DK175337B1 - Method for Preparation of a Polypeptide with Hirudin Activity and DNA Sequences, Fusion Peptide, Hybrid Plasmid and Host Organism Useful in the Method - Google Patents

Method for Preparation of a Polypeptide with Hirudin Activity and DNA Sequences, Fusion Peptide, Hybrid Plasmid and Host Organism Useful in the Method Download PDF

Info

Publication number
DK175337B1
DK175337B1 DK198503645A DK364585A DK175337B1 DK 175337 B1 DK175337 B1 DK 175337B1 DK 198503645 A DK198503645 A DK 198503645A DK 364585 A DK364585 A DK 364585A DK 175337 B1 DK175337 B1 DK 175337B1
Authority
DK
Denmark
Prior art keywords
polypeptide
gly
gene
glu
formula
Prior art date
Application number
DK198503645A
Other languages
Danish (da)
Other versions
DK364585A (en
DK364585D0 (en
Inventor
Paul Habermann
Dieter Brauer
Joachim Engels
Friedrich Wengenmayer
Eugen Uhlmann
Original Assignee
Schering Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schering Ag filed Critical Schering Ag
Publication of DK364585D0 publication Critical patent/DK364585D0/en
Publication of DK364585A publication Critical patent/DK364585A/en
Application granted granted Critical
Publication of DK175337B1 publication Critical patent/DK175337B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H21/00Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/81Protease inhibitors
    • C07K14/815Protease inhibitors from leeches, e.g. hirudin, eglin
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • C12N15/72Expression systems using regulatory sequences derived from the lac-operon
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/01Fusion polypeptide containing a localisation/targetting motif
    • C07K2319/02Fusion polypeptide containing a localisation/targetting motif containing a signal sequence
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/01Fusion polypeptide containing a localisation/targetting motif
    • C07K2319/036Fusion polypeptide containing a localisation/targetting motif targeting to the medium outside of the cell, e.g. type III secretion
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/70Fusion polypeptide containing domain for protein-protein interaction
    • C07K2319/74Fusion polypeptide containing domain for protein-protein interaction containing a fusion for binding to a cell surface receptor
    • C07K2319/75Fusion polypeptide containing domain for protein-protein interaction containing a fusion for binding to a cell surface receptor containing a fusion for activation of a cell surface receptor, e.g. thrombopoeitin, NPY and other peptide hormones

Abstract

Hirudin can be obtained using a specific DNA sequence in a genetic engineering process. The gene is advantageously synthesised in the form of several fragments which are enzymatically ligated to give two larger part-sequences which are incorporated into hybrid plasmids and amplified in host organisms. The part-sequences are reisolated and then combined to form the complete gene which is incorporated into a hybrid plasmid and the latter is expressed in a host organism. <IMAGE>

Description

DK 175337 B1 ΛDK 175337 B1 Λ

Den foreliggende opfindelse angår en fremgangsmåde til fremstilling af et polypeptid med hirudinaktivitet og DNA-sekvenser, fusionspeptid, hybridpiasmid og værtsorganisme, som kan anvendes -ved fremgangsmåden.The present invention relates to a method for producing a polypeptide with hirudin activity and DNA sequences, fusion peptide, hybrid piasmid and host organism which can be used in the method.

5 Hirudin er et polypeptid, der udvindes af Hiru- •j do midicinalis, og' som udviser en specifik antithrombiri- aktivitet og fungerer som antikoagulerende middel.Hirudin is a polypeptide recovered by Hirujid midicinalis and which exhibits a specific antithrombiric activity and acts as an anticoagulant.

Naturligt hirudin indeholder i position 63 en sul-fateret aminosyre, Tyr-O-sulfat, jf. J. Dodt et al., FEBS 10 Letters Vol. 165(2), 180-184 (1984). Det er kendt, at aktiviteten af hirudin aftager med stigende desulfatering, jf.Natural hirudin at position 63 contains a sulfated amino acid, Tyr-O-sulfate, cf. J. Dodt et al., FEBS 10 Letters Vol. 165 (2), 180-184 (1984). It is known that the activity of hirudin decreases with increasing desulfation, cf.

J.-Y. Chang, FEBS Letters Vol. 164(2), 307-313 (1983). For 100% desulfateret hirudin er aktiviteten således mindre end det halve af aktiviteten af naturligt hirudin. Da naturpro-15 dukter er resultatet af en lang evolution, skulle det ikke formodes, at der kan gives afkald på sulfatogruppen. Der har således ikke for en gennemsnitsfagmand været nogen foranledning til at fremstille des-sulfato-produktet genteknologisk og undersøge dette for hirudinaktivitet. En gennemsnits-20 fagmand ville ganske vist have betragtet des-sulfato-protei-net som mellemprodukt for naturproduktet. Da der imidlertid ikek kendes nogen fremgangsmåder til målrettet sulfatering af et sådant mellemprodukt ved tyrosin-resten, ville en fagmand også igen have frafaldet sådanne overvejelser.JY Chang, FEBS Letters Vol. 164 (2), 307-313 (1983). Thus, for 100% desulfated hirudin, the activity is less than half that of natural hirudin. Since natural products are the result of a long evolution, it should not be assumed that the sulphate group can be renounced. Thus, for one of ordinary skill in the art, there has been no need to manufacture the desulfate product genetically and examine this for hirudin activity. Admittedly, one of ordinary skill in the art would have regarded the desulfate protein as an intermediate for the natural product. However, since no methods are known for the targeted sulfation of such an intermediate by the tyrosine residue, one skilled in the art would again have waived such considerations.

25 Det har imidlertid overraskende vist sig, at polypep- tiderne med den nedenfor anførte almene formel I, som frem-, stilles genteknologisk og følgelig ikke er sulfaterede, har en biologisk aktivitet af omkring samme størrelse som aktiviteten af naturligt hirudin.However, surprisingly, it has been found that the polypeptides of the general formula I listed below, which are prepared genetically and are therefore not sulfated, have a biological activity of about the same size as that of natural hirudin.

30 Opfindelsen angår således en fremgangsmåde til fremThe invention thus relates to a method for the future

stilling af et polypeptid med hirudinaktivitet med den almene formel Iposition of a polypeptide having hirudin activity of general formula I

Η- (X) m_ i -X1-C-Tyr-D-Asp-Cys-E-Glu-Ser-Gly-Gln-Asn-Leu-Cys-Leu-Cys-Glu-Gly -Ser-Asn-Val -Cys -Gly-Gln-Gly-Asn-Lys-Cys-35 Ile -Leu-Gly - Ser-Asp - F-G-Lys - Asn-Gln-Cys-Val -Thr-Gly-Glu-Gly- Thr- Pro-Lys-Pro-Gln-Ser-His-Asn-Asp-Gly-Asp-Phe-Glu-H- I DK 175337 B1Η- (X) m_ in -X1-C-Tyr-D-Asp-Cys-E-Glu-Ser-Gly-Gln-Asn-Leu-Cys-Leu-Cys-Glu-Gly -Ser-Asn-Val - Cys -Gly-Gln-Gly-Asn-Lys-Cys-35 Ile -Leu-Gly - Ser-Asp - FG-Lys - Asn-Gln-Cys-Val -Thr-Gly-Glu-Gly-Thr-Pro-Lys -Pro-Gln-Ser-His-Asn-Asp-Gly-Asp-Phe-Glu-H- I DK 175337 B1

B Ile-Pro-Glu-Glu-Tyr-Leu-Gln-(Z)n-0H IB Ile-Pro-Glu-Glu-Tyr-Leu-Gln- (Z) n-OH I

hvor m er 0-50, Iwhere m is 0-50, I

B n er 0-100 og IB n is 0-100 and I

B 5 X og X1 er ens eller forskellige rester af genetisk ' IB 5 X and X1 are the same or different residues of genetic 'I

B kodelige aminosyrer, IB encodable amino acids, I

B C er Thr, Val, Ile, Leu eller Phe, IB C is Thr, Val, Ile, Leu or Phe, I

B D er Thr, IB D is Thr, I

B E er Thr, IB E is Thr, I

B 10 F er Gly, IB 10 F is Gly, I

B G er Glu, IB G is Glu, I

B H er Glu, og IB H is Glu and I

B Z er ens eller forskellige rester af genetisk IB Z is the same or different residue of genetic I

B kodelige aminosyrer, IB encodable amino acids, I

B 15 med undtagelse af polypeptider, hvori IB 15 with the exception of polypeptides in which I

B a) X1 og C begge er Val, IB a) X1 and C are both Val, I

B b) X1 er Ile, og C er Thr, ellerB b) X 1 is Ile and C is Thr, or

B c) der N-terminalt er elimineret aminosyrer indtil position IB c) where N-terminally amino acids are eliminated until position I

I i0,In i0,

B 20 hvilken fremgangsmåde er ejendommelig ved, at der i et eks- IB 20 which method is peculiar in that in an ex

B pressionsplasmid indbygges et gen, der koder for et polypep- IB expression plasmid incorporates a gene encoding a polypeptide

B tid med formlen I eller delsekvenser deraf eller for et IB time of the formula I or partial sequences thereof or for an I

B fusionspeptid bestående af et polypeptid med formlen I eller IB fusion peptide consisting of a polypeptide of formula I or I

B delsekvenser deraf og β-galactosidasens aminosyresekvens IB partial sequences thereof and the amino acid sequence I of the β-galactosidase

B 25 helt eller delvis, IB 25 in whole or in part, I

og genet eksprimeres til dannelse af et polypeptid med form- Iand the gene is expressed to form a polypeptide of Form I

len I eller et fusionsprotein bestående af et polypeptid med II or a fusion protein consisting of a polypeptide with I

I formlen I og β-galactosidasens aminosyresekvens helt eller IIn the formula I and the amino acid sequence of the β-galactosidase completely or I

delvis, og et fremkommet fusionsprotein spaltes til dannelse Ipartially and a resultant fusion protein is cleaved to form I

I 30 af et polypeptid med formlen I. II of a polypeptide of formula I.

I Opfindelsen angår desuden: I - DNA-sekvenserne I, IA, IB, IIA og I IB, som er anført I nedenfor, - et fusionspeptid, som er ejendommeligt ved, at det I 35 består af et polypeptid som defineret ovenfor og β-galacto- I sidasens aminosyresekvens helt eller delvis, 3 DK 175337 B1 et hybridplasmid, som er ejendommeligt ved, at det indeholder en DNA-sekvens, som koder for et polypeptid som defineret ovenfor, og en værtsorganisme, fortrinsvis E. coli , som er ejendomme -5 lig ved, at den indeholder et hybridplasmid som defineret ovenfor.In addition, the invention relates to: I - DNA sequences I, IA, IB, IIA and IB listed below, - a fusion peptide which is characterized in that it consists of a polypeptide as defined above and β- galacto- In the amino acid sequence of the sidase, in whole or in part, a hybrid plasmid which is characterized in that it contains a DNA sequence encoding a polypeptide as defined above and a host organism, preferably E. coli, which are properties -5 is similar in that it contains a hybrid plasmid as defined above.

Det nødvendige gen kan syntetiseres kemisk ved kendte metoder, isoleres fra genomet og oparbejdes, eller mRNA isoleres ud fra inducerede celler ved kendte 10 metoder og cDNA'et udvindes ud herfra.The necessary gene can be chemically synthesized by known methods, isolated from the genome and processed, or the mRNA isolated from induced cells by known methods and the cDNA recovered therefrom.

Vejen over cDNA er den foretrukne og frem for alt den kemiske syntese, især ifølge phosphit-netoden.The pathway over cDNA is the preferred and above all chemical synthesis, especially according to the phosphite net.

Endvidere foretrækkes syntese af et gen, der koder for polypeptidet med formlen I, hvor m er 1 og n er 0, X AFurthermore, synthesis of a gene encoding the polypeptide of formula I, wherein m is 1 and n is 0, X A is preferred.

15 er Met eller Arg, og C er Thr. En yderligere foretrukket udførelsesform for opfindelsen angår polypeptider med formlen I, hvor H-(X)m_^-X^-C- ikke er H-Val-Val-, når n er 0.15 is Met or Arg and C is Thr. A further preferred embodiment of the invention relates to polypeptides of formula I wherein H- (X) m - ^ X- -C- is not H-Val-Val- when n is 0.

Særlig foretrukket er syntesen af polypeptider med formlen I, hvor m er 1, X1 er Met eller Arg, og n er 0. Den 20 hertil foretrukne DNA-sekvens er følgende: 25 1 35 I DK 175337 B1 I iParticularly preferred is the synthesis of polypeptides of formula I wherein m is 1, X1 is Met or Arg and n is 0. The preferred DNA sequence for this is as follows:

I DNA-Sequer a I II DNA Sequer and I I

I Triplet nr. '0 1 2 3 4 5 II Triplet No. '0 1 2 3 4 5 I

I Aminosyre Met Tir Tyr Thr Asp Cys IIn Amino Acid With Tyr Tyr Thr Asp Cys I

Nucleotid nr. 1 10 20 INucleotide No. 1 10 20 I

I Kod. streng 5' CT AGA ATG ACG TAT ACT GAC TGC IIn Code. strand 5 'CT AGA ATG ACG TAT ACT GAC TGC I

Ikke-kod. streng 3’ . T TAC TGC ATA TGA CTG ACG INon-meat. string 3 '. T TAC TGC ATA TGA CTG ACG I

I 6 7 8 9 · 10 11 12 13 14 15 II 6 7 8 9 · 10 11 12 13 14 15 I

Thr Glu Ser Gl'y Gin Asn Leu Cys Leu Cys IThr Glu Ser Gl'y Gin Asn Leu Cys Leu Cys I

30 40 50 'I30 40 50 'I

ACT GAA TCT GGT C AG AAC CTG TGC CTG TGC IACT GAA TCT GGT C AG AAC CTG TGC CTG TGC I

TGA CTT AGA CCA GTC TIG GAC ACG GAC ACG , ITGA CTT AGA CCA GTC TIG GAC ACG GAC ACG, I

I 16 17 18 19 20 21 22 23 24 25 II 16 17 18 19 20 21 22 23 24 25 I

H Glu Gly Ser Asn Val Cys Gly Gin Gly Asn IH Glu Gly Ser Asn Val Cys Gly Gin Gly Asn I

60 70 80 I60 70 80 I

GAA GGA TCT AAC GTT TGC GGC CAG GGT AAC IGAA GGA TCT AAC GTT TGC GGC CAG GGT AAC I

CTT CCT AGA TIG C AA ACG CCG GTC CCA TIG ICTT CCT AGA TIG C AA ACG CCG GTC CCA TIG I

I 26 27 28 29 30 31 32 33 34 35 II 26 27 28 29 30 31 32 33 34 35 I

I Lys Cys Ile Leu Gly Ser Asp Gly Glu Lys II Lys Cys Ile Leu Gly Ser Asp Gly Glu Lys I

90 100 110 I90 100 110 I

AAA TGC ATC CTT GGA TCC GAC GGT GAA AAC· IAAA TGC ATC CTT GGA TCC GAC GGT GAA AAC · I

ITT ACG TAG GAA CCT AGG CTG CCA CTT TIC IITT ACG TAG GAA CCT AGG CTG CCA CTT TIC I

I 36 37 38 39 40 4l 42 43 44 45 II 36 37 38 39 40 4l 42 43 44 45 I

M Asn Gin Cys Val Thr Gly Glu Gly Thr Pro IM Asn Gin Cys Val Thr Gly Glu Gly Thr Pro I

120 130 140 I120 130 140 I

AAC CAG TGC GTT ACT GGC GAA GGT ACC CCG IAAC CAG TGC GTT ACT GGC GAA GGT ACC CCG I

TIG GTC ACG C AA TGA CCG CTT CCA TGG GGC ITIG GTC ACG C AA TGA CCG CTT CCA TGG GGC I

I 46 47 48 49 50 51 52 53 5 4 55 II 46 47 48 49 50 51 52 53 5 4 55 I

I Lys Pro Gin Ser His Asn Asp Gly Aso Phe II Lys Pro Gin Ser His Asn Asp Gly Aso Phe I

150 160 170 I150 160 170 I

AAA CCG CAG TCT CAT AAC GAC GGC GAC TIG IAAA CCG CAG TCT CAT AAC GAC GGC GAC TIG I

TIT GGC GTC AGA GTA TIG CTG CCG CTG AAC ITIT GGC GTC AGA GTA TIG CTG CCG CTG AAC I

I 56 57 58 59 60 61 62 63 64 II 56 57 58 59 60 61 62 63 64 I

I Glu Glu Ile Pro Glu Glu Tyr Leu Gin Stp II Glu Glu Ile Pro Glu Glu Tyr Leu Gin Stp I

l80 190 200 Il80 190 200 I

GAA GAG ATC CCT GAG GAA TAC CTT CAG TAA IGAA GAG ATC CCT GAG GAA TAC CTT CAG TAA I

I CTT CIC TAG GGA CTC CTT ATG GAA GTC ATT II CTT CIC TAG GGA CTC CTT ATG GAA GTC ATT I

I Stp II Stp I

I 210 II 210 I

TAG AGC TCG 3’ ITAG AGC TCG 3 'I

ATC TCG AGC AGC T 5' “IATC TCG AGC AGC T 5 '“I

DK 175337 B1DK 175337 B1

OISLAND

55

Den genetiske kode er som bekendt "udartet", dvs. der er kun en eneste nucleotid-sekvens, der koder for to aminosyrer, medens ie øvrige 18 genetisk indkodelige aminosyrer kan kodes med -2-6 tripletter. Desuden gør v;.*rts-5 cellerne af forskellige arter ikke altid samme brug af de herved givne variationsmuligheder. Der findes således en uoverskuelig mangfoldighed af codonmuligheder for syntese af generne.As you know, the genetic code is "degenerate", ie. there is only a single nucleotide sequence encoding two amino acids, while the other 18 genetically encoded amino acids can be encoded with -2-6 triplets. In addition, the v; * rts-5 cells of different species do not always make the same use of the variants provided. Thus, there is an unmistakable diversity of codon possibilities for the synthesis of the genes.

Det har nu vist sig, at DNA-sekvens I, som ko-io der for den samlede aminosyresekvens, samt de til syntese af sekvens I anvendte DNA-delsekvenser IIA eg 113 DNA-Seouens II A (HIR-I) 15 laIt has now been found that DNA Sequence I, which corresponds to the total amino acid sequence, as well as the DNA part sequences IIA used in the synthesis of Sequence I, eg 113 DNA Seouens II A (HIR-I) 15a

Nucleotid-nr. 10 20Nucleotide no. 10 20

Kodende stieng 5* CT AGA ATG ACG TAT ACT GACCoding rod 5 * CT AGA ATG ACG TAT ACT GAC

Ikke-kod. streng 3' T TA C TG C ATA TG A CTG ANo-meat. string 3 'T TA C TG C ATA TG A CTG A

Xbal 20 I b I c 30 40 50Xbal 20 I b I c 30 40 50

ACT GAA TCT GGT CAG AAC CTG TGC CTG TGCACT GAA TCT GGT CAG AAC CTG TGC CTG TGC

TGA CTT AGA CCA GTC TT G GAC ACG C-AC ACGTGA CTT AGA CCA GTC TT G GAC ACG C-AC ACG

2525

Ib Id I c le 60 70 80Ib Id I c le 60 70 80

GAA GGA TCT AAC GTT TGC GGC CAG GGT AACGAA GGA TCT AAC GTT TGC GGC CAG GGT AAC

30 CTT CCT AGA TTG CAA ACG CCG GTC CCA TTG30 CTT CCT AGA TTG CAA ACG CCG GTC CCA TTG

Id If I e 90 35 AAA TGC ATC CTT G Barn HI 3' TTT ACG TAG GAA CCT AG 5' I f I DK 175337 B1 i ° DNA-Sequens TI B (HIR-II) I II a 5 Nucleotid-nr. 100 HqId If I e 90 35 AAA TGC ATC CTT G Child HI 3 'TTT ACG TAG GAA CCT AG 5' I f I DK 175337 B1 i ° DNA Sequence TI B (HIR-II) I II a 5 Nucleotide No. 100 Hq

I Kodende streng 5' GA TCC GAC GGT GAA AAGIn Coding String 5 'GA TCC GAC GGT GAA AAG

I Ikke-kod. streng 3T BamHI G CTG CCA CTT TTCIn Non-code. string 3T BamHI G CTG CCA CTT TTC

I II b II II b I

I II a II c I 10 120 130 moI II and II c I 10 120 130 mo

I AAC C AG TG C GTT ACT GGC GAA GGT ACC CCGI AAC C AG TG C GTT ACT GGC GAA GGT ACC CCG

TTG GTC ACG CAA TG A CCG CTT CCA TGG GC-CTTG GTC ACG CAA TG A CCG CTT CCA TGG GC-C

I II t II d II II t II d I

II c le I 15 150 160 iγοII c le I 15 150 160 iγο

I AAA CCG C A G TCT CAT AAC GAC GGC GAC TTCI AAA CCG C A G TCT CAT AAC GAC GGC GAC TTC

I TTT GGC GTC AGA GTA TTG CTG CCG CTG AAGI TTT GGC GTC AGA GTA TTG CTG CCG CTG AAG

I II d II f II e II g I 20 180 190 200I II d II f II e II g I 20 180 190 200

I GAA GAG ATC CCT GAG GAA TAC CTT CAG TAAI GAA GAG ATC CCT GAG GAA TAC CTT CAG TAA

CTT CTC TAG GGA CTC CTT ATG GAA GTC ATTCTT CTC TAG GGA CTC CTT ATG GAA GTC ATT

I II f Uh I II g I 25 210 TAG AGC TCG Sal 13' ATC TCG AGC AGC T 5' I 11 h I 30 et særlig fordelagtige til den genteknologiske syntese I ar den særlig foretrukne form for hirudin. I 5’-enden I af den indkocence streng i DNA-sekvens I rindes en ucra- I gende DNA-sekvens, tilsvarende til restriktionsendonu- I c leas en Xbal; i 3'-enden af den indkedende streng findes deri- I 35 mod den enkeltstrengede udragende sevkens svarende til I restriktionsenzymet Sal I. Disse to forskellige gen-I II f Uh I II g I 25 210 TAG AGC TCG Sal 13 'ATC TCG AGC AGC T 5' I 11 h I 30 a particularly advantageous for genetic engineering synthesis is the particularly preferred form of hirudin. At the 5 'end I of that incocency strand in DNA sequence I, an unwanted DNA sequence corresponding to restriction endonuclease is read an XbaI; At the 3 'end of the stranding strand therein is found against the single-stranded protruding sequence corresponding to the restriction enzyme Sal I.

OISLAND

7 DK 175337 B17 DK 175337 B1

kendelsessekvenser sikrer indsættes af DNA i plasmider med den ønskede orientering. (Det er imidlertid også muligt at vælge samme genkendelsessekvenser og foretage en tilsvarende udvælgelse efter karakterisering af Srecognition sequences ensure insertion of DNA into plasmids of the desired orientation. (However, it is also possible to select the same recognition sequences and make a similar selection after characterizing S

plasmid-DNA'et ved hjælp af tilsvarende restriktionseller DNA-sekvensanalyse eller ved ekspression).the plasmid DNA by corresponding restriction or DNA sequence analysis or by expression).

Mellem disse genkendelsessekvenser og codoner-ne for aminosyrerækkefølgen findes i den indkodende strengs 5'-ende codonet for aminosyren methionin (som i 10 DNA-sekvensen I.er betegnet 0). Alternativt kan der findes en præsakvens (også kaldet signal- eller leder-sekvens) af et bakterielt eller andet værts-protein (oversigtsartikel: Perlman og Haivorson, J. Mol. Biol.Between these recognition sequences and the codons for the amino acid sequence are found in the 5 'end coding codon for the amino acid methionine (as in the DNA sequence I. is designated 0). Alternatively, a pre-sequence (also called signal or leader sequence) of a bacterial or other host protein can be found (review article: Perlman and Haivorson, J. Mol. Biol.

167, 391 (1933)3, som forårsager sekrektion af det øn- ^ 5 skede pclypeptic fra cvtoplasmaet, cc som fraspaltes ved denne sekrarionsproces fra en i værtscellen naturligt forekommende signalpeptidase. I enden af den inc-kodende streng følger så iføige opfindelsen efter den for glutamin kocence triplet et stopcocon eller for- 20 trinsvis - som fremstillet i DNA-sekvens I - to stoptripletter. Mellem disse stopcodoner og den udragende Sall-ence indbygces desuden i DNA-sekvensen I en nucleo-tidsekvens svarende til restriktionsenzymet Sstl.167, 391 (1933) 3, which causes secretion of the desired pclypeptic from the cytoplasm, cc which is cleaved by this secretion process from a signal peptidase naturally occurring in the host cell. At the end of the inc coding strand, according to the invention, after stopping for glutamine coke, a stop cocoon or preferably - as prepared in DNA sequence I - two stop triplets. In addition, between these stop codons and the protruding Sall enzyme, the DNA sequence is incorporated into a nucleotide sequence corresponding to the restriction enzyme SstI.

Et internt singulært snitsted for restriktions-25 enzymet Bam HI (i codon 20/31) muliggør subkloning af to genfracmenter HIR-I og HIR-II (jfr. DNA-sekvens II) , som kan indbygges i godt undersøgte kloningsvektorer, såsom pBR 322, pUC 8 eller pUC 12. Desuden indbygges i genet en række yderligere singulære genkendelsesse-kvenser tor res*rlxnonsenzymer, som pa den ene sice skaber en adgang for delsekvenser af hirudin og på den anden sider tillader at der foretages variationer (tabel I) : 35 I DK 175337 B1 I 8An internal singular section of the restriction enzyme Bam HI (in codon 20/31) allows subcloning of two gene fragments HIR-I and HIR-II (cf. DNA sequence II), which can be incorporated into well-studied cloning vectors, such as pBR 322 , pUC 8, or pUC 12. In addition, a number of additional singular recognition sequences are incorporated into the gene by enzymes which, on the one hand, provide access to sub-sequences of hirudin and, on the other hand, allow variations to be made (Table I): 35 I DK 175337 B1 I 8

I Tabel I IIn Table I I

Restrikt. Snit eft. nucl. nr. Restrikt. Sn. eft. nucl.Restrikt. Cut after. nucl. No. Restricted. Sn. eft. nucl.

I enzym_(indkod, streng)_enzvm_nr. (indkod, str.)In enzyme_ (encode, string) _enzvm_nr. (encode, size)

Rsa Ia) 8-· Hph I 117Rsa Ia) 8- · Hph I 117

I 5 Acc I 12 Rsa I ^ 137 II 5 Acc I 12 Rsa I ^ 137 I

Hinf I 27 Κρη I 139 .Hinf I 27 Κρη I 139.

I Xho IIa) 57 Taq I 172 I Fnu 4 HI 71 Xho IIb) 178 I Hae III 73 Dde I 184 I 10 Bst NI 75 Mbo II 136I Xho IIa) 57 Taq I 172 I Fnu 4 HI 71 Xho IIb) 178 I Hae III 73 Dde I 184 I 10 Bst NI 75 Mbo II 136

Sst I 210Sst I 210

I a) singulær med hensyn til delsekvens HIR-I II a) singular with respect to part sequence HIR-I I

I b) singulær med hensyn til delsekvens HIR-II IIn b) singular with respect to sub-sequence HIR-II I

I DNA-Sekvensen I kan opbygces af 14 oiigonucleo- IIn the DNA sequence I can be made up of 14 oligonucleotides

I tider med en længde på 25-35 nuclectider (jfr. DNA-se- IIn times with a length of 25-35 nuclectides (cf. DNA Se- I

I kvens II), idet disse først syntetiseres kemisk IIn sequence II), first chemically synthesized

I og dernæst via "klæbrige ender" på 4-6 nucleotider bin-I and then via "sticky ends" of 4-6 nucleotides

20 des enzymatisk. I20 is enzymatic. IN

I Ved DNA-sekvensen I skal det desuden bemærkes,In the DNA sequence I, it should also be noted,

I at for de aminosyrer, der kan indkodes med flere co- IIn that for the amino acids that can be encoded with multiple co- I

I doner, er disse ikke ækvivalente, men udviser tværtimod I i den pågældende værtscelle, såsom E. coli, forskelligeIn donors, these are not equivalent, but on the contrary, I in the host cell concerned, such as E. coli, differ

I 2^ præferencer. Desuden reduceres palindromiske sekvenser IIn 2 ^ preferences. In addition, palindromic sequences I are reduced

til et mindstemål.to a minimum.

DNA-Sekvensen I's genstruktur er derfor let I tilgængelig ud fra relativt små byggesten, muliggør I subkloning af to genfragmenter i velkendte vektorer og I 30 tillader, at disse kombines til et samlet gen, samt at I eventuelle ændringer af dette foretages.Therefore, the DNA sequence I gene structure is readily available from relatively small building blocks, allowing subcloning of two gene fragments into well-known vectors and allowing them to be combined into a single gene and making any changes to it.

I Afhængigt af indbygningen af det syntetiske I gen i kloningsvektoren eksprimeres det ønskede peptid I med hirudins aminosuresekvens umiddelbart (DNA-sekvens I 35 IC) eller i form af et fusionsprotein med et bakterielt I protein såsom (3-gaiacdosicase eller som delsekvenser DK 175337 B1Depending on the incorporation of the synthetic I gene into the cloning vector, the desired peptide I is expressed directly with hirudin's amino acid sequence (DNA sequence I 35 IC) or in the form of a fusion protein with a bacterial I protein such as (3-gaiacosicase or as partial sequences DK 175337 B1

OISLAND

9 heraf. Sådanne fusionsproteiner kan da på kendt måde spaltes kemisk eller enzymatisk. Findes der f.eks. i stillingen O i sekvensen I aminosyren methionin (DNA--sekvens la) , så kan'.en kemisk spaltning ske med bromcy-5 an; men findes i denne stilling aminosyren arginin (DNA-sekvensen IB) , så kan en enzymatisk spaltning ske med trypsin.9 of these. Such fusion proteins can then be chemically or enzymatically cleaved in known manner. Is there for example. at position 0 in the sequence I of the amino acid methionine (DNA sequence 1a), then a chemical cleavage can occur with bromocyanine; but if in this position the amino acid is arginine (DNA sequence IB), then an enzymatic cleavage can occur with trypsin.

DNA-5equens IA: 10 0DNA sequence IA: 10 0

Met (Aminosyrer 1-64) 1 5 205 210 5’ CT AGA ATG (Nucleotid. 9-200) TAA TAG AG C T 3’ t5 3' T TAC (komplement, nucl.) ATT TAC 5'Met (Amino Acids 1-64) 1 5 205 210 5 'CT AGA ATG (Nucleotide. 9-200) TAA TAG AG C T 3' t5 3 'T TAC (complement, nucl.) ATT TAC 5'

XbalXba

SstISst

DNA-Sequens IB: 20DNA Sequence IB: 20

OISLAND

Arg (Aminosyrer 1-64) 1 5 205 210 5' CT AGA CGT (Nucleotid. 9-200) TAA TAG AGC T 3’ 25 3' T TAC (komplement, nucl.) ATT ATC 5’Arg (Amino Acids 1-64) 1 5 205 210 5 'CT AGA CGT (Nucleotide. 9-200) TAA TAG AGC T 3' 25 3 'T TAC (complement, nucl.) ATT ATC 5'

Xbal SstIXbal SstI

DNA-Sequen.s IC: 30 0DNA Sequence IC: 30 0

Met (Aminosyrer 1-64) 205 210 5’ AA TTC ATG (Nucleotid' 9-200) TAA TAG AGC TCG 3' G TAC (komplement. nucl.) ATT ATC TCG AGC AGC T 5’ 35 EcoRJ SallMet (Amino Acids 1-64) 205 210 5 'AA TTC ATG (Nucleotide' 9-200) TAA TAG AGC TCG 3 'G TAC (complement. Nucl.) ATT ATC TCG AGC AGC T 5' 35 EcoRJ Sal

I DK 175337 B1 II DK 175337 B1 I

I '10 II '10 I

Variationer af aminosyresekvenserne kan ske efter sara- IVariations of the amino acid sequences may occur according to sara I

mensætningen af det syntetiske gen på DNA-plan ved udskift- Ireplacing the synthetic gene at the DNA level by replacement I

I ning af de tilsvarende genfragmenter med ny-syntetiserede IRecalling the corresponding gene fragments with newly synthesized I

H DNA-sekvenser under udnyttelse af de tilsvarende restrik- IH DNA sequences utilizing the corresponding restriction I

5 tionsenzym-snitsteder. I5 enzyme cross-sectional sites. IN

Som eksempel på en variation af aminosyresekvensen kan IAs an example of a variation of the amino acid sequence, I can

nævnes polypeptidet med formlen I (kendt), hvor m er 1, og Iare mentioned the polypeptide of formula I (known), wherein m is 1 and I

X1 og C er Val, og n er 0. Denne modifikation kan let ske IX1 and C are Val and n is 0. This modification can easily be done I

via det til restriktionsenzymet Acc I svarende snitsted. Ivia the cut site corresponding to the restriction enzyme Acc I. IN

10 Indbygningen af det syntetiske gen eller gen- I10 The incorporation of the synthetic gene or gene I

H fragment i kloningsvektorer, f.eks. de i handelen væren- IH fragments in cloning vectors, e.g. those in the trade being- I

I de plasmider pUC 8, pUC 12 og pBR 322 eller andre almin- IIn the plasmids pUC 8, pUC 12 and pBR 322 or other generic I

I deligt tilgængelige plasmider såsom ptac 11 og pKK 177.3, IIn partially accessible plasmids such as ptac 11 and pKK 177.3, I

I sker på i og for sig kendt måde. De kemisk syntetise- IYou happen in a manner known per se. The chemical synthesis- I

15 rede gener kan også i forvejen forsynes med egnede kemisk I15 genes can also be provided with suitable chemical I in advance

syntetiserede kontrolregioner, som muliggør en ekspres- Isynthesized control regions that enable an express I

sion af proteinerne. I denne forbindelse kan der henvi- Ision of the proteins. In this connection, I-

I ses til Maniatis' lærebog (Molecular Cloning, Maniatis ISee the Maniatis textbook (Molecular Cloning, Maniatis I

I m.fl., Cold Spring Harbor, 1982). Transformationen af IIn Others, Cold Spring Harbor, 1982). The transformation of I

20 de således opnåede hybridplasmider i egnede værtsorga- IThe hybrid plasmids thus obtained in suitable host organ I

I nismer, fortrinsvis E. coli, er ligeledes i og for sig IIn niches, preferably E. coli, are also per se

I kendt og beskrevet i den ovennævnte lærebog i detaljer. IIn known and described in the above textbook in detail. IN

I Udvindingen af det eksprimerede protein og dettes rens- IIn the recovery of the expressed protein and its purification

I ning kan ske ved kendte metoder. ICuring can be done by known methods. IN

I 25 II 25 I

I Opfindelsen vil i det følgende blive forklaret IThe invention will be explained in the following

I detaljeret i eksempler ved hjælp af nogle yderligere ud- IIn detail in examples by means of some further explanations

førelsesformer, hvoraf mange af de mulige ændringer og Iforms of leadership, many of which are possible changes and I

I kombinationer vil fremgå for fagmanden. Procentangivel- ICombinations will be apparent to those skilled in the art. Percentage I

I 30 ser er her efter vægt, medmindre andet er anført. IFor 30 watches, here is by weight, unless otherwise stated. IN

Eksempel 1 IExample 1 I

Kemisk syntese af et enkeltstrenget oligonucleotid IChemical synthesis of a single-stranded oligonucleotide I

Med genbyggesten la, der omfatter nucleotider- IWith the rebuilding block Ia comprising nucleotides I

35 ne 1-32 i den indkodende streng, som eksempel vil nu I35 ne 1-32 in the encoding string, as an example I will now

syntesen af genbyggestenene blive forklaret. Ved hjælp Ithe synthesis of the rebuilding stones is explained. Using I

af kendte metoder [M.J. Gait m.fl., Nucleic Acids Res. Iof known methods [M.J. Gait et al., Nucleic Acids Res. IN

11 DK 175337 B1 8, 1080-1096 (1980)) bindes det i 3'-enden værende nu-cleosid, i det foreliggende tilfælde altså thvmidin (nu-11 DK 175337 B1 8, 1080-1096 (1980)) binds the nucleoside present at the 3 'end, in the present case thymidine (

DD

cleotid nr. 32) til kieselgel ("Fractosil” , Firma Merck) covalent via 31-hydroxyfunktionen. Herved omsættes først 5 kieselgelen under fraspaltning af ethanol med 3-(tri-ethoxysilyl)propylamin, hvorved der opstår i Si-O-Si-bin-ding. Tymidinet omsættes som 31-0-succinoyl-5'-dimeth-oxytritylether i nærvær af paranitrophenol og N,N'-di-cyclohexylcarbodiimid med den modificerede bærer, hvor-10 ved den frie carboxygruppe i succinoylgruppen acylerer propylaminogruppens aminorest.cleotide No. 32) to silica gel ("Fractosil", Company Merck) covalently via the 31-hydroxy function, thereby first reacting the silica gel with the decomposition of ethanol with 3- (tri-ethoxysilyl) propylamine to produce Si-O-Si The thymidine is reacted as 31-O-succinoyl-5'-dimethoxy-oxytrityl ether in the presence of paranitrophenol and N, N'-di-cyclohexylcarbodiimide with the modified carrier, whereby the free carboxy group in the succinoyl group acylates the amine propylamino group.

I de følgende syntesetrin anvendes basekomponenten som 5'-O-dimethoxytrityl-nucleosid-3'-phosphor-syremonomethylester-dialkylamid eller -chloric, idet adeninet foreligger som N^-benzovl-forbindelse, cyto- 4 *2 sinet som N -benzoyl-forbindelse, guaninet som N -iso- butyryl-forbindelse, og'idet thyminet, der ikke indeholder nogen aminogruppe, foreligger uden beskyttelsesgruppe.In the following synthesis steps, the base component is used as 5'-O-dimethoxytrityl nucleoside-3'-phosphoric acid monomethyl ester dialkylamide or chloric, the adenine being N-benzoyl compound, cyto-4 * 2 sinet as N -benzoyl compound, the guanine as N-isobutylryl compound, and the thymine containing no amino group are present without a protecting group.

50 mg polymer bærer, der indeholder 2 .umol thy- 9 0 ' midin,behandles i rækkefølge med følgende: (a) nitromethan, (b) mættet zinkbromidopløsning i nitromethan med 1% vand, (c) methanol, 25 (d) tetrahydrofuran, (e) acetonitril, (f) 40^,umol af det tilsvarende nucleosidphosphit og 200^,umol tetrazol i 0,5 ml vandfri acetonitril (5 minutter), (g) 20% acetanhydrid i tetrahydrofuran med 40% lu-tidin og 10% dimethylaminopyridin (2 minutter), (h) tetrahydrofuran, (i) tetrahydrofuran med 20% vand og 40% lutidin, (j) 3% iod i kollidin/vand/tetrahydrofuran i vo- 35 lumenforhold 5:4:1, I DK 175337 B150 mg of polymeric carrier containing 2 µmol of thymidine are treated in the order of: (a) nitromethane, (b) saturated zinc bromide solution in nitromethane with 1% water, (c) methanol, 25 (d) tetrahydrofuran , (e) acetonitrile, (f) 40 µmol of the corresponding nucleoside phosphite and 200 µmol of tetrazole in 0.5 ml of anhydrous acetonitrile (5 minutes), (g) 20% acetanhydride in tetrahydrofuran with 40% lucidine and 10% dimethylaminopyridine (2 minutes), (h) tetrahydrofuran, (i) tetrahydrofuran with 20% water and 40% lutidine, (j) 3% iodine in collidine / water / tetrahydrofuran in volume ratio 5: 4: 1, I DK 175337 B1

(k) tetrahydrofuran og I(k) tetrahydrofuran and I

(1) methanol. I(1) methanol. IN

Ved "phosphit" skal her forstår desoxyribose- -3'-monophosphorsyre-monomethylester, idet den tredje va- lens er mættet med chlor eller en tertiær aminogruppe, 5 f.eks. en morpholinorest. Udbytterne fra de enkelte syntesetrin kan efter detrityleringsreaktionen b) be- stemmes spektrofotometrisk ved måling af dimethoxytri- tylkationens absorption ved en bølgelængde på 496 nm.As used herein, "phosphite" means deoxyribose-3'-monophosphoric acid monomethyl ester, the third vein being saturated with chlorine or a tertiary amino group, e.g. a morpholine residue. The yields from the individual synthesis steps can be determined spectrophotometrically by the detritylation reaction b) by measuring the absorption of the dimethoxytitrile cation at a wavelength of 496 nm.

Efter afsluttet syntese af oligonucleotidet 10 fraspaltes oligomerens methylphosphatbeskyttelsesgrup- H per ved hjælp af p-thiocresol og triethylamin.After completion of synthesis of the oligonucleotide 10, the methyl phosphate protecting groups of the oligomer are cleaved by p-thiocresol and triethylamine.

H Derpå fraspaltes oligonucleotidet ved behand- H ling med ammoniak i 3 timer fra den faste bærer. En behandling af oligomerene i 2-3 dage med koncentreret 15 ammoniak fraspalter basernes aminobeskyttelsesgrupper kvantitativt. Det således opnåede råprodukt renses ved H højtryksvæskechromatografi (HPLC) eller ved polyacryl- H amid-gelelektroforese.H The oligonucleotide is then cleaved off by treatment with ammonia for 3 hours from the solid support. A treatment of the oligomers for 2-3 days with concentrated 15 ammonia quantitatively cleaves the amino protecting groups of the bases. The crude product thus obtained is purified by H high pressure liquid chromatography (HPLC) or by polyacrylic H amide gel electrophoresis.

H Ganske tilsvarende syntetiseres også de øvri- 20 ge genbyggesten Ib-IIh, hvis nucleotidrækkefølge frem- H går af DNA-sekvens II. 1H Quite similarly, the other gene-building blocks Ib-IIh are also synthesized, whose nucleotide sequence appears in DNA sequence II. 1

Eksempel 2Example 2

Enzymatisk binding af de enkeltstrengede oligonucleo-Enzymatic binding of the single-stranded oligonucleotides

| tider til genfracmenterne HIR-I og HIR-II| times to the gene fragments HIR-I and HIR-II

I Til phosphorylering af oligonucleotiderne i 5’- endestillingen behandles hvert nmol af oligonucleoti- derne Ib-Ie med 5 nmol adenosintriphosphat med fire en- I heder T4-polynucleotidkinase i 20^,uliter 50 mmolær Tris- I 50 HC-l-puffer (pH 7,6), 10 mmolær magnesiumchlorid og 10 mmolær dithiothreitol (DTT) i 30 minutter ved 37°C.For phosphorylation of the oligonucleotides in the 5 'end position, each nmol of the oligonucleotides Ib-Ie is treated with 5 nmol adenosine triphosphate with four units of T4 polynucleotide kinase in 20 µl of 50 mmolar Tris-I 50 HC-1 buffer ( pH 7.6), 10 mmolar magnesium chloride and 10 mmolar dithiothreitol (DTT) for 30 minutes at 37 ° C.

I Enzymet deaktiveres ved 5 minutters opvarmning til 95°C.In the Enzyme, deactivate at 95 ° C for 5 minutes.

Oligonucleotiderne la, If, Ila og Uh, som i DNA-sekvens Η IIA og IIB udgør de udragende sekvenser, phosphoryleres I 35 ikke. Dette forhindrer ved den efterfølgende ligation I dannelsen af større underfragmenter end dem, der sva- I rer til DNA-sekvens IIA eller IIB.The oligonucleotides Ia, If, Ila and Uh, which in the DNA sequence Η IIA and IIB constitute the protruding sequences, are not phosphorylated in I 35. This, in subsequent ligation I, prevents the formation of larger sub-fragments than those that correspond to DNA sequence IIA or IIB.

13 DK 175337 B113 DK 175337 B1

Oligonucleotiderne Ia-If ligeres på følgende måde til underfragment HIR-1: 1 nmol af hver af oli gonucleotiderne la og If samt af 5'-phosphaterne af Ib/The oligonucleotides Ia-If are ligated as follows to sub-fragment HIR-1: 1 nmol of each of the oly gonucleotides Ia and If as well as of the 5 'phosphates of Ib /

Ic, Id og le opløses sammen i 45^uliter puffer indehol-5 dende 50 mmolær Tris-HCl (pH 7,6), 20 mmolær magnesium-chlorid, 20 mmolær kaliumchlorid og 10 mmolær DTT.Ic, Id and le are dissolved together in 45 µl of buffer containing 50 mmolar Tris-HCl (pH 7.6), 20 mmolar magnesium chloride, 20 mmolar potassium chloride and 10 mmolar DTT.

Til sammenbinding af oligonucleotiderne ifølge DNA-se-kvens IIA opvarmes oligonucleotideopløsning i 2 minutter til 95°C og afkøles så langsomt (2-3 timer) til 20°C.To bind the oligonucleotides of DNA sequence IIA, the oligonucleotide solution is heated for 2 minutes to 95 ° C and then cooled slowly (2-3 hours) to 20 ° C.

10 "il enzymatisk sammenbinding tilsættes så 2^uliter 0,1 molær DTT, 8^,uliter 2,6 mmolær adenosintriphosphat (pH 7) samt 5^,uliter T4-DNA-ligase (2000 enheder) og der inkuberes i 16 timer ved 22°C.10 µl of enzymatic linkage is then added 2 µL of 0.1 molar DTT, 8 µL of 2.6 mmolar adenosine triphosphate (pH 7) and 5 µL of T4 DNA ligase (2000 units) and incubated for 16 hours at 22 ° C.

Analogt phosphoryleres oligonucleotiderne Ilb-15 lig og ligeres så sammen med oligonouleotiderne Ila og Uh til underfragmentet HIR-II.Analogously, the oligonucleotides Ilb-15 are phosphorylated and then ligated with the oligonouleotides Ila and Uh to the sub-fragment HIR-II.

Rensning af. genfragmenterne HIR-I og HIR-II sker ved gelelektrophorese på en 10%'s polyacrylamidgel (uden urinstoftilsætning, 20 x 40 cm, 1 mm tyk), idet 20 der som markeringsstof anvendes "ØX 174 DNA" (firma BEL), snittet med Hinf I eller pBR 322 snittet med Hae III.Purification of. the gene fragments HIR-I and HIR-II are by gel electrophoresis on a 10% polyacrylamide gel (without urea addition, 20 x 40 cm, 1 mm thick), using 20 as the marker substance "ØX 174 DNA" (company BEL), cut with Hinf I or pBR 322 incision with Hae III.

Eksempel 3Example 3

Fremstilling af hvbridplasmider, som indeholder genfrag-25 menterne HIR-I og HIR-IIPreparation of hybrid plasmids containing the gene fragments HIR-I and HIR-II

(a) Indbygning af genfragmentet HIR-I i pUC 12(a) Incorporation of the HIR-I gene fragment into pUC 12

Det i handelen værende plasmid pUC 12 åbnes på kendt måde med restriktionsendonucleaserne Xba I og • Barn HI efter frabrikantens anvisninger. Det fordøjede 30 deles op på 5%'s polyacrylamidgel på kendt måde ved elektroforese, og brostykket gøres synligt ved farvning med ethidiumbromid eller ved radioaktiv mærkning ("nick-translation" ifølge Maniatis ovenfor). Plasmidbåndet 1 udskæres derpå fra acrylamidgelen og fraskilles elektro-35 phoretisk fra polyacrylamidet. Opdelingen af det fordøjede kan ske på 2%'s lavtsmeltende agarosegeler (som beskrevet i eksempel 5a).The commercially available plasmid pUC 12 is opened in the known manner with the restriction endonucleases Xba I and • Child HI following the directions of the smear. The digested 30 is divided into 5% polyacrylamide gel in known manner by electrophoresis and the bridge piece is made visible by staining with ethidium bromide or by radioactive labeling ("nick translation" according to Maniatis above). The plasmid band 1 is then excised from the acrylamide gel and electrophoretically separated from the polyacrylamide. The digest can be divided into 2% low melting agarose gels (as described in Example 5a).

I DK 175337 B1 II DK 175337 B1 I

I 14 II 14 I

I l^ug plasmid ligeres så med 10 ng genfragment IIn 1 µg of plasmid is then ligated with 10 ng of gene fragment I

I HIR-I, der som beskrevet i eksempel 2 er phosphoryle- IIn HIR-I, as described in Example 2, phosphoryl-I

I ret, natten over ved 16°C. Herved fås hybridplasmidet, IIn dish, overnight at 16 ° C. Thereby the hybrid plasmid, I

I der ses på tegningens fig. 1. IReferring to FIG. 1. I

I 5 (b) Indbygning af genfragmentet HIR-II i pOC 8 II 5 (b) Incorporation of the HIR-II gene fragment into pOC 8 I

Analogt med (a) åbnes det i handelen værende IBy analogy with (a) it is opened commercially I

I plasmid pUC 8 med Barn HI og Sal I og ligeres med genfrag- IIn plasmid pUC 8 with Barn HI and Sal I and ligated with gene frag-I

I mentet HIR-II, der som beskrevet i eksempel 2 er pnos- IIn the ment HIR-II, as described in Example 2, is pnos- I

I phoryleret. Herved fås det i tegningens fig. 2 viste IIn phorylated. Hereby it is shown in the drawing FIG. 2

I 10 hybridplasmid. IIn 10 hybrid plasmid. IN

I Eksempel 4 IIn Example 4 I

I Det komplette gens syntese og indbygning i et plasmid II The synthesis and incorporation of the complete gene into a plasmid I

I (a) Transformation og udvikling ITransformation and development

I De således opnåede hybridplasmider trans forme- IIn the hybrid plasmids thus obtained, transform I

I res i E.coli, idet stammen E.coli K 12 ved behandling IRes in E. coli, the strain E. coli K 12 by treatment I

I med en 70 mmolær calciumchloridopløsning gøres kompe- IComply with a 70 mmolar calcium chloride solution

I tent, og suspensionen af hybridplasmidet i 10 mmolær IIn tent, and the suspension of the hybrid plasmid in 10 mmolar I

I 20 Tris-HCl-puffer {pH 7,5), der er 70 mmolær med hensyn IIn 20 Tris-HCl buffer (pH 7.5) 70 mmolar with respect to I

I til calciumchlorid, tilsættes dertil. De transformere- II to calcium chloride, is added thereto. They transform- I

I de stammer udvælges som sædvanlig ved udnyttelse af IIn those strains, as usual, by selection of I

I de ved hjælp af plasmidet formidlede antibiotikaresi- IIn the antibiotic mediated by the plasmid I

I stenser eller -sensibiliteter, og hybridvektorerne for- IYou are stoning or sensitivities, and the hybrid vectors for I

I 25 meres. Efter at cellerne er dræbt, isoleres hybridplas- II 25 meres. After the cells are killed, hybrid plasma I is isolated

I miderne, åbnes med de oprindeligt anvendte restriktions- IIn the mites, opens with the restriction I originally used

I enzymer, og genfragmenterne HIR-I og HIR-II isoleres IIn enzymes, and the gene fragments HIR-I and HIR-II are isolated

I ved gelelektrophorese. II by gel electrophoresis. IN

I (b) Sammenknytning af genfragmenterne II (b) Linking of the gene fragments I

I 30 De ved formering opnåede underfragmenter HIR-I II The sub-fragments obtained by propagation HIR-I I

I og HIT-II sammenknyttes som beskrevet i eksempel 2 (sam- II and HIT-II are linked as described in Example 2 (co-I

I menbinding ved 60°C) enzymatisk, og det således opnåede IIn men binding at 60 ° C) enzymatically, and thus obtained I

I syntetiske gen med DNA-sekvensen I indføres i klonings- IIn synthetic genes with the DNA sequence I are introduced into cloning I

I vektoren pUC 12. Herved fås hybridplasmidet ifølge teg- IIn the vector pUC 12. This yields the hybrid plasmid of Fig. I

I 35 ningens fig. 3. IIn FIG. 3. I

15 DK 175337 B1 1 2 (c) Fremstilling af et gen for [Val ,Val ]-hirudin.(C) Preparation of a gene for [Val, Val] -hirudin.

Ud fra plasmidet ifølge fig. 3 fås således som beskrevet i eksempel 5(a) AccI-Sall-fragmentet (nucleo-tider 13-212), som så ved hjælp af adaptoren 5 5' CT AGA AT G GTT GTA T 3’ 3’ T TAC CAA CAT ATA 5'From the plasmid of FIG. 3 is thus obtained as described in Example 5 (a) the AccI-SalI fragment (nucleotides 13-212), which then by means of the adapter 5 5 'CT AGA AT G GTT GTA T 3' 3 'T TAC CAA CAT ATA 5 '

Xbal Accl kan ligeres ind i plasmidet .pUC 12,-som i forvejen er åbnet med Xbal og Sall.Xbal Accl can be ligated into the plasmid .pUC 12, which has already been opened with Xbal and SalI.

1010

Eksempel 5Example 5

Konstruktion af hybridplasmider til ekspression af DNA-15 -sekvenserne IA, IB og ICConstruction of hybrid plasmids for expression of DNA-15 sequences IA, IB and IC

(a) Indbygning af DNA-sekvensen IC i pKK 177.3 (direkte ekspression)(a) Incorporation of DNA sequence IC into pKK 177.3 (direct expression)

Ekspressionsplasmidet pKK 177.3 [plasmid ptac 11, Amman m.fl., Gene 25, 167 (1983) , hvor der i Eco-RI-gen-20 kendeksesstedet syntetisk blev indbygget en sekvens, som indeholder et Sal-I-snitsted], åbnes med restriktionsenzymerne Eco RI og Sal I. Ud fra plasmidet, der er vist på tegningens fig. 3, udvindes DNA-sekvensen IC på følgende måde: Man snitter først plasmidet med restrikts- 25 enzymet Sal I, så med enzymet Acc I og fraskiller så det lille Acc I-Sal I-fragment ved hjælp af gelelek-trophorese på en 2%'s lavtsmeltende agarosegel fra plas-midbåndet, idet DNA'et genvindes ved opløsning af gelen ved forhøjet temperatur (ifølge producentens anvisnin-20 ger)- Dette DNA-fragment kan ved hjælp af følgende a-daptor 5’ AATTC ATG ACG T 3’ 3' G TAC TGC ATA 5'The expression plasmid pKK 177.3 [plasmid ptac 11, Amman et al., Gene 25, 167 (1983), where a sequence containing a Sal-I cut site is synthetically incorporated into the Eco-RI gene 20 site] with the restriction enzymes Eco RI and Sal I. From the plasmid shown in FIG. 3, the DNA sequence IC is recovered as follows: The plasmid is first cut with the restriction enzyme Sal I, then with the enzyme Acc I and then the small Acc I-Sal I fragment is separated by gel electrophoresis on a 2% The low melting agarose gel from the plasmid band, recovering the DNA by dissolving the gel at elevated temperature (according to the manufacturer's instructions) - This DNA fragment can, by means of the following α-daptor 5 'AATTC ATG ACG T 3' 3 'G TAC TGC ATA 5'

Eco RI Acc IEco RI Acc I

2 5 omsættes til DNA.-sekvensen IC.2 is converted to the DNA sequence IC.

Ved ligation af det snittede plasmid pKK 177.3 med genet IC fås et hybridplasmid, hvor en ekspressions- I DK 175337 B1 I 16By ligation of the cut plasmid pKK 177.3 with the gene IC, a hybrid plasmid is obtained in which an expression of

I eller regulationsregion er indskudt før det indsatte. IIn or regulatory region is deposited before the inmate. IN

Efter tilsætning af en egnet induktor såsom isopropyl-Ø- IAfter the addition of a suitable inductor such as isopropyl-β-I

I -thiogalactopyranosid (IPTG) dannes et mRNA, som fører IIn -thiogalactopyranoside (IPTG), a mRNA leading to I is formed

I til ekspression af methionyl-polypeptidet svarende til II for expression of the methionyl polypeptide corresponding to I

I 5 DNA-sekvensen IC. 'IIn the DNA sequence IC. 'IN

I (b) Indbygning af hirudin-genet IA eller IB i eks- II (b) Incorporation of the hirudin gene IA or IB into ex- I

I pressionsplasmidet pCK-5196 (fusionskonstruktion) * IIn the expression plasmid pCK-5196 (fusion construct) * I

Ekspressionsplasmidet pCK-5196 (tegningens fig. IThe expression plasmid pCK-5196 (Fig. 1 of the drawing)

I 4) er et derivat af plasmidet pAT 153 (Twigg og Sherrat), II 4) is a derivative of the plasmid pAT 153 (Twigg and Sherrat), I

I 10 som i sig selv udgør et "high-copy-number derivat af det II 10 which in itself constitutes a "high-copy-number derivative of the I

I kendte plasmid pBR 322. Det. indeholder den kendte Lac IIn known plasmid pBR 322. Det. contains the known Lac I

I UV^-promotor med (3-galactosidases kendte sekvens indtil IIn the UV ^ promoter with (3-galactosidases) known sequence up to 1

I nucleotid nr. 1554 (svarende til aminosyre nr. 518:Trp) IIn nucleotide # 1554 (corresponding to amino acid # 518: Trp) I

I R R II R R I

indsat mellem tet -genet (Hind III fra pBR 322) og amp - Iinserted between the tet gene (Hind III from pBR 322) and amp - I

I 15 -genets terminator (Aha III i stilling 3231 i pBR 322). IIn the 15-gene terminator (Aha III at position 3231 in pBR 322). IN

I Et yderligere kendetegn ved denne vektor er polyforbin- IA further feature of this vector is polyforbine I

I delsessekvensen, der er indsat mellem Ø-galactosidase- IIn the partial sequence inserted between β-galactosidase I

sekvensen og terminatorsekvensen og som stammer fra det Ithe sequence and the terminator sequence and which derive from it I

I kendte plasmid pUC 13. lac-UV^-promotorens transcrip- IIn known plasmid pUC 13. lac-UV ^ promoter transcript I

I R II R I

20 tion forløber mod tet -genet. I20 tion proceeds towards the tet gene. IN

I Dette plasmid indeholder ved Ø-galactosidasens II This plasmid contains at I-galactosidase I

I aminosyre nr. 518 polyforbindelsesdelen Xba Ι-Bam HI- IIn amino acid # 518 the poly compound Xba Ι-Bam HI-I

I -Sma I-Sst I fra plasmidet pUC 13, som fungerer som klo- II -Sma I-Sst I from the plasmid pUC 13, which acts as clone I

I ningssted for det eucaryotiske gen. Plasmidet CK-5L96 IIn place of the eucaryotic gene. Plasmid CK-5L96 I

I 25 åbnes ved hjælp af restriktionsenzymerne Xba I og Sst I II 25 is opened by the restriction enzymes Xba I and Sst I I

I og ligateres med DNA-sekvensen la, som kan isoleres ud II and ligated with the DNA sequence 1a, which can be isolated from I

I fra plasmidet i tegningens fig. 3 ved hjælp af Xba I- II from the plasmid of FIG. 3 using Xba I-I

I -Sst I-fordøjelse. Man får et hybridplasmid som vist i II -Sst I digestion. A hybrid plasmid is obtained as shown in I

I tegningens fig. 5, som bag lac UV^-kontrolregionen inde- IIn the drawing FIG. 5, which is behind the lac UV ^ control region

I 30 holder codonerne for de første 518 aminosyrer i β-galac- IAt 30, the codons for the first 518 amino acids hold in β-galac-I

I tosidase og i tilslutning hertil codonerne for Ser-Arg- IIn tosidase and subsequently the codons of Ser-Arg-I

I -Met (hirudin 1-64). II -Met (hirudin 1-64). IN

I På samme måde fås et hybridplasmid ifølge teg- IIn the same way, a hybrid plasmid of type I is obtained

I ningens fig. 6, som i plasmidet pCK-5196 indeholder det IIn FIG. 6, which, in plasmid pCK-5196, contains I

I 35 indsatte med DNA-sekvensen IB, hvor imidlertid nu codo- IIn 35 inserts with the DNA sequence IB, however, now codo-I

I net for aminosyren arginin er stillet foran codonet for IIn the net of the amino acid arginine is placed in front of the codon of I

17 DK 175337 B1 aminosyre nr. 1 (threonin). DNA-Sekvensen IB fås ud fra plasmidet i fig. 3, idet dette snittes med restriktionsenzymerne Sst I og Acc I og ligateres med følgende tilpasningsstykke: 5 5' CT AGA CGT ACG T 3' 3' T GCA TGC ATA 5'17 DK 175337 B1 amino acid # 1 (threonine). The DNA sequence IB is derived from the plasmid of FIG. 3, intersecting with the restriction enzymes Sst I and Acc I and ligating with the following adapter: 5 5 'CT AGA CGT ACG T 3' 3 'T GCA TGC ATA 5'

Xba I Acc IXba I Acc I

1Q Eksempel 6Example 6

Transformation af hybridplasmiderneTransformation of the hybrid plasmids

Kompetente E. coli-celler transformeres med 0,1-l^,ug af hybridplasmiderne, som indeholder sekvensen I eller la, IB eller IC, og udstryges for tac-plasmidernes 1S vedkommende på agarplader, der indeholder ampicillin, for pCK-5196-hybridplasmidernes vedkommende på agarplader, der indeholder tetracyclin. Derpå kan kloner, som indeholder de korrekt integrerede hirudin-sekvenser i de tilsvarende plasmider, identificeres ved DNA-hurtig-2Q oparbejdning (Maniatis m.fl.) — Eksempel 7Competent E. coli cells are transformed with 0.1-1 µg of the hybrid plasmids containing the sequence I or Ia, 1B or 1C, and deleted for the tac plasmids 1S on ampicillin-containing agar plates for pCK-5196. the hybrid plasmids on agar plates containing tetracycline. Then, clones containing the properly integrated hirudin sequences in the corresponding plasmids can be identified by DNA rapid 2Q reprocessing (Maniatis et al.) - Example 7

Ekspression af polypeptider, der viser hirudin-aktivitet 25 Efter transformation af det nævnte tac-hybrid- plasmid i E.coli eksprimeres et polypeptid, som foruden hirudin-aminosyresekvensen ved aminoendestillingen desuden bærer endnu en methionylgruppe, som imidlertid kan . elimineres ved bromcyanspaltning. Derimod får man ef- 30 ter transformationen af E.coli med hybridplasmidet ifølge tegningens fig. 5 eller fig. 6 fusionsproteiner af β--galactosidases 518 aminosyrer og hirudin, som er forbundet med hinanden ved hjælp af sekvensen Ser-Arg-Met eller Ser-Arg-Arg. Disse fusionsproteiner kan spaltes med 35 bromcyan eller med trypsin til hirudin- og β-galactosi-dase-fragmenter.Expression of polypeptides showing hirudin activity After transformation of said tac hybrid plasmid into E. coli, a polypeptide is expressed which, in addition to the hirudin amino acid sequence at the amino terminus, also carries another methionyl group, which however can. is eliminated by bromocyanin cleavage. In contrast, after the transformation of E. coli with the hybrid plasmid of FIG. 5 or FIG. 6 fusion proteins of β - galactosidases 518 amino acids and hirudin linked to each other by the sequence Ser-Arg-Met or Ser-Arg-Arg. These fusion proteins can be cleaved with bromocyanine or with trypsin to hirudin and β-galactosidase fragments.

I DK 175337 B1 II DK 175337 B1 I

I 18 II 18 I

I Eksempel 8 IIn Example 8 I

I Oparbejdning og rensning IWorking up and cleaning

I De bakteriestammer, der er dyrket til den ønske- II The bacterial strains grown for the desire- I

I de optiske tæthed, inkuberes med en egnet induktor, f.eks. IIn the optical density, incubate with a suitable inductor, e.g. IN

I 5 IPTG, i tilstrækkelig lang tid, f.eks. 2 timer. Derpå IIn 5 IPTG, for a sufficiently long time, e.g. 2 hours. Then you

I dræbes cellerne med 0,1% cresol og 0,1 mmolær benzylsul- IThe cells are killed with 0.1% cresol and 0.1 mmolar benzyl sulfate

I fonylfluorid. IIn phonyl fluoride. IN

I Efter centrifugering eller riltrering optages cel- II After centrifugation or filtration, cell I is absorbed

I lemassen i en pufferopløsning (50 nimolær Tris, 50 mmolær IIn the lime in a buffer solution (50 nimolar Tris, 50 mmolar I)

I 10 EDTA, pH 7,5) og åbnes mekanisk, f.eks. med en French- IIn 10 EDTA, pH 7.5) and mechanically opened, e.g. with a French- I

I i'j?' i presse eller "Dyno-Miihle"^-' (firma Willy Bachofer, Basel),You? in press or "Dyno-Miihle" ^ - '(company Willy Bachofer, Basel),

I hvorpå de uopløselige bestanddele centrifugeres fra. IIn which the insoluble components are centrifuged off. IN

I Af det ovenpå flydende lag renses det hirudin-holdige pro- IThe hirudin-containing product is purified from the supernatant layer

tein ved hjælp af gængse metoder. Hertil egner sig ion- Itein using conventional methods. For this, ion-I

I 15 bytter-, adsorptions-, gelfiltreringskolonner eller af- IIn 15 exchange, adsorption, gel filtration columns or depots

I finitetschromatografi på thrombin- eller antistofkolon- IIn finite chromatography on thrombin or antibody column I

I ner. Produktets berigelse og renhed kontrolleres ved IYou down. The enrichment and purity of the product are checked by I

I hjælp af natriumdodceylsulfat-acrylamidgel- eller HPLC- IBy means of sodium dodceyl sulfate acrylamide gel or HPLC-I

I analyse. Fusionsproteiner med en β-galactosidase-andel IIn analysis. Fusion proteins with a β-galactosidase fraction I

I 20 kan allerede påvises i råekstrakten af de lysede bakte- II 20 can already be detected in the crude extract of the lighted bark

I rier ved hjælp af disses gennemløbskarakteristiska, der IIn rows by means of their flow characteristics, which you

I er forskellig fra β-galactoseidases (1-518). Karakteri- IYou are different from β-galactoseidases (1-518). Characteristics I

I seringen af det genteknologisk producerede hirudin sker IIn the ring of the technologically produced hirudin you happen

I ved sammenligning med det ud fra blodgel isolerede, au- IBy comparison with that isolated from blood gel, au- I

I 25 tentiske stof, evt. ved hjælp af prøver, der er baseret IIn 25 tentical substances, possibly using samples based on I

I på hirudins blodkoaguleringshæmmende egenskaber. IIn on hirudin's blood clotting inhibitory properties. IN

I 30 II 30 I

I 35 II 35 I

Claims (7)

1. Fremgangsmåde til fremstilling af et polypeptid med hirudinaktivitet med den almene formel I Η-(X) -C-Tyr-D-Asp-Cys-E-Glu-Ser-Gly-Gln-Asn-Leu-Cys-A process for preparing a polypeptide having hirudin activity of the general formula I Η- (X) -C-Tyr-D-Asp-Cys-E-Glu-Ser-Gly-Gln-Asn-Leu-Cys 5 Leu-Cys-Glu-Gly-Ser-Asn-Val-Cys-Gly-Gln-Gly-Asn-Lys-Cys-Ile-Leu-Gly-Ser-Asp-F-G-Lys-Asn-Gln-Cys-Val-Thr-Gly-Glu-Gly-Thr- Pro-Lys-Pro-Gln-Ser-His-Asn-Asp-Gly-Asp-Phe-Glu-H-Ile-Pro-Glu-Glu-Tyr-Leu-Gln-(Z)n-0H 10 hvor m er 0-50, n er 0-100 og- X og X1 er ens eller forskellige rester af genetisk kedelige aminosyrer, C er Thr, Val, Ile, Leu eller Phe, 15. er Thr, E er Thr, F er Gly, G er Glu, H er Glu, og 20. er ens eller forskellige rester af genetisk kodelige aminosyrer, med undtagelse af polypeptider, hvori a) X1 og C begge er Val, b) X1 er Ile, og C er Thr, eller 25 c) der N-terminalt er elimineret aminosyrer indtil position 10, , kendetegnet ved, at der i et ekspressionsplasmid indbygges et gen, der koder for et polypeptid med formlen I ' eller delsekvenser deraf eller for et fusionspeptid bestående 30 af et polypeptid med formlen I eller delsekvenser deraf og β-galactosidasens aminosyresekvens helt eller delvis, og genet eksprimeres til dannelse af et polypeptid med formlen I eller et fusionsprotein bestående af et polypeptid med formlen I og β-galactosidasens aminosyresekvens helt eller 35 delvis, og et fremkommet fusionsprotein spaltes til dannelse af et polypeptid med formlen I. I DK 175337 B1 I I 20 I5 Leu-Cys-Glu-Gly-Ser-Asn-Val-Cys-Gly-Gln-Gly-Asn-Lys-Cys-Ile-Leu-Gly-Ser-Asp-FG-Lys-Asn-Gln-Cys-Val -Thr-Gly-Glu-Gly-Thr-Pro-Lys-Pro-Gln-Ser-His-Asn-Asp-Gly-Asp-Phe-Glu-H-Ile-Pro-Glu-Glu-Tyr-Leu-Gln - (Z) n-OH 10 where m is 0-50, n is 0-100 and - X and X 1 are the same or different residues of genetically boring amino acids, C is Thr, Val, Ile, Leu or Phe, 15. is Thr, E is Thr, F is Gly, G is Glu, H is Glu, and 20. are the same or different residues of genetically encoded amino acids, with the exception of polypeptides wherein a) X1 and C are both Val, b) X1 is Ile and C is Thr, or c) N-terminally eliminated amino acids up to position 10, characterized in that an expression plasmid incorporates a gene encoding a polypeptide of formula I 'or partial sequences thereof or a fusion peptide consisting of a polypeptide of formula I or partial sequences thereof and the amino acid sequence of the β-galactosidase in whole or in part, and the gene expressed to form a polypeptide of formula I or a fusion protein consisting of a polypeptide of formula I and the amino acid sequence of the β-galactosidase, in whole or in part, and an resulting fusion protein is cleaved to form a polypeptide of formula I. I I 175337 B1 I I 20 I 2. Fremgangsmåde ifølge krav l, kendetegnet I I ved, at der indbygges et gen, hvis ikke-kodende streng hybri- I I diseres med det for polypeptidet med formlen I kodende gens I I kodende streng. I I 5 3. Fremgangsmåde ifølge krav 1 eller 2, k e n d e- · I I tegnet ved, at genet syntetiseres kemisk, fortrinsivs I I efter phosphitmetoden. IMethod according to claim 1, characterized in that a gene whose non-coding strand hybrid I is integrated with that of the polypeptide of the formula I coding gene I coding strand is incorporated. A method according to claim 1 or 2, characterized in that the gene is chemically synthesized, preferably I by the phosphite method. IN 4. Fremgangsmåde ifølge et eller flere af de foregåen- I I de krav, kendetegnet ved, at genet i tilslutning I I . 10 til codonet for aminosyren i carboxyendes til lingen· indeholder I I to stopcodoner. IMethod according to one or more of the preceding claims, characterized in that the gene in connection I I. 10 to the codon of the amino acid in the carboxy end of the loop · I contains two stop codons. IN 5. Fremgangsmåde ifølge et eller flere af de foregåen- I de krav, kendetegnet ved, at genet svarer til I I DNA-sekvensen I. I I 15 6. DNA-Sekvenserne I, IA, IB, IC, IIA og IIB. IMethod according to one or more of the preceding claims, characterized in that the gene corresponds to the I I DNA sequence I. I I 6. The DNA sequences I, IA, IB, IC, IIA and IIB. IN 7. Fusionspeptid, kendetegnet ved, at det I I består af et polypeptid ifølge krav 1 og β-galactosidasens I I aminosyresekvens helt eller delvis. I I S. Hybridplasmid, kendetegnet ved, at det I I 20 indeholder en DNA-sekvens, som koder for polypeptidet med I I formlen I. I I 9. Værtsorganisme, fortrinsvis E.coli, kende- I I tegnet ved, at den indeholder et hybridplasmid ifølge I I krav 8. I I 25 I 1 I 35 IA fusion peptide, characterized in that the I I consists of a polypeptide according to claim 1 and the amino acid sequence of the β-galactosidase I whole or in part. II S. Hybrid plasmid, characterized in that it II 20 contains a DNA sequence encoding the polypeptide of II formula I. II 9. Host organism, preferably E. coli, characterized in that it contains a hybrid plasmid of II claim 8. II 25 I 1 I 35 I 30 I30 I
DK198503645A 1984-08-10 1985-08-09 Method for Preparation of a Polypeptide with Hirudin Activity and DNA Sequences, Fusion Peptide, Hybrid Plasmid and Host Organism Useful in the Method DK175337B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3429430 1984-08-10
DE19843429430 DE3429430A1 (en) 1984-08-10 1984-08-10 GENE TECHNOLOGICAL METHOD FOR PRODUCING HIRUDINE AND MEANS FOR IMPLEMENTING THIS METHOD

Publications (3)

Publication Number Publication Date
DK364585D0 DK364585D0 (en) 1985-08-09
DK364585A DK364585A (en) 1986-02-11
DK175337B1 true DK175337B1 (en) 2004-08-30

Family

ID=6242746

Family Applications (1)

Application Number Title Priority Date Filing Date
DK198503645A DK175337B1 (en) 1984-08-10 1985-08-09 Method for Preparation of a Polypeptide with Hirudin Activity and DNA Sequences, Fusion Peptide, Hybrid Plasmid and Host Organism Useful in the Method

Country Status (18)

Country Link
EP (1) EP0171024B1 (en)
JP (1) JPH0811073B2 (en)
KR (1) KR930009337B1 (en)
AT (1) ATE67245T1 (en)
AU (1) AU584628B2 (en)
CA (1) CA1341124C (en)
DE (2) DE3429430A1 (en)
DK (1) DK175337B1 (en)
ES (1) ES8605040A1 (en)
FI (1) FI91883C (en)
GR (1) GR851962B (en)
HU (1) HU206135B (en)
IE (1) IE58485B1 (en)
IL (1) IL76059A (en)
NO (1) NO177434C (en)
NZ (1) NZ213049A (en)
PT (1) PT80930B (en)
ZA (1) ZA856026B (en)

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3438296A1 (en) * 1984-04-18 1985-11-07 Hoechst Ag, 6230 Frankfurt NEW POLYPEPTIDES WITH A BLOOD-CLOTHING EFFECT, METHOD FOR THE PRODUCTION OR THEIR RECOVERY, THEIR USE AND THE CONTAINERS THEREOF
DE3445517C2 (en) * 1984-12-13 1993-11-18 Ciba Geigy DNA sequence coding for a hirudin-like protein and method for producing a hirudin-like protein
DE3738541A1 (en) * 1987-11-13 1989-05-24 Hoechst Ag METHOD FOR INSULATING AND CLEANING HIRUDINE
FR2593518B1 (en) * 1985-05-02 1989-09-08 Transgene Sa VECTORS FOR THE EXPRESSION AND SECRETION OF HIRUDIN BY TRANSFORMED YEASTS
EP0209061B1 (en) * 1985-07-17 1994-01-12 Hoechst Aktiengesellschaft Peptides having an anticoagulant activity, process for their preparation, obtention, their use and agents containing them
DE3541856A1 (en) * 1985-11-27 1987-06-04 Hoechst Ag EUKARYOTIC FUSION PROTEINS, THEIR PRODUCTION AND USE, AND MEANS FOR CARRYING OUT THE PROCESS
MY101203A (en) * 1985-12-12 1991-08-17 Ucp Gen Pharma Ag Production of thrombin iinhibitors.
GB8530631D0 (en) 1985-12-12 1986-01-22 Ciba Geigy Ag Thrombin inhibitors
GB2188322A (en) * 1986-03-26 1987-09-30 Bayer Ag Aprotinin and analogues thereof produced by a recombinant host
GB2188933A (en) * 1986-04-10 1987-10-14 Bayer Ag Expression vectors for production of polypeptides, method for enhanced expression of polypeptides, hosts containing the expression vectors, products manufactured thereby
FR2607516B2 (en) * 1986-12-01 1989-12-22 Transgene Sa IMPROVED VECTORS FOR EXPRESSING A HIRUDIN VARIANT IN YEAST, PROCESS AND PRODUCT OBTAINED
MC1834A1 (en) * 1986-07-10 1988-06-03 Transgene Sa DNA FUNCTIONAL BLOCK AND PLASMID ENCODING HIRUDINE, TRANSFORMED YEAST, PROCESS FOR PREPARING HIRUDINE, HIRUDINE OBTAINED AND ITS USE
FR2607517B2 (en) * 1986-12-01 1989-12-22 Transgene Sa VECTORS FOR EXPRESSING HIRUDIN VARIANTS IN YEAST, PROCESS AND PRODUCT OBTAINED
GB2199582A (en) * 1987-01-07 1988-07-13 Bayer Ag Analogues of pancreatic secretory trypsin inhibitor
US5032573A (en) * 1987-03-23 1991-07-16 Bayer Aktiengesellschaft Homologs of aprotinin produced from a recombinant host, process, expression vector and recombinant host therefor and pharmaceutical use thereof
US5236898A (en) * 1987-05-21 1993-08-17 Merrell Dow Pharmaceuticals Inc. Cyclic anticoagulant peptides
US5192745A (en) * 1987-05-21 1993-03-09 Merrell Dow Pharmaceuticals Inc. Cyclic anticoagulant peptides
GB8723661D0 (en) * 1987-10-08 1987-11-11 British Bio Technology Synthetic gene
GB8723662D0 (en) * 1987-10-08 1987-11-11 British Bio Technology Synthetic gene
US5256559A (en) * 1988-03-04 1993-10-26 Biogen, Inc. Methods and compositions for inhibiting platelet aggregation
FR2628429B1 (en) * 1988-03-08 1990-12-28 Transgene Sa HIRUDINE VARIANTS, USES THEREOF AND PROCESSES FOR OBTAINING THEM
DE3819079A1 (en) * 1988-06-04 1989-12-07 Hoechst Ag HIRUDINE DERIVATIVES WITH DELAYED EFFECT
US5167960A (en) * 1988-08-03 1992-12-01 New England Deaconess Hospital Corporation Hirudin-coated biocompatible substance
US5112615A (en) * 1988-08-03 1992-05-12 New England Deaconess Hospital Corporation Soluble hirudin conjugates
DE3835815A1 (en) * 1988-10-21 1990-04-26 Hoechst Ag NEW ISOHIRUDINE
US5192747A (en) * 1989-10-03 1993-03-09 Merrell Dow Pharmaceuticals Inc. Anticoagulant peptides
DE4009268A1 (en) * 1990-03-22 1991-09-26 Consortium Elektrochem Ind SECRETION OF HIRUDIN DERIVATIVES
GB9010552D0 (en) * 1990-05-10 1990-07-04 Erba Carlo Spa Method for the recombinant production of hirudins and novel hirudins
US6514730B1 (en) 1991-03-21 2003-02-04 Consortium für elektrochemische Industrie GmbH Secretion of hirudin derivatives
DE4140381A1 (en) * 1991-12-07 1993-06-09 Hoechst Ag, 6230 Frankfurt, De NEW SYNTHETIC ISOHIRUDINE WITH IMPROVED STABILITY
US5972648A (en) * 1993-09-28 1999-10-26 Japan Energy Corporation Hirudin analogs, methods of manufacture thereof and anticoagulant compositions having these as active ingredients
DE4404168A1 (en) * 1994-02-10 1995-08-17 Hoechst Ag Hirudin derivatives and process for their preparation
DE19529997C1 (en) * 1995-08-16 1997-04-10 Hoechst Ag A method for inactivating carboxypeptidase Y in hirudin-containing culture broths
DE19543737A1 (en) * 1995-11-24 1997-05-28 Hoechst Ag Process for the ultrafiltration of biological matrices containing peptides or proteins
DE19544233A1 (en) * 1995-11-28 1997-06-05 Hoechst Ag Process for using the yeast ADH II promoter system for the biotechnological production of heterologous proteins in high yields
DE19607239A1 (en) 1996-02-27 1997-08-28 Behringwerke Ag Pharmaceutical composition containing hirudin and process for its preparation
DE19944870A1 (en) * 1999-09-18 2001-03-29 Aventis Pharma Gmbh Signal sequences for the production of Leu-hirudin via secretion by E. coli in the culture medium
DE10149678A1 (en) 2001-10-09 2009-03-12 Novel Science International Gmbh New peptide compounds containing upto 6 aminoacid residues, are potent and specific thrombin inhibitors used for treating and diagnosing diseases associated with thrombin
DE10301255A1 (en) 2003-01-15 2004-07-29 Cpi Creative Pharma International Gmbh Organic compounds with biological action as thrombin inhibitors and their use

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK339781A (en) * 1980-08-05 1982-02-06 Searle & Co SYNTHETIC GEN
DE3342139A1 (en) * 1983-11-22 1985-05-30 Ciba-Geigy Ag, Basel DESULFATOHIRUDINE, METHOD FOR THE PRODUCTION THEREOF AND PHARMACEUTICAL AGENTS
WO1985004418A1 (en) * 1984-03-27 1985-10-10 Transgene S.A. Vectors for the expression of hirudine, transformed cells and process for the preparation of hirudine
EP0168342B1 (en) * 1984-06-14 1991-07-03 Ciba-Geigy Ag Process for the preparation of thrombin inhibitors

Also Published As

Publication number Publication date
ES8605040A1 (en) 1986-02-16
HUT38968A (en) 1986-07-28
KR930009337B1 (en) 1993-09-27
PT80930B (en) 1987-11-11
IL76059A (en) 1993-08-18
AU584628B2 (en) 1989-06-01
IL76059A0 (en) 1985-12-31
FI853056A0 (en) 1985-08-08
DK364585A (en) 1986-02-11
EP0171024B1 (en) 1991-09-11
AU4597785A (en) 1986-02-13
ES545994A0 (en) 1986-02-16
DK364585D0 (en) 1985-08-09
NO177434B (en) 1995-06-06
NZ213049A (en) 1988-05-30
FI91883B (en) 1994-05-13
JPS6147198A (en) 1986-03-07
DE3429430A1 (en) 1986-02-20
FI91883C (en) 1994-08-25
JPH0811073B2 (en) 1996-02-07
DE3584053D1 (en) 1991-10-17
ZA856026B (en) 1986-03-26
IE58485B1 (en) 1993-09-22
IE851973L (en) 1986-02-10
ATE67245T1 (en) 1991-09-15
NO853155L (en) 1986-02-11
FI853056L (en) 1986-02-11
PT80930A (en) 1985-09-01
KR870002257A (en) 1987-03-30
NO177434C (en) 1995-09-13
CA1341124C (en) 2000-10-24
EP0171024A1 (en) 1986-02-12
HU206135B (en) 1992-08-28
GR851962B (en) 1985-12-03

Similar Documents

Publication Publication Date Title
DK175337B1 (en) Method for Preparation of a Polypeptide with Hirudin Activity and DNA Sequences, Fusion Peptide, Hybrid Plasmid and Host Organism Useful in the Method
EP0046039B2 (en) Synthetic urogastrone gene, corresponding plasmid recombinants, transformed cells, production thereof and urogastrone expression
DK172618B1 (en) Fusion proteins, their preparation and use
DK175182B1 (en) Mini-proinsulin, this compound for use as a drug, drug containing the compound, use of the compound for the preparation of mono-Arg insulin, method of preparation of the compound, DNA encoding the compound ......
IE57999B1 (en) Process for the manufacture of thrombin inhibitors
KR920009505B1 (en) Method for preparation of polypeptide having human gamma inf activity
EP0130166A1 (en) A recombinant plasmid, a transformant microorganism, a polydeoxy-ribonucleotide segment, a process for producing a biologically active protein, and the protein thus produced
US5149657A (en) Escherichia coli expression vector encoding bioadhesive precursor protein analogs comprising three to twenty repeats of the decapeptide (Ala-Lys-Pro-Ser-Tyr-Pro-Pro-Thr-Tyr-Lys)
CZ278268B6 (en) Process for preparing hirudin
DK166681B1 (en) DNA SEQUENCES, DNA SEQUENCES AND DNA OLIGONUCLEOTIDES FOR USE IN THE PREPARATION OF THE FIRST DNA SEQUENCES, HYBRID PLASMIDS CONTAINING DNA SEQUENCE, HOUSE CELLS WITH 2
US20030170811A1 (en) Process for the production of alpha-human atrial natriuretic polypeptide
JPS63304987A (en) Gene engineering production of angiogenins
CA1224167A (en) Preparation of secretin
JPS6030687A (en) Dna gene, its preparation and plasmid containing the same
RU2416645C2 (en) Single-chain antibody binding tumour necrosis factor alpha, dna, plasmid dna and method for producing single-chained antibody
JPS6188883A (en) Synthetic signal arrangement for transporting protein in development system
KR100267889B1 (en) Microbiological process for producing alpha-hanf
KR900002841B1 (en) Method for producing of humman insulin by genetic engineering
NO851065L (en) GENETIC TECHNOLOGY PROCEDURE FOR MANUFACTURING HUMAN GAMMA INTERFERON AND IMPLEMENTATION FOR IMPLEMENTING THIS PROCEDURE
JPH10136982A (en) Novel gene and production of recombinant protein using the same
JPH0541989A (en) Synthetic gene capable of coding human parathyroid hormone
JPH01247092A (en) Production of thrombin inhibitor

Legal Events

Date Code Title Description
PUP Patent expired