fluorescence glories, visible at 360 nm, around the bacterial colonies after 40 hours of incubation at 37 C. One of these positive clones, pALM5, was further selected characterization.
I DK 175634 B1 I 36I DK 175634 B1 I 36
Endelig præparerede man enzymprøver og underkas-Finally, enzyme samples were prepared and subjected to
tede dem både biokemisk analyse (se eksempel 2) og SLMdid both biochemical analysis (see Example 2) and SLM
I testen (som beskrevet senere i eksempel 10) for at sik- I re, at lipasen produceret af PAO 2302/6-1 ekskonkugan- I 5 ten med indhold af pALM5 havde den ønskede karakteri- I stik, der udvises af lipasen fra P. pseudoalcaliqenes I M-l stammen. Resultaterne fra disse forsøg tydede på, I at den lipolytiske aktivitet af enzymet frembragt af I pALMS klonen havde lignende karakteristika som enzymet 10 opnået fra den oprindelige M-l stamme.In the test (as described later in Example 10) to ensure that the lipase produced by PAO 2302 / 6-1 exchonant containing pALM5 had the desired characteristic exhibited by the lipase from P pseudoalcalianes in the M1 strain. The results of these experiments indicated that the lipolytic activity of the enzyme produced by the I pALMS clone had similar characteristics to the enzyme 10 obtained from the original M-1 strain.
I Eksempel 4In Example 4
Molekylær kloning af Pseudomonas pseudoalcaliqenes M-l I 15 llpaseqenet A. Proteinrensning og sekvensopdelinqMolecular cloning of the Pseudomonas pseudoalcaligenes M-1 I 15 II pathogen A. Protein purification and sequencing
Fermenteringen og præpareringen af en frysetør- ret supernatant af Pseudomonas pseudoalcaliqenes M-l 20 stammen beskrives i EP-A-0218272. Man oprensede det li- polytiske enzym fra denne supernatant i det væsentlige ifølge Wingerder et al., Appl. Microbiol. Biotechnol.The fermentation and preparation of a freeze-dried supernatant of the Pseudomonas pseudoalcaligenes M-1 strain is described in EP-A-0218272. The lipolytic enzyme from this supernatant was purified essentially according to Wingerder et al., Appl. Microbiol. Biotechnol.
27(1987) 139-145. Efter rensning var proteinpræpara- tet mere end 80% rent ifølge SDS-polyacrylamidgelelek- 25 troforese fulgt af farvning med Coomassie Brilliant27 (1987) 139-145. After purification, the protein preparation was more than 80% pure according to SDS-polyacrylamide gel electrophoresis followed by staining with Coomassie Brilliant
Blue (se figur 10).Blue (see Figure 10).
Man udførte N-terminal sekvensanalyse efter SDSN-terminal sequence analysis was performed after SDS
gelelektroforese og elektroblotting på Immobilon over- føringsmembran (Millipore) ifølge Matsudaira (J. Biol.gel electrophoresis and electroblotting on Immobilon transfer membrane (Millipore) according to Matsudaira (J. Biol.
30 Chem. 262 (1987) 10035-10038). Denne analyse gav føl- gende sekvens (under anvendelse af konventionelt enkeltbogstavsaminosyrekode):Chem. 262 (1987) 10035-10038). This analysis yielded the following sequence (using conventional single-letter amino acid code):
I GLFGSTGYTKTKYPIVLTHGMLGFI GLFGSTGYTKTKYPIVLTHGMLGF
I 1 10 20 37 DK 175634 B1 B. Kloning af M-l llpaseqenetI 1 10 20 37 DK 175634 B1 B. Cloning of the M-II IIase gene
Man udledte to syntetiske 32-mere oligonucleoti- der: 5'ACC GGC TAC ACC AAG ACC AAG TAC CCC ATC GT-3* 5 5’ACC GGC TAC ACC AAG ACC AAG TAC CCG ATC GT-3' fra aminosyrerne 6-15 (TGYTKTKYPI) i den N-terminale sekvens for det modne lipaseprotein som ovenfor beskrevet, efter at man havde taget codonforkærlig-10 hed for Pseudomonaceae og degenerering af den genetiske kode i betragtning. Til anvendelse som hybridiserings-sonder endemærkede man oligonucleotiderne under anvendelse af T4 polynucleotidkinase.Two synthetic 32-mer oligonucleotides were deduced: 5'ACC GGC TAC ACC AAG ACC AAG TAC CCC ATC GT-3 * 5 5'ACC GGC TAC ACC AAG ACC AAG TAC CCG ATC GT-3 'from amino acids 6-15 ( TGYTKTKYPI) in the N-terminal sequence of the mature lipase protein, as described above, after taking into account codon affinity for Pseudomonaceae and degeneration of the genetic code. For use as hybridization probes, the oligonucleotides were end-labeled using T4 polynucleotide kinase.
Man isolerede kromosom DNA fra Pseudomonas pseu-15 doalcallqenes M-l stammen (CBS 473.85) ifølge Andreoli (Mol. Gen. Genet. 199 (1985) 372-380), fordøjet med adskillige restriktionsendonucleaser og adskilte på 0,8% agarosegel. Southern blotning af disse geler under anvendelse af radiomærkede 32-mer oligonucleotider som 20 sonde viste følgende unikke hybridiserende DNA bånd: 1,8 kb Bell, 2,0 kb PvuII og 1,7 kb Sall. Derfor fordøjede man M-l kromosomal DNA separat med disse tre restriktionsendonucleaser, opdelte ved 0,8% agarosegel-elektroforese og udvandt de hybridiserende fraktioner 25 som ovenfor beskrevet ved elektroeluering i et bio-trap BT 1000 apparat fra Schleicher og Schull.Chromosome DNA was isolated from the Pseudomonas pseudo-cell lines M-1 strain (CBS 473.85) according to Andreoli (Mol. Gen. Genet. 199 (1985) 372-380), digested with several restriction endonucleases and separated on 0.8% agarose gel. Southern blotting of these gels using radiolabeled 32-mer oligonucleotides as a 20 probe showed the following unique hybridizing DNA bands: 1.8 kb Bell, 2.0 kb PvuII and 1.7 kb SalI. Therefore, M-1 chromosomal DNA was digested separately with these three restriction endonucleases, partitioned by 0.8% agarose gel electrophoresis, and recovered the hybridizing fractions 25 as described above by electroelution in a bio-trap BT 1000 apparatus from Schleicher and Schull.
Man ligerede den 1,8 kb Bell fordøjede fraktion i Bam-HI-qennemskåret dephosphoryleret vektor pTZ18R/19R (købt hos Pharmacia, Woerden, NL). Man 30 ligerede endvidere den 2,0 kb PvuII fordøjede fraktionThe 1.8 kb Bell digested fraction was ligated into Bam-HI-cut dephosphorylated vector pTZ18R / 19R (purchased from Pharmacia, Woerden, NL). Furthermore, the 2.0 kb PvuII digested fraction was ligated
I DK 175634 B1 II DK 175634 B1 I
I 38 II 38 I
I i Smal-gennemskåret dephosphoryleret vektor pTZ18R/19R II in SmaI-cut dephosphorylated vector pTZ18R / 19R I
I og man ligerede den 1,7 kb Sall fordøjede fraktion i II and one ligated the 1.7 kb Sal digest fraction in I
I Sall-gennemskåret dephosphoryleret vektor pZTI8R/19R. IIn SalI cut-through dephosphorylated vector pZTI8R / 19R. IN
I Alle tre ligeringer blev transformeret i kompetente E. IIn All three ligations were transformed into competent E. I
I 5 coll JM101 hsdS recA celler (som beskrevet af Andreoli, IIn 5 coll JM101 hsdS recA cells (as described by Andreoli, I
I se ovenfor) og udplattet på Luriaurt agarplader med ISee above) and plated on Luriaurt agar plates with I
I indhold af ampicillin, X-gal (5-brom-4-chlor-3-indolyl- IContaining ampicillin, X-gal (5-bromo-4-chloro-3-indolyl-I)
I β-D-galactopyronosid) og IPTG (isopropyl-B-D-thioga- IIn β-D-galactopyronoside) and IPTG (isopropyl-B-D-thioga-I)
I lactosid). IIn lactoside). IN
I 10 Man udprikkede ca. 4 x 103 hvide kolonier på IIn 10 People proclaimed approx. 4 x 103 white colonies on I
I friske agarplader og gennemsøgte dem ved kolonihybridi- IIn fresh agar plates and searched by colony hybrid I
I sering til den radiomærkede 32-mere sonde, ved denne ISeriously to the radiolabelled 32-bit probe, this one knows
I fremgangsmåde opnåede man 12 positive kolonier. Fra IIn the process, 12 positive colonies were obtained. From I
I hver af disse positive kolonier fremstillede man en IIn each of these positive colonies an I was prepared
I 15 plasmid mini-præparation ved alkalisk lysering og for- IIn 15 plasmid mini-preparation by alkaline lysis and pre-I
I døjede med den relevante restriktionsendonuclease, idet IYou were dealing with the relevant restriction endonuclease, since I
I man fulgte leverandørens instruktioner. Seks plasmider IYou followed the supplier's instructions. Six plasmids I
I indeholdt de ventede hybridiserende insætningsstykker. IYou contained the expected hybridizing inserts. IN
I Et af disse plasmider, der kun indeholdt 2,0 kb PvuII II One of these plasmids containing only 2.0 kb PvuII I
I 20 fragmentet, betegnet ρΤΜΡνίδΑ blev udvalgt til detalje- IIn the 20 fragment, designated ρΤΜΡνίδΑ, was selected for detail
I ret analyse. En prøve af E. coli JM101 hsdS recA med IIn fair analysis. A sample of E. coli JM101 hsdS recA with I
I indhold af plasmid pTMPvlSA blev deponeret hos CBS den IContaining plasmid pTMPv1SA was deposited with CBS on I
I 8. marts 1989 med deponeringsnummer CBS 142.89. IIn March 8, 1989 with deposit number CBS 142.89. IN
I Man replikaplattede de E. coli pTZ18R/19R rekom- IIn Man, they replicated the E. coli pTZ18R / 19R recombinant
I 25 binante transformanter opnået som beskrevet ovenfor og IIn 25 binant transformants obtained as described above and I
I gennemsøgte dem for lipolytisk aktivitet som beskrevet IYou searched for lipolytic activity as described in I
I i eksempel 2. Ingen af de undersøgte 5 x 104 E. coli IIn Example 2. None of the 5 x 104 E. coli I examined
I transformanter viste lipolytisk aktivitet. Der kan gi- IIn transformants, lipolytic activity showed. There may be- I
I ves adskillige grunde for dette manglende held: IThere are several reasons for this failure:
I 30 a) genekspressionsinitieringssignalerne fra M-l lipase- IIn a) the gene expression initiation signals from M-1 lipase-I
I generne blev enten ikke genkendt af E. coli transkrip- IIn the genes either E. coli transcript I was not recognized
I tionstranslationssystemet (se f.eks. Jeenes et al., IIn the tions translation system (see, e.g., Jeenes et al., I
I Mol. Gen. Genet. 203 (1986) 421-429), b) det er nødven- IIn Mol. Gen. Genet. 203 (1986) 421-429), b) it is necessary
39 DK 175634 B1 dig med en regulerende sekvens eller protein for at aktivere dette almindelige lipasegen, c) foldningen kan være ukorrekt eller udskillelsen af M-l lipase i E. coli kan være utilstrækkelig.B1 you with a regulatory sequence or protein to activate this common lipase gene, c) the folding may be incorrect or the secretion of M-1 lipase in E. coli may be insufficient.
5 C. Karakterisering af sekvensopdeling af M-l lipaseqe-net5 C. Characterization of sequence splitting of M-1 lipase gene
Man fordøjede plasmid ρΤΜΡνΙΘΑ med en række restriktionsenzymer med 6 bp genkendelsessekvenser. Ana-10 lyse af fragmentstørrelserne fra disse eksperimenter tillod, at man kunne lave et foreløbigt restriktions-endonucleasespaltningskort over 2,0 kb PvuII indsætningsstykket fra pTMPvl8A. Dette kort vises på figur 11.Plasmid ρΤΜΡνΙΘΑ was digested with a series of restriction enzymes with 6 bp recognition sequences. Ana-10 lysis of the fragment sizes from these experiments allowed one to make a preliminary restriction endonuclease cleavage map over the 2.0 kb PvuII insert of pTMPv18A. This map is shown in Figure 11.
15 De anvendte pTZ18R/19R vektorer giver et fleksi belt "alt-i-et system" og tillader DNA kloning, dideso-xy DNA sekvensering, in vitro mutagenese og in vitro transkription (Mead et al., Protein Engineering l_ (1986) 67-74). De dobbeltstrengede plasmider blev om-20 dannet til enkeltstrengede plasmider ved superinfektion med en hjælperfag M13K07, fra Pharmacia.The pTZ18R / 19R vectors used provide a flexible "all-in-one" system and allow DNA cloning, didesoxy xy DNA sequencing, in vitro mutagenesis and in vitro transcription (Mead et al., Protein Engineering I_ (1986) 67 -74). The double-stranded plasmids were converted to single-stranded plasmids by superinfection with a helper phage M13K07, from Pharmacia.
En DNA sekvensanalyse af et 0,94 kb DNA fragment mellem Xhol og EcoRV i ρΤΜΡνίβΑ vises på figur 12. Denne DNA sekvens viste, når den blev translateret i alle 25 mulige læserammer, en stor åben læseramme, der inkluderede de NH2-terminale aminosyrerester fra lipaseprotei-net som bestemt ved direkte aminosyresekvensopdeling (rest 1-24), se dette eksempel under A. Methionin ved position -24 er initieringscodon for et præprotein, da 30 dette methionin kommer forud fra en strækning af aminosyrer, der er typiske for bakterielle signalpeptider (se Von Heijne, J. Mol. Biol. 192 (1986) 287-290). Dette signalpeptid med 24 aminosyrer fraspaltes under ud- I DK 175634 B1A DNA sequence analysis of a 0.94 kb DNA fragment between XhoI and EcoRV in ρΤΜΡνίβΑ is shown in Figure 12. This DNA sequence, when translated in all 25 possible reading frames, showed a large open reading frame that included the NH2-terminal amino acid residues from lipase protein as determined by direct amino acid sequence division (residues 1-24), see this example under A. Methionine at position -24 is the initiation codon for a preprotein, as this methionine precedes a stretch of amino acids typical of bacterial signal peptides. (see Von Heijne, J. Mol. Biol. 192 (1986) 287-290). This 24-amino acid signal peptide is cleaved off under I 175634 B1
I 40 II 40 I
I skillelsen efter A E A (-3 til -1) signalpeptidasegen- IIn the distinction following A E A (-3 to -1) signal peptidase gene I
I kendelsesstedet. Man bør bemærke, at regionen rundt om IIn the place of judgment. It should be noted that the region around I
I cystinresten i denne signalsekvens meget ligner et li- IIn the cystine residue in this signal sequence is very similar to a Li-I
I poproteinconsensussignalpeptid (se Von Heyne, ibid.). IIn pop protein consensus signal peptide (see Von Heyne, ibid.). IN
I 5 Den aminosyresekvens, der kan forudsiges fra DNA II The amino acid sequence predictable from DNA I
I sekvensen tyder på, at moden M-l lipase er et protein IThe sequence suggests that mature M-1 lipase is a protein I
I med 289 aminosyrer, der terminerer med et TGA stopcodon II with 289 amino acids terminating with a TGA stop codon I
I (se figur 12). Den beregnede molekylvægt for dette fær- II (see Figure 12). The calculated molecular weight for this is I
dige protein er 30.323, hvilket er i stærk overensstem- Ithat protein is 30,323, which is in strong agreement
I 10 melse med den molekylvægt, man bestemmer for M-l lipase IIn accordance with the molecular weight determined for M-1 lipase I
I (MW 31.500) ved hjælp af SDS-polyacrylamidgelelektrofo- II (MW 31,500) using SDS-polyacrylamide gel electrophoresis
rese (se figur 10). Itrip (see Figure 10). IN
I Eksempel 5 IIn Example 5 I
I 15I 15
I Molekylær kloning af Pseudomonas aeruginosa PAO lipase- IIn Molecular cloning of Pseudomonas aeruginosa PAO lipase-I
I genet IIn the gene I
Lipasen fra Pseudomonas aeruginosa er et lipid- IThe lipase from Pseudomonas aeruginosa is a lipid I
I 20 hydrolyserende enzym (EC 3.1.1.3), med en molekylvægt IIn 20 hydrolyzing enzyme (EC 3.1.1.3), with a molecular weight I
I på ca. 29.000, og som udskilles i mediet under den sene II in approx. 29,000, which is excreted in the medium during the late I
I eksponentielle vækstfase (se Stuer et al., J. IIn exponential growth phase (see Stuer et al., J. I
Bacteriol. 168 (1986) 1070-1074).Bacteriol. 168 (1986) 1070-1074).
I ^ A. Kloning og karakterisering II ^ A. Cloning and characterization I
I Til kloning af lipasegenet fra pseudomonas aeru-I To clone the lipase gene from pseudomonas aeru-
I ginosa PAO 1 stamme (ATCC 15692) benyttede man et klo- IIn ginosa PAO 1 strain (ATCC 15692) a clone I was used
I ningssystem med bred anvendelse i værter, hvorved manIn widespread use system in hosts, whereby one
I direkte kunne gennemsøge genbanken ved komplementering IYou could directly crawl the gene bank by complementing I
I 30 mod forskellige mutantstammer af Pseudomonaceae. Den IIn 30 against various mutant strains of Pseudomonaceae. The I
I benyttede vektor pKT248 med bred anvendelse i værter II used vector pKT248 with wide use in hosts I
I (Bagdasarian et al., Gene 16 (1981) 237-247) er et mo- I biliserbart R300B-afledt plasmid med bred anvendelse i 41 DK 175634 B1 vektorer, der overfører streptomycinresistens og chloramphenicol res istens.In (Bagdasarian et al., Gene 16 (1981) 237-247), a mobilizable R300B-derived plasmid is widely used in vectors that transmit streptomycin resistance and chloramphenicol resistance.
Man fordøjede Pseudomonas aeroqinosa PAO 1 DNA delvis med restriktionsendonucleasen Sall og ligerede 5 den i det enlige Sall sted på pKT248 vektoren. Forholdet mellem indsætndingsstykke og vektor var 5:1 til reducering af muligheden for vektor-vektorligering. Man transformerede det ligerede PAO/pKT248 DNA i kompetente E. coli SK1108 celler (Donovan og Kushner, Gene 25 10 (1983) 39-48) som beskrevet i eksempel IB. Transforman-ter af E. coli SK1108 blev udvalgt efter streptomycinresistens (SmR) og modudvalgt efter chloramphenicol-sensitivitet (Qns).Pseudomonas aeroqinosa PAO 1 DNA was partially digested with the restriction endonuclease SalI and ligated into the sole SalI site of the pKT248 vector. The insertion-vector ratio was 5: 1 to reduce the possibility of vector-vector ligation. The ligated PAO / pKT248 DNA was transformed into competent E. coli SK1108 cells (Donovan and Kushner, Gene 25 (1983) 39-48) as described in Example 1B. Transformants of E. coli SK1108 were selected for streptomycin resistance (SmR) and counter-selected for chloramphenicol sensitivity (Qns).
Man opnåede herved 6.000 SmRCms kloner og under-15 søgte dem for lipolytisk aktivitet som beskrevet i eksempel 2. Ingen af klonerne opviste en sådan aktivitet, sandsynligvis på grund af den dårlige genkendelse af Pseudomonas promotorer i E. coli (Jeenes et al., se ovenfor).There were obtained 6,000 SmRCm clones and tested for lipolytic activity as described in Example 2. None of the clones showed such activity, probably due to the poor recognition of Pseudomonas promoters in E. coli (Jeenes et al., See above).
20 Man udførte derfor en overførsel af klonerne fra E. coll til den lipasenegative mutant 6-1 af Pseudomonas aeruginosa PAO 2302 (Wohlfarth og Winkler, J. Gen. Microbiol. 134 (1988) 433-440) på følgende måde: man opdelte 6.000 kloner i 120 dele, der hver bestod af 50 25 kloner. Fra hver del opnåede man plasmidpræparater og benyttede disse til at transformere kompetente celler af PAO 2302 (6-1) lip“mutanten. Man forberedte kompetente Pseudomonas celler ifølge Olsen et al., J. Bacteriol. 150 (1982) 60-69, og foretog udvælgelsen på calciumtriolein (CT) agarplader (Wohlfarth og Winkler, se ovenfor), supplementeret med 50 pg/ml streptomycin.Therefore, a transfer of the clones from E.coll to the lipase negative mutant 6-1 of Pseudomonas aeruginosa PAO 2302 (Wohlfarth and Winkler, J. Gen. Microbiol. 134 (1988) 433-440) was performed as follows: clones in 120 parts, each consisting of 50 25 clones. From each part, plasmid preparations were obtained and used to transform competent cells of the PAO 2302 (6-1) lipid mutant. Competent Pseudomonas cells were prepared according to Olsen et al., J. Bacteriol. 150 (1982) 60-69, and made the selection on calcium triolein (CT) agar plates (Wohlfarth and Winkler, see above) supplemented with 50 µg / ml streptomycin.
Ti af de 5.000 PAO transformanter viste lipaseaktivi-tet, hvilket kunne ses ved hjælp af hvide krystallerTen of the 5,000 PAO transformants showed lipase activity, which could be seen by white crystals
I DK 175634 B1 II DK 175634 B1 I
I 42 II 42 I
I øverst på kolonierne. Man valgte en af disse positive IIn the top of the colonies. One of these positives was chosen
I PAO transformanter, pSWl, til yderligere karakterise- IIn PAO transformants, pSW1, for further characterization
I ring. IIn the ring. IN
I Man karakteriserede plasmidet deri ved restrik- IThe plasmid therein was characterized by restriction I
I 5 tionsanalyse fulgt af elektroforese på agarosegeler, og IIn 5 tions analysis followed by electrophoresis on agarose gels, and I
I man fandt, at det indeholdt et Sall indsætningsstykke IIt was found that it contained a Sal insert I
I på 3,1 kb sammensat af et 1,3 kb, et 0,97 kb og et 0,76 - I3.1 kb I composed of a 1.3 kb, a 0.97 kb and a 0.76 - 1
I kb Sall subfragment. Disse indsætningsstykker blev un- IIn kb Sall sub-fragment. These inserts were un- I
I derklonede i passende vektorer til DNA sekvensopdeling II cloned in appropriate vectors for DNA sequence division I
I 10 og til opnåelse af ekspression af lipasegenet. IIn 10 and to obtain expression of the lipase gene. IN
I Man isolerede plasmid DNA fra en pUC19 afledt IPlasmid DNA was isolated from a pUC19 derived I
I underklon, benævnt pSWl03 (med indhold af indsætnings- IIn subclone, designated pSW103 (containing insertion I
I stykkerne på 1,3 kb og et 0,97 kb) , og karakteriserede IIn the 1.3 kb and 0.97 kb pieces), I characterized
I det ved hjælp af restriktionsendonucleaser. Et over- IIn it by restriction endonucleases. An over- I
I 15 sigtskort over dette plasmid pSW103 ses i figur 13. En I15 sieves of this plasmid pSW103 are shown in Figure 13. An I
I prøve af E. coll JM101 hsdS recA med indhold af plasmid IIn sample of E. coll JM101 hsdS recA containing plasmid I
I pSW103 blev deponeret hos CBS den 8. marts 1989 med de- IIn pSW103 was deposited with CBS on March 8, 1989 with de- I
I poneringsnummer 141.89. IIn filing number 141.89. IN
I 20 B. Sekvensopdellnq og karakterisering af Pseudomonas IB. Sequence Breakdown and Characterization of Pseudomonas I
I aeruginosa PAO 1 lipasegenet IIn the aeruginosa PAO 1 lipase gene I
I Man sekvensopdelte det 2,3 kb lange Sall ind- IIn the Man sequence, the 2.3 kb Sall was divided into I
I sætningsstykke fra pSWl03 med indhold af PAO 1 lipase- IIn sentence piece from pSW103 containing PAO 1 lipase-I
I genet ved to fremgangsmåder: både en "tvunget" klonende IIn the gene by two methods: both a "forced" cloning I
I 25 sekvensopdeling og en "shot-gun" klonende sekvensopde- IIn 25 sequence splitting and a shot-gun cloning sequence splitting-I
I ling ifølge Deininger (Anal. Biochem. 129 (1983) IAccording to Deininger (Anal. Biochem. 129 (1983))
I 216-223) på Ml3 bakteriofagderivaterne mplB og mpl9 II 216-223) on the Ml3 bacteriophage derivatives mplB and mpl9 I
I (Yanisch-Perron et al.. Gene 33 (1985) 103-119) og di- II (Yanisch-Perron et al. Gene 33 (1985) 103-119) and Di-I
I desoxykædetermineringsfremgangsmåden ifølge Mizusawa et IIn the desoxy chain termination method of Mizusawa et
I 30 al., Nucleic Acids Res. 14 (1986) 1319-1324. IFor 30 years, Nucleic Acids Res. 14 (1986) 1319-1324. IN
I ved den "tvungne" klonende sekvensopdeling ren- IBy the "forced" cloning sequence splitting, I
sede man Sall/Pstl og Sall/EcoRI fragmenter af 2,3 kb ISall / Pstl and Sall / EcoRI fragments of 2.3 kb I were seen
I indsætningsstykket fra pSW103 og ligerede dem i en pas- IIn the insert from pSW103 and ligated them into a passport
......" I...... "I
DK 175634 B1 43 sende M13mpl8 vektor. Hele sekvensen blev fastlagt, idet man sammenstillede samlingen af opnåede stumper af DNA sekvens. Man har bestemt hovedparten af DNA sekvenserne for begge strenge. Denne DNA sekvens viste, når 5 den blev translateret i alle mulige læserammer, at kun 0,7 kb Sall fragmentet fra pSW103 (se figur 14) koder for færdig PAO 1 lipase.DK 175634 B1 43 send M13mpl8 vector. The entire sequence was determined, compiling the collection of obtained DNA sequence fragments. Most of the DNA sequences for both strands have been determined. This DNA sequence, when translated into all possible reading frames, showed that only the 0.7 kb Sall fragment from pSW103 (see Figure 14) encodes complete PAO 1 lipase.
Det 1,3 kb lange Sall fragment fra pSWl03 underklonen kodede ikke, når det blev translateret i alle 10 mulige læserammer, for de 24 N-terminale aminosyrere-ster i PAO 1 lipaseproteinet som bestemt ved direkte aminosyresekvensopdeling.The 1.3 kb SalI fragment from the pSW103 subclone, when translated in all 10 possible reading frames, did not encode for the 24 N-terminal amino acid residues in the PAO 1 lipase protein as determined by direct amino acid sequence division.
Den aminosyresekvens, som man kunne forudsige ud fra DNA sekvensen i 0,97 kb Sall fragmentet, har ét in-15 teressant domæne (betegnet med A i figur 14).The amino acid sequence that could be predicted from the DNA sequence of the 0.97 kb Sall fragment has one interesting domain (denoted by A in Figure 14).
Domæne A koder for en aminosyresekvens G-H-S-H-G, der allerede blev defineret som det aktive center både i eukaryotiske lipaser (Wion et al. Science 235 (1987) 1638-1641; Bodmer et al., Biochem. Biophys. Acta 20 9Q9 (1987) 237-244) og prokaryotiske lipaser (Kugimiya et al., Biochem. Biophys. Res. Commun. 141 (1986) 185-190).Domain A encodes an amino acid sequence GHSHG already defined as the active center in both eukaryotic lipases (Wion et al. Science 235 (1987) 1638-1641; Bodmer et al., Biochem. Biophys. Acta 20 9Q9 (1987) 237 -244) and prokaryotic lipases (Kugimiya et al., Biochem. Biophys. Res. Commun. 141 (1986) 185-190).
Eksempel 6 25 A. Ekspression af klonet M-l lipase i bakterierExample 6 A. Expression of cloned M-1 lipase in bacteria
Til forbedring af ekspressionsniveauet for M-l lipasen i heterologe værter ligerede man det 2,0 kb lange KpnI-Hindlll fragment fra pTMPvl8A, der bar M-l 30 lipasegenet, i Kpnl og Hlndlll fordøjede pBHA/Cl vektorer. Nucleotidsekvensen for pBHAl vektoren ses beskrevet i EP-A-0275598. pBHCl vektoren er identisk med pBHAl vektoren bortset fra forskelle i ekspression afTo improve the expression level of the M-1 lipase in heterologous hosts, the 2.0 kb KpnI-HindIII fragment from pTMPv18A carrying the M-l 30 lipase gene was ligated into KpnI and HndIII digested pBHA / Cl vectors. The nucleotide sequence of the pBHA1 vector is disclosed in EP-A-0275598. The pBHCl vector is identical to the pBHA1 vector except for differences in expression of
I DK 175634 B1 II DK 175634 B1 I
I 44 II 44 I
I følgende gener for antibiotikaresistens: chlorampheni- IIn the following genes for antibiotic resistance: chlorampheni- I
I colacetyltransferasegenet (Cm) eksprimeres i E. coli IIn the colacetyl transferase gene (Cm) is expressed in E. coli I
I stammen WK6 med indhold af pBHCl vektoren, og β-lacta- IIn the strain WK6 containing the pBHCl vector, and β-lacta- I
I masegenet (Ap) eksprimeres i E. coli stammen WK6 med IIn the mesh gene (Aβ), in E. coli strain WK6 is expressed with I
I 5 indhold af pBHAl vektoren. E. coli WK stammen ses be- IIn 5 contents of the pBHA1 vector. E. coli WC strains are seen be- I
I skrevet af R. Zell og H.J. Fritz, EMBO J. 6 (1987) IIn written by R. Zell and H.J. Fritz, EMBO J. 6 (1987) I
I 1809. IIn 1809. I
I Efter transformering af WK6 og analyse af enten II After transformation of WK6 and analysis of either I
I de opnåede ampicillinresistente kolonier (i tilfælde af IIn the obtained ampicillin-resistant colonies (in the case of I
I 10 pBHCl) eller de opnåede chloramphenicolresistente ko- IIn 10 pBHCl) or the chloramphenicol resistant co-obtained
I lonier (i tilfælde af pBHCl) fandt man de tilsvarende IIn lonies (in the case of pBHCl) the corresponding I was found
I plasmider pBHAM-1 og pBHCM-1, se figur 15. IIn plasmids pBHAM-1 and pBHCM-1, see Figure 15. I
I Det næste trin var indførsel af et Ndel restrik- IThe next step was the introduction of an Ndel restriction
I tionsendonucleasested på ATG initieringscoconet i M-l IAt the tions endonuclease site of the ATG initiation cocoon in M-1 I
I 15 præproteinet. Man udførte en positionsrettet mutagenese IIn the preprotein. A position-directed mutagenesis I was performed
I pBHA/CM-1 plasmiderne som beskrevet af Stanssens et IIn the pBHA / CM-1 plasmids as described by Stanssens et al
I al., i "Protein Engineering og Site-Directed IIn al., In "Protein Engineering and Site-Directed I
I Mutagenesis", 24th Harder Conference (1985), Ed. A. R. IIn Mutagenesis ", 24th Harder Conference (1985), Ed. A. R. I
I Fersht og G. Winter. IIn Fersht and G. Winter. IN
I 20 Efter udførelse af mutagenesen kontrollerede man IAfter performing the mutagenesis, I
I de mulige mutanter for den relevante mutation ved både IIn the possible mutants for the relevant mutation at both I
I restriktionsenzymanalyse og sekvensanalyse under anven- IIn restriction enzyme analysis and sequence analysis under I
I delse af didesoxyfremgangsmåden ifølge Mizusawa et al., IIn terms of the didesoxy process of Mizusawa et al., I
I se eksempel 5. Efter disse analyser fandt man det kor- ISee Example 5. Following these analyzes, it was found that I
I 25 rekte plasmid betegnet pBHAMlNl (se figur 16). For at IIn 25 straight plasmid designated pBHAM1N1 (see Figure 16). In order that you
I opnå den regulerede ekspression af M-l lipase i E. coli IIn obtaining the regulated expression of M-1 lipase in E. coli I
I isolerede man det 1,7 kb lange Ndel-Hindlll fragment IThe 1.7 kb Ndel-HindIII fragment I was isolated
I fra pBHAMlNl med indhold af M-l strukturlipasegenet og II from pBHAM1N1 containing the M-1 structural lipase gene and I
I ligerede det i to ekspressionsvektorer; IYou ligated it into two expression vectors; IN
I 30 - pTZ18RN, et pTZl8R derivat, der indeholder et II 30 - pTZ18RN, a pTZ18R derivative containing an I
I unikt Ndel sted på ATG initieringscodonet for β-galac- IAt the unique NdeI site of the ATG initiation codon for β-galac-I
I tosidase (se Mead et al., Protein Engineering 1^ (1986) IIn tosidase (see Mead et al., Protein Engineering 1 (1986) I)
I 67-74); II 67-74); IN
45 DK 175634 B1 - pMCTN, et pMC derivat (se Stanssens et al., se ovenfor) med indhold af et unikt Ndel sted bag en tac promotor og ribosombindingssted.45 DK 175634 B1 - pMCTN, a pMC derivative (see Stanssens et al., See above) containing a unique NdeI site behind a tac promoter and ribosome binding site.
Efter transformation af de to ligeringer i kompetente E. coll JM-101 hsdS recA celler gennemsøgte man 5 de opnåede transformanter for lipolytisk aktivitet på tributyrin agarplader, der indeholdt 0,5 mM IPTG (iso-propyl-p-D-thiogalactosid). Efter inkubering af disse tributyrinplader ved 30 C i 48 timer fulgt af lagring af pladerne i kulden i adskillige dage, dannede visse 10 kolonier en svag glorie, hvilket var et tegn på lipolytisk aktivitet. Man karakteriserede plasmiderhe fra disse tributyrinpositive kloner ved restriktionsenzymanalyse. Man fandt følgende to plasmider: - pTZNIMl der indeholder M-l lipasegenet bag lac 15 kontrolsekvenserne (se figur 17); og - pMCTMl der indeholder M-l lipasegenet bag tac kontrolsekvenserne (se figur 18).After transformation of the two ligations into competent E.coll JM-101 hsdS recA cells, the obtained lipolytic activity transformants were examined on tributyrin agar plates containing 0.5 mM IPTG (iso-propyl-β-D-thiogalactoside). After incubating these tributyrin plates at 30 ° C for 48 hours, followed by storage of the plates in the cold for several days, certain 10 colonies formed a weak halo, which was a sign of lipolytic activity. Plasmid genes from these tributyrin positive clones were characterized by restriction enzyme analysis. Two plasmids were found: - pTZNIM1 containing the M-1 lipase gene behind the lac 15 control sequences (see Figure 17); and - pMCTM1 containing the M-1 lipase gene behind the tac control sequences (see Figure 18).
Med henblik på identificering af den lipolytiske -aktivitet produceret af E. coll transformanter, der in-20 deholder henholdsvis plasmiderne pTZNIM-l og pMCTM-1, dyrkede man disse kloner natten over i 100 ml 2 TY medium (16 g/1 Bacto trypton, 10 g/1 Bacto-gærekstrakt, 5 g/1 NaCl, pH 7,0) ved 30 C fulgt af en 3 timers induktion med 0,5 mM IPTG ved 30 °C. Man benyttede E. coli 25 stamme JM-101 hsdS recA med indhold af pTZl8RN som en negativ kontrol. Man skilte cellerne fra kultursuperna-tanten ved centrifugering og fraktionerede dem derefter i periplasmiske og membran/cytoplasmiske komponenter ifølge Tetsuaki et al., Appl. Environmental Microbiol.In order to identify the lipolytic activity produced by E.coll transformants containing plasmids pTZNIM-1 and pMCTM-1, respectively, these clones were grown overnight in 100 ml of 2 TY medium (16 g / l Bacto tryptone , 10 g / l Bacto yeast extract, 5 g / l NaCl, pH 7.0) at 30 C followed by a 3 hour induction with 0.5 mM IPTG at 30 ° C. E. coli 25 strain JM-101 hsdS recA containing pTZ18RN was used as a negative control. The cells were separated from the culture supernatant by centrifugation and then fractionated into periplasmic and membrane / cytoplasmic components according to Tetsuaki et al., Appl. Environmental Microbiol.
30 so (1985) 298-303. Alle fraktionerne blev analyseret på SDS-polyacrylamidgeler ifølge Laemmli, Nature 227 (1970) 680-685, idet disse bestod af en 13% separa-30 So (1985) 298-303. All the fractions were analyzed on SDS-polyacrylamide gels according to Laemmli, Nature 227 (1970) 680-685, which consisted of a 13% separator.
I DK 175634 B1 II DK 175634 B1 I
I 46 II 46 I
I tionsgel og en 5% stacking gel. Man kørte gelerne ved IIn tions gel and a 5% stacking gel. The gels were run at you
I 60 mA, indtil bromphenolblå (BPB) markøren nåede bunden IAt 60 mA until the bromophenol blue (BPB) marker reached the bottom I
af gelen. Man udpræparerede prøverne og udførte et pro- Iof the gel. The samples were prepared and a test was performed
I teinblot som beskrevet i EP-A-0253455. Western blot IIn dough blot as described in EP-A-0253455. Western blot I
I 5 blev analyseret under anvendelse af polyvalente kanin- II 5 was analyzed using polyvalent rabbit I
I antisera mod renset lipase fra p. pseudoalcaliqenes IIn antisera against purified lipase from p. Pseudoalcalia I
I stamme Μ-l. Fra resultaterne i figur 19 kan man slutte, IIn strain Μ-l. From the results in Figure 19, one can conclude, I
at E. coli stammer med Indhold af pTZNlMl og pMCTMl IE. coli strains with Contents of pTZN1M1 and pMCTM1 I
I hver for sig kan syntetisere et M-l lipase specifikt IEach can synthesize an M-1 lipase specifically I
I ^ 31,5 kDa polypeptid og udskillede dette i periplasmaet I31.5 kDa polypeptide and secreted this into the periplasm I
I (se figur 19, baner B og C). Man bekræftede den lipo- II (see Figure 19, lanes B and C). The lipo-I was confirmed
I lytiske aktivitet af dette 31,5 kDa polypeptid ved IIn lytic activity of this 31.5 kDa polypeptide at I
overlægningsteknikken med blød agar baseret på β-naph- Ithe soft agar overlay technique based on β-naph- I
I thylacetat/Fast Blue BB saltmetode, beskrevet i eksem- IIn thyl acetate / Fast Blue BB salt method, described in Example I
I 15 pel 1C. IIn column 1C. IN
I EP-A-0275598 og EP-A-0253455 beskriver en frem- IEP-A-0275598 and EP-A-0253455 disclose a prior art
I gangsmåde til effektiv overførsel af en vehikel, der IIn the method of efficient transfer of a vehicle which I
indeholder et interessant gen, til Bacillus, hvilket Icontains an interesting gene for Bacillus, which you
I medfører Bacillus stammer, der effektivt udskiller de IYou bring about Bacillus strains that effectively secrete the I
I 20 ønskede polypeptidprodukter. Denne fremgangsmåde blev IIn 20 desired polypeptide products. This procedure was followed
I benyttet både for Thai IV 17-1 og M-l lipasegenerne. II used both for Thai IV 17-1 and the M-1 lipase genes. IN
I tilfælde af M-l lipasegenet fordøjede man IIn the case of the M-1 lipase gene, I was digested
I pBHAMINl plasmidet (se ovenfor) med Ndel og religerede IIn the pBHAMIN1 plasmid (see above) with Ndel and related I
I det. Man transformerede ligeringsblandingen i Bacillus IIn it. The ligation mixture was transformed into Bacillus I
I 25 licheniformis T9 protoplaster. Man analyserede en række IIn 25 licheniformis T9 protoplasts. A series of I was analyzed
I neomycinresistente tributyrinpositive kolonier og op- IIn neomycin resistant tributyrin positive colonies and op- I
I nåede det korrekte plasmid. Dette plasmid blev kaldt IYou reached the correct plasmid. This plasmid was called I
I pBHMINI (se figur 20) med M-l præproteinet bag Hpall IIn pBHMINI (see Figure 20) with the M-1 preprotein behind Hpall I
I promotoren fra pUBHO (se Zyprian og Matsubara, DNA jj IIn the promoter from pUBHO (see Zyprian and Matsubara, DNA jj I
I 30 (1986) 219-225). Man afprøvede T9 transformanter med IIn 30 (1986) 219-225). T9 transformants were tested with I
I indhold af pBHMINI plasmidet for deres evne til at hy- IContaining the pBHMINI plasmid for their ability to hybridize
I drolysere β-naphthylestere efter fermentering i indu- IIn drolysers β-naphthyl esters after fermentation in indu- I
striel urt ved fremgangsmåden beskrevet i eksempel 2. Iradial herb by the method described in Example 2. I
47 DK 175634 B147 DK 175634 B1
Resultaterne tyder på, at den lipolytiske aktivitet af enzymet frembragt af T9 klonerne har lignende karakteristika som aktiviteten fra lipasen opnået fra den oprindelige Pseudomonas pseudoalcaligenes M-l stamme.The results suggest that the lipolytic activity of the enzyme produced by the T9 clones has similar characteristics to the activity of the lipase obtained from the original Pseudomonas pseudoalcaligenes strain M-1.
5 Til ekspression i Pseudomonas værter benyttede5 Used for expression in Pseudomonas hosts
man den grundlæggende promotor fra p78 genet fra den Pseudomonas specifikke bakteriofag Pf3 (se R.G.M. Lui-ten, "The Filamentous Bacteriophage Pf3: A Molecular Genetic Study", PhD these 1987, Nijmegens katolske 10 universitet, NL). Man fremstillede et syntetisk DNAone is the basic promoter of the p78 gene of the specific bacteriophage Pf3 of Pseudomonas (see R.G.M. Luiten, "The Filamentous Bacteriophage Pf3: A Molecular Genetic Study", PhD these 1987, Nijmegen Catholic University 10, NL). A synthetic DNA was prepared
fragment, der koder for denne Pf3 promotor: •35 ·10 5' AATTCCATCGCAAAAACTAC TTGCAA GTTCCC&AAACCCTGTCjTAGAGT TCTAGGTGCATCTGAATGGAGCTCGGTAC 3· 3' GCTAGC6TTTTTCAT6 AACGTT CAAGCGCTTT66GACAG ATCTCA|AGATCCACGTAGACTT ACCTC6AGC 5'fragment coding for this Pf3 promoter:
15 Dette fragment blev ligeret i vektor pTZ18RThis fragment was ligated into vector pTZ18R
spaltet med EcoRI og Kpnl til opnåelse af plasmid pTZPf31A.cleaved with EcoRI and KpnI to obtain plasmid pTZPf31A.
Man gennemskår plasmiderne pTZPf31A og pMCTMl, både med BamHl og Hindlll og ligerede og transformerede 20 dem i kompetente E. coli JM-101 hsdS recA celler. Man kunne opnå det korrekte plasmid, hvori M-l lipasegenet står under kontrol af Pf3 promotoren; dette blev betegnet pTZPf3M1.The plasmids pTZPf31A and pMCTM1, both with BamH1 and HindIII, were cut and ligated and transformed into competent E. coli JM-101 hsdS recA cells. The correct plasmid in which the M-1 lipase gene is controlled by the Pf3 promoter could be obtained; this was designated pTZPf3M1.
Til opnåelse af ekspression af det klonede M-l 25 lipasegen i pseudomonader indsatte man M-l ekspres sionskassetter, der fandtes i plasmiderne ρΤΜΡνίδΑ, pMCTMl og pTZPf3M1, i vektorer pKT23l med bred anvendelse i værter (Bagdasarion et al., Gene 16 (1981) 237-247), pLAFR3 (Staskawisz et al., J. Bacteriol. 169 30 (1987 (5789-5794) og pJRD215 (Davison et al., Gene 51 (1987) 275-280). De opnåede plasmider med bred anvendelse i værter og med indhold af M-l ekspressionskassetterne blev overført ved den triparentale sammenkob- I DK 175634 B1 I 48 lingsprocedure ifølge Friedman et al., Gene 1J3 (1982) I 289-296) til følgende Pseudomonas stammer: I - den lipasenegative mutant 6-1 af p. aeruginosa I stammen PAO 2302 (Wohlfarth og Winkler, se ovenfor), I 5 - den lipasenegative P. putlda stamme KT2442 (Zeyer et I al., Applied Environmental Microbiol. 50 (1985) I 1409-1413), I - P. pseudoalcallqenes stammen M-l (CBS 473.85), I - P. pseudoalcaligenes stammen IN II-5 (CBS 468.85).To obtain expression of the cloned M1 25 lipase gene in pseudomonads, M1 expression cassettes found in plasmids ρΤΜΡνίδΑ, pMCTM1 and pTZPf3M1 were inserted into vectors pKT23l with wide use in hosts (Bagdasarion et al., 23 Gene 16 (1981) ), pLAFR3 (Staskawisz et al., J. Bacteriol. 169 30 (1987 (5789-5794) and pJRD215 (Davison et al., Gene 51 (1987) 275-280). They obtained plasmids with wide use in hosts and with content of the M1 expression cassettes was transferred by the triparental pairing procedure of Friedman et al., Gene 1J3 (1982) I 289-296) to the following Pseudomonas strains: I - the lipase negative mutant 6-1 of p. aeruginosa in strain PAO 2302 (Wohlfarth and Winkler, see above), I 5 - the lipase negative P. putlda strain KT2442 (Zeyer et al., Applied Environmental Microbiol. 50 (1985) I 1409-1413), I - P. pseudoalcallqenes strain M1 (CBS 473.85), I - P. pseudoalcaligenes strain IN II-5 (CBS 468.85).
I 10 Som en alternativ fremgangsmåde til overførsel I af plasmiderne med bred anvendelse i værter fra E. coliI 10 As an alternative method of transferring the plasmids with wide use in E. coli hosts
I til Pseudomonas benyttede man fremgangsmåden med elek- II to Pseudomonas used the method of electr
I trisk felt-medieret transformation ("elektroporation")In tric field-mediated transformation ("electroporation")
I ifølge manual fra Gene Pulser (Bio-rod Laboratories). II according to manual from Gene Pulser (Bio-root Laboratories). IN
I 15 Man afprøvede de opnåede Pseudomonas transfor- IIn 15, the obtained Pseudomonas transfor- I was tested
I manter for lipaseproduktion efter fermentering i medierIn manners for lipase production after fermentation in media
I på basis af olivenolie som beskrevet af Odera et al., II based on olive oil as described by Odera et al., I
I J. Ferment. Technol. 64 (1986) 363-371.In J. Ferment. Technol. 64 (1986) 363-371.
I I nedenstående tabel 2 ses den lipolytiske pro- ITable 2 below shows the lipolytic pro- I
I duktivitet af de forskellige stammer. IIn the ductivity of the various strains. IN
DK 175634 B1 49DK 175634 B1 49
Tabel 2Table 2
Lipaseproduktivltet af visse transformerede Pseudomonas stammer med Indhold af M-l lipaseqenet I® Pseudomonas Breat anvendelig vektor LiDase stamme indeholdende M-1 ekspres- produktivitet sionskassetten fra i % * PAO2302(6-l) u. inds.stykke (vektor) 0 PA02302(6-1) ρΤΜΡνΙβΑ 2 PAO2302(6-1) pMCTMl 40 , _ PA02302(6-1) pTZPf3Ml 60 15 - ...---------------- KT2442 u. inds.stykke (vektor) 0 KT2442 ρΤΜΡνΙβΑ 1 KT2442 pMCTMl 30 KT2442 pTZPf3M1 40 K-l u. inds.stykke (vektor) 100 M-l ρΤΜΡνΙβΑ 340 20 M-l pMCTMl 240 W M-l pTZPf3M1 260 IN II-5 u. inds.stykke (vektor) 100 IN II-5 ρΤΜΡνΙβΑ 420 IN II-5 pMCTMl 350 IN II-5 pTZPf3M1 270 25 30 * Den lipolytiske produktivitet blev bestemt på kultur-supernatanter ved fremgangsmåden beskrevet i eksempel 2.The lipase product of certain transformed Pseudomonas strains containing the content of the M1 lipase gene I Pseudomonas Breat usable vector LiDase strain containing the M-1 expression productivity cassette from the% * PAO2302 (6-l) incubator (vector) 0 PA02302 (6- 1) ρΤΜΡνΙβΑ 2 PAO2302 (6-1) pMCTMl 40, _ PA02302 (6-1) pTZPf3Ml 60 15 ---------------------------------- vector) 0 KT2442 ρΤΜΡνΙβΑ 1 KT2442 pMCTMl 30 KT2442 pTZPf3M1 40 Kl u. Insert (vector) 100 Ml ρΤΜΡνΙβΑ 340 20 Ml pMCTMl 240 W Ml pTZPf3M1 260 IN II-5 u. ρΤΜΡνΙβΑ 420 IN II-5 pMCTM1 350 IN II-5 pTZPf3M1 270 25 30 * Lipolytic productivity was determined on culture supernatants by the procedure described in Example 2.
I DK 175634 B1 I 50I DK 175634 B1 I 50
Man analyserede lipaserne produceret af disse I Pseudomonas transformanter ved SDS gelelektroforese og I de migrerede identisk til den lipase, der blev produce- I ret fra den oprindelige P. pseudoalcaligenes stamme I 5 M-l.The lipases produced by these I Pseudomonas transformants were analyzed by SDS gel electrophoresis and I migrated identically to the lipase produced from the original P. pseudoalcaligenes strain I 5 M-1.
I Man kan se, at den forbedring man opnår ved at I indsætte multiple kopier af M-l ekspressionskassetten i I P. pseudoalcaligenes stammer, er 2-4 gange sammenlignet I med niveauet af lipase, der produceres af donorstammen.It can be seen that the improvement achieved by inserting multiple copies of the M-1 expression cassette into the strains of the P. pseudoalcaligen is 2-4 times compared to the level of lipase produced by the donor strain.
I 10 Man kan yderligere konkludere, at det oprindelige gen- ekspressionsinitieringssignal eller promotor fra M-l lipasegenet er aktivt i Pseudomonas pseudoalcaligenes I stammer i modsætning til PAO 1 og KT2442 stammer.It can further be concluded that the original gene expression initiation signal or promoter of the M-1 lipase gene is active in Pseudomonas pseudoalcaligenes I strains as opposed to PAO 1 and KT2442 strains.
'15 B. In vitro ekspression af det klonede M-l lipasegen H Man udførte in vitro ekspression af kloner med indhold af M-l lipase under anvendelse af et prokaryo- tisk DNA rettet translationssæt (Amersham Internatio- nal). Dette system tillader in vitro ekspression af ge- 20 ner, der findes på et bakterielt plasmid, forudsat at de relevante kontrolsignaler er til stede. Man analyse- rede følgende fire bakterielle plasmider: I B.l. Plasmid ρΤΜΡνίβΑ (se figur 11), der koder både for I 25 M-l lipase og β-lactamasegenprodukter og giver ampicil- I linresistens (Ap). Ydermere bærer ρΤΜΡνίβΑ sine egne H reguleringssignaler, promotor, Shine-Dalgarno og leadersekvens.'15 B. In vitro expression of the cloned M-1 lipase gene H In vitro expression of clones containing M-1 lipase was performed using a prokaryotic DNA-directed translation set (Amersham International). This system allows in vitro expression of genes found on a bacterial plasmid, provided that the relevant control signals are present. The following four bacterial plasmids were analyzed: In B.l. Plasmid ρΤΜΡνίβΑ (see Figure 11), which encodes both I 25 M-1 lipase and β-lactamase gene products and provides ampicillin-I lineage resistance (Aβ). Furthermore, ρΤΜΡνίβΑ carries its own H regulatory signals, promoter, Shine-Dalgarno and leader sequence.
30 B.2. Plasmid pMCTMl (se figur 18), der bærer M-l lipa- segenet og chloramphenicolresistensgenet (Om). I denne konstruktion er lipasepromotoren ombyttet med en stærk tac promotor.B.2. Plasmid pMCTM1 (see Figure 18) carrying the M-1 lipase gene and the chloramphenicol resistance gene (Om). In this construct, the lipase promoter is exchanged with a strong tac promoter.
51 DK 175634 B1 B.3. Plasmid pMCTbliMl bærer også M-l lipasegenet og chloramphenicolresistensgenet. I denne konstruktion var lipasesignalsekvensen ombyttet med a-amylase signalse« kvensen (se EP-A-0224294). Promotoren var den samme som 5 i konstruktionen pMCTMl.51 DK 175634 B1 B.3. Plasmid pMCTbliMl also carries the M-1 lipase gene and the chloramphenicol resistance gene. In this construct, the lipase signal sequence was exchanged for the α-amylase signal sequence (see EP-A-0224294). The promoter was the same as 5 in the construct pMCTM1.
B.4. Plasmid pTZ18RN (se figur 17) blev benyttet som en negativ kontrol.B.4. Plasmid pTZ18RN (see Figure 17) was used as a negative control.
10 Man transkriberede 0,5 pg DNA fra de nævnte pla- smider in vitro. Denne reaktion blev udført, idet man tilsatte 0,5 μΐ 10 x TB/10 x NTP blanding (en blanding af lige store rumfang 20 x TB og 20 x NTP blanding; 20 x TB indeholder 800 mM Tris HC1 pH 7,5, 120 mM MgCl2 og 15 40 mM spermidin; 20 x NTP mix indeholder 10 mM ATP, 10 mM CTP, 10 mM GTP og 10 mM UTP), 0,5 pi 0,1M DTT, 0,5 pi RNasin (40 u/pl, Promega) og 0,5 pi T7 RNA polymerase (15 u/pl, Promega) eller 1 pi E. coli RNA polymerase (1 u/pl, Boehringer). Man inkuberede reaktionsblandin-20 gen i 1 time ved 39,5 C.0.5 µg of DNA was transcribed from said plasmids in vitro. This reaction was performed by adding 0.5 μΐ 10 x TB / 10 x NTP mixture (a mixture of equal volumes 20 x TB and 20 x NTP mixture; 20 x TB contains 800 mM Tris HCl pH 7.5, 120 mM MgCl2 and 40 mM spermidine; 20 x NTP mix contains 10 mM ATP, 10 mM CTP, 10 mM GTP and 10 mM UTP), 0.5 µl 0.1M DTT, 0.5 µl RNasin (40 µl / µl, Promega) and 0.5 µl of T7 RNA polymerase (15 µl / µl, Promega) or 1 µl of E. coli RNA polymerase (1 µl / µl, Boehringer). The reaction mixture was incubated for 1 hour at 39.5 ° C.
In vitro translationen af RNA transkriptionerne blev udført ifølge fabrikantens instruktioner. Man im-munudfældede M-l lipase som beskrevet af van Mourik (J.The in vitro translation of the RNA transcripts was performed according to the manufacturer's instructions. Immunoprecipitated M-1 lipase as described by van Mourik (J.
Biol. Chem. 260 (1985) 11300-11306) under anvendelser 25 af monoklonale antistoffer imod M-l lipase.Biol. Chem. 260 (1985) 11300-11306) using monoclonal antibodies against M-1 lipase.
Som en negativ kontrol benyttede man pTZlBRN (figur 18, baner A og E). Immunudfældelse af pTMPvlSA (bane B) viser en ikke-bearbejdet M-l lipase på 34 kDa. Immunudfældelse af pMCTM-l (bane C) viser en ikke-30 bearbejdet M-l lipase på 34 kDa og den færdige M-l lipase på 31,5 kDa, hvorimod immunudfældelse af pMCTbliMl (bane D) viser den færdige M-l lipase på 31,5 kDa. Pra eksperimenterne med in vitro translation kan man slut-As a negative control, pTZ1BRN was used (Figure 18, lanes A and E). Immunoprecipitation of pTMPv1SA (lane B) shows an unprocessed M-1 lipase of 34 kDa. Immunoprecipitation of pMCTM-1 (lane C) shows a non-processed M-1 lipase of 34 kDa and the final M-1 lipase of 31.5 kDa, whereas immunoprecipitation of pMCTbliMl (lane D) shows the final M-1 lipase of 31.5 kDa. In the experiments with in vitro translation, one can conclude-
I DK 175634 B1 II DK 175634 B1 I
I 52 II 52 I
I te, at M-l lipasegenet kan eksprimeres i S-30 ekstrak- IIn tea, the M-1 lipase gene can be expressed in S-30 extract-I
I ter af E. coll celler. Data opnået ved in vitro IIn ter of E.coll cells. Data obtained by in vitro I
I transkription/translation af ρΤΜΡνίβΑ støtter fraværet IIn the transcription / translation of ρΤΜΡνίβΑ, the absence supports I
I af lipolytisk aktivitet på tributyrinplader (se eksem- II of lipolytic activity on tributyrin plates (see Example I
I 5 pel 4B), idet der ikke er bearbejdning af M-l lipase. IIn 5 column 4B), there is no machining of M-1 lipase. IN
I Eksempel 7 IIn Example 7 I
I Molekylær enzymqennemsøqninq med karakteriserede lipa- IIn Molecular Enzyme Search with characterized lipase I
I ^ seqener som sonder II ^ seqener sum without I
I Til yderligere demonstration af den almene an- II For further demonstration of the general an- I
I vendelighed af opfindelsen benyttede man sonderne be- IIn accordance with the invention, the probes were used
I - skrevet i denne ansøgning til at søge efter lipasegener II - written in this application to search for lipase genes
I 15 med lignende karakteristika og som stammede fra andre IIn 15 with similar characteristics and derived from others I
I mikroorganismer. Man kunne herved udvælge lipasegener, IIn microorganisms. One could hereby select lipase genes, I
I der kodede for lipaser med samme eller sammenlignelig IIn encoding lipases of the same or comparable I
I vaskeanvendelighed. IIn washability. IN
I Som et eksempel beskrives anvendelsen af DNA II As an example, the use of DNA I is described
I 20 indsætningsstykker fra plasmiderne pET3 og pTMPvlSA som IIn 20 inserts from plasmids pET3 and pTMPvlSA as I
I hybridiseringssonder for at vise, at homologe gener fra IIn hybridization probes to show that homologous genes from I
I begge findes i de fleste af de analyserede mikroorga- IBoth are found in most of the microorganisms analyzed
I nismer. Der er ingen krydshybridisering mellem de to IIn niches. There is no cross hybridization between the two
I lipasegener (bane A og bane B), hvilket tyder på, at IIn lipase genes (lane A and lane B), suggesting that I
I 25 hver af disse sekvenser, der koder for lipase, stammer IIn each of these sequences encoding lipase I originate
I fra forskellige stamfadergener. IIn from various progenitor genes. IN
I I eksempel 8 vises endvidere, at denne hybri- IIn Example 8, it is further shown that this hybrid I
I diseringsteknik tillader, at man kan klone homologe li- IIn dicing technique, one can clone homologous li- I
pasegener fra andre mikroorganismer. Ipathogens from other microorganisms. IN
I 30 Til opnåelse af dette isolerede man kromosom DNA IIn order to achieve this, chromosome DNA I was isolated
I fra følgende stammer; Pseudomonas pseudoalcallqenes M-l II from the following strains; Pseudomonas pseudoalcallqenes M-l I
I (CBS 473.85), P. pseudoalcallqenes IN II-5 (CBS II (CBS 473.85), P. pseudoalcallqenes IN II-5 (CBS I
I 468.85), P. alcallqenes (DSM 50342), P. aeruginosa (PAC II 468.85), P. alcallqenes (DSM 50342), P. aeruginosa (PAC I
53 DK 175634 B1 IR) (CBS 136.89), P. aeruginosa PAO (ATCC 15692) (Wohlfarth og Winkler, 1988, J. Gen. Microbiol. 134, 433-440). P. stutzerl Thai IV 17-1 (CBS 461.85), P. stutzerl PG-I-3 (CBS 137.89), P. stutzerl PG-I-4 (CBS 5 138.89), P. stutzerl PG-II-11.1 (CBS 139.89), P. stutzerl PG-II-11.2 (CBS 140.89), P. fragi DB1051, P. gladioli (CBS 176.86), Acinetobacter calcoacetlcus Gr-V-39 (CBS 460.85) og Staphylococcus aureus (ATCC 27661), man fordøjede 5 pg og analyserede ved hjælp af 10 Southern Blot (Maniatis et al., se ovenfor). Man overførte DNA til et nitrocellulosefilter (Schleicher & Schuell, BA85; 0,45 mM). Man præhybridiserede filtrene i 6 x SSC, 5 x Denhardt, 0,5% SDS og 100 pg/ml denatureret kalvebrissel DNA.53 DK 175634 B1 IR) (CBS 136.89), P. aeruginosa PAO (ATCC 15692) (Wohlfarth and Winkler, 1988, J. Gen. Microbiol. 134, 433-440). P. stutzerl Thai IV 17-1 (CBS 461.85), P. stutzerl PG-I-3 (CBS 137.89), P. stutzerl PG-I-4 (CBS 5 138.89), P. stutzerl PG-II-11.1 (CBS 139.89), P. stutzerl PG-II-11.2 (CBS 140.89), P. fragi DB1051, P. gladioli (CBS 176.86), Acinetobacter calcoacetlcus Gr-V-39 (CBS 460.85) and Staphylococcus aureus (ATCC 27661), digested 5 µg and analyzed using 10 Southern Blot (Maniatis et al., See above). DNA was transferred to a nitrocellulose filter (Schleicher & Schuell, BA85; 0.45 mM). The filters were prehybridized in 6 x SSC, 5 x Denhardt, 0.5% SDS and 100 µg / ml denatured calf DNA.
15 Efter to timers præinkubering tilsatte man 32PAfter two hours of pre-incubation, 32P was added
mærkede indsætningsstykker fra henholdsvis pTMPvl8A eller pET3 og udførte hybridiseringen ved 55 C i løbet af 16 timer.labeled inserts from pTMPv18A or pET3, respectively, and performed the hybridization at 55 ° C over 16 hours.
Man isolerede DNA indsætningsstykker ved fordø-20 jelse af pTMPvl8A med xhol og EcoRV og fordøjelse af pET3 med EcoRI, fulgt af adskillelse af fragmenterne ved 0,8% agarose gelelektroforese og genudvinding af fragmenterne ved glasmælkfremgangsmåden (Gene Clean). Indsætningsstykket i ρΤΜΡνΙΘΑ, et 1 kb Xhol/EcoRV frag-25 ment, og indsætningsstykket i pET3, et 3,2 kb EcoRI fragment, blev mærket in vitro med høj specifik aktivitet (2-5 10® cpm/pg) med a32P ATP ved haktranslation (Peinberg og Vogelstein, Anal. Biochem. 132, 1983, 6-13). Man viste, at sondefragmenterne havde en gennem-snitslængde på mellem 300-800 baser.DNA inserts were isolated by digesting pTMPv18A with xhol and EcoRV and digesting pET3 with EcoRI, followed by separation of the fragments by 0.8% agarose gel electrophoresis and recovery of the fragments by the glass-milk process (Gene Clean). The insert in ρΤΜΡνΙΘΑ, a 1 kb XhoI / EcoRV fragment, and the insert in pET3, a 3.2 kb EcoRI fragment, were labeled in vitro with high specific activity (2-5-10 cpm / pg) with a32P ATP at chin translation (Peinberg and Vogelstein, Anal. Biochem. 132, 1983, 6-13). The probe fragments were shown to have an average length of between 300-800 bases.
Nu vaskede man filtrene to gange i 30 minutter ved 55°C i 6 x SSC, 0,1% SDS og tørrede filtrene ved stuetemperatur, hvorefter man autoradiograferede dem iThe filters were then washed twice for 30 minutes at 55 ° C in 6 x SSC, 0.1% SDS and dried at room temperature, then autoradiographed in
I DK 175634 B1 II DK 175634 B1 I
I 54 II 54 I
I 1-3 dage, idet de påvirkede KODAK X-omat AR film eller IFor 1-3 days, affecting KODAK X-omat AR film or I
Cronex 4 NIF 100 røntgenfilm (Dupont) med forstærkende ICronex 4 NIF 100 X-ray film (Dupont) with reinforcing I
I skærme ved -70°C (Cronex belysning plus GH 220020). IIn monitors at -70 ° C (Cronex lighting plus GH 220020). IN
Man benyttede følgende ligning, der er afledt IThe following equation derived from I was used
I 5 ved at analysere indflydelsen af forskellige faktorer II 5 by analyzing the influence of various factors I
I på hybridstabilitet: II on hybrid stability:
I Tm = 81 + 16,6 (log10Ci) + 0,4 (% G + C) -600/n -1,5% II Tm = 81 + 16.6 (log10Ci) + 0.4 (% G + C) -600 / n -1.5% I
dårlig tilpasning (Current protocols in molecular bio- Ipoor adaptation (Current protocols in molecular bio- I
logy 1987-1988, udgivet af Ausubel et al.), hvori Ilogy 1987-1988, published by Ausubel et al.), in which I
I 10 n = længden af den korteste kæde i sonden, II n = the length of the shortest chain in the probe,
I Ci = ionstyrke (Μ), II Ci = ionic strength (Μ), I
I G+C = basesammensætning, II G + C = base composition, I
I til at bestemme den homolog!, der kunne påvises i II to determine the homolog! That could be detected in I
I eksperimenterne. Under antagelse af en sondelængde på IIn the experiments. Assuming a probe length of I
I 15 300 baser kunne man påvise et homologt gen, der opviser IIn 15,300 bases, a homologous gene showing I could be detected
i det mindste 67% homologi inden for et fragment på 300 Iat least 67% homology within a 300 I fragment
I baser eller mere. Ved bestemmelsen af procentisk homo- IIn bases or more. In determining percent homo- I
I logi antog man, at GC indholdet af Pseudomonas er 65% IIn accommodation, it was assumed that the GC content of Pseudomonas is 65% I
I (Normore, 1973, i Laskin og Lechevalier (ed). Handbook IIn (Normore, 1973, in Laskin and Lechevalier (ed). Handbook I
I 20 of Microbiology vol II, CRC press, Inc. Boca Raton. IIn 20 of Microbiology Vol II, CRC press, Inc. Boca Raton. IN
I Fla.) II Fla.) I
I Figur 22A viser hybridiseringsmønstret af Sall IIn Figure 22A, the hybridization pattern of Sal I shows
I fordøjet kromosom DNA, når der hybridiseres med EcoRI IIn digested chromosome DNA when hybridized with EcoRI I
I indsætningsstykket fra pET3. Man kan se, at hovedparten IIn the insert from pET3. It can be seen that the majority of I
25 af Pseudomonas stammerne indeholder homologe gener til ITwenty-five of the Pseudomonas strains contain homologous genes to I
I den pågældende pET3 klon. I P. fragi DB 1051 (bane Μ), IIn that pET3 clone. In P. fragi DB 1051 (lane Μ), I
A. calcoacetlcus Gr-V-39 (bane O) og S. aureus (bane P) IA. calcoacetlcus Gr-V-39 (lane O) and S. aureus (lane P) I
kunne man ikke påvise homologe gener. Der observeredes Ihomologous genes could not be detected. I was observed
moderate hybridiseringssignaler i P. alcallqenes (bane Imoderate hybridization signals in P. alcallqenes (lane I
I 30 E), P. pseudoalcallqenes (bane C og bane D), P. aeruqi- IIn E), P. pseudoalcallqenes (lane C and lane D), P. aeruqi- I
I nosa (bane F og bane G), hvorimod man så svag hybridi- IIn nosa (lane F and lane G), whereas weak hybridis I was seen
I sering i P. gladioli (bane N). Man så en meget stærk IIn ring in P. gladioli (lane N). You saw a very strong one
I hybridisering i P. stutzeri stammer (bane H-L), hvilket IIn hybridization in P. stutzeri strains (lanes H-L), which I
55 DK 175634 B1 ikke er overraskende, da pET3 oprindelig blev afledt fra P. stutzeri ThailV 17-1.55 DK 175634 B1 is not surprising since pET3 was originally derived from P. stutzeri ThailV 17-1.
Figur 22B viser hybridiseringsmønstret med EcoRV/xhol indsætningsstykket fra pTMPvl8A.Figure 22B shows the hybridization pattern with the EcoRV / xhol insert of pTMPv18A.
5 Man kan se kraftige hybridiseringssignaler fra kromosom DNA fra p. pseudoalcallqenes, (bane C og D), P. alcaligenes (bane E) og P. stutzeri stammer (bane H-L). Der sås svagere hybridisering i kromosom DNA fra P. aeruginosa (bane F og G) og ingen hybridisering 10 overhovedet med kromosom DNA fra P. fraqi DB1051 (bane Μ), P. gladioli (bane N), A. calcoacetlcus Gr-V-39 (bane 0) eller S. aureus (bane P).Strong hybridization signals of chromosome DNA can be seen from p. Pseudoalcalgenees (lanes C and D), P. alcaligenes (lane E) and P. stutzeri strains (lanes H-L). There was weaker hybridization in chromosome DNA from P. aeruginosa (lanes F and G) and no hybridization at all with chromosome DNA from P. fraqi DB1051 (lane Μ), P. gladioli (lane N), A. calcoacetlcus Gr-V- 39 (lane 0) or S. aureus (lane P).
Eksempel 8 15Example 8 15
Kloning af homologe llpaseqener fra andre mikroorganismerCloning of homologous IL pathogens from other microorganisms
For at demonstrere anvendeligheden af opfindel-20 sen beskrives anvendelsen af plasmid ΡΤΜΡνΙΘΑ til kloning af et homologt gen stammende fra P. alcaligenes (DSM 50342) (se figur 22B, bane E).To demonstrate the utility of the invention, the use of plasmid ΡΤΜΡνΙΘΑ for cloning a homologous gene derived from P. alcaligenes (DSM 50342) is described (see Figure 22B, lane E).
I figur 22B, bane E, kan man se, at P. alcaligenes viser et tydeligt 5,0 kb Sall fragment og et utyde-25 ligt 0,5 kb Sall fragment, der hybridiserer med sonden.In Figure 22B, Lane E, it can be seen that P. alcaligenes shows a distinct 5.0 kb SalI fragment and an unmistakable 0.5 kb SalI fragment that hybridizes to the probe.
Dette tyder på, at P. alcaligenes indeholder et gen med i det mindste 67% homologi inden for et fragment på 300 basepar eller mere, til Xhol/EcoRV indsætningsstykket fra pTMPvlBA plasmidet.This suggests that P. alcaligenes contains a gene with at least 67% homology within a fragment of 300 base pairs or more, to the XhoI / EcoRV insert of the pTMPv1BA plasmid.
30 Til fastslåelse af, om 5,0 kb Sall fragmentet fra P. alcaligenes repræsenterer et gen, der koder for en lipase, klonede man Sall fragmenter. Man konstruerede et Sall genbibliotek ved hjælp af vektor pUC19 ogTo determine whether the 5.0 kb Sall fragment of P. alcaligenes represents a gene encoding a lipase, Sall fragments were cloned. A SalI gene library was constructed using vector pUC19 and
I DK 175634 B1 II DK 175634 B1 I
I 56 II 56 I
I transformerede i E. coll JM109 (Yanish-Perron et al., II transformed in E. coll JM109 (Yanish-Perron et al., I
I Gene 21 (1985) 103-119). Man hybridiserede replikafil- IIn Gene 21 (1985) 103-119). Replica file I hybridized
I tre fra genbiblioteket med det a32P-mærkede indsæt- IIn three from the gene library with the a32P-labeled insert I
I ningsstykke fra ρΤΜΡνίβΑ under anvendelse af betingel- IInjection piece from ρΤΜΡνίβΑ using condition I
I 5 ser som beskrevet i eksempel 7. Man kunne isolere tre II 5 looks as described in Example 7. Three I could be isolated
I positive kloner, der alle bar et 5,0 Sall fragment fra IIn positive clones, all carrying a 5.0 Sal fragment from I
I bibliotiket: pCHl, pCH2 og pCH3. Man klonede igen 5,0 IIn the library: pCH1, pCH2 and pCH3. 5.0 I was again cloned
I kb Sall fragmentet fra pCHl i vektoren pKT248 (Bagda- IIn kb Sall, the fragment from pCH1 in the vector pKT248 (Bagda- I
sarian et al.. Gene 16 (1981) 237-247) ved hjælp af Sa- Isarian et al., Gene 16 (1981) 237-247) using Sa-I
I 10 li stedet, der findes i chloramphenicolresistensgenet. IIn 10 l of the site found in the chloramphenicol resistance gene. IN
I Man udvalgte streptomycinresistente, chloramphenicol- IStreptomycin-resistant chloramphenicol-I was selected
I følsomme transformanter i E. coli JM109. En af disse IIn Sensitive Transformants in E. coli JM109. One of these
I transformanter, pCHIOl, der indeholdt det ventede 5,0 IIn transformants, pCHIO1 containing the expected 5.0 I
I kb Sall indsætningsstykke, blev transformeret i Pseudo- IIn kb Sall insert, was transformed into Pseudo-I
I 15 monas aeruginosa 2302 (6-1) lip- (se eksempel 5). IIn 15 monas aeruginosa 2302 (6-1) lip- (see Example 5). IN
I Man dyrkede kolonier på NB-calciumtrioleinagar. IIn Man colonies were grown on NB calcium triolin agar. IN
I ° II ° I
Efter væksten anbragte man pladerne ved 10 C og kunne IAfter growth, the plates were placed at 10 ° C and allowed
I efter adskillige dage se et calciumbundfald rundt om de IAfter several days, see a calcium precipitate around the I
I transformerede kolonier og ikke rundt om ikke-transfor- IIn transformed colonies and not around non-transformed I
20 merede P. aeruginosa 2302 (6-1) lip-, der blev dyrket I20 aerated P. aeruginosa 2302 (6-1) lip- grown I
I på lignende agarplader uden antibiotika. Heraf slutte- IIn similar agar plates without antibiotics. Of which, I
I des det, at det klonede 5,0 kb Sall fragment komplemen- IIn that, it cloned the 5.0 kb SalI fragment to complement I
I terer lip- fænotypen fra P. aeruginosa 2302 (6-1) lip” IIterate the lip phenotype of P. aeruginosa 2302 (6-1) lip ”I
I og derfor koder for en ekstracellulær lipase, der kan IYou and therefore encode an extracellular lipase that can
25 produceres i en passende vært. I25 is produced in a suitable host. IN
I På basis af DNA hybridiseringseksperimenterne IBased on the DNA hybridization experiments I
I kan man konkludere, at denne lipase viser homologi til IYou can conclude that this lipase shows homology to I
M-l lipase og følgelig til de andre lipaser, idet den IM-1 lipase and, consequently, to the other lipases, the I
I hybridiserer med ρΤΜΡνίβΑ indsæthingsstykket, der be- IYou hybridize with the ρΤΜΡνίβΑ insert which I-
30 nyttes som sonde. Beskrivelsen af kloningen af P. alca- I30 is used as a probe. The description of the cloning of P. alca- I
I ligenes lipase repræsenterer en alment anvendelig frem- IIn the lipase of the body, a generally applicable method represents I
I gangsmåde til at klone lipasegener, der opviser homolo- IIn a manner to clone lipase genes exhibiting homologous I
I gi til M-l lipase. IYou give to M-1 lipase. IN
DK 175634 B1 57DK 175634 B1 57
Eksempel 9Example 9
Sammenligning af nucleotldsekvensen for lipasen opnået fra Pseudomonas pseudoalcallgens M-l med andre llpaser 5Comparison of the nucleotide sequence of the lipase obtained from Pseudomonas pseudoalcallgens M-1 with other II phases 5
Man sammenlignede nucleotldsekvensen for Pseudomonas pseudoalcaligenes M-l lipase (figur 12) med sekvensen fra Pseudomonas fraql (IFO-3458) lipase (Kugimiya et al., Biochem. Biophys. Res. Commun. 141 10 (1986) 185-190), Staphylococcus hyicus lipase (Gotz et al.. Nucleic Acids Res. 13, (1985) 1891-1903) og Pseudomonas aeruginosa PA01 lipase (figur 14). Man fandt en tæt homolog! på 81% mellem M-l lipase og P. aeruginosa PAOl lipase og en homologi på 62% mellem M-l lipaser og 15 P. fragi (IFO-3458). Imidlertid er sekvensen for denne P, fraql lipase bemærkelsesværdig kortere end sekvensen for de to andre Pseudomonas lipaser. Man fandt ingen homologi mellem M-l lipase og Staphylococcus hyicus lipase.The nucleotide sequence of Pseudomonas pseudoalcaligenes M1 lipase (Figure 12) was compared with the sequence of Pseudomonas fraql (IFO-3458) lipase (Kugimiya et al., Biochem. Biophys. Res. Commun. 141 10 (1986) 185-190), Staphylococcus hyicus lipase (Gotz et al. Nucleic Acids Res. 13, (1985) 1891-1903) and Pseudomonas aeruginosa PA01 lipase (Figure 14). A close homologue was found! of 81% between M-1 lipase and P. aeruginosa PAO1 lipase and a homology of 62% between M-1 lipases and 15 P. fragi (IFO-3458). However, the sequence of this P1q1 lipase is remarkably shorter than the sequence of the other two Pseudomonas lipases. No homology was found between M-1 lipase and Staphylococcus hyicus lipase.
20 Disse resultater understøtter data fra eksempel 7, hvori man ingen hybridisering kunne påvise med (kromosom DNA) fra Pseudomonas fraql og Staphylococcus aureus, når man benyttede pTMPvl8A som sonde.These results support data from Example 7 in which no hybridization could be detected with (chromosome DNA) from Pseudomonas fraql and Staphylococcus aureus when using pTMPv18A as a probe.
Man sammenlignede også aminosyresekvensen afledt 25 af nucleotldsekvensen for P. pseudoalcaligenes M-l lipase med andre lipaser. Man fandt en total homologi mellem M-l lipase og P. aeruginosa PAOl lipase på (78%) og en homologi mellem M-l lipaser og P. fraql lipase på 48%. igen kunne man ingen homologi finde mellem amlno-30 syresekvensen for M-l lipase og Staphylococcus hyicus lipase. Imidlertid findes der en tæt homologi mellem de fire lipaser i regionen ved det essentielle serin 87 i færdig M-l lipase. Kugimiya et al., (se ovenfor) mente.The amino acid sequence derived from the nucleotide sequence of P. pseudoalcaligenes M-1 lipase was also compared with other lipases. A total homology between M-1 lipase and P. aeruginosa PAO1 lipase was found (78%) and a homology between M-1 lipases and P. fraql lipase of 48%. again, no homology could be found between the amino acid sequence of M-1 lipase and Staphylococcus hyicus lipase. However, there is a close homology between the four lipases in the region of the essential serine 87 in the final M-1 lipase. Kugimiya et al., (See above) believed.
I DK 175634 B1 II DK 175634 B1 I
I 58 II 58 I
I at sekvensen i denne region G-H-S-H^-G er det aktive IIn that the sequence in this region G-H-S-H ^ -G is the active I
I center i lipaseenzymer. IAt the center of lipase enzymes. IN
I Eksempel 10 IIn Example 10 I
I II I
I Deterqentforliqeliqhed for homologe llpaser ved SLM- IIn Detergent Compatibility for Homologous Ipases at SLM-I
I testen IIn the test I
I Dette eksempel illustrerede ydelsen af lipaseen- IIn this example, the performance of the lipase I-illustrated
I 10 zymer produceret af P. aeruginosa, P. stutzeri og P. IIn 10 zymes produced by P. aeruginosa, P. stutzeri and P. I
I alcallqenes stammer, der viser en høj grad af DNA se- IIn the strains of the alkalis, showing a high degree of DNA sequence
I kvenshomologi med M-l genet, ved en vaskeproces ved den IIn female homology to the M-1 gene, by a washing process at the I
I modificerede SLM-test, hvor man afprøver forligelighe- IIn modified SLM tests that test compatibility I
I den af sådanne enzymer i moderne vaskemidler. IIn that of such enzymes in modern detergents. IN
I 15 De anvendte vaskemidler var en pulverdetergent- IThe detergents used were a powder detergent
I blanding (ALL-base, beskrevet i EP-A-0218272) og en IIn admixture (ALL base, described in EP-A-0218272) and an I
I flydende detergentformulering (Liquid TIDE, også be- IIn liquid detergent formulation (Liquid TIDE, also I-
I skrevet i EP-A-0218272, men uden inaktivering af IWritten in EP-A-0218272, but without the inactivation of I
I proteasen). Man fremstillede lipaseenzymerne ved at IIn the protease). The lipase enzymes were prepared by:
I 20 dyrke bakterierne ved følgende fremgangsmåde: man frem- II cultivate the bacteria by the following procedure:
I stillede en inokuleringskultur ved at dyrke bakterierne IYou cultivated an inoculation culture by growing the bacteria I
I i 100 ml Brain Heart Infusion (BHI) medium i et rote- II in 100 ml Brain Heart Infusion (BHI) medium in a rat I
I II I
rende rysteapparat ved 30 C i 24 timer. Derefter inoku- Irunning shaker at 30 ° C for 24 hours. Then inoku- I
I lerede man en 2 liters laboratoriefermenteringsbeholder IYou were taught a 2 liter laboratory fermenter I
I 25 med indhold af ι,Ό 1 af et medium med nedenstående sam- II 25 containing ι, Ό 1 of a medium of the following composition
I mensætning. IIn terms of composition. IN
59 DK 175634 B159 DK 175634 B1
Sammensætning af medietComposition of the medium
Komponent Koncentration (q/kq) 5 Brain Heart Infusion (BHI) (Difco) 18,50 Gærekstrakt (Difco) 16,00Component Concentration (q / kq) 5 Brain Heart Infusion (BHI) (Difco) 18.50 Yeast Extract (Difco) 16.00
Calciumchlorid,2H20 0,80Calcium chloride, 2H 2 O 0.80
Magnesiumsulfat,7H20 3,20Magnesium sulfate, 7H 2 O 3.20
Mangansulfat,1H20 0,030 10 sojaolie 5,0Manganese sulphate, 1H20 0.030 10 Soybean oil 5.0
Dikaliumphosphat 6,40Dicalium Phosphate 6.40
Man kørte fermenteringen ved 30°C. Seksten timer efter inokuleringen begyndte man at tilsætte sojaolie 15 med en hastighed på 1 g/time og fortsatte dette i resten af fermenteringen. Beluftningshastigheden var 60 1/time og omrøringen var 700 o/m. Man kørte fermenteringen i ialt 24 timer.The fermentation was run at 30 ° C. Sixteen hours after inoculation, soybean oil 15 was added at a rate of 1 g / hour and continued for the remainder of the fermentation. The aeration rate was 60 l / h and the stirring was 700 rpm. The fermentation was run for a total of 24 hours.
Efter fermenteringen bortcentrifugerede man 20 bakterierne. Man blandede hurtigt under omrøring super-natanten med 2,5 rumfang acetone ved stuetemperatur og holdt blandingen under omrøring i 10 minutter, lod den sætte sig, og filtrerede den gennem et glasfilter under sugning. Man vaskede derefter filterkagen med 70% ace-25 tone, derefter med 100% acetone og tørrede filterkagen under vakuum.After the fermentation, the bacteria were centrifuged. The supernatant was rapidly mixed with 2.5 volumes of acetone at room temperature and stirred for 10 minutes, allowed to settle and filtered through a glass filter with suction. The filter cake was then washed with 70% ace-25 tone, then with 100% acetone and the filter cake dried under vacuum.
Man afprøvede derefter lipaseenzympræparaterne opnået på denne måde med SLM-test proceduren. Procedu-.ren for SLM testen ses beskrevet i EP-A-0218272. Denne 30 procedure blev modificeret på følgende måde:The lipase enzyme preparations obtained in this way were then tested with the SLM test procedure. The procedure for the SLM test is described in EP-A-0218272. This procedure was modified as follows:
Man anbragte et rumfang på 20 μΐ med indhold af 10 mg olivenolie opløst i acetone (25%) på et polyesterprøvestykke med dimensionerne 3 x 3 cm som en pletA volume of 20 μΐ containing 10 mg of olive oil dissolved in acetone (25%) was placed on a 3 x 3 cm polyester sample as a stain
I DK 175634 B1 II DK 175634 B1 I
I 60 II 60 I
I og lufttørrede den ved stuetemperatur. Man anbragte en IIn and air dried at room temperature. They placed an I
I vaskeopløsning/ der bestod af 10 ml SHW (vand med stan- IIn wash solution / consisted of 10 ml of SHW (water with standard I)
I dardhårdhed 0,75 mM CaCl2, 0,25 mM MgCl2) eller deter- IIn hardness 0.75 mM CaCl2, 0.25 mM MgCl2) or detergent
I gent opløst i SHW, i en 25 ml Erlenmeyerkolbe med en IGently dissolved in SHW, in a 25 ml Erlenmeyer flask with an I
I 5 prop og holdt den under omrystning i et vandbad ved IIn 5 plugs and kept under shaking in a water bath at I
I o 40 C. De afprøvede detergenter var en pulverdetergent-At 40 DEG C. the tested detergents were a powder detergent.
I blanding (ALL-base) og en flydende formulering (TIDE IIn admixture (ALL base) and a liquid formulation (TIDE I
I flydende). Koncentrationen af ALL-base vaskeopløsnin- IIn liquid). The concentration of ALL-base washing solution- I
I gen var på 4 g/1 (pH 9,5). Koncentrationen af flydende IThe gene was 4 g / l (pH 9.5). The concentration of liquid I
I 10 TIDE var 1,5 g/1 (pH 7,5). Man puf rede opløsningerne IIn TIDE, 1.5 g / l (pH 7.5). The solutions were prepared
I med 0,1 M Tris/HCl. Man startede vasken ved at sætte II with 0.1 M Tris / HCl. You started the wash by putting in
I enzympræparatet og umiddelbart derefter det plettede IIn the enzyme preparation and immediately thereafter it stained I
I prøvestykke til Erlenmeyerkolben og foretog omrystning IIn sample to Erlenmeyer flask and shaking I
I II I
i 40 minutter eller længere ved 40 C. Slutkoncentratio-for 40 minutes or longer at 40 ° C.
I .15 nen af lipase var 2 TLU/ml. IThe .15 lipase was 2 TLU / ml. IN
I Efter vasken rensede man prøvestykket med SHW og IAfter washing, the sample was cleaned with SHW and I
I II I
tørrede det ved 55 C i en time. De tørrede prøvestykkerdried it at 55 C for one hour. The dried specimens
I blev som de var vasket igen i en anden vaskecyklus un- IYou were washed again in another wash cycle as they were washed
I der anvendelse af ny detergent og enzymopløsning i 40 IIn using new detergent and enzyme solution in 40 l
I 20 minutter. Efter anden vaskecyklus behandlede man prøve- IFor 20 minutes. After the second wash cycle, sample I was treated
I stykket med 0,01N HC1 i 5 minutter, skyllede og tørrede IStir with 0.01N HCl for 5 minutes, rinse and dry
I ved stuetemperatur natten over. Man ekstraherede de IYou at room temperature overnight. They were extracted
I tørrede prøvestykker under rotation i et glasrør med IIn dried specimens under rotation in a glass tube with I
I indhold af 5 ml opløsningsmiddel (n-hexan/isopropylal- IContaining 5 ml of solvent (n-hexane / isopropylal-I)
I 25 kohol/myresyre: 975:25:2,5 (v/v), 1 ml/min). Tilbage- IIn carbonic / formic acid: 975: 25: 2.5 (v / v), 1 ml / min). Back in
I bievne rester af triglycerid, diglycerid og dannede IIn residues of triglyceride, diglyceride and formed
I frie fedtsyrer blev bestemt ved HPLC. IIn free fatty acids was determined by HPLC. IN
61 DK 175634 B1 HPLC udstyr og betingelser:61 GB 175634 B1 HPLC equipment and conditions:
Kolonne : CP Microspher-Si (Chrompack), 100 x 4,6 nun 5 injektionssystem : Wisp (Millipore) 10 μΐ Pumpe : Model 2150 (LKB) Påvisning : Kontrol af brydningsindeks (Jobin Jvon)Column: CP Microspher-Si (Chrompack), 100 x 4.6 nun 5 injection system: Wisp (Millipore) 10 μΐ Pump: Model 2150 (LKB) Detection: Refractive index check (Jobin Jvon)
Integrator : SP 4270 (Spectra Physis) 10 Eluerlngsmiddel : n-hexan/isopropylalkohol/myresyre: 975:25:2,5 (v/v), 1 ml/min.Integrator: SP 4270 (Spectra Physis) Eluent: n-hexane / isopropyl alcohol / formic acid: 975: 25: 2.5 (v / v), 1 ml / min.
Temperatur : stuetemperatur.Temperature: room temperature.
Retentionstiden for triolein var 1,2 minutter, 15 for 1,3-diglycerider var den 2,5 minutter, for 1,2-di-glycerider var den 3,6 minutter og for oliesyre var den 1,6 minutter. Arealet under toppene eller højden af toppene blev brugt som et mål for genudvinding af tri-glycerid og fedtsyre. Udvindingen af triglycerid efter 20 ekstraktion af et uvasket prøvestykke blev sat til 100%. Forholdet mellem responserne i brydningsindeks mellem triolein og oliesyre kunne sættes til 1,0 på basis af tophøjder.The retention time for triolein was 1.2 minutes, 15 for 1,3-diglycerides was 2.5 minutes, for 1,2-di-glycerides it was 3.6 minutes and for oleic acid it was 1.6 minutes. The area below the peaks or the height of the peaks was used as a measure for the recovery of triglyceride and fatty acid. The recovery of triglyceride after extraction of an unwashed specimen was set to 100%. The ratio of the refractive index responses between triolein and oleic acid could be set to 1.0 based on peak heights.
Resultaterne af disse SLM-tests vises i de føl-25 gende tabeller. I disse tabeller vises genudvinding af triglycerider og genudvinding af totallipider. Genudvinding af totale lipider dækker triglycerider plus 1,2- og 1,3-diglycerider plus frie fedtsyrer. Forskellen mellem genudvinding af totale lipider og genudvin-30 ding af triglycerider er et mål for lipaseaktivitet og ydeevne. Forskellen mellem genudvinding af totallipid og kontrol (uden lipaseenzym) er et tegn på fjernelsen af oliepletten fra tøjet og viser, at disse enzymer erThe results of these SLM tests are shown in the following tables. These tables show the recovery of triglycerides and the recovery of total lipids. Recovery of total lipids covers triglycerides plus 1,2- and 1,3-diglycerides plus free fatty acids. The difference between the recovery of total lipids and the recovery of triglycerides is a measure of lipase activity and performance. The difference between total lipid recovery and control (without lipase enzyme) is a sign of the removal of the oil stain from the clothing and shows that these enzymes are
DK 175634 B1 IDK 175634 B1 I
62 I62 I
stabile og effektive under realistiske vaskebetingel- Istable and efficient under realistic washing conditions- I
ser, som de simuleres i SLM-testen. Ilooks as they are simulated in the SLM test. IN
63 DK 175634 B1 p - -63 DK 175634 B1 p - -
«J'J
k cn o) C Ό 'i v (s ι-t æ η n »n ® ·1 '······k cn o) C Ό 'i v (s ι-t æ η n »n ® · 1' ······
“ I # intrinoiHHiriN“I # intrinoiHHiriN
Crt rø φCrt tube φ
C 3 HC 3 H
H C (0H C (0
V Φ 4JV Φ 4J
c o oc o o
(0 P(0 P
3 k 0) ! 'ή ET Ό O C ·Η Η - -H k _ ς-ι Ό 0) r>Ovo<ktn cf>r-co ^ (J «. ········ Φ m >, <#> «τσιιηΓ'ίΌΟίοο Ό > r-t. —' - O' »k <S- N Γ1 Ift P1 c ό σι O 3 -k >0 C k >i 0> 4->3 k 0)! 'ή ET Ό OC · Η Η - -H k _ ς-ι Ό 0) r> Ovo <ktn cf> r-co ^ (J «. ······· Φ m>, <#>« τσιιηΓ'ίΌΟίοο Ό> rt. - '- O' »k <S- N Γ1 Ift P1 c ό σι O 3 -k> 0 C k> i 0> 4->
H OH O
PP
Ή k (1) 03 el P Λ S< Sti®' ooooooo j E ^ CO O' k Tf f' r-l _ 1-1 £ b 3 omrsr»o\(Nvoo> ^ 2 5 >-3 oranvorjcoo H 8- . ΐ ί t ^ ^ Ό Λ} <k Φ -Η ,1 k J3 H < ftΉ k (1) 03 el P Λ S <Sti® 'ooooooo j E ^ CO O' k Tf f 'rl _ 1-1 £ b 3 omrsr »o \ (Nvoo> ^ 2 5> -3 oranvorjcoo H 8- . ΐ ί t ^ ^ Ό Λ} <k Φ -Η, 1 k J3 H <ft
nj rHnj rH
EH 0) MEH 0) M
Λ <0 03 k--------------- 0Λ <0 03 k --------------- 0
v1-( tk Mv1- (tk M
• · U-l ik ik• · U-l i i
(0 ΙΛ rt H(0 H rt H
CL) I Q£ fl Tf I ICL) I Q £ fl Tf I I
CD g ik M .k ( I Η WCD g I M .k (I Η W
C S I I Η Μ Μ Η HC S I I Η Μ Μ Η H
•k <0 i X O I I I I• k <0 i X O I I I I
C 4J C <C U C> U t5 > W H ft ft ft ft ft 5 k ft v-i - — —---— — — — — — — —. _ m 2 03 fk 03 cn c <u o-ι cr> 6 -k s « rk (0 (0 E O O 03 z, p k fk o »k 'k β P (0 C k cn ^ CO μ φC 4J C <C U C> U t5> W H ft ft ft ft ft ft 5 k ft v-i - - —---— - - - - - - -. _ m 2 03 fk 03 cn c <u o-ι cr> 6 -k s «rk (0 (0 E O O 03 z, p k fk o» k 'k β P (0 C k cn ^ CO µ φ
S O O Ό Cn NS O O Ό Cn N
S W aί a s 3 P s s z ** M ^ « k 3S W aί a s 3 P s s z ** M ^ «k 3
03 01 P03 01 P
ft (DU) i 1 ft s ft ft s s :ft (DU) i 1 ft s ft ft s s:
I DK 175634 B1 II DK 175634 B1 I
I 64 II 64 I
I Γ ^ T Ί II Γ ^ T Ί I
I m oj II m oj I
ctj Ictj I
|? Λ r> r* οι n ® r* o- o I|? Λ r> r * οι n ® r * o- o I
ts ^ ιηπ^φΗ^οιη Its ^ ιηπ ^ φΗ ^ οιη I
c.. ·—’ o'dico^rr'cncoco »HQ).c .. · - 'o'dico ^ rr'cncoco »HQ).
I rCj pH IIn rCj pH I
σι| Ή 3 Iσι | Ή 3 I
c g -P Ic g -P I
I -H o II -H o I
ό <3 +j Iό <3 + j I
c Ic I
Λ - —. — —----------- r-iΛ - -. - —----------- r-i
-Q 5) H-Q 5) H
0) I0) I
m σ> ό Im σ> ό I
w c ή <e-<-iu ονοα\(Ν^οθΊτη x> ό <u ^w c ή <e - <- iu ονοα \ (Ν ^ οθΊτη x> ό <u ^
i c o <#> mvocooi-tr·'®® Ii c o <#> mvocooi-tr · '®® I
H-i-i>iwCha>r^fl,'X>r'r'r^ IH-i-i> iwCha> r ^ fl, 'X> r'r'r ^ I
i—I ^ r—I Ii — I ^ r — I I
’< Ό cn I'<Ό cn I
3 ή I3 ή I
·Η C h I· Η C h I
II 4J III 4J I
M ti IM ti I
Φ-------- — --------Φ -------- - --------
cfl Icfl I
Λ IΛ I
I ^ II ^ I
·Η I· Η I
I H II H I
4J 4-1 Λ I4J 4-1 Λ I
I 9J. ?{ i8 o> oo.ooooo II 9J. ? {i8 o> oo.ooooo I
? i: \ ω o *-i ** r* r* «-i I? i: \ ω o * -i ** r * r * «-i I
^TSDOifiOnoxci voa» I^ TSDOifiOnoxci voa »I
o in n vo oj co o Io in n vo oj co o I
φ £ £ H r- nj oojo Iφ £ £ H r- nj oojo I
Η Μ M Dj w IΜ Μ M Dj w I
o w < Io w <I
_Q >-l <4-1 I_Q> -l <4-1 I
(0 0 3 I(0 0 3 I
*4 4-1* 4 4-1
U_|--- -----'--------- IU_ | --- -----'--------- I
I * ^ oj i I £ η m iI * ^ oj i I £ η m i
Kl r(H IKl r (H I
CO t OS n ** l- lCO t OS n ** l- l
J> g HWr-IIIHW IJ> g HWr-IIIHW I
SE IIMMHHH ISEE IIMMHHH I
M3 IS O I I I I IM3 IS O I I I I I
a M c < u o o o Iand M c <u o o o I
U-l CO H Di Si fii Οι Οι IU-l CO H Di Si fii Οι Οι I
3 I3 I
I w iI w i
I ri » II ri »I
I c . II c. IN
4J Φ I4J Φ I
3 S> S I3 S> S I
+j % I+ j% I
I "i ^ ή II "i ^ ή I
3 rH 3 3 I3 rH 3 3 I
“ o υ in I“O υ in I
ϋ 4-> M r4 o Ή Iϋ 4-> M r4 o Ή I
α 3 4-t 3 c m Iα 3 4-t 3 c m I
IH C O ·Η 0) Ϊ S S IIH C O · Η 0) Ϊ S S I
O .0 Ό O' N IO .0 Ό O A N
« « 3 3 4J I«« 3 3 4J I
M w <u M3 IM w <u M3 I
n οι p In οι p I
α en Iα and I
M « w · · ·M «w · · ·
H * * * IH * * * I
fil * fil fil Ifile * file file I
Claims (4)
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP88200572 | 1988-03-25 | ||
EP88200572 | 1988-03-25 | ||
EP88201982 | 1988-09-12 | ||
EP88201982 | 1988-09-12 | ||
EP8900342 | 1989-03-28 | ||
PCT/EP1989/000342 WO1989009263A1 (en) | 1988-03-25 | 1989-03-28 | Molecular cloning and expression of genes encoding lipolytic enzymes |
Publications (3)
Publication Number | Publication Date |
---|---|
DK591989D0 DK591989D0 (en) | 1989-11-24 |
DK591989A DK591989A (en) | 1989-11-24 |
DK175634B1 true DK175634B1 (en) | 2004-12-27 |
Family
ID=26115007
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DK198905919A DK175634B1 (en) | 1988-03-25 | 1989-11-24 | Transformed host cell and method for producing a lipolytic enzyme |
Country Status (8)
Country | Link |
---|---|
JP (1) | JP3029435B2 (en) |
AT (1) | ATE153067T1 (en) |
AU (1) | AU632472B2 (en) |
DE (1) | DE68928038T3 (en) |
DK (1) | DK175634B1 (en) |
FI (1) | FI102295B (en) |
NO (1) | NO307304B1 (en) |
WO (1) | WO1989009263A1 (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5278066A (en) * | 1985-08-09 | 1994-01-11 | Gist-Brocades Nv | Molecular cloning and expression of gene encoding lipolytic enzyme |
US5227300A (en) * | 1989-03-16 | 1993-07-13 | Olin Corporation | Identification, characterization and method of production of a novel microbial lipase |
US5658871A (en) * | 1989-07-07 | 1997-08-19 | Lever Brothers Company, Division Of Conopco, Inc. | Microbial lipase muteins and detergent compositions comprising same |
JPH06507071A (en) * | 1991-05-01 | 1994-08-11 | ノボザイムス アクティーゼルスカブ | stabilizing enzyme |
JP2859520B2 (en) * | 1993-08-30 | 1999-02-17 | ノボ ノルディスク アクティーゼルスカブ | Lipase, microorganism producing the same, method for producing lipase, and detergent composition containing lipase |
GB0030877D0 (en) | 2000-12-18 | 2001-01-31 | Unilever Plc | Enhancement of air bleaching catalysts |
US20030051836A1 (en) | 2001-05-21 | 2003-03-20 | Novozymes A/S | Enzymatic hydrolysis of a polymer comprising vinyl acetate monomer |
US10087401B2 (en) | 2012-03-16 | 2018-10-02 | Monosol, Llc | Water soluble compositions incorporating enzymes, and method of making same |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0218272B1 (en) * | 1985-08-09 | 1992-03-18 | Gist-Brocades N.V. | Novel lipolytic enzymes and their use in detergent compositions |
GB2191491B (en) * | 1986-04-25 | 1990-12-05 | Labofina Sa | Dna segment coding for a specific lipase, vectors for the expression thereof, microorganisms transformed by these vectors and use of these microorganisms for |
AU7901387A (en) * | 1986-11-19 | 1988-06-09 | Genencor Inc. | Hydrolase from pseudomonas |
-
1989
- 1989-03-28 JP JP1503441A patent/JP3029435B2/en not_active Expired - Lifetime
- 1989-03-28 AU AU32947/89A patent/AU632472B2/en not_active Ceased
- 1989-03-28 WO PCT/EP1989/000342 patent/WO1989009263A1/en active IP Right Grant
- 1989-03-28 AT AT89200790T patent/ATE153067T1/en not_active IP Right Cessation
- 1989-03-28 DE DE68928038T patent/DE68928038T3/en not_active Expired - Lifetime
- 1989-11-16 NO NO894571A patent/NO307304B1/en not_active IP Right Cessation
- 1989-11-22 FI FI895574A patent/FI102295B/en not_active IP Right Cessation
- 1989-11-24 DK DK198905919A patent/DK175634B1/en not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
AU632472B2 (en) | 1993-01-07 |
NO307304B1 (en) | 2000-03-13 |
DE68928038T3 (en) | 2002-09-12 |
WO1989009263A1 (en) | 1989-10-05 |
ATE153067T1 (en) | 1997-05-15 |
FI102295B1 (en) | 1998-11-13 |
DE68928038D1 (en) | 1997-06-19 |
NO894571L (en) | 1989-11-16 |
DK591989D0 (en) | 1989-11-24 |
AU3294789A (en) | 1989-10-16 |
FI895574A0 (en) | 1989-11-22 |
JPH03500845A (en) | 1991-02-28 |
NO894571D0 (en) | 1989-11-16 |
JP3029435B2 (en) | 2000-04-04 |
DE68928038T2 (en) | 1997-11-13 |
DK591989A (en) | 1989-11-24 |
FI102295B (en) | 1998-11-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0334462B2 (en) | Molecular cloning and expression of genes encoding lipolytic enzymes | |
Dartois et al. | Cloning, nucleotide sequence and expression in Escherichia coli of a lipase gene from Bacillus subtilis 168 | |
Akatsuka et al. | The lipA gene of Serratia marcescens which encodes an extracellular lipase having no N-terminal signal peptide | |
US5942431A (en) | DNA sequences encoding lipases and method for producing lipases | |
KR100200166B1 (en) | Alkaline proteolytic enzyme and method of production | |
US5869438A (en) | Lipase variants | |
US5892013A (en) | Lipase variants | |
US5427936A (en) | Alkaline bacillus lipases, coding DNA sequences therefor and bacilli, which produce these lipases | |
US5389536A (en) | Lipase from Pseudomonas mendocina having cutinase activity | |
Choi et al. | Characterization and heterologous gene expression of a novel esterase from Lactobacillus casei CL96 | |
Kok et al. | Characterization of the extracellular lipase, LipA, of Acinetobacter calcoaceticus BD413 and sequence analysis of the cloned structural gene | |
US5529917A (en) | Compositions and methods for making lipolytic enzymes | |
JP3739790B2 (en) | Thermophilic fungal expression system | |
WO1994001541A1 (en) | C. antarctica lipase and lipase variants | |
WO1997007202A1 (en) | Novel lipolytic enzymes | |
US20040005695A1 (en) | Method for producing recombinant proteins by gram-negative bacteria | |
CA2183431A1 (en) | A method of preparing a variant of a lipolytic enzyme | |
WO1994025577A1 (en) | Lipase variants | |
Thornton et al. | Molecular cloning of a phospholipid-cholesterol acyltransferase from Aeromonas hydrophila. Sequence homologies with lecithin-cholesterol acyltransferase and other lipases | |
JP2001503641A (en) | Method for producing polypeptide in surfactin mutant strain of Bacillus cell | |
DK175634B1 (en) | Transformed host cell and method for producing a lipolytic enzyme | |
JP2001025393A (en) | Expression system comprising aspergillus | |
Alon et al. | Esterase from the oil-degrading Acinetobacter lwoffii RAG-1: sequence analysis and over-expression in Escherichia coli | |
JP7061018B2 (en) | A novel promoter and a method for producing a protein using the promoter | |
US5830735A (en) | Method for producing lipolytic enzymes using transformed Pseudomonas |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUP | Patent expired |